1
|
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer's Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46:3103-3122. [PMID: 34386919 DOI: 10.1007/s11064-021-03418-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is an intrinsic biochemical, cellular process that regulates cell death and is crucial for cell survival, cellular homeostasis, and maintaining the optimum functional status. Apoptosis in a predetermined and programmed manner regulates several molecular events, including cell turnover, embryonic development, and immune system functions but may be the exclusive contributor to several disorders, including neurodegenerative manifestations, when it functions in an aberrant and disorganized manner. Alzheimer's disease (AD) is a fatal, chronic neurodegenerative disorder where apoptosis has a compelling and divergent role. The well-characterized pathological features of AD, including extracellular plaques of amyloid-beta, intracellular hyperphosphorylated tangles of tau protein (NFTs), inflammation, mitochondrial dysfunction, oxidative stress, and excitotoxic cell death, also instigate an abnormal apoptotic cascade in susceptible brain regions (cerebral cortex, hippocampus). The apoptotic players in these regions affect cellular organelles (mitochondria and endoplasmic reticulum), interact with trophic factors, and several pathways, including PI3K/AKT, JNK, MAPK, mTOR signalling. This dysregulated apoptotic cascade end with an abnormal neuronal loss which is a primary event that may precede the other events of AD progression and correlates well with the degree of dementia. The present review provides insight into the diverse and versatile apoptotic mechanisms that are indispensable for neuronal survival and constitute an integral part of the pathological progression of AD. Identification of potential targets (restoring apoptotic and antiapoptotic balance, caspases, TRADD, RIPK1, FADD, TNFα, etc.) may be valuable and advantageous to decide the fate of neurons and to develop potential therapeutics for treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.,Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | | | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
2
|
From the low-density lipoprotein receptor-related protein 1 to neuropathic pain: a potentially novel target. Pain Rep 2021; 6:e898. [PMID: 33981930 PMCID: PMC8108589 DOI: 10.1097/pr9.0000000000000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 plays a major role in the regulation of neuroinflammation, neurodegeneration, neuroregeneration, neuropathic pain, and deficient cognitive functions. This review describes the roles of the low-density lipoprotein receptor–related protein 1 (LRP-1) in inflammatory pathways, nerve nerve degeneration and -regeneration and in neuropathic pain. Induction of LRP-1 is able to reduce the activation of the proinflammatory NFκB-mediated pathway and the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase and p38 signaling pathways, in turn decreasing the production of inflammatory mediators. Low-density lipoprotein receptor-related protein 1 activation also decreases reactive astrogliosis and polarizes microglial cells and macrophages from a proinflammatory phenotype (M1) to an anti-inflammatory phenotype (M2), attenuating the neuroinflammatory environment. Low-density lipoprotein receptor-related protein 1 can also modulate the permeability of the blood–brain barrier and the blood–nerve barrier, thus regulating the infiltration of systemic insults and cells into the central and the peripheral nervous system, respectively. Furthermore, LRP-1 is involved in the maturation of oligodendrocytes and in the activation, migration, and repair phenotype of Schwann cells, therefore suggesting a major role in restoring the myelin sheaths upon injury. Low-density lipoprotein receptor-related protein 1 activation can indirectly decrease neurodegeneration and neuropathic pain by attenuation of the inflammatory environment. Moreover, LRP-1 agonists can directly promote neural cell survival and neurite sprouting, decrease cell death, and attenuate pain and neurological disorders by the inhibition of MAPK c-Jun N-terminal kinase and p38-pathway and activation of MAPK extracellular signal–regulated kinase pathway. In addition, activation of LRP-1 resulted in better outcomes for neuropathies such as Alzheimer disease, nerve injury, or diabetic peripheral neuropathy, attenuating neuropathic pain and improving cognitive functions. To summarize, LRP-1 plays an important role in the development of different experimental diseases of the nervous system, and it is emerging as a very interesting therapeutic target.
