1
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
2
|
Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in osteosarcoma. Pathol Res Pract 2023; 249:154743. [PMID: 37549518 DOI: 10.1016/j.prp.2023.154743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that originates from mesenchymal cells. It is considered as the eighth most frequent childhood cancer that mainly affects the tibia and femur among the teenagers and young adults. OS can be usually diagnosed by a combination of MRI and surgical biopsy. The intra-arterial cisplatin (CDDP) and Adriamycin is one of the methods of choices for the OS treatment. CDDP induces tumor cell death by disturbing the DNA replication. Although, CDDP has a critical role in improving the clinical complication in OS patients, a high ratio of CDDP resistance is observed among these patients. Prolonged CDDP administrations have also serious side effects in normal tissues and organs. Therefore, the molecular mechanisms of CDDP resistance should be clarified to define the novel therapeutic modalities in OS. Multidrug resistance (MDR) can be caused by various cellular and molecular processes such as drug efflux, detoxification, and signaling pathways. MicroRNAs (miRNAs) are the key regulators of CDDP response by the post transcriptional regulation of target genes involved in MDR. In the present review we have discussed all of the miRNAs associated with CDDP response in OS cells. It was observed that the majority of reported miRNAs increased CDDP sensitivity in OS cells through the regulation of signaling pathways, apoptosis, transporters, and autophagy. This review highlights the miRNAs as reliable non-invasive markers for the prediction of CDDP response in OS patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Hibshman JD, Carra S, Goldstein B. Tardigrade small heat shock proteins can limit desiccation-induced protein aggregation. Commun Biol 2023; 6:121. [PMID: 36717706 PMCID: PMC9887055 DOI: 10.1038/s42003-023-04512-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Small heat shock proteins (sHSPs) are chaperones with well-characterized roles in heat stress, but potential roles for sHSPs in desiccation tolerance have not been as thoroughly explored. We identified nine sHSPs from the tardigrade Hypsibius exemplaris, each containing a conserved alpha-crystallin domain flanked by disordered regions. Many of these sHSPs are highly expressed. Multiple tardigrade and human sHSPs could improve desiccation tolerance of E. coli, suggesting that the capacity to contribute to desicco-protection is a conserved property of some sHSPs. Purification and subsequent analysis of two tardigrade sHSPs, HSP21 and HSP24.6, revealed that these proteins can oligomerize in vitro. These proteins limited heat-induced aggregation of the model enzyme citrate synthase. Heterologous expression of HSP24.6 improved bacterial heat shock survival, and the protein significantly reduced heat-induced aggregation of soluble bacterial protein. Thus, HSP24.6 likely chaperones against protein aggregation to promote heat tolerance. Furthermore, HSP21 and HSP24.6 limited desiccation-induced aggregation and loss of function of citrate synthase. This suggests a mechanism by which tardigrade sHSPs promote desiccation tolerance, by limiting desiccation-induced protein aggregation, thereby maintaining proteostasis and supporting survival. These results suggest that sHSPs provide a mechanism of general stress resistance that can also be deployed to support survival during anhydrobiosis.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Serena Carra
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Peptains block retinal ganglion cell death in animal models of ocular hypertension: implications for neuroprotection in glaucoma. Cell Death Dis 2022; 13:958. [PMID: 36379926 PMCID: PMC9666629 DOI: 10.1038/s41419-022-05407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Ocular hypertension is a significant risk factor for vision loss in glaucoma due to the death of retinal ganglion cells (RGCs). This study investigated the effects of the antiapoptotic peptides peptain-1 and peptain-3a on RGC death in vitro in rat primary RGCs and in mouse models of ocular hypertension. Apoptosis was induced in primary rat RGCs by trophic factor deprivation for 48 h in the presence or absence of peptains. The effects of intravitreally injected peptains on RGC death were investigated in mice subjected to retinal ischemic/reperfusion (I/R) injury and elevated intraocular pressure (IOP). I/R injury was induced in mice by elevating the IOP to 120 mm Hg for 1 h, followed by rapid reperfusion. Ocular hypertension was induced in mice by injecting microbeads (MB) or silicone oil (SO) into the anterior chamber of the eye. Retinal flatmounts were immunostained with RGC and activated glial markers. Effects on anterograde axonal transport were determined by intravitreal injection of cholera toxin-B. Peptain-1 and peptain-3a inhibited neurotrophic factor deprivation-mediated RGC apoptosis by 29% and 35%, respectively. I/R injury caused 52% RGC loss, but peptain-1 and peptain-3a restricted RGC loss to 13% and 16%, respectively. MB and SO injections resulted in 31% and 36% loss in RGCs following 6 weeks and 4 weeks of IOP elevation, respectively. Peptain-1 and peptain-3a inhibited RGC death; the loss was only 4% and 12% in MB-injected eyes and 16% and 15% in SO-injected eyes, respectively. Anterograde transport was defective in eyes with ocular hypertension, but this defect was substantially ameliorated in peptain-injected eyes. Peptains suppressed ocular hypertension-mediated retinal glial activation. In summary, our results showed that peptains block RGC somal and axonal damage and neuroinflammation in animal models of glaucoma. We propose that peptains have the potential to be developed as therapeutics against neurodegeneration in glaucoma.
Collapse
|
6
|
Xiao Y, Xiang JW, Gao Q, Bai YY, Huang ZX, Hu XH, Wang L, Li DWC. MAB21L1 promotes survival of lens epithelial cells through control of αB-crystallin and ATR/CHK1/p53 pathway. Aging (Albany NY) 2022; 14:6128-6148. [PMID: 35951367 PMCID: PMC9417230 DOI: 10.18632/aging.204203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
The male abnormal gene family 21 (mab21), was initially identified in C. elegans. Since its identification, studies from different groups have shown that it regulates development of ocular tissues, brain, heart and liver. However, its functional mechanism remains largely unknown. Here, we demonstrate that Mab21L1 promotes survival of lens epithelial cells. Mechanistically, Mab21L1 upregulates expression of αB-crystallin. Moreover, our results show that αB-crystallin prevents stress-induced phosphorylation of p53 at S-20 and S-37 through abrogating the activation of the upstream kinases, ATR and CHK1. As a result of suppressing p53 activity by αB-crystallin, Mab21L1 downregulates expression of Bak but upregulates Mcl-1 during stress insult. Taken together, our results demonstrate that Mab21L1 promotes survival of lens epithelial cells through upregulation of αB-crystallin to suppress ATR/CHK1/p53 pathway.
Collapse
Affiliation(s)
- Yuan Xiao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Qian Gao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Yue-Yue Bai
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Zhao-Xia Huang
- Department of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 121212, Guizhou, China
| | - Xiao-Hui Hu
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China
| | - Ling Wang
- The Academician Work Station, Changsha Medical University, Changsha 410219, Hunan, China
| | - David Wan-Cheng Li
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| |
Collapse
|
7
|
Limbad C, Doi R, McGirr J, Ciotlos S, Perez K, Clayton ZS, Daya R, Seals DR, Campisi J, Melov S. Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. iScience 2022; 25:103848. [PMID: 35198901 PMCID: PMC8851282 DOI: 10.1016/j.isci.2022.103848] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 01/25/2022] [Indexed: 01/18/2023] Open
Abstract
Cellular senescence is a driver of many age-related pathologies. There is an active search for pharmaceuticals termed senolytics that can mitigate or remove senescent cells in vivo by targeting genes that promote the survival of senescent cells. We utilized single-cell RNA sequencing to identify CRYAB as a robust senescence-induced gene and potential target for senolysis. Using chemical inhibitor screening for CRYAB disruption, we identified 25-hydroxycholesterol (25HC), an endogenous metabolite of cholesterol biosynthesis, as a potent senolytic. We then validated 25HC as a senolytic in mouse and human cells in culture and in vivo in mouse skeletal muscle. Thus, 25HC represents a potential class of senolytics, which may be useful in combating diseases or physiologies in which cellular senescence is a key driver.
Collapse
Affiliation(s)
| | - Ryosuke Doi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia McGirr
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Kevin Perez
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Radha Daya
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
8
|
Feng R, Chen L, Chen K. Cytotoxicity and changes in gene expression under aluminium potassium sulfate on Spodoptera frugiperda 9 cells. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2056-2070. [PMID: 34546441 DOI: 10.1007/s10646-021-02478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Aluminium, a substance found in large amounts in nature, has been widely used for various purposes, especially food additives. The effects of long-term and excessive exposure to aluminium on human health are receiving increasing attention. The extensive human use of aluminium food additives can also cause aluminium to enter the ecosystem, where it has significant impacts on insects. This study explored the cytotoxicity and changes in gene expression under aluminium potassium sulfate toward Spodoptera frugiperda 9 cells. We found that high concentrations of aluminium resulted in cell enlargement and cell membrane breakage, decreased cell vitality, and apoptosis. Through RNA-Seq transcriptomics, we found that aluminium ions may inhibit the expression of regulatory-associated protein of mTOR, tdIns-dependent protein kinase-1, and small heat shock proteins (heat shock 70 kDa protein and crystallin alpha B), leading to changes in mTOR-related pathways (such as the longevity regulation pathway and PI3K-Akt signalling pathway), and promoting cell apoptosis. On the other hand, aluminium ions lead to the overexpression of GSH S-transferase, prostaglandin-H2 D-isomerase and pyrimidodiazepine synthase, and induce intracellular oxidative damage, which ultimately affects cell growth and apoptosis through a series of cascade reactions.
