1
|
Jobe T, Stephan J, Wells CK, De Silva M, Lorkiewicz PK, Hill BG, Wysoczynski M. Phase Partitioning of the Neutrophil Oxidative Burst is Coordinated by Accessory Pathways of Glucose Metabolism and Mitochondrial Activity. J Biol Chem 2024:108091. [PMID: 39675714 DOI: 10.1016/j.jbc.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Neutrophils are a part of the innate immune system and produce reactive oxygen species (ROS) to extinguish pathogens. The major source of ROS in neutrophils is NADPH oxidase, which is fueled by NADPH generated via the pentose phosphate pathway; however, it is unclear how other accessory glucose metabolism pathways and mitochondrial activity influence the respiratory burst. We examined the temporal dynamics of the respiratory burst and delineated how metabolism changes over time after neutrophil activation. Bone marrow-derived neutrophils were stimulated with phorbol 12-myristate 13-acetate (PMA), and the respiratory burst was measured via extracellular flux analysis. Metabolomics experiments utilizing 13C6-glucose highlighted the activation of glycolysis as well as ancillary pathways of glucose metabolism in activated neutrophils. PMA stimulation acutely increased 13C enrichment into glycerol 3-phosphate (G3P) and citrate, whereas increases in 13C enrichment in the glycogen intermediate, UDP-hexose, and end products of the hexosamine and serine biosynthetic pathways occurred only during the late phase of the oxidative burst. Targeted inhibition of the G3P shuttle, glycogenolysis, serine biosynthesis, and mitochondrial respiration demonstrated that the G3P shuttle contributes to the general magnitude of ROS production; that glycogen contributes solely to the early respiratory burst; and that the serine biosynthetic pathway activity and Complex III-driven mitochondrial activity influence respiratory burst duration. Collectively, these results show that the neutrophil oxidative burst is highly dynamic, with coordinated changes in metabolism that control the initiation, magnitude, and duration of ROS production.
Collapse
Affiliation(s)
- Tyler Jobe
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, KY; Department of Physiology, School of Medicine, University of Louisville, KY.
| | - Jonah Stephan
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, KY; Department of Biochemistry, School of Medicine, University of Louisville, KY
| | - Collin K Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, KY; Department of Biochemistry, School of Medicine, University of Louisville, KY
| | - Maleesha De Silva
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, KY
| | - Pawel K Lorkiewicz
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, KY
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, KY
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, KY.
| |
Collapse
|
2
|
Peng G, Yan J, Chen L, Li L. Glycometabolism reprogramming: Implications for cardiovascular diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:26-37. [PMID: 36963725 DOI: 10.1016/j.pbiomolbio.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023]
Abstract
Glycometabolism is well known for its roles as the main source of energy, which mainly includes three metabolic pathways: oxidative phosphorylation, glycolysis and pentose phosphate pathway. The orderly progress of glycometabolism is the basis for the maintenance of cardiovascular function. However, upon exposure to harmful stimuli, the intracellular glycometabolism changes or tends to shift toward another glycometabolism pathway more suitable for its own development and adaptation. This shift away from the normal glycometabolism is also known as glycometabolism reprogramming, which is commonly related to the occurrence and aggravation of cardiovascular diseases. In this review, we elucidate the physiological role of glycometabolism in the cardiovascular system and summarize the mechanisms by which glycometabolism drives cardiovascular diseases, including diabetes, cardiac hypertrophy, heart failure, atherosclerosis, and pulmonary hypertension. Collectively, directing GMR back to normal glycometabolism might provide a therapeutic strategy for the prevention and treatment of related cardiovascular diseases.
Collapse
Affiliation(s)
- Guolong Peng
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Jialong Yan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Gibb AA, Huynh AT, Gaspar RB, Ploesch TL, Lombardi AA, Lorkiewicz PK, Lazaropoulos MP, Bedi K, Arany Z, Margulies KB, Hill BG, Elrod JW. Glutamine uptake and catabolism is required for myofibroblast formation and persistence. J Mol Cell Cardiol 2022; 172:78-89. [PMID: 35988357 PMCID: PMC10486318 DOI: 10.1016/j.yjmcc.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fibrosis and extracellular matrix remodeling are mediated by resident cardiac fibroblasts (CFs). In response to injury, fibroblasts activate, differentiating into specialized synthetic and contractile myofibroblasts producing copious extracellular matrix proteins (e.g., collagens). Myofibroblast persistence in chronic diseases, such as HF, leads to progressive cardiac dysfunction and maladaptive remodeling. We recently reported that an increase in αKG (alpha-ketoglutarate) bioavailability, which contributes to enhanced αKG-dependent lysine demethylase activity and chromatin remodeling, is required for myofibroblast formation. Therefore, we aimed to determine the substrates and metabolic pathways contributing to αKG biosynthesis and their requirement for myofibroblast formation. METHODS Stable isotope metabolomics identified glutaminolysis as a key metabolic pathway required for αKG biosynthesis and myofibroblast formation, therefore we tested the effects of pharmacologic inhibition (CB-839) or genetic deletion of glutaminase (Gls1-/-) on myofibroblast formation in both murine and human cardiac fibroblasts. We employed immunofluorescence staining, functional gel contraction, western blotting, and bioenergetic assays to determine the myofibroblast phenotype. RESULTS Carbon tracing indicated enhanced glutaminolysis mediating increased αKG abundance. Pharmacological and genetic inhibition of glutaminolysis prevented myofibroblast formation indicated by a reduction in αSMA+ cells, collagen gel contraction, collagen abundance, and the bioenergetic response. Inhibition of glutaminolysis also prevented TGFβ-mediated histone demethylation and supplementation with cell-permeable αKG rescued the myofibroblast phenotype. Importantly, inhibition of glutaminolysis was sufficient to prevent myofibroblast formation in CFs isolated from the human failing heart. CONCLUSIONS These results define glutaminolysis as necessary for myofibroblast formation and persistence, providing substantial rationale to evaluate several new therapeutic targets to treat cardiac fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Anh T Huynh
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ryan B Gaspar
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Tori L Ploesch
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Alyssa A Lombardi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Pawel K Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | - Michael P Lazaropoulos
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ken Bedi
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Zolt Arany
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Kenneth B Margulies
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
4
|
Single-cell transcriptomic profiling unveils dysregulation of cardiac progenitor cells and cardiomyocytes in a mouse model of maternal hyperglycemia. Commun Biol 2022; 5:820. [PMID: 35970860 PMCID: PMC9378651 DOI: 10.1038/s42003-022-03779-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect, often linked to genetic variations, environmental exposures, or combination of both. Epidemiological studies reveal that maternal pregestational diabetes is associated with ~5-fold higher risk of CHD in the offspring; however, the causal mechanisms affecting cardiac gene-regulatory-network (GRN) during early embryonic development remain poorly understood. In this study, we utilize an established murine model of pregestational diabetes to uncover the transcriptional responses in key cell-types of the developing heart exposed to maternal hyperglycemia (matHG). Here we show that matHG elicits diverse cellular responses in E9.5 and E11.5 embryonic hearts compared to non-diabetic hearts by single-cell RNA-sequencing. Through differential-gene-expression and cellular trajectory analyses, we identify perturbations in genes, predominantly affecting Isl1+ second heart field progenitors and Tnnt2+ cardiomyocytes with matHG. Using cell-fate mapping analysis in Isl1-lineage descendants, we demonstrate that matHG impairs cardiomyocyte differentiation and alters the expression of lineage-specifying cardiac genes. Finally, our work reveals matHG-mediated transcriptional changes in second heart field lineage that elevate CHD risk by perturbing Isl1-GRN during cardiomyocyte differentiation. Gene-environment interaction studies targeting the Isl1-GRN in cardiac progenitor cells will have a broader impact on understanding the mechanisms of matHG-induced risk of CHD associated with diabetic pregnancies. ScRNA-seq of embryonic heart tissues from a mouse model of maternal hyperglycemia (matHG) provides further insight into how matHG disrupts heart development and perturbs second heart field derived cardiomyocyte differentiation.