Collapse
|
3
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Potere N, Del Buono MG, Niccoli G, Crea F, Toldo S, Abbate A. Developing LRP1 Agonists into a Therapeutic Strategy in Acute Myocardial Infarction. Int J Mol Sci 2019; 20:E544. [PMID: 30696029 PMCID: PMC6387161 DOI: 10.3390/ijms20030544] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Cardioprotection refers to a strategy aimed at enhancing survival pathways in the injured yet salvageable myocardium following ischemia-reperfusion. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor that can be targeted following reperfusion, to induce a cardioprotective signaling through the activation of the reperfusion injury salvage kinase (RISK) pathway. The data from preclinical studies with non-selective and selective LRP1 agonists are promising, showing a large therapeutic window for intervention to reduce infarct size after ischemia-reperfusion. A pilot clinical trial with plasma derived α1-antitrypsin (AAT), a naturally occurring LRP1 agonist, supports the translational value of LRP1 as a novel therapeutic target for cardioprotection. A phase I study with a selective LRP1 agonist has been completed showing no toxicity. These findings may open the way to early phase clinical studies with pharmacologic LRP1 activation in patients with acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Unit of Cardiovascular Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy.
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Giampaolo Niccoli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Evidence that LDL receptor-related protein 1 acts as an early injury detection receptor and activates c-Jun in Schwann cells. Neuroreport 2018; 27:1305-1311. [PMID: 27824728 DOI: 10.1097/wnr.0000000000000691] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Schwann cells (SCs) detect injury to peripheral nerves and transform phenotypically to respond to injury and facilitate repair. Cell-signaling pathways and changes in gene expression that drive SC phenotypic transformation in injury have been described; however, the SC receptors that detect peripheral nervous system (PNS) injury have not been identified. LDL receptor-related protein 1 (LRP1) is a receptor for numerous ligands, including intracellular proteins released by injured cells and protein components of degenerated myelin. In certain cell types, including SCs, LRP1 is a cell-signaling receptor. Here, we show that binding of the LRP1 ligand, tissue-type plasminogen activator (tPA), to cultured rat SCs induces c-Jun phosphorylation, a central event in activation of the SC repair program. The response to tPA was blocked by the LRP1 antagonist, receptor-associated protein. c-Jun phosphorylation was also observed when cultured rat SCs were treated with a recombinant derivative of matrix metalloproteinase-9 that contains the LRP1 recognition motif (PEX). The ability of LRP1 to induce c-Jun phosphorylation and ERK1/2 activation was confirmed using cultures of human SCs. When tPA or PEX was injected directly into crush-injured rat sciatic nerves, c-Jun phosphorylation and ERK1/2 activation were observed in SCs in vivo. The ability of LRP1 to bind proteins released in the earliest stages of PNS injury and to induce c-Jun phosphorylation support a model in which SC LRP1 functions as an injury-detection receptor in the PNS.
Collapse
|
6
|
Astaxanthin acts via LRP-1 to inhibit inflammation and reverse lipopolysaccharide-induced M1/M2 polarization of microglial cells. Oncotarget 2017; 8:69370-69385. [PMID: 29050210 PMCID: PMC5642485 DOI: 10.18632/oncotarget.20628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Microglia become activated during neuroinflammation and produce neurotoxic and neurotrophic factors, depending on whether they acquire M1 proinflammatory or M2 anti-inflammatory phenotypes. Astaxanthin (ATX), a natural carotenoid, has anti-inflammatory and neuroprotective effects. We investigated whether ATX could reverse M1/M2 polarization and suppress neuroinflammation via low-density lipoprotein receptor-related protein-1 (LRP-1). We observed increased expression of M1 (TNF-α, IL-1β, and CD86) and decreased expression of M2 (Arg-1, IL-10, and CD206) markers in BV2 microglial cells stimulated with lipopolysaccharide (LPS). These alterations were reversed by pretreating the cells with ATX. Activation of the NF-κB and JNK pathways was observed upon LPS stimulation, which was reversed by ATX. ATX-induced M2 polarization was attenuated by inhibition of NF-κB and JNK. Pretreatment of LPS-stimulated BV2 cells with ATX resulted in increased LRP-1 expression. The addition of receptor-associated protein, an LRP-1 antagonist, ameliorated ATX-induced inactivation of NF-κB and JNK signaling, and M2 polarization. ATX promotes M2 polarization to suppress neuroinflammation via LRP-1 by inhibiting NF-κB and JNK signaling. This novel mechanism may suppress neuroinflammation in diseases such as Alzheimer’s disease.