Collapse
Affiliation(s)
- Rong Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu province, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu province, China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu province, China.
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu province, China.
| |
Collapse
|
9
|
Mahalingam S, Karmakar S, Santhoshkumar P, Sharma KK. Effect of Structural Changes Induced by Deletion of 54FLRAPSWF 61 Sequence in αB-crystallin on Chaperone Function and Anti-Apoptotic Activity. Int J Mol Sci 2021; 22:10771. [PMID: 34639110 PMCID: PMC8509813 DOI: 10.3390/ijms221910771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
Previously, we showed that the removal of the 54-61 residues from αB-crystallin (αBΔ54-61) results in a fifty percent reduction in the oligomeric mass and a ten-fold increase in chaperone-like activity. In this study, we investigated the oligomeric organization changes in the deletion mutant contributing to the increased chaperone activity and evaluated the cytoprotection properties of the mutant protein using ARPE-19 cells. Trypsin digestion studies revealed that additional tryptic cleavage sites become susceptible in the deletion mutant than in the wild-type protein, suggesting a different subunit organization in the oligomer of the mutant protein. Static and dynamic light scattering analyses of chaperone-substrate complexes showed that the deletion mutant has more significant interaction with the substrates than wild-type protein, resulting in increased binding of the unfolding proteins. Cytotoxicity studies carried out with ARPE-19 cells showed an enhancement in anti-apoptotic activity in αBΔ54-61 as compared with the wild-type protein. The improved anti-apoptotic activity of the mutant is also supported by reduced caspase activation and normalization of the apoptotic cascade components level in cells treated with the deletion mutant. Our study suggests that altered oligomeric assembly with increased substrate affinity could be the basis for the enhanced chaperone function of the αBΔ54-61 protein.
Collapse
Affiliation(s)
- Sundararajan Mahalingam
- Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA; (S.M.); (S.K.)
| | - Srabani Karmakar
- Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA; (S.M.); (S.K.)
| | - Puttur Santhoshkumar
- Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA; (S.M.); (S.K.)
| | - Krishna K. Sharma
- Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA; (S.M.); (S.K.)
- Department of Biochemistry, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Xu Z, Gong Y, Wan J, Tang J, Zhang Q. Trends in HSPB5 research: a 36-year bibliometric analysis. Cell Stress Chaperones 2021; 26:799-810. [PMID: 34235603 PMCID: PMC8492881 DOI: 10.1007/s12192-021-01220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
HSPB5 (heat shock protein B5), also known as αB-crystallin, is one of the most widespread and populous of the ten human small heat shock proteins (sHsps). Over the past decades, extensive research has been conducted on HSPB5. However, few studies have statistically analyzed these publications. Herein, we conducted a bibliometric analysis to track the global research trend and current development status of HSPB5 research from the Web of Science Core Collection (WoSCC) database between 1985 and 2020. Our results demonstrate that 1220 original articles cited 54,778 times in 391 scholarly journals were published. Visualization analyses reveal that the Journal of Biological Chemistry was the most influential journal with 85 articles. The USA dominated this field with 520 publications (42.62%), followed by Japan with 149 publications (12.21%), and Kato contributed the largest number of publications. Most related publications were published in journals focusing on biochemistry molecular biology, cell biology, neurosciences neurology, and ophthalmology. In addition, keyword co-occurrence analyses identify three predominant research topics: expression of HSPB5, chaperone studies for HSPB5, and pathological studies of HSPB5. This study provides valuable guidance for researchers and leads to collaborative opportunities between diverse research interests to be integrated for HSPB5 research.
Collapse
Affiliation(s)
- Zhengdong Xu
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Jiaqian Wan
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Jiaxing Tang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
11
|
Cvekl A, Eliscovich C. Crystallin gene expression: Insights from studies of transcriptional bursting. Exp Eye Res 2021; 207:108564. [PMID: 33894228 DOI: 10.1016/j.exer.2021.108564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 01/26/2023]
Abstract
Cellular differentiation is marked by temporally and spatially regulated gene expression. The ocular lens is one of the most powerful mammalian model system since it is composed from only two cell subtypes, called lens epithelial and fiber cells. Lens epithelial cells differentiate into fiber cells through a series of spatially and temporally orchestrated processes, including massive production of crystallins, cellular elongation and the coordinated degradation of nuclei and other organelles. Studies of transcriptional and posttranscriptional gene regulatory mechanisms in lens provide a wide range of opportunities to understand global molecular mechanisms of gene expression as steady-state levels of crystallin mRNAs reach very high levels comparable to globin genes in erythrocytes. Importantly, dysregulation of crystallin gene expression results in lens structural abnormalities and cataracts. The mRNA life cycle is comprised of multiple stages, including transcription, splicing, nuclear export into cytoplasm, stabilization, localization, translation and ultimate decay. In recent years, development of modern mRNA detection methods with single molecule and single cell resolution enabled transformative studies to visualize the mRNA life cycle to generate novel insights into the sequential regulatory mechanisms of gene expression during embryogenesis. This review is focused on recent major advancements in studies of transcriptional bursting in differentiating lens fiber cells, analysis of nascent mRNA expression from bi-directional promoters, transient nuclear accumulation of specific mRNAs, condensation of chromatin prior lens fiber cell denucleation, and outlines future studies to probe the interactions of individual mRNAs with specific RNA-binding proteins (RBPs) in the cytoplasm and regulation of translation and mRNA decay.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and VIsual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Carolina Eliscovich
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
12
|
Zhao G, Zhu X, Zhang H, Chen Y, Schieck E, Hu C, Chen H, Guo A. Novel Secreted Protein of Mycoplasma bovis MbovP280 Induces Macrophage Apoptosis Through CRYAB. Front Immunol 2021; 12:619362. [PMID: 33659004 PMCID: PMC7917047 DOI: 10.3389/fimmu.2021.619362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma bovis causes important diseases and great losses on feedlots and dairy farms. However, there are only a few measures to control M. bovis-related diseases. As in other mycoplasma species, this is predominantly because the virulence related factors of this pathogen are largely unknown. Therefore, in this study, we aimed to identify novel virulence-related factors among the secreted proteins of M. bovis. Using bioinformatic tools to analyze its secreted proteins, we preliminarily predicted 39 secreted lipoproteins, and then selected 11 of them for confirmation based on SignalP scores >0.6 or SceP scores >0.8 and conserved domains. These 11 genes were cloned after gene modification based on the codon bias of Escherichia coli and expressed. Mouse antiserum to each recombinant protein was developed. A western blotting assay with these antisera confirmed that MbovP280 and MbovP475 are strongly expressed and secreted proteins, but only MbovP280 significantly reduced the viability of bovine macrophages (BoMac). In further experiments, MbovP280 induced the apoptosis of BoMac treated with both live M. bovis and MbovP280 protein. The conserved coiled-coil domain of MbovP280 at amino acids 210–269 is essential for its induction of apoptosis. Further, immunoprecipitation, mass spectrometry, and coimmunoprecipitation assays identified the anti-apoptosis regulator αB-crystallin (CRYAB) as an MbovP280-binding ligand. An αβ-crystallin knockout cell line BoMac-cryab−, Mbov0280-knockout M. bovis strain T9.297, and its complemented M. bovis strain CT9.297 were constructed and the apoptosis of BoMac-cryab− induced by these strains was compared. The results confirmed that CRYAB is critical for MbovP280 function as an apoptosis inducer in BoMac. In conclusion, in this study, we identified MbovP280 as a novel secreted protein of M. bovis that induces the apoptosis of BoMac via its coiled-coil domain and cellular ligand CRYAB. These findings extend our understanding of the virulence mechanism of mycoplasmal species.