Collapse
|
5
|
Pagano F, Picchio V, Bordin A, Cavarretta E, Nocella C, Cozzolino C, Floris E, Angelini F, Sordano A, Peruzzi M, Miraldi F, Biondi-Zoccai G, De Falco E, Carnevale R, Sciarretta S, Frati G, Chimenti I. Progressive stages of dysmetabolism are associated with impaired biological features of human cardiac stromal cells mediated by the oxidative state and autophagy. J Pathol 2022; 258:136-148. [PMID: 35751644 PMCID: PMC9542980 DOI: 10.1002/path.5985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022]
Abstract
Cardiac stromal cells (CSCs) are the main players in fibrosis. Dysmetabolic conditions (metabolic syndrome—MetS, and type 2 diabetes mellitus—DM2) are strong pathogenetic contributors to cardiac fibrosis. Moreover, modulation of the oxidative state (OxSt) and autophagy is a fundamental function affecting the fibrotic commitment of CSCs, that are adversely modulated in MetS/DM2. We aimed to characterize CSCs from dysmetabolic patients, and to obtain a beneficial phenotypic setback from such fibrotic commitment by modulation of OxSt and autophagy. CSCs were isolated from 38 patients, stratified as MetS, DM2, or controls. Pharmacological modulation of OxSt and autophagy was obtained by treatment with trehalose and NOX4/NOX5 inhibitors (TREiNOX). Flow‐cytometry and real‐time quantitative polymerase chain reaction (RT‐qPCR) analyses showed significantly increased expression of myofibroblasts markers in MetS‐CSCs at baseline (GATA4, ACTA2, THY1/CD90) and after starvation (COL1A1, COL3A1). MetS‐ and DM2‐CSCs displayed a paracrine profile distinct from control cells, as evidenced by screening of 30 secreted cytokines, with a significant reduction in vascular endothelial growth factor (VEGF) and endoglin confirmed by enzyme‐linked immunoassay (ELISA). DM2‐CSCs showed significantly reduced support for endothelial cells in angiogenic assays, and significantly increased H2O2 release and NOX4/5 expression levels. Autophagy impairment after starvation (reduced ATG7 and LC3‐II proteins) was also detectable in DM2‐CSCs. TREiNOX treatment significantly reduced ACTA2, COL1A1, COL3A1, and NOX4 expression in both DM2‐ and MetS‐CSCs, as well as GATA4 and THY1/CD90 in DM2, all versus control cells. Moreover, TREiNOX significantly increased VEGF release by DM2‐CSCs, and VEGF and endoglin release by both MetS‐ and DM2‐CSCs, also recovering the angiogenic support to endothelial cells by DM2‐CSCs. In conclusion, DM2 and MetS worsen microenvironmental conditioning by CSCs. Appropriate modulation of autophagy and OxSt in human CSCs appears to restore these features, mostly in DM2‐CSCs, suggesting a novel strategy against cardiac fibrosis in dysmetabolic patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo (RM), Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Alessia Sordano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Roberto Carnevale
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| |
Collapse
|
6
|
Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants (Basel) 2022; 11:antiox11020208. [PMID: 35204091 PMCID: PMC8868283 DOI: 10.3390/antiox11020208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.
Collapse
|
7
|
Karlstaedt A. Stable Isotopes for Tracing Cardiac Metabolism in Diseases. Front Cardiovasc Med 2021; 8:734364. [PMID: 34859064 PMCID: PMC8631909 DOI: 10.3389/fcvm.2021.734364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Although metabolic remodeling during cardiovascular diseases has been well-recognized for decades, the recent development of analytical platforms and mathematical tools has driven the emergence of assessing cardiac metabolism using tracers. Metabolism is a critical component of cellular functions and adaptation to stress. The pathogenesis of cardiovascular disease involves metabolic adaptation to maintain cardiac contractile function even in advanced disease stages. Stable-isotope tracer measurements are a powerful tool for measuring flux distributions at the whole organism level and assessing metabolic changes at a systems level in vivo. The goal of this review is to summarize techniques and concepts for in vivo or ex vivo stable isotope labeling in cardiovascular research, to highlight mathematical concepts and their limitations, to describe analytical methods at the tissue and single-cell level, and to discuss opportunities to leverage metabolic models to address important mechanistic questions relevant to all patients with cardiovascular disease.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
9
|
Abouleisa RRE, McNally L, Salama ABM, Hammad SK, Ou Q, Wells C, Lorkiewicz PK, Bolli R, Mohamed TMA, Hill BG. Cell cycle induction in human cardiomyocytes is dependent on biosynthetic pathway activation. Redox Biol 2021; 46:102094. [PMID: 34418597 PMCID: PMC8379496 DOI: 10.1016/j.redox.2021.102094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
AIMS The coordinated gene and metabolic programs that facilitate cardiomyocyte entry and progression in the cell cycle are poorly understood. The purpose of this study was to identify the metabolic changes that influence myocyte proliferation. METHODS AND RESULTS In adult mouse cardiomyocytes and human induced pluripotent stem cell cardiomyocytes (hiPS-CMs), cell cycle initiation by ectopic expression of Cyclin B1, Cyclin D1, CDK1, and CDK4 (termed 4F) downregulated oxidative phosphorylation genes and upregulated genes that regulate ancillary biosynthetic pathways of glucose metabolism. Results from metabolic analyses and stable isotope tracing experiments indicate that 4F-mediated cell cycle induction in hiPS-CMs decreases glucose oxidation and oxidative phosphorylation and augments NAD+, glycogen, hexosamine, phospholipid, and serine biosynthetic pathway activity. Interventions that diminish NAD+ synthesis, serine synthesis, or protein O-GlcNAcylation decreased 4F-mediated cell cycle entry. In a gain of function approach, we overexpressed phosphoenolpyruvate carboxykinase 2 (PCK2), which can drive carbon from the Krebs cycle to the glycolytic intermediate pool, and found that PCK2 augments 4F-mediated cell cycle entry. CONCLUSIONS These findings suggest that a metabolic shift from catabolic to anabolic activity is a critical step for cardiomyocyte cell cycle entry and is required to facilitate proliferation.