Collapse
|
7
|
Yang L, Liu CC, Zheng H, Kanekiyo T, Atagi Y, Jia L, Wang D, N'songo A, Can D, Xu H, Chen XF, Bu G. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J Neuroinflammation 2016; 13:304. [PMID: 27931217 PMCID: PMC5146875 DOI: 10.1186/s12974-016-0772-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/02/2016] [Indexed: 01/07/2023] Open
Abstract
Background Neuroinflammation is characterized by microglial activation and the increased levels of cytokines and chemokines in the central nervous system (CNS). Recent evidence has implicated both beneficial and toxic roles of microglia when over-activated upon nerve injury or in neurodegenerative diseases, including Alzheimer’s disease (AD). The low-density lipoprotein receptor-related protein 1 (LRP1) is a major receptor for apolipoprotein E (apoE) and amyloid-β (Aβ), which play critical roles in AD pathogenesis. LRP1 regulates inflammatory responses in peripheral tissues by modulating the release of inflammatory cytokines and phagocytosis. However, the roles of LRP1 in brain innate immunity and neuroinflammation remain unclear. Methods In this study, we determined whether LRP1 modulates microglial activation by knocking down Lrp1 in mouse primary microglia. LRP1-related functions in microglia were also assessed in the presence of LRP1 antagonist, the receptor-associated protein (RAP). The effects on the production of inflammatory cytokines were measured by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Potential involvement of specific signaling pathways in LRP1-regulated functions including mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) were assessed using specific inhibitors. Results We found that knocking down of Lrp1 in mouse primary microglia led to the activation of both c-Jun N-terminal kinase (JNK) and NF-κB pathways with corresponding enhanced sensitivity to lipopolysaccharide (LPS) in the production of pro-inflammatory cytokines. Similar effects were observed when microglia were treated with LRP1 antagonist RAP. In addition, treatment with pro-inflammatory stimuli suppressed Lrp1 expression in microglia. Interestingly, NF-κB inhibitor not only suppressed the production of cytokines induced by the knockdown of Lrp1 but also restored the down-regulated expression of Lrp1 by LPS. Conclusions Our study uncovers that LRP1 suppresses microglial activation by modulating JNK and NF-κB signaling pathways. Given that dysregulation of LRP1 has been associated with AD pathogenesis, our work reveals a critical regulatory mechanism of microglial activation by LRP1 that could be associated with other AD-related pathways thus further nominating LRP1 as a potential disease-modifying target for the treatment of AD.
Collapse
Affiliation(s)
- Longyu Yang
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA
| | - Honghua Zheng
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA
| | - Yuka Atagi
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA
| | - Lin Jia
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Daxin Wang
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Aurelie N'songo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA
| | - Dan Can
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Huaxi Xu
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China
| | - Xiao-Fen Chen
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China. .,Shenzhen Research Institute of Xiamen University, Shenzhen, 518063, China.
| | - Guojun Bu
- Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Medical College, Xiamen University, Xiamen, 361102, China. .,Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL32224, USA.