Collapse
Affiliation(s)
- Gang Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xifang Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi, Kenya
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Caporossi D, Parisi A, Fantini C, Grazioli E, Cerulli C, Dimauro I. AlphaB-crystallin and breast cancer: role and possible therapeutic strategies. Cell Stress Chaperones 2021; 26:19-28. [PMID: 33111264 PMCID: PMC7736448 DOI: 10.1007/s12192-020-01175-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 01/18/2023] Open
Abstract
AlphaB-crystallin (HSPB5) is one of the most prominent and well-studied members of the small heat shock protein (sHsp) family. To date, it is known that this protein modulates significant cellular processes and therefore, it is not surprising that its deregulation is involved in various human pathologies, including cancer diseases. Despite the pathogenic significance of HSPB5 in cancer and its regulatory mechanism related to aggressiveness is poorly understood, several reports describe the association of breast carcinoma progression with HSPB5, whose expression is also considered an independent predictor of breast cancer metastasis to the brain. Indeed, numerous authors indicate HSPB5 as a new valuable biomarker for clinicopathological parameters and poor prognosis in breast cancer. Considering the cytoprotective, anti-apoptotic, pro-angiogenic, and pro-metastatic properties of the sHsps, it is not surprising that they are considered as promising targets for anticancer treatment, even though, at present, a deeper understanding of their mode of action is needed to allow the development of precise therapeutic interventions. Data on the direct inhibition of different sHsps demonstrate promising results in cancer pathologies; however, specific strategies against HSPB5 have not been considered. This review highlights the most relevant findings on HSPB5 and its role in breast cancer, as well as the possible strategies in using HSPB5 inhibition for therapeutic purposes.
Collapse
Affiliation(s)
- Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Attilio Parisi
- Unit of Sport Medicine, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Elisa Grazioli
- Unit of Sport Medicine, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Claudia Cerulli
- Unit of Sport Medicine, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
14
|
Hirata E, Ishibashi K, Kohsaka S, Shinjo K, Kojima S, Kondo Y, Mano H, Yano S, Kiyokawa E, Sahai E. The Brain Microenvironment Induces DNMT1 Suppression and Indolence of Metastatic Cancer Cells. iScience 2020; 23:101480. [PMID: 32891059 PMCID: PMC7479628 DOI: 10.1016/j.isci.2020.101480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/27/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Brain metastasis is an ineffective process, and many cancer cells enter into an indolent state following extravasation in the brain. Single cell RNA sequencing of melanoma brain metastases reveals that non-proliferating brain metastatic melanoma cells exhibit a pattern of gene expression associated with inhibition of DNA methyltransferase 1 (DNMT1). The brain microenvironment, specifically the combination of reactive astrocytes and mechanically soft surroundings, suppressed DNMT1 expression in various cancer types and caused cell cycle delay. Somewhat unexpectedly, we find that DNMT1 suppression not only induces cell cycle delay but also activates pro-survival signals in brain metastatic cancer cells, including L1CAM and CRYAB. Our results demonstrate that transcriptional changes triggered by DNMT1 suppression is a key step for cancer cells to survive in the brain microenvironment and that they also restrict cancer cell proliferation. The dual consequences of DNMT1 suppression can explain the persistence of indolent cancer cells in the brain microenvironment.
Collapse
Affiliation(s)
- Eishu Hirata
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kojiro Ishibashi
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Seiji Yano
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-0934, Japan
| | - Etsuko Kiyokawa
- Department of Oncologic Pathology, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
15
|
Transcriptional analysis of cleft palate in TGFβ3 mutant mice. Sci Rep 2020; 10:14940. [PMID: 32913205 PMCID: PMC7483747 DOI: 10.1038/s41598-020-71636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Cleft palate (CP) is one of the most common craniofacial birth defects, impacting about 1 in 800 births in the USA. Tgf-β3 plays a critical role in regulating murine palate development, and Tgf-β3 null mutants develop cleft palate with 100% penetrance. In this study, we compared global palatal transcriptomes of wild type (WT) and Tgf-β3 −/− homozygous (HM) mouse embryos at the crucial palatogenesis stages of E14.5, and E16.5, using RNA-seq data. We found 1,809 and 2,127 differentially expressed genes at E16.5 vs. E14.5 in the WT and HM groups, respectively (adjusted p < 0.05; |fold change|> 2.0). We focused on the genes that were uniquely up/downregulated in WT or HM at E16.5 vs. E14.5 to identify genes associated with CP. Systems biology analysis relating to cell behaviors and function of WT and HM specific genes identified functional non-Smad pathways and preference of apoptosis to epithelial-mesenchymal transition. We identified 24 HM specific and 11 WT specific genes that are CP-related and/or involved in Tgf-β3 signaling. We validated the expression of 29 of the 35 genes using qRT-PCR and the trend of mRNA expression is similar to that of RNA-seq data . Our results enrich our understanding of genes associated with CP that are directly or indirectly regulated via TGF-β.
Collapse
|
16
|
Gagaoua M, Bonnet M, Picard B. Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods 2020; 9:foods9091180. [PMID: 32858893 PMCID: PMC7554754 DOI: 10.3390/foods9091180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the potential of a panel of 20 protein biomarkers, quantified by Reverse Phase Protein Array (RPPA), to explain and predict two important meat quality traits, these being beef tenderness assessed by Warner-Bratzler shear force (WBSF) and the intramuscular fat (IMF) content (also termed marbling), in a large database of 188 Protected Designation of Origin (PDO) Maine-Anjou cows. Thus, the main objective was to move forward in the progression of biomarker-discovery for beef qualities by evaluating, at the same time for the two quality traits, a list of candidate proteins so far identified by proteomics and belonging to five interconnected biological pathways: (i) energy metabolic enzymes, (ii) heat shock proteins (HSPs), (iii) oxidative stress, (iv) structural proteins and (v) cell death and protein binding. Therefore, three statistical approaches were applied, these being Pearson correlations, unsupervised learning for the clustering of WBSF and IMF into quality classes, and Partial Least Squares regressions (PLS-R) to relate the phenotypes with the 20 biomarkers. Irrespective of the statistical method and quality trait, seven biomarkers were related with both WBSF and IMF, including three small HSPs (CRYAB, HSP20 and HSP27), two metabolic enzymes from the oxidative pathway (MDH1: Malate dehydrogenase and ALDH1A1: Retinal dehydrogenase 1), the structural protein MYH1 (Myosin heavy chain-IIx) and the multifunctional protein FHL1 (four and a half LIM domains 1). Further, three more proteins were retained for tenderness whatever the statistical method, among which two were structural proteins (MYL1: Myosin light chain 1/3 and TNNT1: Troponin T, slow skeletal muscle) and one was glycolytic enzyme (ENO3: β-enolase 3). For IMF, two proteins were, in this trial, specific for marbling whatever the statistical method: TRIM72 (Tripartite motif protein 72, negative) and PRDX6 (Peroxiredoxin 6, positive). From the 20 proteins, this trial allowed us to qualify 10 and 9 proteins respectively as strongly related with beef tenderness and marbling in PDO Maine-Anjou cows.
Collapse
|
17
|
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, Morshedi K, Sheida A, Taghavi SP, Mirzaei H, Hamblin MR. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 2020; 18:120. [PMID: 32746854 PMCID: PMC7397575 DOI: 10.1186/s12964-020-00623-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common and deadly type of central nervous system tumors. Despite some advances in treatment, the mean survival time remains only about 1.25 years. Even after surgery, radiotherapy and chemotherapy, gliomas still have a poor prognosis. Exosomes are the most common type of extracellular vesicles with a size range of 30 to 100 nm, and can act as carriers of proteins, RNAs, and other bioactive molecules. Exosomes play a key role in tumorigenesis and resistance to chemotherapy or radiation. Recent evidence has shown that exosomal microRNAs (miRNAs) can be detected in the extracellular microenvironment, and can also be transferred from cell to cell via exosome secretion and uptake. Therefore, many recent studies have focused on exosomal miRNAs as important cellular regulators in various physiological and pathological conditions. A variety of exosomal miRNAs have been implicated in the initiation and progression of gliomas, by activating and/or inhibiting different signaling pathways. Exosomal miRNAs could be used as therapeutic agents to modulate different biological processes in gliomas. Exosomal miRNAs derived from mesenchymal stem cells could also be used for glioma treatment. The present review summarizes the exosomal miRNAs that have been implicated in the pathogenesis, diagnosis and treatment of gliomas. Moreover, exosomal proteins could also be involved in glioma pathogenesis. Exosomal miRNAs and proteins could also serve as non-invasive biomarkers for prognosis and disease monitoring. Video Abstract.