Collapse
Affiliation(s)
- Riham R E Abouleisa
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Lindsey McNally
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Abou Bakr M Salama
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Cardiovascular Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Cardiac Surgery, Verona University, Verona, Italy
| | - Sally K Hammad
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | - Qinghui Ou
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Collin Wells
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Pawel K Lorkiewicz
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Chemistry, University of Louisville, KY, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Tamer M A Mohamed
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, KY, USA; Institute of Cardiovascular Sciences, University of Manchester, UK; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Bradford G Hill
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
10
|
Tayanloo-Beik A, Roudsari PP, Rezaei-Tavirani M, Biglar M, Tabatabaei-Malazy O, Arjmand B, Larijani B. Diabetes and Heart Failure: Multi-Omics Approaches. Front Physiol 2021; 12:705424. [PMID: 34421642 PMCID: PMC8378451 DOI: 10.3389/fphys.2021.705424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes and heart failure, as important global issues, cause substantial expenses to countries and medical systems because of the morbidity and mortality rates. Most people with diabetes suffer from type 2 diabetes, which has an amplifying effect on the prevalence and severity of many health problems such as stroke, neuropathy, retinopathy, kidney injuries, and cardiovascular disease. Type 2 diabetes is one of the cornerstones of heart failure, another health epidemic, with 44% prevalence. Therefore, finding and targeting specific molecular and cellular pathways involved in the pathophysiology of each disease, either in diagnosis or treatment, will be beneficial. For diabetic cardiomyopathy, there are several mechanisms through which clinical heart failure is developed; oxidative stress with mediation of reactive oxygen species (ROS), reduced myocardial perfusion due to endothelial dysfunction, autonomic dysfunction, and metabolic changes, such as impaired glucose levels caused by insulin resistance, are the four main mechanisms. In the field of oxidative stress, advanced glycation end products (AGEs), protein kinase C (PKC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) are the key mediators that new omics-driven methods can target. Besides, diabetes can affect myocardial function by impairing calcium (Ca) homeostasis, the mechanism in which reduced protein phosphatase 1 (PP1), sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), and phosphorylated SERCA2a expressions are the main effectors. This article reviewed the recent omics-driven discoveries in the diagnosis and treatment of type 2 diabetes and heart failure with focus on the common molecular mechanisms.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Jeevanandam V, Osborne J. Understanding the fundamentals of microbial remediation with emphasize on metabolomics. Prep Biochem Biotechnol 2021; 52:351-363. [PMID: 34338137 DOI: 10.1080/10826068.2021.1946694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The post-genomic tool metabolomics is a great advancement in science and technology which acquires novel strategies and pathways to analyze various biological compounds. Metabolomics aids in retrieving the qualitative and quantitative data from the various biological system. The current review is focused on the application of metabolomics in bioremediation and helps to focus on the xenobiotic compounds which are discharged into the environment and have long term impact. The microbial based biodegradation can be effectively used along with the combination of metabolomic approach for a better understanding of the breakdown of certain recalcitrant. Additionally, this review also discusses the candidate gene approach which helps to comprehend the functional analysis of microbial genes in response to different contaminants. Therefore, this review intends to discuss the metabolomics in bioremediation by studying the complete set of metabolites involved during the process of degradation and their interaction with the environment.
Collapse
Affiliation(s)
- Vaishnavi Jeevanandam
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Jabez Osborne
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
12
|
Singh P, O'Toole TE, Conklin DJ, Hill BG, Haberzettl P. Endothelial progenitor cells as critical mediators of environmental air pollution-induced cardiovascular toxicity. Am J Physiol Heart Circ Physiol 2021; 320:H1440-H1455. [PMID: 33606580 PMCID: PMC8260385 DOI: 10.1152/ajpheart.00804.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 01/15/2023]
Abstract
Environmental air pollution exposure is a leading cause of death worldwide, and with increasing industrialization and urbanization, its disease burden is expected to rise even further. The majority of air pollution exposure-associated deaths are linked to cardiovascular disease (CVD). Although ample research demonstrates a strong correlation between air pollution exposure and CVD risk, the mechanisms by which inhalation of polluted air affects cardiovascular health are not completely understood. Inhalation of environmental air pollution has been associated with endothelial dysfunction, which suggests that air pollution exposure impacts CVD health by inducing endothelial injury. Interestingly, recent studies demonstrate that air pollution exposure affects the number and function of endothelial progenitor cells (EPCs), subpopulations of bone marrow-derived proangiogenic cells that have been shown to play an essential role in maintaining cardiovascular health. In line with their beneficial function, chronically low levels of circulating EPCs and EPC dysfunction (e.g., in diabetic patients) have been associated with vascular dysfunction, poor cardiovascular health, and increases in the severity of cardiovascular outcomes. In contrast, treatments that improve EPC number and function (e.g., exercise) have been found to attenuate cardiovascular dysfunction. Considering the critical, nonredundant role of EPCs in maintaining vascular health, air pollution exposure-induced impairments in EPC number and function could lead to endothelial dysfunction, consequently increasing the risk for CVD. This review article covers novel aspects and new mechanistic insights of the adverse effects of air pollution exposure on cardiovascular health associated with changes in EPC number and function.
Collapse
Affiliation(s)
- Parul Singh
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Timothy E O'Toole
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel J Conklin
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Bradford G Hill
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Petra Haberzettl
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
13
|
Stem Cell Metabolism: Powering Cell-Based Therapeutics. Cells 2020; 9:cells9112490. [PMID: 33207756 PMCID: PMC7696341 DOI: 10.3390/cells9112490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapeutics for cardiac repair have been extensively used during the last decade. Preclinical studies have demonstrated the effectiveness of adoptively transferred stem cells for enhancement of cardiac function. Nevertheless, several cell-based clinical trials have provided largely underwhelming outcomes. A major limitation is the lack of survival in the harsh cardiac milieu as only less than 1% donated cells survive. Recent efforts have focused on enhancing cell-based therapeutics and understanding the biology of stem cells and their response to environmental changes. Stem cell metabolism has recently emerged as a critical determinant of cellular processes and is uniquely adapted to support proliferation, stemness, and commitment. Metabolic signaling pathways are remarkably sensitive to different environmental signals with a profound effect on cell survival after adoptive transfer. Stem cells mainly generate energy through glycolysis while maintaining low oxidative phosphorylation (OxPhos), providing metabolites for biosynthesis of macromolecules. During commitment, there is a shift in cellular metabolism, which alters cell function. Reprogramming stem cell metabolism may represent an attractive strategy to enhance stem cell therapy for cardiac repair. This review summarizes the current literature on how metabolism drives stem cell function and how this knowledge can be applied to improve cell-based therapeutics for cardiac repair.
Collapse
|
14
|
A unique insight for energy metabolism disorders in depression based on chronic unpredictable mild stress rats using stable isotope-resolved metabolomics. J Pharm Biomed Anal 2020; 191:113588. [DOI: 10.1016/j.jpba.2020.113588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
|
15
|
Conroy LR, Lorkiewicz P, He L, Yin X, Zhang X, Rai SN, Clem BF. Palbociclib treatment alters nucleotide biosynthesis and glutamine dependency in A549 cells. Cancer Cell Int 2020; 20:280. [PMID: 32624705 PMCID: PMC7329430 DOI: 10.1186/s12935-020-01357-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aberrant activity of cell cycle proteins is one of the key somatic events in non-small cell lung cancer (NSCLC) pathogenesis. In most NSCLC cases, the retinoblastoma protein tumor suppressor (RB) becomes inactivated via constitutive phosphorylation by cyclin dependent kinase (CDK) 4/6, leading to uncontrolled cell proliferation. Palbociclib, a small molecule inhibitor of CDK4/6, has shown anti-tumor activity in vitro and in vivo, with recent studies demonstrating a functional role for palbociclib in reprogramming cellular metabolism. While palbociclib has shown efficacy in preclinical models of NSCLC, the metabolic consequences of CDK4/6 inhibition in this context are largely unknown. METHODS In our study, we used a combination of stable isotope resolved metabolomics using [U-13C]-glucose and multiple in vitro metabolic assays, to interrogate the metabolic perturbations induced by palbociclib in A549 lung adenocarcinoma cells. Specifically, we assessed changes in glycolytic activity, the pentose phosphate pathway (PPP), and glutamine utilization. We performed these studies following palbociclib treatment with simultaneous silencing of RB1 to define the pRB-dependent changes in metabolism. RESULTS Our studies revealed palbociclib does not affect glycolytic activity in A549 cells but decreases glucose metabolism through the PPP. This is in part via reducing activity of glucose 6-phosphate dehydrogenase, the rate limiting enzyme in the PPP. Additionally, palbociclib enhances glutaminolysis to maintain mitochondrial respiration and sensitizes A549 cells to the glutaminase inhibitor, CB-839. Notably, the effects of palbociclib on both the PPP and glutamine utilization occur in an RB-dependent manner. CONCLUSIONS Together, our data define the metabolic impact of palbociclib treatment in A549 cells and may support the targeting CDK4/6 inhibition in combination with glutaminase inhibitors in NSCLC patients with RB-proficient tumors.