| |
Collapse
|
8
|
Güngör C, Hofmann BT, Wolters-Eisfeld G, Bockhorn M. Pancreatic cancer. Br J Pharmacol 2014; 171:849-58. [PMID: 24024905 DOI: 10.1111/bph.12401] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/16/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED In recent years, it has become clear that the current standard therapeutic options for pancreatic cancer are not adequate and still do not meet the criteria to cure patients suffering from this lethal disease. Although research over the past decade has shown very interesting and promising new therapeutic options for these patients, only minor clinical success was achieved. Therefore, there is still an urgent need for new approaches that deal with early detection and new therapeutic options in pancreatic cancer. To provide optimal care for patients with pancreatic cancer, we need to understand better its complex molecular biology and thus to identify new target molecules that promote the proliferation and resistance to chemotherapy of pancreatic cancer cells. In spite of significant progress in curing cancers with chemotherapy, pancreatic cancer remains one of the most resistant solid tumour cancers and many studies suggest that drug-resistant cancer cells are the most aggressive with the highest relapse and metastatic rates. In this context, activated Notch signalling is strongly linked with chemoresistance and therefore reflects a rational new target to circumvent resistance to chemotherapy in pancreatic cancer. Here, we have focused our discussion on the latest research, current therapy options and recently identified target molecules such as Notch-2 and the heparin-binding growth factor midkine, which exhibit a wide range of cancer-relevant functions and therefore provide attractive new therapeutic target molecules, in terms of pancreatic cancer and other cancers also. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- C Güngör
- Department of General, Visceral and Thoracic Surgery, Experimental Oncology, Campus Research, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
9
|
Zhang Q, Steinle JJ. IGFBP-3 inhibits TNF-α production and TNFR-2 signaling to protect against retinal endothelial cell apoptosis. Microvasc Res 2014; 95:76-81. [PMID: 25086184 DOI: 10.1016/j.mvr.2014.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 01/09/2023]
Abstract
In models of diabetic retinopathy, insulin-like growth factor binding protein-3 (IGFBP-3) protects against tumor necrosis factors-alpha (TNF-α)-mediated apoptosis of retinal microvascular endothelial cells (REC), but the underlying mechanisms are unclear. Our current findings suggest that at least two discrete but complimentary pathways contribute to the protective effects of IGFBP-3; 1) IGFBP-3 directly activates the c-Jun kinase/tissue inhibitor of metalloproteinase-3/TNF-α converting enzyme (c-Jun/TIMP-3/TACE), pathway, which in turn inhibits TNF-α production; 2) IGFBP-3 acts through the IGFBP-3 receptor, low-density lipoprotein receptor-related protein 1 (LRP1), to inhibit signaling of TNF-α receptor 2 (TNFR2). Combined, these two IGFBP-3 pathways substantially reduce REC apoptosis and offer potential targets for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jena J Steinle
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
Komissarov AA, Stankowska D, Krupa A, Fudala R, Florova G, Florence J, Fol M, Allen TC, Idell S, Matthay MA, Kurdowska AK. Novel aspects of urokinase function in the injured lung: role of α2-macroglobulin. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1037-45. [PMID: 23064953 PMCID: PMC3532585 DOI: 10.1152/ajplung.00117.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 10/10/2012] [Indexed: 12/28/2022] Open
Abstract
The level of active urokinase (uPA) is decreased in lung fluids of patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) whereas α(2)-macroglobulin (α(2)-M), a plasma proteinase inhibitor, is a major component of these fluids. Since there have been reports describing the ability of α(2)-M to form complexes with uPA in vitro, we hypothesized that α(2)-M may interact with uPA in the lung to modulate its biological activity. Pulmonary edema fluids and lung tissues from patients with ALI/ARDS were evaluated for the presence of uPA associated with α(2)-M. Complexes between α(2)-M and uPA were detected in alveolar edema fluids as well as in lungs of patients with ALI/ARDS where they were located mainly in close proximity to epithelial cells. While uPA bound to α(2)-M retains its amidolytic