Collapse
Affiliation(s)
- Amir B. Ghaemmaghami
- grid.17063.330000 0001 2157 2938Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| | - Maryam Mahjoubin-Tehran
- grid.411583.a0000 0001 2198 6209Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Movahedpour
- grid.412571.40000 0000 8819 4698Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Korosh Morshedi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sheida
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- grid.38142.3c000000041936754XWellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA ,grid.412988.e0000 0001 0109 131XLaser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
18
|
Transcriptomic analysis reveals the role of a peptide derived from CRYAB on the CoCl 2-induced hypoxic HL-1 cardiomyocytes. J Thromb Thrombolysis 2020; 51:265-276. [PMID: 32621152 DOI: 10.1007/s11239-020-02117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acute myocardial infarction (AMI) is a life-threatening disease that often results in heart failure. CRYAB, a small heat shock protein, has been shown to have cardioprotective effects against oxidative stress-induced apoptosis in AMI. Previously, we purified a peptide derived from CRYAB (LEDQFFGEH), which we named PDFC. In this study, we determined the function of PDFC on HL-1 cardiomyocytes and explored the mechanism underlying its function. A hypoxic myocardiocyte cell line was generated by stimulation of HL-1 mouse cardiac muscle cells with different concentrations of CoCl2. Then, the hypoxic HL-1 cells were treated with the synthetic PDFC peptide, and cell proliferation, migration, and apoptosis were assessed to examine the effects of PDFC on HL-1 and hypoxic HL-1 cells. To examine the mechanism underlying the effects of PDFC on hypoxic cells, PDFC-treated hypoxic HL-1 cells were submitted for deep RNA sequencing. Finally, several differentially expressed genes in different pathways were selected for confirmation by RT-qPCR. Hypoxic myocardiocytes were generated by stimulating HL-1 cells with 800 µM CoCl2 for 24 h, which significantly upregulated HIF-1α. PDFC at 200 µg/ml showed the most positive effects on cell viability. Although hypoxic HL-1 cells and PDFC-treated hypoxic HL-1 cells both showed lower viability and migration and higher levels of apoptosis than untreated HL-1 cells, compared to hypoxic HL-1 cells, PDFC-treated hypoxic HL-1 cells showed higher viability and migration and lower apoptosis. The deep sequencing showed that 812 genes were upregulated and 1946 genes were downregulated. Among these differentially expressed genes, 699 of the upregulated genes and 1488 of the downregulated genes were protein-coding genes. Gene ontology and pathway enrichment analysis showed that the downregulated genes were dominant and that the PI3K-Akt pathway was located in the center of the network. A protein-protein interaction network was constructed, and 892 nodes were determined. In PDFC-treated hypoxic HL-1 cells, Fn1, Pik3r5, and Creb5 were downregulated, while Insr, Bcl2, Mapk14, and Pten were upregulated when compared to the levels in hypoxic HL-1 cells. In conclusion, this study reveals the significant bioactive effect of the CRYAB-derived peptide, PDFC on cardiomyocytes and the underlying mechanism.
Collapse
|
19
|
Wang L, Nie Q, Gao M, Yang L, Xiang JW, Xiao Y, Liu FY, Gong XD, Fu JL, Wang Y, Nguyen QD, Liu Y, Liu M, Li DWC. The transcription factor CREB acts as an important regulator mediating oxidative stress-induced apoptosis by suppressing αB-crystallin expression. Aging (Albany NY) 2020; 12:13594-13617. [PMID: 32554860 PMCID: PMC7377838 DOI: 10.18632/aging.103474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
The general transcription factor, CREB has been shown to play an essential role in promoting cell proliferation, neuronal survival and synaptic plasticity in the nervous system. However, its function in stress response remains to be elusive. In the present study, we demonstrated that CREB plays a major role in mediating stress response. In both rat lens organ culture and mouse lens epithelial cells (MLECs), CREB promotes oxidative stress-induced apoptosis. To confirm that CREB is a major player mediating the above stress response, we established stable lines of MLECs stably expressing CREB and found that they are also very sensitive to oxidative stress-induced apoptosis. To define the underlying mechanism, RNAseq analysis was conducted. It was found that CREB significantly suppressed expression of the αB-crystallin gene to sensitize CREB-expressing cells undergoing oxidative stress-induced apoptosis. CREB knockdown via CRISPR/CAS9 technology led to upregulation of αB-crystallin and enhanced resistance against oxidative stress-induced apoptosis. Moreover, overexpression of exogenous human αB-crystallin can restore the resistance against oxidative stress-induced apoptosis. Finally, we provided first evidence that CREB directly regulates αB-crystallin gene. Together, our results demonstrate that CREB is an important transcription factor mediating stress response, and it promotes oxidative stress-induced apoptosis by suppressing αB-crystallin expression.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Meng Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Medical College, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Fang-Yuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| |
Collapse
|
20
|
Selig EE, Zlatic CO, Cox D, Mok YF, Gooley PR, Ecroyd H, Griffin MDW. N- and C-terminal regions of αB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation. J Biol Chem 2020; 295:9838-9854. [PMID: 32417755 DOI: 10.1074/jbc.ra120.012748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones that inhibit amyloid fibril formation; however, their mechanisms of action remain poorly understood. sHSPs comprise a conserved α-crystallin domain flanked by variable N- and C-terminal regions. To investigate the functional contributions of these three regions, we compared the chaperone activities of various constructs of human αB-crystallin (HSPB5) and heat-shock 27-kDa protein (Hsp27, HSPB1) during amyloid formation by α-synuclein and apolipoprotein C-II. Using an array of approaches, including thioflavin T fluorescence assays and sedimentation analysis, we found that the N-terminal region of Hsp27 and the terminal regions of αB-crystallin are important for delaying amyloid fibril nucleation and for disaggregating mature apolipoprotein C-II fibrils. We further show that the terminal regions are required for stable fibril binding by both sHSPs and for mediating lateral fibril-fibril association, which sequesters preformed fibrils into large aggregates and is believed to have a cytoprotective function. We conclude that although the isolated α-crystallin domain retains some chaperone activity against amyloid formation, the flanking domains contribute additional and important chaperone activities, both in delaying amyloid formation and in mediating interactions of sHSPs with amyloid aggregates. Both these chaperone activities have significant implications for the pathogenesis and progression of diseases associated with amyloid deposition, such as Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Emily E Selig
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dezerae Cox
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Heath Ecroyd
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Zhao W, Dai L, Xi XT, Chen QB, An MX, Li Y. Sensitized heat shock protein 27 induces retinal ganglion cells apoptosis in rat glaucoma model. Int J Ophthalmol 2020; 13:525-534. [PMID: 32399401 DOI: 10.18240/ijo.2020.04.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the relationships between the changes of heat shock protein 27 antibody (anti-HSP27) in serum/cerebrospinal fluid (CSF), intraocular pressure (IOP), retinal ganglion cell (RGC) apoptosis in a rat glaucoma model and disclose the underlying pathogenesis of glaucoma. METHODS A total of 115 Wistar rats were randomly divided into 4 groups. Group 1 was the ocular hypertension group by condensing 3 episcleral & limbal veins or episcleral area of right eye (HP group, n=25) and sham operation group with conjunctiva incision without coagulation (n=25). Group 2: HSP27 or dose-matched PBS was injected into the vitreous (V-HSP27 group, n=15; V-PBS group, n=15). Group 3: HSP27 and complete Freund's adjuvant or dose-matched PBS was injected subcutaneously into the hind limb accompanied intraperitoneal injection of pertussis toxin [sensitized group (I-HSP27 group), n=15; I-PBS group, n=15)]. Group 4 was normal group without any treatment (n=5). IOPs of the rats were measured before, day 3, weeks 1, 2, 4, 6, and 8 after treatment. Paraffin-embedded sections were prepared for HE staining and RGCs apoptosis were detected by TUNEL. Anti-HSP27 level in serum and CSF were examined by ELISA. RESULTS IOPs were elevated significantly in HP and V-HSP27, V-PBS groups (P<0.01) and positively related to anti-HSP27 levels in serum and CSFs. Anti-HSP27 levels in serum and CSF were elevated significantly in I-HSP27 group compared to other groups (P<0.05). However, the IOPs did not show any relationship with the high-level anti-HSP27 in serum and CSFs. RGC apoptosis were all elevated significantly in the HP, V-HSP27, V-PBS and I-HSP27 groups and also positively relative with anti-HSP27 level in serum and CSFs except that high-level of anti-HSP27 in the serum of I-HSP group. CONCLUSION The increases of anti-HSP27 levels in serum and CSFs both promote IOP escalation and the increase of RGC apoptosis in retina when anti-HSP27 is at low level. The case of high-level anti-HSP27 is opposite and shows protective function in preventing IOP increase and RGC apoptosis.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China.,Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali 671000, Yunnan Province, China.,Department of Ophthalmology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China
| | - Le Dai
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Xiao-Ting Xi
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Qian-Bo Chen
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Mei-Xia An
- Department of Ophthalmology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China
| | - Yan Li
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
22
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
23
|
Alpha B-Crystallin Overexpression Protects Oligodendrocyte Precursor Cells Against Oxidative Stress-Induced Apoptosis Through the Akt Pathway. J Mol Neurosci 2020; 70:751-758. [PMID: 31970633 DOI: 10.1007/s12031-020-01485-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Alpha B-crystallin (aBC), a member of the small heat shock protein family, is expressed in mature oligodendrocytes (mOLs), but not in oligodendrocyte precursor cells (OPCs). Our previous study found that the survival rate of OPCs was lower than that of mOLs under oxidative stress, suggesting that aBC may play a protective role in mOLs. In the present study, we investigated the effects of aBC overexpression on oxidative stress-induced cell injury in OPCs and examined the underlying mechanisms. We observed that the survival rates of aBC-overexpressed OPCs were significantly higher than those of control cells under oxidative stress induced by hydrogen peroxide. Akt activities were significantly suppressed by oxidative stress in control OPCs, but not in aBC-overexpressed OPCs. The expressions of Bax and cleaved caspase-3 were decreased, whereas Bcl-2 expression was increased in aBC-overexpressed OPCs under oxidative stress. These findings suggest that low Akt activity in OPCs due to aBC deficiency may cause high susceptibility of OPCs to oxidative stress. The findings may provide new insights into the implication of OPCs in demyelinating diseases.