Collapse
Affiliation(s)
- Lindsey R. Conroy
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY USA
- Present Address: Department of Neuroscience, University of Kentucky, Lexington, KY USA
| | - Pawel Lorkiewicz
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Louisville, KY USA
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY USA
| | - Liqing He
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY USA
| | - Xinmin Yin
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY USA
| | - Xiang Zhang
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY USA
- James Graham Brown Cancer Center, Louisville, KY USA
| | - Shesh N. Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY USA
- James Graham Brown Cancer Center, Louisville, KY USA
| | - Brian F. Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY USA
- James Graham Brown Cancer Center, Louisville, KY USA
| |
Collapse
|
16
|
Loss of Rb1 Enhances Glycolytic Metabolism in Kras-Driven Lung Tumors In Vivo. Cancers (Basel) 2020; 12:cancers12010237. [PMID: 31963621 PMCID: PMC7016860 DOI: 10.3390/cancers12010237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 01/31/2023] Open
Abstract
Dysregulated metabolism is a hallmark of cancer cells and is driven in part by specific genetic alterations in various oncogenes or tumor suppressors. The retinoblastoma protein (pRb) is a tumor suppressor that canonically regulates cell cycle progression; however, recent studies have highlighted a functional role for pRb in controlling cellular metabolism. Here, we report that loss of the gene encoding pRb (Rb1) in a transgenic mutant Kras-driven model of lung cancer results in metabolic reprogramming. Our tracer studies using bolus dosing of [U-13C]-glucose revealed an increase in glucose carbon incorporation into select glycolytic intermediates. Consistent with this result, Rb1-depleted tumors exhibited increased expression of key glycolytic enzymes. Interestingly, loss of Rb1 did not alter mitochondrial pyruvate oxidation compared to lung tumors with intact Rb1. Additional tracer studies using [U-13C,15N]-glutamine and [U-13C]-lactate demonstrated that loss of Rb1 did not alter glutaminolysis or utilization of circulating lactate within the tricarboxylic acid cycle (TCA) in vivo. Taken together, these data suggest that the loss of Rb1 promotes a glycolytic phenotype, while not altering pyruvate oxidative metabolism or glutamine anaplerosis in Kras-driven lung tumors.
Collapse
|
17
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
18
|
André E, De Pauw A, Verdoy R, Brusa D, Bouzin C, Timmermans A, Bertrand L, Balligand JL. Changes of Metabolic Phenotype of Cardiac Progenitor Cells During Differentiation: Neutral Effect of Stimulation of AMP-Activated Protein Kinase. Stem Cells Dev 2019; 28:1498-1513. [PMID: 31530214 DOI: 10.1089/scd.2019.0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac progenitor cells (CPCs) in the adult mammalian heart, as well as exogenous CPCs injected at the border zone of infarcted tissue, display very low differentiation rate into cardiac myocytes and marginal repair capacity in the injured heart. Emerging evidence supports an obligatory metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) during stem cells differentiation, suggesting that pharmacological modulation of metabolism may improve CPC differentiation and, potentially, healing properties. In this study, we investigated the metabolic transition underlying CPC differentiation toward cardiac myocytes. In addition, we tested whether activators of adenosine monophosphate-activated protein kinase (AMPK), known to promote mitochondrial biogenesis in other cell types would also improve CPC differentiation. Stem cell antigen 1 (Sca1+) CPCs were isolated from adult mouse hearts and their phenotype compared with more mature neonatal rat cardiac myocytes (NRCMs). Under normoxia, glucose consumption and lactate release were significantly higher in CPCs than in NRCMs. Both parameters were increased in hypoxia together with increased abundance of Glut1 (glucose transporter), of the monocarboxylic transporter Mct4 (lactate efflux mediator) and of Pfkfb3 (key regulator of glycolytic rate). CPC proliferation was critically dependent on glucose and glutamine availability in the media. Oxygen consumption analysis indicates that, compared with NRCMs, CPCs exhibited lower basal and maximal respirations with lower Tomm20 protein expression and mitochondrial DNA content. This CPC metabolic phenotype profoundly changed upon in vitro differentiation, with a decrease of glucose consumption and lactate release together with increased abundance of Tnnt2, Pgc-1α, Tomm20, and mitochondrial DNA content. Proliferative CPCs express both alpha1 and -2 catalytic subunits of AMPK that is activated by A769662. However, A769662 or resveratrol (an activator of Pgc-1α and AMPK) did not promote either mitochondrial biogenesis or CPC maturation during their differentiation. We conclude that although CPC differentiation is accompanied with an increase of mitochondrial oxidative metabolism, this is not potentiated by activation of AMPK in these cells.
Collapse
Affiliation(s)
- Emilie André
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aurélia De Pauw
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Roxane Verdoy
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- I2P Imaging Platform, Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Aurélie Timmermans
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
19
|
Lombardi AA, Gibb AA, Arif E, Kolmetzky DW, Tomar D, Luongo TS, Jadiya P, Murray EK, Lorkiewicz PK, Hajnóczky G, Murphy E, Arany ZP, Kelly DP, Margulies KB, Hill BG, Elrod JW. Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat Commun 2019; 10:4509. [PMID: 31586055 PMCID: PMC6778142 DOI: 10.1038/s41467-019-12103-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Fibroblast to myofibroblast differentiation is crucial for the initial healing response but excessive myofibroblast activation leads to pathological fibrosis. Therefore, it is imperative to understand the mechanisms underlying myofibroblast formation. Here we report that mitochondrial calcium (mCa2+) signaling is a regulatory mechanism in myofibroblast differentiation and fibrosis. We demonstrate that fibrotic signaling alters gating of the mitochondrial calcium uniporter (mtCU) in a MICU1-dependent fashion to reduce mCa2+ uptake and induce coordinated changes in metabolism, i.e., increased glycolysis feeding anabolic pathways and glutaminolysis yielding increased α-ketoglutarate (αKG) bioavailability. mCa2+-dependent metabolic reprogramming leads to the activation of αKG-dependent histone demethylases, enhancing chromatin accessibility in loci specific to the myofibroblast gene program, resulting in differentiation. Our results uncover an important role for the mtCU beyond metabolic regulation and cell death and demonstrate that mCa2+ signaling regulates the epigenome to influence cellular differentiation.
Collapse
Affiliation(s)
- Alyssa A Lombardi
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Andrew A Gibb
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ehtesham Arif
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Devin W Kolmetzky
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Timothy S Luongo
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Emma K Murray
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Pawel K Lorkiewicz
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA
| | - György Hajnóczky
- Department of Pathology Anatomy and Cell Biology, MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Zoltan P Arany
- Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Daniel P Kelly
- Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Kenneth B Margulies
- Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Bradford G Hill
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
20
|
Lorkiewicz PK, Gibb AA, Rood BR, He L, Zheng Y, Clem BF, Zhang X, Hill BG. Integration of flux measurements and pharmacological controls to optimize stable isotope-resolved metabolomics workflows and interpretation. Sci Rep 2019; 9:13705. [PMID: 31548575 PMCID: PMC6757038 DOI: 10.1038/s41598-019-50183-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Stable isotope-resolved metabolomics (SIRM) provides information regarding the relative activity of numerous metabolic pathways and the contribution of nutrients to specific metabolite pools; however, SIRM experiments can be difficult to execute, and data interpretation is challenging. Furthermore, standardization of analytical procedures and workflows remain significant obstacles for widespread reproducibility. Here, we demonstrate the workflow of a typical SIRM experiment and suggest experimental controls and measures of cross-validation that improve data interpretation. Inhibitors of glycolysis and oxidative phosphorylation as well as mitochondrial uncouplers serve as pharmacological controls, which help define metabolic flux configurations that occur under well-controlled metabolic states. We demonstrate how such controls and time course labeling experiments improve confidence in metabolite assignments as well as delineate metabolic pathway relationships. Moreover, we demonstrate how radiolabeled tracers and extracellular flux analyses integrate with SIRM to improve data interpretation. Collectively, these results show how integration of flux methodologies and use of pharmacological controls increase confidence in SIRM data and provide new biological insights.
Collapse
Affiliation(s)
- Pawel K Lorkiewicz
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, USA
| | - Andrew A Gibb
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Benjamin R Rood
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA
| | - Liqing He
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, USA
| | - Yuting Zheng
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, USA
| | - Bradford G Hill
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA.
| |
Collapse
|
21
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
22
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|
23
|
Ge T, Yu Y, Cui J, Cai L. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad. Am J Physiol Heart Circ Physiol 2019; 317:H264-H275. [PMID: 31100011 DOI: 10.1152/ajpheart.00123.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is a metabolic disorder characterized by hyperglycemia, resulting in low-grade systemic inflammation. Diabetic cardiomyopathy (DCM) is a common complication among diabetic patients, and the mechanism underlying its induction of cardiac remodeling and dysfunction remains unclear. Numerous experimental and clinical studies have suggested that adaptive immunity, especially T lymphocyte-mediated immunity, plays a potentially important role in the pathogenesis of diabetes and DCM. Metallothioneins (MTs), cysteine-rich, metal-binding proteins, have antioxidant properties. Some potential mechanisms underlying the cardioprotective effects of MTs include the role of MTs in calcium regulation, zinc homeostasis, insulin sensitization, and antioxidant activity. Moreover, metal homeostasis, especially MT-regulated zinc homeostasis, is essential for immune function. This review discusses aberrant immune regulation in diabetic heart disease with respect to endothelial insulin resistance and the effects of hyperglycemia and hyperlipidemia on tissues and the different effects of intracellular and extracellular MTs on adaptive immunity. This review shows that intracellular MTs are involved in naïve T-cell activation and reduce regulatory T-cell (Treg) polarization, whereas extracellular MTs promote proliferation and survival in naïve T cells and Treg polarization but inhibit their activation, thus revealing potential therapeutic strategies targeting the regulation of immune cell function by MTs.
Collapse
Affiliation(s)
- Tingwen Ge
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky
| | - Youxi Yu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University , Changchun, Jilin , China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
24
|
Effects of Rich-Polyphenols Extract of Dendrobium loddigesii on Anti-Diabetic, Anti-Inflammatory, Anti-Oxidant, and Gut Microbiota Modulation in db/db Mice. Molecules 2018; 23:molecules23123245. [PMID: 30544624 PMCID: PMC6320866 DOI: 10.3390/molecules23123245] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Dendrobium is a traditional Chinese herb with anti-diabetic effects and has diverse bibenzyls as well as phenanthrenes. Little is known about Dendrobium polyphenols anti-diabetic activities, so, a rich-polyphenols extract of D. loddigesii (DJP) was used for treatment of diabetic db/db mice; the serum biochemical index and tissue appearance were evaluated. In order to gain an insight into the anti-diabetic mechanism, the oxidative stress index, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and gut microbiota modulation were determined by ELISA, immunohistochemistry or high throughput sequencing 16S rRNA gene. The results revealed that DJP had the effects to decrease the blood glucose, body weight, low density lipoprotein cholesterol (LDL-C) levels and increase insulin (INS) level in the mice. DJP improved the mice fatty liver and diabetic nephropathy. DJP showed the anti-oxidative abilities to reduce the malondialdehyde (MDA) level and increase the contents of superoxide dismutase (SOD), catalase (CAT) as well as glutathione (GSH). DJP exerted the anti-inflammatory effects of decreasing expression of IL-6 and TNF-α. After treatment of DJP, the intestinal flora balance of the mice was ameliorated, increasing Bacteroidetes to Firmicutes ratios as well as the relative abundance of Prevotella/Akkermansia and reducing the relative abundance of S24-7/Rikenella/Escherichia coli. The function’s prediction of gut microbiota indicated that the microbial compositions involved carbohydrate metabolism or lipid metabolism were changed. This study revealed for the first time that DJP improves the mice symptoms of diabetes and complications, which might be due to the effects that DJP induced the decrease of inflammation as well as oxidative stress and improvement of intestinal flora balance.
Collapse
|
25
|
Cumming BM, Addicott KW, Adamson JH, Steyn AJ. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. eLife 2018; 7:39169. [PMID: 30444490 PMCID: PMC6286123 DOI: 10.7554/elife.39169] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
How Mycobacterium tuberculosis (Mtb) rewires macrophage energy metabolism to facilitate survival is poorly characterized. Here, we used extracellular flux analysis to simultaneously measure the rates of glycolysis and respiration in real time. Mtb infection induced a quiescent energy phenotype in human monocyte-derived macrophages and decelerated flux through glycolysis and the TCA cycle. In contrast, infection with the vaccine strain, M. bovis BCG, or dead Mtb induced glycolytic phenotypes with greater flux. Furthermore, Mtb reduced the mitochondrial dependency on glucose and increased the mitochondrial dependency on fatty acids, shifting this dependency from endogenous fatty acids in uninfected cells to exogenous fatty acids in infected macrophages. We demonstrate how quantifiable bioenergetic parameters of the host can be used to accurately measure and track disease, which will enable rapid quantifiable assessment of drug and vaccine efficacy. Our findings uncover new paradigms for understanding the bioenergetic basis of host metabolic reprogramming by Mtb.
Collapse
Affiliation(s)
| | | | | | - Adrie Jc Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
26
|
Bajpai A, Tilley DG. The Role of Leukocytes in Diabetic Cardiomyopathy. Front Physiol 2018; 9:1547. [PMID: 30443223 PMCID: PMC6221939 DOI: 10.3389/fphys.2018.01547] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes is predominant risk factor for cardiovascular diseases such as myocardial infarction and heart failure. Recently, leukocytes, particularly neutrophils, macrophages, and lymphocytes, have become targets of investigation for their potential role in a number of chronic inflammatory diseases such as diabetes and heart failure. While leukocytes contribute significantly to the progression of diabetes and heart failure individually, understanding their participation in the pathogenesis of diabetic heart failure is much less understood. The present review summarizes the role of leukocytes in the complex interplay between diabetes and heart failure, which is critical to the discovery of new targeted therapies for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Anamika Bajpai
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Mehra P, Guo Y, Nong Y, Lorkiewicz P, Nasr M, Li Q, Muthusamy S, Bradley JA, Bhatnagar A, Wysoczynski M, Bolli R, Hill BG. Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Res Cardiol 2018; 113:46. [PMID: 30353243 PMCID: PMC6314032 DOI: 10.1007/s00395-018-0703-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023]
Abstract
Although cell therapy improves cardiac function after myocardial infarction, highly variable results and limited understanding of the underlying mechanisms preclude its clinical translation. Because many heart failure patients are diabetic, we examined how diabetic conditions affect the characteristics of cardiac mesenchymal cells (CMC) and their ability to promote myocardial repair in mice. To examine how diabetes affects CMC function, we isolated CMCs from non-diabetic C57BL/6J (CMCWT) or diabetic B6.BKS(D)-Leprdb/J (CMCdb/db) mice. When CMCs were grown in 17.5 mM glucose, CMCdb/db cells showed > twofold higher glycolytic activity and a threefold higher expression of Pfkfb3 compared with CMCWT cells; however, culture of CMCdb/db cells in 5.5 mM glucose led to metabolic remodeling characterized by normalization of metabolism, a higher NAD+/NADH ratio, and a sixfold upregulation of Sirt1. These changes were associated with altered extracellular vesicle miRNA content as well as proliferation and cytotoxicity parameters comparable to CMCWT cells. To test whether this metabolic improvement of CMCdb/db cells renders them suitable for cell therapy, we cultured CMCWT or CMCdb/db cells in 5.5 mM glucose and then injected them into infarcted hearts of non-diabetic mice (CMCWT, n = 17; CMCdb/db, n = 13; Veh, n = 14). Hemodynamic measurements performed 35 days after transplantation showed that, despite normalization of their properties in vitro, and unlike CMCWT cells, CMCdb/db cells did not improve load-dependent and -independent parameters of left ventricular function. These results suggest that diabetes adversely affects the reparative capacity of CMCs and that modulating CMC characteristics via culture in lower glucose does not render them efficacious for cell therapy.