Collapse
|
24
|
Associations of Heat-Shock Protein Expression with Meat Quality and Sensory Quality Characteristics in Highly Marbled Longissimus Thoracis Muscle from Hanwoo Steers Categorized by Warner-Bratzler Shear Force Value. Foods 2019; 8:foods8120638. [PMID: 31817130 PMCID: PMC6963670 DOI: 10.3390/foods8120638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
The influence of heat-shock protein (HSP) concentrations at 45 min and 24 h postmortem on meat quality and sensory quality characteristics of longissimus thoracis muscle from highly marbled Hanwoo steers (beef marbling standard grade 6–8) was investigated. Muscle samples were segregated into three groups based on Warner–Bratzler shear force (WBSF) value. The low group exhibited a lower WBSF value compared to the medium and high groups (37.8 vs. 48.9 and 64.3 N, p < 0.001). Muscle pH at 45 min and 24 h postmortem was not different (p > 0.05), and all groups exhibited low ultimate pH value (pH < 5.8). Beef steaks from the low group were significantly easier to pierce and chew, and they left less perceptible residue than the high group (p < 0.05). These differences in tenderness attributes were associated with differences in small HSPs at 45 min postmortem, with the low group exhibiting a lower level of αβ-crystallin and higher levels of HSP20 and HSP27 compared with the high group (p < 0.05). No differences were observed for small HSPs, HSP70, and HSP90 at 24 h postmortem (p > 0.05). Therefore, the expression levels of small HSPs at 45 min postmortem seems to have the potential to be an indicator of tenderness in highly marbled Hanwoo beef with low ultimate pH.
Collapse
|
25
|
Janowska MK, Baughman HER, Woods CN, Klevit RE. Mechanisms of Small Heat Shock Proteins. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034025. [PMID: 30833458 DOI: 10.1101/cshperspect.a034025] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones that delay formation of harmful protein aggregates. sHSPs' role in protein homeostasis has been appreciated for decades, but their mechanisms of action remain poorly understood. This gap in understanding is largely a consequence of sHSP properties that make them recalcitrant to detailed study. Multiple stress-associated conditions including pH acidosis, oxidation, and unusual availability of metal ions, as well as reversible stress-induced phosphorylation can modulate sHSP chaperone activity. Investigations of sHSPs reveal that sHSPs can engage in transient or long-lived interactions with client proteins depending on solution conditions and sHSP or client identity. Recent advances in the field highlight both the diversity of function within the sHSP family and the exquisite sensitivity of individual sHSPs to cellular and experimental conditions. Here, we will present and highlight current understanding, recent progress, and future challenges.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Hannah E R Baughman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
26
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac‐Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. Proteomics Clin Appl 2019; 13:e1900029. [PMID: 31282103 PMCID: PMC6771495 DOI: 10.1002/prca.201900029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/03/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M. Alkhanjaf
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Molecular Biotechnology, Department of Clinical Laboratory SciencesCollege of Applied Medical sciencesNajran UniversityNajran61441Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Mark Crawford
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Gabriella Pinto
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Department of Chemical SciencesUniversity of Naples Federico II80126NaplesItaly
| | - Jasminka Godovac‐Zimmermann
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| |
Collapse
|
27
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac-Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. PROTEOMICS. CLINICAL APPLICATIONS 2019. [PMID: 31282103 DOI: 10.1002/prca.201900029,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M Alkhanjaf
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Molecular Biotechnology, Department of Clinical Laboratory Sciences, College of Applied Medical sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Gabriella Pinto
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| |
Collapse
|
28
|
Yebra-Pimentel ES, Gebert M, Jansen HJ, Jong-Raadsen SA, Dirks RPH. Deep transcriptome analysis of the heat shock response in an Atlantic sturgeon (Acipenser oxyrinchus) cell line. FISH & SHELLFISH IMMUNOLOGY 2019; 88:508-517. [PMID: 30862517 DOI: 10.1016/j.fsi.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Despite efforts to restore Atlantic sturgeon in European rivers, aquaculture techniques result in animals with high post-release mortality due to, among other reasons, their low tolerance to increasing water temperature. Marker genes to monitor heat stress are needed in order to identify heat-resistant fish. Therefore, an Atlantic sturgeon cell line was exposed to different heat shock protocols (30 °C and 35 °C) and differences in gene expression were investigated. In total 3020 contigs (∼1.5%) were differentially expressed. As the core of the upregulated contigs corresponded to heat shock proteins (HSP), the heat shock factor (HSF) and the HSP gene families were annotated in Atlantic sturgeon and mapped via Illumina RNA sequencing to identify heat-inducible family members. Up to 6 hsf and 76 hsp genes were identified in the Atlantic sturgeon transcriptome resources, 16 of which were significantly responsive to the applied heat shock. The previously studied hspa1 (hsp70) gene was only significantly upregulated at the highest heat shock (35 °C), while a set of 5 genes (hspc1, hsph3a, hspb1b, hspb11a, and hspb11b) was upregulated at all conditions. Although the hspc1 (hsp90a) gene was previously used as heat shock-marker in sturgeons, we found that hspb11a is the most heat-inducible gene, with up to 3296-fold higher expression in the treated cells, constituting the candidate gene markers for in vivo trials.
Collapse
Affiliation(s)
- Elena Santidrián Yebra-Pimentel
- ZF-screens B.V., 2333CH, Leiden, the Netherlands; Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, 0454, Oslo, Norway.
| | - Marina Gebert
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, 23562, Lübeck, Germany
| | | | | | | |
Collapse
|
29
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
30
|
Yin B, Tang S, Xu J, Sun J, Zhang X, Li Y, Bao E. CRYAB protects cardiomyocytes against heat stress by preventing caspase-mediated apoptosis and reducing F-actin aggregation. Cell Stress Chaperones 2019; 24:59-68. [PMID: 30246229 PMCID: PMC6363628 DOI: 10.1007/s12192-018-0941-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022] Open
Abstract
CRYAB is a small heat shock protein (sHSP) that has previously been shown to protect the heart against various cellular stresses; however, its precise function in myocardial cell injury caused by heat stress remains unclear. This study aimed to investigate the molecular mechanism by which CRYAB protects cardiomyocytes against heat stress. We constructed two H9C2 cell lines that stably express CRYAB protein to differing degrees: CRYAB-5 and CRYAB-7. Both CRYAB-5 and CRYAB-7 showed significantly reduced granular degeneration and vacuolar degeneration following heat stress compared to control cells. In addition, CRYAB overexpression in H9C2 cells relieved cell cycle proportion at the G0/G1 phase following heat stress compared to control cells. These protective effects were associated with the level of CRYAB protein expression. Our immunofluorescence analysis showed CRYAB could translocate from the cytoplasm to the nucleus under heat stress conditions, but that CRYAB co-localized with F-actin (which accumulates under stress conditions). Indeed, overexpression of CRYAB significantly reduced the aggregation of F-actin in H9C2 cells caused by heat stress. Furthermore, overexpressing CRYAB protein significantly reduced the apoptosis of cardiomyocytes induced by heat stress, likely by reducing the expression of cleaved-caspase 3. Collectively, our results show overexpression of CRYAB significantly increases the heat resistance of H9C2 cardiomyocytes, likely by reducing F-actin aggregation (thus stabilizing the cytoskeleton), regulating the cell cycle, and preventing caspase-mediated apoptosis.
Collapse
Affiliation(s)
- Bin Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiarui Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Xiaohui Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Hunan road 1, Liaocheng, 252000, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
31
|
Chodkowska KA, Ciecierska A, Majchrzak K, Ostaszewski P, Sadkowski T. Simultaneous miRNA and mRNA Transcriptome Profiling of Differentiating Equine Satellite Cells Treated with Gamma-Oryzanol and Exposed to Hydrogen Peroxide. Nutrients 2018; 10:nu10121871. [PMID: 30513813 PMCID: PMC6316332 DOI: 10.3390/nu10121871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.