Collapse
Affiliation(s)
- Parul Mehra
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yiru Guo
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yibing Nong
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Pawel Lorkiewicz
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marjan Nasr
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Qianhong Li
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - James A Bradley
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Bradford G Hill
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA.
| |
Collapse
|
28
|
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17:122. [PMID: 30170598 PMCID: PMC6119242 DOI: 10.1186/s12933-018-0762-4] [Citation(s) in RCA: 1044] [Impact Index Per Article: 149.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
For many years, cardiovascular disease (CVD) has been the leading cause of death around the world. Often associated with CVD are comorbidities such as obesity, abnormal lipid profiles and insulin resistance. Insulin is a key hormone that functions as a regulator of cellular metabolism in many tissues in the human body. Insulin resistance is defined as a decrease in tissue response to insulin stimulation thus insulin resistance is characterized by defects in uptake and oxidation of glucose, a decrease in glycogen synthesis, and, to a lesser extent, the ability to suppress lipid oxidation. Literature widely suggests that free fatty acids are the predominant substrate used in the adult myocardium for ATP production, however, the cardiac metabolic network is highly flexible and can use other substrates, such as glucose, lactate or amino acids. During insulin resistance, several metabolic alterations induce the development of cardiovascular disease. For instance, insulin resistance can induce an imbalance in glucose metabolism that generates chronic hyperglycemia, which in turn triggers oxidative stress and causes an inflammatory response that leads to cell damage. Insulin resistance can also alter systemic lipid metabolism which then leads to the development of dyslipidemia and the well-known lipid triad: (1) high levels of plasma triglycerides, (2) low levels of high-density lipoprotein, and (3) the appearance of small dense low-density lipoproteins. This triad, along with endothelial dysfunction, which can also be induced by aberrant insulin signaling, contribute to atherosclerotic plaque formation. Regarding the systemic consequences associated with insulin resistance and the metabolic cardiac alterations, it can be concluded that insulin resistance in the myocardium generates damage by at least three different mechanisms: (1) signal transduction alteration, (2) impaired regulation of substrate metabolism, and (3) altered delivery of substrates to the myocardium. The aim of this review is to discuss the mechanisms associated with insulin resistance and the development of CVD. New therapies focused on decreasing insulin resistance may contribute to a decrease in both CVD and atherosclerotic plaque generation.
Collapse
Affiliation(s)
- Valeska Ormazabal
- Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Omar Elfeky
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Claudio Aguayo
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Brisbane, Australia. .,Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile. .,Department of Obstetrics and Gynecology, Ochsner Baptist Hospital, New Orleans, Louisiana, USA.
| | - Felipe A Zuñiga
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile
| |
Collapse
|
29
|
Khaksar M, Sayyari M, Rezaie J, Pouyafar A, Montazersaheb S, Rahbarghazi R. High glucose condition limited the angiogenic/cardiogenic capacity of murine cardiac progenitor cells in in vitro and in vivo milieu. Cell Biochem Funct 2018; 36:346-356. [PMID: 30051492 DOI: 10.1002/cbf.3354] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/19/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
Murine c-kit+ cardiac cells were isolated and enriched by magnetic activated cell sorting technique. c-kit+ cells viability and colony-forming activity were evaluated by MTT and clonogenic assay. c-kit+ cells were exposed to endothelial, pericyte, and cardiomyocyte induction media containing 30mM glucose for 7 days. We monitored the level of endothelial (VE-cadherin, CD31, and vWF), pericyte (NG2 , α-SMA, and PDGFR-β), and cardiomyocyte markers (cTnT) using flow cytometry, real-time Polymerase Chain Reaction (PCR), and Enzyme-Linked Immunosorbent Assay (ELISA) analyses. Ultrastructural changes were studied by transmission electron microscopy (TEM) in cells treated with 5-Azacytidine and 30mM glucose. Matrigel plug assay was performed to determine the angio/cardiogenic property of c-kit+ cells in a diabetic mouse model. Glucose of 30mM decreased c-kit+ cells viability and clonogenicity (P < 0.05). The transdifferentiation capacity of c-kit+ cells into the endothelial lineage, pericytes, and cardiomyocytes were reduced through the inhibition of related genes (P < 0.05). TEM analysis revealed cardiomyocyte differentiation rate in c-kit+ cells coincided with an increased intracellular lipid accumulation and reduced number of mitochondria. Similar to in vitro condition, the angiogenic capacity of c-kit+ cells was aborted in vivo indicated by reduced NG2 , α-SMA, CD31, and vWF levels. High glucose condition reduces the angio/cardiogenic capacity of cardiac c-kit+ cells in vitro and in vivo. SIGNIFICANCE OF THE STUDY: High glucose condition seen in diabetes mellitus could affect the regenerative potential of cardiac tissue. The current experiment showed that the exposure of murine cardiac progenitor cells (CD117+ cells) to condition containing 30mM glucose could decrease the differentiation properties into endothelial cells, pericytes, and mature cardiomyocytes in vitro and in vivo. Our finding confirmed that the angiogenic/cardiogenic potential cardiac progenitor cells decrease under treatment with high glucose content as seen in the diabetic condition.