Collapse
Affiliation(s)
- Karolina A Chodkowska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Anna Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
32
|
Muranova LK, Sudnitsyna MV, Gusev NB. αB-Crystallin Phosphorylation: Advances and Problems. BIOCHEMISTRY (MOSCOW) 2018; 83:1196-1206. [DOI: 10.1134/s000629791810005x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Song J, Zhang Q, Wang S, Yang F, Chen Z, Dong Q, Ji Q, Yuan X, Ren D. Cleavage of caspase-12 at Asp94, mediated by endoplasmic reticulum stress (ERS), contributes to stretch-induced apoptosis of myoblasts. J Cell Physiol 2018; 233:9473-9487. [PMID: 29943814 DOI: 10.1002/jcp.26840] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/03/2018] [Indexed: 12/25/2022]
Abstract
Mechanical overloading can lead to skeletal muscle damage instead of remodeling. This is attributed to the excessive apoptosis of myoblasts, mechanism of which remains to be elucidated. The present study aimed to investigate the involvement of endoplasmic reticulum stress (ERS) and caspase-12 in mediating the stretch-induced apoptosis of myoblasts. Myoblast apoptosis was evaluated by Hoechst staining, DNA fragmentation assay, Annexin V binding, and propidium iodide staining, as well as caspase-3 and poly-ADP-ribose polymerase 1 cleavage. First, our results showed that apoptosis was elevated in a time-dependent manner when myoblasts were subjected to cyclic mechanical stretch (CMS) for 12, 24, and 36 hr. Concomitantly, CMS triggered the ERS and caspase-12 cleavage; ERS inhibitor GSK 2606414 suppressed the CMS-induced cleavage of caspase-12 and myoblast apoptosis. Silencing caspase-12 attenuated the apoptosis of myoblasts under CMS. Furthermore, CMS-induced myoblast apoptosis was partially recovered by overexpressing wild-type caspase-12 in caspase-12-silenced myoblasts. In contrast, overexpressing mutant caspase-12 (D94N), which cannot be cleaved into the active caspase-12 fragments, failed to accomplish the same effect. Finally, C2C12 overexpressing truncated caspase-12 segment (TC-casp12-D94), which starts from Asp94 and ends at Asn419, underwent apoptosis under both static and stretched conditions. Interestingly, C2C12 myoblasts seemed to be resistant to stretch-induced apoptosis upon low-serum-induced differentiation. In conclusion, our study provided evidence that caspase-12 cleavage at Asp94, induced by ERS under mechanical stimuli, is the key molecule in initiating the stretch-triggered apoptosis of myoblasts.
Collapse
Affiliation(s)
- Jing Song
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shuai Wang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fang Yang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhenggang Chen
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Quanjiang Dong
- Department of Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiuxia Ji
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
de Perini A, Dimauro I, Duranti G, Fantini C, Mercatelli N, Ceci R, Di Luigi L, Sabatini S, Caporossi D. The p75 NTR-mediated effect of nerve growth factor in L6C5 myogenic cells. BMC Res Notes 2017; 10:686. [PMID: 29202822 PMCID: PMC5716223 DOI: 10.1186/s13104-017-2994-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/25/2017] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE During muscle development or regeneration, myocytes produce nerve growth factor (NGF) as well as its tyrosine-kinase and p75-neurotrophin (p75NTR) receptors. It has been published that the p75NTR receptor could represent a key regulator of NGF-mediated myoprotective effect on satellite cells, but the precise function of NGF/p75 signaling pathway on myogenic cell proliferation, survival and differentiation remains fragmented and controversial. Here, we verified the role of NGF in the growth, survival and differentiation of p75NTR-expressing L6C5 myogenic cells, specifically inquiring for the putative involvement of the nuclear factor κB (NFκB) and the small heat shock proteins (sHSPs) αB-crystallin and Hsp27 in these processes. RESULTS Although NGF was not effective in modulating myogenic cell growth or survival in both standard or stress conditions, we demonstrated for the first time that, under serum deprivation, NGF sustained the activity of some key enzymes involved in energy metabolism. Moreover, we confirmed that NGF promotes myogenic fusion and expression of the structural protein myosin heavy chain while modulating NFκB activation and the content of sHSPs correlated with the differentiation process. We conclude that p75NTR is sufficient to mediate the modulation of L6C5 myogenic differentiation by NGF in term of structural, metabolic and functional changes.
Collapse
Affiliation(s)
- Alessandra de Perini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Guglielmo Duranti
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Roberta Ceci
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| |
Collapse
|
35
|
Haramizu S, Asano S, Butler DC, Stanton DA, Hajira A, Mohamed JS, Alway SE. Dietary resveratrol confers apoptotic resistance to oxidative stress in myoblasts. J Nutr Biochem 2017; 50:103-115. [PMID: 29053994 PMCID: PMC5694367 DOI: 10.1016/j.jnutbio.2017.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/14/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022]
Abstract
High levels of reactive oxygen species (ROS) contribute to muscle cell death in aging and disuse. We have previously found that resveratrol can reduce oxidative stress in response to aging and hindlimb unloading in rodents in vivo, but it was not known if resveratrol would protect muscle stem cells during repair or regeneration when oxidative stress is high. To test the protective role of resveratrol on muscle stem cells directly, we treated the C2C12 mouse myoblast cell line with moderate (100 μM) or very high (1 mM) levels of H2O2 in the presence or absence of resveratrol. The p21 promoter activity declined in myoblasts in response to high ROS, and this was accompanied a greater nuclear to cytoplasmic translocation of p21 in a dose-dependent matter in myoblasts as compared to myotubes. Apoptosis, as indicated by TdT-mediated dUTP nick-end labeling, was greater in C2C12 myoblasts as compared to myotubes (P<.05) after treatment with H2O2. Caspase-9, -8 and -3 activities were elevated significantly (P<.05) in myoblasts treated with H2O2. Myoblasts were more susceptible to ROS-induced oxidative stress than myotubes. We treated C2C12 myoblasts with 50 μM of resveratrol for periods up to 48 h to determine if myoblasts could be rescued from high-ROS-induced apoptosis by resveratrol. Resveratrol reduced the apoptotic index and significantly reduced the ROS-induced caspase-9, -8 and -3 activity in myoblasts. Furthermore, Bcl-2 and the Bax/Bcl-2 ratio were partially rescued in myoblasts by resveratrol treatment. Similarly, muscle stem cells isolated from mouse skeletal muscles showed reduced Sirt1 protein abundance with H2O2 treatment, but this could be reversed by resveratrol. Reduced apoptotic susceptibility in myoblasts as compared to myotubes to ROS is regulated, at least in part, by enhanced p21 promoter activity and nuclear p21 location in myotubes. Resveratrol confers further protection against ROS by improving Sirt1 levels and increasing antioxidant production, which reduces mitochondrial associated apoptotic signaling, and cell death in myoblasts.
Collapse
Affiliation(s)
- Satoshi Haramizu
- Laboratory of Muscle Biology and Sarcopenia, Dept. Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV
| | - Shinichi Asano
- Laboratory of Muscle Biology and Sarcopenia, Dept. Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV
| | - David C Butler
- Laboratory of Muscle Biology and Sarcopenia, Dept. Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV
| | - David A Stanton
- Laboratory of Muscle Biology and Sarcopenia, Dept. Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV
| | - Ameena Hajira
- Laboratory of Muscle Biology and Sarcopenia, Dept. Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Dept. Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Dept. Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV.
| |
Collapse
|
36
|
Bartelt-Kirbach B, Slowik A, Beyer C, Golenhofen N. Upregulation and phosphorylation of HspB1/Hsp25 and HspB5/αB-crystallin after transient middle cerebral artery occlusion in rats. Cell Stress Chaperones 2017; 22:653-663. [PMID: 28425051 PMCID: PMC5465040 DOI: 10.1007/s12192-017-0794-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke leads to cellular dysfunction, cell death, and devastating clinical outcomes. The cells of the brain react to such a cellular stress by a stress response with an upregulation of heat shock proteins resulting in activation of endogenous neuroprotective capacities. Several members of the family of small heat shock proteins (HspBs) have been shown to be neuroprotective. However, yet no systematic study examined all HspBs during cerebral ischemia. Here, we performed a comprehensive comparative study comprising all HspBs in an animal model of stroke, i.e., 1 h transient middle cerebral artery occlusion followed by 23 h of reperfusion. On the mRNA level out of the 11 HspBs investigated, HspB1/Hsp25, HspB3, HspB4/αA-crystallin, HspB5/αB-crystallin, HspB7/cvHsp, and HspB8/Hsp22 were significantly upregulated in the peri-infarct region of the cerebral cortex of infarcted hemispheres. HspB1 and HspB5 reached the highest mRNA levels and were also upregulated at the protein level, suggesting that these HspBs might be functionally most relevant. Interestingly, in the infarcted cortex, both HspB1 and HspB5 were mainly allocated to neurons and to a lesser extent to glial cells. Additionally, both proteins were found to be phosphorylated in response to ischemia. Our data suggest that among all HspBs, HspB1 and HspB5 might be most important in the neuronal stress response to ischemia/reperfusion injury in the brain and might be involved in neuroprotection.