Collapse
Affiliation(s)
- Majid Khaksar
- Department of Pathology, Faculty of Veterinary Medicine, University of Shiraz, Shiraz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sayyari
- Department of Pathology, Faculty of Veterinary Medicine, University of Shiraz, Shiraz, Iran
| | - Jafar Rezaie
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayda Pouyafar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Advanced Medical Sciences, Department of Applied Cell Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Altara R, Zouein FA, Brandão RD, Bajestani SN, Cataliotti A, Booz GW. In Silico Analysis of Differential Gene Expression in Three Common Rat Models of Diastolic Dysfunction. Front Cardiovasc Med 2018; 5:11. [PMID: 29556499 PMCID: PMC5850854 DOI: 10.3389/fcvm.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Standard therapies for heart failure with preserved ejection fraction (HFpEF) have been unsuccessful, demonstrating that the contribution of the underlying diastolic dysfunction pathophysiology differs from that of systolic dysfunction in heart failure and currently is far from being understood. Complicating the investigation of HFpEF is the contribution of several comorbidities. Here, we selected three established rat models of diastolic dysfunction defined by three major risk factors associated with HFpEF and researched their commonalities and differences. The top differentially expressed genes in the left ventricle of Dahl salt sensitive (Dahl/SS), spontaneous hypertensive heart failure (SHHF), and diabetes 1 induced HFpEF models were derived from published data in Gene Expression Omnibus and used for a comprehensive interpretation of the underlying pathophysiological context of each model. The diversity of the underlying transcriptomic of the heart of each model is clearly observed by the different panel of top regulated genes: the diabetic model has 20 genes in common with the Dahl/SS and 15 with the SHHF models. Advanced analytics performed in Ingenuity Pathway Analysis (IPA®) revealed that Dahl/SS heart tissue transcripts triggered by upstream regulators lead to dilated cardiomyopathy, hypertrophy of heart, arrhythmia, and failure of heart. In the heart of SHHF, a total of 26 genes were closely linked to cardiovascular disease including cardiotoxicity, pericarditis, ST-elevated myocardial infarction, and dilated cardiomyopathy. IPA Upstream Regulator analyses revealed that protection of cardiomyocytes is hampered by inhibition of the ERBB2 plasma membrane-bound receptor tyrosine kinases. Cardioprotective markers such as natriuretic peptide A (NPPA), heat shock 27 kDa protein 1 (HSPB1), and angiogenin (ANG) were upregulated in the diabetes 1 induced model; however, the model showed a different underlying mechanism with a majority of the regulated genes involved in metabolic disorders. In conclusion, our findings suggest that multiple mechanisms may contribute to diastolic dysfunction and HFpEF, and thus drug therapies may need to be guided more by phenotypic characteristics of the cardiac remodeling events than by the underlying molecular processes.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fouad A Zouein
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Rita Dias Brandão
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Saeed N Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
31
|
Integration of flux measurements to resolve changes in anabolic and catabolic metabolism in cardiac myocytes. Biochem J 2017; 474:2785-2801. [PMID: 28706006 PMCID: PMC5545928 DOI: 10.1042/bcj20170474] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
Although ancillary pathways of glucose metabolism are critical for synthesizing cellular building blocks and modulating stress responses, how they are regulated remains unclear. In the present study, we used radiometric glycolysis assays, [13C6]-glucose isotope tracing, and extracellular flux analysis to understand how phosphofructokinase (PFK)-mediated changes in glycolysis regulate glucose carbon partitioning into catabolic and anabolic pathways. Expression of kinase-deficient or phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat neonatal cardiomyocytes co-ordinately regulated glycolytic rate and lactate production. Nevertheless, in all groups, >40% of glucose consumed by the cells was unaccounted for via catabolism to pyruvate, which suggests entry of glucose carbons into ancillary pathways branching from metabolites formed in the preparatory phase of glycolysis. Analysis of 13C fractional enrichment patterns suggests that PFK activity regulates glucose carbon incorporation directly into the ribose and the glycerol moieties of purines and phospholipids, respectively. Pyrimidines, UDP-N-acetylhexosamine, and the fatty acyl chains of phosphatidylinositol and triglycerides showed lower 13C incorporation under conditions of high PFK activity; the isotopologue 13C enrichment pattern of each metabolite indicated limitations in mitochondria-engendered aspartate, acetyl CoA and fatty acids. Consistent with this notion, high glycolytic rate diminished mitochondrial activity and the coupling of glycolysis to glucose oxidation. These findings suggest that a major portion of intracellular glucose in cardiac myocytes is apportioned for ancillary biosynthetic reactions and that PFK co-ordinates the activities of the pentose phosphate, hexosamine biosynthetic, and glycerolipid synthesis pathways by directly modulating glycolytic intermediate entry into auxiliary glucose metabolism pathways and by indirectly regulating mitochondrial cataplerosis.
Collapse
|
32
|
Rezaie J, Mehranjani MS, Rahbarghazi R, Shariatzadeh MA. Angiogenic and Restorative Abilities of Human Mesenchymal Stem Cells Were Reduced Following Treatment With Serum From Diabetes Mellitus Type 2 Patients. J Cell Biochem 2017; 119:524-535. [PMID: 28608561 DOI: 10.1002/jcb.26211] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
This experiment investigated the impact of serum from patients with type 2 diabetes mellitus on the angiogenic behavior of human mesenchymal stem cells in vitro. Changes in the level of Ang-1, Ang-2, cell migration, and trans-differentiation into pericytes and endothelial lineage were monitored after 7 days. The interaction of mesenchymal stem cells with endothelial cells were evaluated using surface plasmon resonance technique. Paracrine restorative effect of diabetic stem cells was tested on pancreatic β cells. Compared to data from FBS and normal serum, diabetic serum reduced the stem cell survival and chemotaxis toward VEGF and SDF-1α (P < 0.05). Diabetic condition were found to decline cell migration rate and the activity of MMP-2 and -9 (P < 0.05). The down-regulation of VEGFR-2 and CXCR-4 was observed with an increase in the level of miR-1-3p and miR-15b-5p at the same time. The paracrine angiogenic potential of diabetic stem cells was disturbed via the changes in the dynamic of Ang-1, Ang-2, and VEGF. Surface plasmon resonance analysis showed that diabetes could induce an aberrant increase in the interaction of stem cells with endothelial cells. After treatment with diabetic serum, the expression of VE-cadherin and NG2 and ability for uptake of Dil-Ac-LDL were reduced (P < 0.01). Conditioned media prepared from diabetic stem cells were unable to decrease fatty acid accumulation in β-cells (P < 0.05). The level of insulin secreted by β-cells was not affected after exposure to supernatant from diabetic or non-diabetic mesenchymal stem cells. Data suggest diabetes could decrease angiogenic and restorative effect of stem cells in vitro. J. Cell. Biochem. 119: 524-535, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jafar Rezaie
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
33
|
Wysoczynski M, Guo Y, Moore JB, Muthusamy S, Li Q, Nasr M, Li H, Nong Y, Wu W, Tomlin AA, Zhu X, Hunt G, Gumpert AM, Book MJ, Khan A, Tang XL, Bolli R. Myocardial Reparative Properties of Cardiac Mesenchymal Cells Isolated on the Basis of Adherence. J Am Coll Cardiol 2017; 69:1824-1838. [PMID: 28385312 DOI: 10.1016/j.jacc.2017.01.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND The authors previously reported that the c-kit-positive (c-kitPOS) cells isolated from slowly adhering (SA) but not from rapidly adhering (RA) fractions of cardiac mesenchymal cells (CMCs) are effective in preserving left ventricular (LV) function after myocardial infarction (MI). OBJECTIVES This study evaluated whether adherence to plastic alone, without c-kit sorting, was sufficient to isolate reparative CMCs. METHODS RA and SA CMCs were isolated from mouse hearts, expanded in vitro, characterized, and evaluated for therapeutic efficacy in mice subjected to MI. RESULTS Morphological and phenotypic analysis revealed that murine RA and SA CMCs are indistinguishable; nevertheless, transcriptome analysis showed that they possess fundamentally different gene expression profiles related to factors that regulate post-MI LV remodeling and repair. A similar population of SA CMCs was isolated from porcine endomyocardial biopsy samples. In mice given CMCs 2 days after MI, LV ejection fraction 28 days later was significantly increased in the SA CMC group (31.2 ± 1.0% vs. 24.7 ± 2.2% in vehicle-treated mice; p < 0.05) but not in the RA CMC group (24.1 ± 1.2%). Histological analysis showed reduced collagen deposition in the noninfarcted region in mice given SA CMCs (7.6 ± 1.5% vs. 14.5 ± 2.8% in vehicle-treated mice; p < 0.05) but not RA CMCs (11.7 ± 1.7%), which was associated with reduced infiltration of inflammatory cells (14.1 ± 1.6% vs. 21.3 ± 1.5% of total cells in vehicle and 19.3 ± 1.8% in RA CMCs; p < 0.05). Engraftment of SA CMCs was negligible, which implies a paracrine mechanism of action. CONCLUSIONS We identified a novel population of c-kit-negative reparative cardiac cells (SA CMCs) that can be isolated with a simple method based on adherence to plastic. SA CMCs exhibited robust reparative properties and offered numerous advantages, appearing to be more suitable than c-kitPOS cardiac progenitor cells for widespread clinical therapeutic application.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky; Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky.