Collapse
Affiliation(s)
- Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
37
|
Arrigo AP. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones 2017; 22:517-529. [PMID: 28144778 PMCID: PMC5465029 DOI: 10.1007/s12192-017-0765-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 12/11/2022] Open
Abstract
Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, 28 rue Laennec, Lyon, 69008, France.
| |
Collapse
|
38
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Patrick A. Arrigo
- Université de Lyon, 69622 Lyon, France
- CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | | | - Ivor J. Benjamin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-5650 USA
| | - Wilbert Boelens
- Biomolecular Chemistry, 284, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John A. Carver
- The Research School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- Illawara Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Stephanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russia
| | | | - Lawrence E. Hightower
- Department of Molecular & Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125 USA
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Kathryn A. McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Roy Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Melinda E. Toth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003 USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 USA
| | - Robert M. Tanguay
- Laboratory of Cell & Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, Québec (Qc), G1V 0A6 Canada
| |
Collapse
|
39
|
Chen HY, Chou HC, Chang SJ, Liao EC, Tsai YT, Wei YS, Li JM, Lin LH, Lin MW, Chen YJ, Chen YS, Lin CC, Wang YS, Ko ML, Chan HL. Proteomic Analysis of Various Rat Ocular Tissues after Ischemia-Reperfusion Injury and Possible Relevance to Acute Glaucoma. Int J Mol Sci 2017; 18:ijms18020334. [PMID: 28165428 PMCID: PMC5343869 DOI: 10.3390/ijms18020334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a group of eye diseases that can cause vision loss and optical nerve damage. To investigate the protein expression alterations in various intraocular tissues (i.e., the cornea, conjunctiva, uvea, retina, and sclera) during ischemia–reperfusion (IR) injury, this study performed a proteomic analysis to qualitatively investigate such alterations resulting from acute glaucoma. The IR injury model combined with the proteomic analysis approach of two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to monitor the protein expression alterations in two groups of specimens (an IR injury group and a control group). The analysis results revealed 221 unique differentially expressed proteins of a total of 1481 proteins in the cornea between the two groups. In addition, 97 of 1206 conjunctival proteins, 90 of 1354 uveal proteins, 61 of 1180 scleral proteins, and 37 of 1204 retinal proteins were differentially expressed. These findings imply that different ocular tissues have different tolerances against IR injury. To sum up, this study utilized the acute glaucoma model combined with 2D-DIGE and MALDI-TOF MS to investigate the IR injury affected protein expression on various ocular tissues, and based on the ratio of protein expression alterations, the alterations in the ocular tissues were in the following order: the cornea, conjunctiva, uvea, sclera, and retina.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
- Center for Teacher Education, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan.
| | - Shing-Jyh Chang
- Gynecologic Oncology Section Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu 300, Taiwan.
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Ji-Min Li
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Ying-Jen Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yu-Sheng Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Chih-Chun Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yi-Shiuan Wang
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Mei-Lan Ko
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan.
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
40
|
A novel dominant D109A CRYAB mutation in a family with myofibrillar myopathy affects αB-crystallin structure. BBA CLINICAL 2016; 7:1-7. [PMID: 27904835 PMCID: PMC5124346 DOI: 10.1016/j.bbacli.2016.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 11/21/2022]
Abstract
Myofibrillar myopathy (MFM) is a group of inherited muscular disorders characterized by myofibrils dissolution and abnormal accumulation of degradation products. So far causative mutations have been identified in nine genes encoding Z-disk proteins, including αB-crystallin (CRYAB), a small heat shock protein (also called HSPB5). Here, we report a case study of a 63-year-old Polish female with a progressive lower limb weakness and muscle biopsy suggesting a myofibrillar myopathy, and extra-muscular multisystemic involvement, including cataract and cardiomiopathy. Five members of the proband's family presented similar symptoms. Whole exome sequencing followed by bioinformatic analysis revealed a novel D109A mutation in CRYAB associated with the disease. Molecular modeling in accordance with muscle biopsy microscopic analyses predicted that D109A mutation influence both structure and function of CRYAB due to decreased stability of oligomers leading to aggregate formation. In consequence disrupted sarcomere cytoskeleton organization might lead to muscle pathology. We also suggest that mutated RQDE sequence of CRYAB could impair CRYAB chaperone-like activity and promote aggregation of lens crystallins.
Collapse
|
41
|
Yu Y, Jiang H, Li H, Song W, Xia X. Alpha-A-Crystallin Protects Lens Epithelial Cell-Derived iPSC-Like Cells Against Apoptosis Induced by Oxidative Stress. Cell Reprogram 2016; 18:327-332. [PMID: 27696911 DOI: 10.1089/cell.2016.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yixin Yu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Weitao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
42
|
Oliveira AO, Osmand A, Outeiro TF, Muchowski PJ, Finkbeiner S. αB-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington's disease. Hum Mol Genet 2016; 25:1677-89. [PMID: 26920069 PMCID: PMC4986324 DOI: 10.1093/hmg/ddw028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/01/2016] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. The polyQ expansion increases the propensity of htt to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins are predicted to slow disease progression in HD models. αB-crystallin (αBc) or HspB5 is a well-characterized member of the small heat shock protein (sHsp) family that reduces mutant htt (mhtt) aggregation and toxicity in vitro and in Drosophila models of HD. Here, we determined if overexpressing αBc in vivo modulates aggregation and delays the onset and progression of disease in a full-length model of HD, BACHD mice. Expression of sHsps in neurodegenerative disease predominantly occurs in non-neuronal cells, and in the brain, αBc is mainly found in astrocytes and oligodendrocytes. Here, we show that directed αBc overexpression in astrocytes improves motor performance in rotarod and balance beam tests and improves cognitive function in the BACHD mice. Improvement in behavioral deficits correlated with mitigation of neuropathological features commonly observed in HD. Interestingly, astrocytic αBc overexpression was neuroprotective against neuronal cell loss in BACHD brains, suggesting αBc might be acting in a non-cell-autonomous manner. At the protein level, αBc decreased the level of soluble mhtt and decreased the size of mhtt inclusions in BACHD brain. Our results support a model in which elevating astrocytic αBc confers neuroprotection through a potential non-cell-autonomous pathway that modulates mhtt aggregation and protein levels.
Collapse
Affiliation(s)
- Ana Osório Oliveira
- Lisbon Academic Medical Center PhD Program, Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal, Gladstone Institute for Neurological Disease, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Alexander Osmand
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Tiago Fleming Outeiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal, Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Goettingen, Germany
| | | | - Steven Finkbeiner
- Gladstone Institute for Neurological Disease, J. David Gladstone Institutes, San Francisco, CA, USA, Department of Neurology, Department of Physiology, University of California at San Francisco, San Francisco, CA, USA and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
| |
Collapse
|
43
|
Szcześniak KA, Ciecierska A, Ostaszewski P, Sadkowski T. Transcriptomic profile adaptations following exposure of equine satellite cells to nutriactive phytochemical gamma-oryzanol. GENES & NUTRITION 2016; 11:5. [PMID: 27482297 PMCID: PMC4959553 DOI: 10.1186/s12263-016-0523-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adult skeletal muscle myogenesis depends on the activation of satellite cells that have the potential to differentiate into new fibers. Gamma-oryzanol (GO), a commercially available nutriactive phytochemical, has gained global interest on account of its muscle-building and regenerating effects. Here, we investigated GO for its potential influence on myogenesis, using equine satellite cell culture model, since the horse is a unique animal, bred and exercised for competitive sport. To our knowledge, this is the first report where the global gene expression in cultured equine satellite cells has been described. METHODS Equine satellite cells were isolated from semitendinosus muscle and cultured until the second day of differentiation. Differentiating cells were incubated with GO for the next 24 h. Subsequently, total RNA from GO-treated and control cells was isolated, amplified, labeled, and hybridized to two-color Horse Gene Expression Microarray slides. Quantitative PCR was used for the validation of microarray data. RESULTS Our results revealed 58 genes with changed expression in GO-treated vs. control cells. Analysis of expression changes suggests that various processes are reinforced by GO in differentiating equine satellite cells, including inhibition of myoblast differentiation, increased proliferation and differentiation, stress response, and increased myogenic lineage commitment. CONCLUSIONS The present study may confirm putative muscle-enhancing abilities of GO; however, the collective role of GO in skeletal myogenesis remains equivocal. The diversity of these changes is likely due to heterogenous growth rate of cells in primary culture. Genes identified in our study, modulated by the presence of GO, may become potential targets of future research investigating impact of this supplement in skeletal muscle on proteomic and biochemical level.