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Joseph B Moore
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Senthilkumar Muthusamy
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Qianhong Li
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Marjan Nasr
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Yibing Nong
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Wenjian Wu
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Alex A Tomlin
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Xiaoping Zhu
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Gregory Hunt
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Michael J Book
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Abdur Khan
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, Kentucky; Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
34
|
Satthenapalli VR, Lamberts RR, Katare RG. Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review. Stem Cells 2017. [PMID: 28639375 DOI: 10.1002/stem.2661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies. In this review, we first discuss the most common molecular alterations occurring in the diabetic stem cells/progenitor cells. Next, we highlight the key signaling pathways that can be dysregulated in a diabetic environment and impair the mobilization of stem/progenitor cells, which is essential for the transplanted/endogenous stem cells to reach the site of injury. We further discuss the possible methods of preconditioning the diabetic cardiac progenitor cell (CPC) with an aim to enrich the availability of efficient stem cells to regenerate the diseased diabetic heart. Finally, we propose new modalities for enriching the diabetic CPC through genetic or tissue engineering that would aid in developing autologous therapeutic strategies, improving the proliferative, angiogenic, and cardiogenic properties of diabetic stem/progenitor cells. Stem Cells 2017;35:2009-2026.
Collapse
Affiliation(s)
- Venkata R Satthenapalli
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh G Katare
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
35
|
Wei X, Lorkiewicz PK, Shi B, Salabei JK, Hill BG, Kim S, McClain CJ, Zhang X. Analysis of Stable Isotope Assisted Metabolomics Data Acquired by High Resolution Mass Spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:2275-2283. [PMID: 28674558 PMCID: PMC5492990 DOI: 10.1039/c7ay00291b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Stable isotope assisted metabolomics (SIAM) uses stable isotope tracers to support studies of biochemical mechanisms. We report a suite of data analysis algorithms for automatic analysis of SIAM data acquired on a high resolution mass spectrometer. To increase the accuracy of isotopologue assignment, metabolites detected in the unlabeled samples were used as reference metabolites to generate possible isotopologue candidates for analysis of peaks detected in the labeled samples. An iterative linear regression model was developed to deconvolute the overlapping isotopic peaks of isotopologues present in a full MS spectrum, where the threshold for the weight factor was determined by a simulation study assuming different levels of Gaussian white noise contamination. A normalization method enabling isotope ratio-based normalization was implemented to study the difference of isotopologue abundance distribution between sample groups. The developed method can analyze SIAM data acquired by direct infusion MS and LC-MS, and can handle metabolite tracers containing different tracer elements. Analysis of SIAM data acquired from mixtures of known compounds showed that the developed algorithms accurately identify metabolites and quantify stable isotope enrichment. Application of SIAM data acquired from a biological study further demonstrated the effectiveness and accuracy of the developed method for analysis of complex samples.
Collapse
Affiliation(s)
- X. Wei
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, KY 40292, United States
- Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40292, United States
- CORRESPONDING AUTHOR: Prof. Xiaoli Wei, Department of Chemistry, University of Louisville, 2210 South Brook Street, Louisville, KY 40292, USA. Phone: +01 502 852 8864. Fax: +01 502 852 8149.
| | - P. K. Lorkiewicz
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, United States
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, United States
| | - B. Shi
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, KY 40292, United States
- Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40292, United States
| | - J. K. Salabei
- Medicine, University of Louisville, Louisville, KY 40292, United States
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, United States
| | - B. G. Hill
- Medicine, University of Louisville, Louisville, KY 40292, United States
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, United States
| | - S. Kim
- Biostatistics Core, Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, United States
| | - C. J. McClain
- Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, United States
- Medicine, University of Louisville, Louisville, KY 40292, United States
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, KY 40292, United States
- Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40292, United States
- Robley Rex Louisville VAMC, Louisville, Kentucky 40292, United States
| | - X. Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
- Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, United States
- Alcohol Research Center, University of Louisville, Louisville, KY 40292, United States
- Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
36
|
Gibb AA, McNally LA, Riggs DW, Conklin DJ, Bhatnagar A, Hill BG. FVB/NJ Mice Are a Useful Model for Examining Cardiac Adaptations to Treadmill Exercise. Front Physiol 2016; 7:636. [PMID: 28066267 PMCID: PMC5174104 DOI: 10.3389/fphys.2016.00636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
Mice are commonly used to examine the mechanisms by which exercise improves cardiometabolic health; however, exercise compliance and adaptations are often strain-dependent or are variable due to inconsistency in exercise training protocols. In this study, we examined nocturnal/diurnal behavior, treadmill exercise compliance, and systemic as well as cardiac-specific exercise adaptations in two commonly used mouse strains, C57BL/6J, and FVB/NJ mice. Metabolic cage analysis indicated a strong nocturnal nature of C57BL/6J mice, whereas FVB/NJ mice showed no circadian element to activity, food or water intake, VO2, or VCO2. Initial exercise capacity tests revealed that, compared with C57BL/6J mice, FVB/NJ mice are capable of achieving nearly 2-fold higher workloads prior to exhaustion. FVB/NJ mice tested during the day were capable of achieving significantly more work compared with their night-tested counterparts. Following 4 weeks of training, FVB/NJ mice showed significant increases in exercise capacity as well as physiologic cardiac growth characterized by enlarged myocytes and higher mitochondrial DNA content. C57BL/6J mice showed no increases in exercise capacity or cardiac growth regardless of whether they exercised during the day or the night. This lack of adaptation in C57BL/6J mice was attributable, at least in part, to their progressive loss of compliance to the treadmill training protocol. We conclude that the FVB/NJ strain is a useful and robust mouse model for examining cardiac adaptations to treadmill exercise and that treadmill training during daytime hours does not negatively affect exercise compliance or capacity.
Collapse
Affiliation(s)
- Andrew A Gibb
- Department of Medicine, Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA; Diabetes and Obesity Center, University of LouisvilleLouisville, KY, USA; Department of Physiology, University of LouisvilleLouisville, KY, USA
| | - Lindsey A McNally
- Department of Medicine, Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA; Diabetes and Obesity Center, University of LouisvilleLouisville, KY, USA
| | - Daniel W Riggs
- Department of Medicine, Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA; Diabetes and Obesity Center, University of LouisvilleLouisville, KY, USA
| | - Daniel J Conklin
- Department of Medicine, Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA; Diabetes and Obesity Center, University of LouisvilleLouisville, KY, USA
| | - Aruni Bhatnagar
- Department of Medicine, Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA; Diabetes and Obesity Center, University of LouisvilleLouisville, KY, USA; Department of Physiology, University of LouisvilleLouisville, KY, USA; Department of Biochemistry and Molecular Genetics, University of LouisvilleLouisville, KY, USA
| | - Bradford G Hill
- Department of Medicine, Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA; Diabetes and Obesity Center, University of LouisvilleLouisville, KY, USA; Department of Physiology, University of LouisvilleLouisville, KY, USA; Department of Biochemistry and Molecular Genetics, University of LouisvilleLouisville, KY, USA
| |
Collapse
|