Collapse
Affiliation(s)
- K A Szcześniak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - A Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - P Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - T Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
44
|
Santos-Zas I, Gurriarán-Rodríguez U, Cid-Díaz T, Figueroa G, González-Sánchez J, Bouzo-Lorenzo M, Mosteiro CS, Señarís J, Casanueva FF, Casabiell X, Gallego R, Pazos Y, Mouly V, Camiña JP. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell Mol Life Sci 2016; 73:617-35. [PMID: 26211463 PMCID: PMC11108386 DOI: 10.1007/s00018-015-1994-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle repair by inducing the expansion of satellite stem cells as well as myofiber hypertrophy. Here, we describe that the obestatin/GPR39 system acts as autocrine/paracrine factor on human myogenesis. Obestatin regulated multiple steps of myogenesis: myoblast proliferation, cell cycle exit, differentiation and recruitment to fuse and form multinucleated hypertrophic myotubes. Obestatin-induced mitogenic action was mediated by ERK1/2 and JunD activity, being orchestrated by a G-dependent mechanism. At a later stage of myogenesis, scaffolding proteins β-arrestin 1 and 2 were essential for the activation of cell cycle exit and differentiation through the transactivation of the epidermal growth factor receptor (EGFR). Upon obestatin stimulus, β-arrestins are recruited to the membrane, where they functionally interact with GPR39 leading to Src activation and signalplex formation to EGFR transactivation by matrix metalloproteinases. This signalplex regulated the mitotic arrest by p21 and p57 expression and the mid- to late stages of differentiation through JNK/c-Jun, CAMKII, Akt and p38 pathways. This finding not only provides the first functional activity for β-arrestins in myogenesis but also identify potential targets for therapeutic approaches by triggering specific signaling arms of the GPR39 signaling involved in myogenesis.
Collapse
Affiliation(s)
- Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Tania Cid-Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Gabriela Figueroa
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Mónica Bouzo-Lorenzo
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Vincent Mouly
- Institut de Myologie, INSERM, and Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.
| |
Collapse
|
45
|
Abstract
αB-crystallin is a widely expressed member of the small heat shock protein family that protects cells from stress by its dual function as a molecular chaperone to preserve proteostasis and as a cell death antagonist that negatively regulates components of the conserved apoptotic cell death machinery. Deregulated expression of αB-crystallin occurs in a broad array of solid tumors and has been linked to tumor progression and poor clinical outcomes. This review will focus on new insights into the molecular mechanisms by which oncogenes, oxidative stress, matrix detachment and other tumor microenvironmental stressors deregulate αB-crystallin expression. We will also review accumulating evidence pointing to an essential role for αB-crystallin in the multi-step metastatic cascade whereby tumor cells colonize distant organs by circumventing a multitude of barriers to cell migration and survival. Finally, we will evaluate emerging strategies to therapeutically target αB-crystallin and/or interacting proteins to selectively activate apoptosis and/or derail the metastatic cascade in an effort to improve outcomes for patients with metastatic disease.
Collapse
|
46
|
Tiwary E, Hegde S, Purushotham S, Deivanayagam C, Srivastava O. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins. PLoS One 2015; 10:e0144621. [PMID: 26657544 PMCID: PMC4691197 DOI: 10.1371/journal.pone.0144621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA–crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin. Variable in vitro and in vivo interactions are most likely due to the mutant’s large size oligomers, reduced hydrophobicity, and altered structures. Together, the results suggest that deamidation of α-crystallin may facilitate greater interaction and the formation of large oligomers with other crystallins, and this may contribute to the cataractogenic mechanism.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Shylaja Hegde
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Sangeetha Purushotham
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Champion Deivanayagam
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Om Srivastava
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
47
|
Kore RA, Abraham EC. Phosphorylation negatively regulates exosome mediated secretion of cryAB in glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:368-77. [PMID: 26620801 DOI: 10.1016/j.bbamcr.2015.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
Abstract
Exosomes mediate secretion of crystallin alphaB (cryAB), a well characterized molecular chaperone with anti-apoptotic activity. However, the mechanisms governing its packaging and secretion remained unexplored. In glioma cells, notwithstanding extensive phosphorylation of cryAB at Ser59 followed by Ser45 (Ser19 is largely unphosphorylated), we discovered that the majority of secreted exosomal cryAB is nonphosphorylated. Transient ectopic expression of a yellow fluorescent protein (YFP) tagged triple phosphomimic (3-SD) cryAB construct in cryAB absent glioma cells led to the formation of large cytosolic inclusions. Our findings demonstrate that mimicking phosphorylation significantly reduces cryAB secretion via exosomes. Moreover, decreased colocalization of 3-SD YFP-cryAB with multivesicular endosome (MVE) and exosome marker, CD63 or Rab27, a small GTPase regulating exocytosis of MVEs, suggests that phosphorylation deters packaging of cryAB in vesicles bound for secretion as exosomes. Additionally, we found that preventing O-GlcNAcylation on cryAB also curtailed its colocalization with CD63 and Rab27 resulting in reduced exosomal secretion. Thus, our study points to O-GlcNAcylation and lack of phosphorylation as being the selective processes involved in the packaging and secretion of cryAB via exosomes.
Collapse
Affiliation(s)
- Rajshekhar A Kore
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Edathara C Abraham
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
48
|
Thornell E, Aquilina A. Regulation of αA- and αB-crystallins via phosphorylation in cellular homeostasis. Cell Mol Life Sci 2015; 72:4127-37. [PMID: 26210153 PMCID: PMC11113999 DOI: 10.1007/s00018-015-1996-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 11/27/2022]
Abstract
αA-Crystallin (αA) and αB-crystallin (αB) are small heat shock proteins responsible for the maintenance of transparency in the lens. In non-lenticular tissues, αB is involved in both maintenance of the cytoskeleton and suppression of neurodegeneration amongst other roles. Despite their importance in maintaining cellular health, modifications and mutations to αA and αB appear to play a role in disease states such as cataract and myopathies. The list of modifications that have been reported is extensive and include oxidation, disulphide bond formation, C- and N-terminal truncation, acetylation, carboxymethylation, carboxyethylation, carbamylation, deamidation, phosphorylation and methylation. Such modifications, notably phosphorylation, are alleged to cause changes to chaperone activity by inducing substructural changes and altering subunit exchange dynamics. Although the effect modification has on the activities of αA and αB is contentious, it has been proposed that these changes are responsible for the induction of hyperactivity and are thereby indirectly responsible for protein deposition characteristic of many diseases associated with αA and αB. This review compiles all reported sites of αA and αB modifications, and investigates the role phosphorylation, in particular, plays in cellular processes.
Collapse
Affiliation(s)
- Erin Thornell
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Ave., Wollongong, NSW, 2522, Australia.
| | - Andrew Aquilina
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Ave., Wollongong, NSW, 2522, Australia
| |
Collapse
|
49
|
Bakthisaran R, Akula KK, Tangirala R, Rao CM. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions. Biochim Biophys Acta Gen Subj 2015; 1860:167-82. [PMID: 26415747 DOI: 10.1016/j.bbagen.2015.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. SCOPE OF REVIEW The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. MAJOR CONCLUSIONS Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. GENERAL SIGNIFICANCE Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
50
|
Mueller NH, Fogueri U, Pedler MG, Montana K, Petrash JM, Ammar DA. Impact of Subunit Composition on the Uptake of α-Crystallin by Lens and Retina. PLoS One 2015; 10:e0137659. [PMID: 26355842 PMCID: PMC4565700 DOI: 10.1371/journal.pone.0137659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
Misfolded protein aggregation, including cataract, cause a significant amount of blindness worldwide. α-Crystallin is reported to bind misfolded proteins and prevent their aggregation. We hypothesize that supplementing retina and lens with α-crystallin may help to delay disease onset. The purpose of this study was to determine if αB-crystallin subunits containing a cell penetration peptide (gC-tagged αB-crystallin) facilitate the uptake of wild type αA-crystallin (WT-αA) in lens and retina. Recombinant human αB-crystallin was modified by the addition of a novel cell penetration peptide derived from the gC gene product of herpes simplex virus (gC-αB). Recombinant gC-αB and wild-type αA-crystallin (WT-αA) were purified from E. coli over-expression cultures. After Alexa-labeling of WT-αA, these proteins were mixed at ratios of 1:2, 1:5 and 1:10, respectively, and incubated at 37°C for 4 hours to allow for subunit exchange. Mixed oligomers were subsequently incubated with tissue culture cells or mouse organ cultures. Similarly, crystallin mixtures were injected into the vitreous of rat eyes. At various times after exposure, tissues were harvested and analyzed for protein uptake by confocal microscopy or flow cytometry. Chaperone-like activity assays were performed on α-crystallins ratios showing optimal uptake using chemically-induced or heat induced substrate aggregation assays. As determined by flow cytometry, a ratio of 1:5 for gC-αB to WT-αA was found to be optimal for uptake into retinal pigmented epithelial cells (ARPE-19). Chaperone-like activity assays demonstrated that hetero-oligomeric complex of gC-αB to WT-αA (in 1:5 ratio) retained protein aggregation protection. We observed a significant increase in protein uptake when optimized (gC-αB to WT-αA (1:5 ratio)) hetero-oligomers were used in mouse lens and retinal organ cultures. Increased levels of α-crystallin were found in lens and retina following intravitreal injection of homo- and hetero-oligomers in rats.
Collapse
Affiliation(s)
- Niklaus H. Mueller
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| | - Uma Fogueri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, United States of America
| | - Michelle G. Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kameron Montana
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - J. Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, United States of America
| | - David A. Ammar
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|