activity towards low-molecular-weight substrates, it is not inhibited by its main physiological inhibitor, plasminogen activator inhibitor 1. We also investigated the functional consequences of formation of complexes between uPA and α(2)-M in vitro. We found that when α(2)-M:uPA complexes were added to cultures of human bronchial epithelial cells (BEAS-2B), activation of nuclear factor-κB as well as production of interleukin-6 and -8 was substantially suppressed compared with the addition of uPA alone. Our findings indicate for the first time that the function of uPA in patients with ALI/ARDS may be modulated by α(2)-M and that the effects may include the regulation of the fibrinolytic and signaling activities of uPA.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Texas Lung Injury Institute, University of Texas Health Science Center, Tyler, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rosenblat M, Volkova N, Paland N, Aviram M. Triglyceride accumulation in macrophages upregulates paraoxonase 2 (PON2) expression via ROS-mediated JNK/c-Jun signaling pathway activation. Biofactors 2012; 38:458-69. [PMID: 23047827 DOI: 10.1002/biof.1052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/31/2012] [Indexed: 01/16/2023]
Abstract
The aim of this study was to analyze the effect and mechanism of action of macrophage triglyceride accumulation on cellular PON2 expression. Incubation of J774A.1 (murine macrophages) with VLDL (0-75 μg protein/mL) significantly and dose-dependently increased cellular triglyceride mass, and reactive oxygen species (ROS) formation, by up to 3.3- or 1.8-fold, respectively. PON2 expression (mRNA, protein, activity) in cells treated with VLDL (50 μg protein/mL) was higher by 2- to 3-fold, as compared with control cells. Similar effects were noted upon using THP-1 (human macrophages). Incubation of macrophages with synthetic triglyceride or triglyceride fraction from carotid lesion resulted in similar effects, as shown for VLDL. Upon using specific inhibitors of MEK1/2 (UO126, 10 μM), p38 (SB203580, 10 μM), or JNK (SP600125, 20 μM), we demonstrated that MEK, as well as JNK, but not p38, are involved in VLDL-induced macrophage PON2 upregulation. VLDL activated JNK (but not ERK), which resulted in c-Jun phosphorylation. This signaling pathway is probably activated by ROS, since the antioxidant reduced glutathione (GSH), significantly decreased VLDL-induced macrophage ROS formation, c-Jun phosphorylation and PON2 overexpression. We conclude that macrophage triglyceride accumulation upregulates PON2 expression via MEK/ JNK/c-Jun pathway, and these effects could be related, at least in part, to cellular triglycerides-induced ROS formation. ©
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa, Israel
| | | | | | | |
Collapse
|
12
|
Catasus L, Gallardo A, Llorente-Cortes V, Escuin D, Muñoz J, Tibau A, Peiro G, Barnadas A, Lerma E. Low-density lipoprotein receptor–related protein 1 is associated with proliferation and invasiveness in Her-2/neu and triple-negative breast carcinomas. Hum Pathol 2011; 42:1581-8. [DOI: 10.1016/j.humpath.2011.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/19/2011] [Accepted: 01/22/2011] [Indexed: 12/18/2022]
|
13
|
Langlois B, Perrot G, Schneider C, Henriet P, Emonard H, Martiny L, Dedieu S. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways. PLoS One 2010; 5:e11584. [PMID: 20644732 PMCID: PMC2904376 DOI: 10.1371/journal.pone.0011584] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/20/2010] [Indexed: 01/16/2023] Open
Abstract
Background The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. Methodology/Principal Findings Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. Conclusions We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion.
Collapse
Affiliation(s)
- Benoit Langlois
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Gwenn Perrot
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Hervé Emonard
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Laurent Martiny
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, CNRS UMR 6237 MEDyC, Laboratoire SiRMa, Campus Moulin de la Housse, Reims, France
- * E-mail:
| |
Collapse
|
14
|
Meng H, Zhang X, Lee SJ, Strickland DK, Lawrence DA, Wang MM. Low density lipoprotein receptor-related protein-1 (LRP1) regulates thrombospondin-2 (TSP2) enhancement of Notch3 signaling. J Biol Chem 2010; 285:23047-55. [PMID: 20472562 DOI: 10.1074/jbc.m110.144634] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intracellular trafficking of Notch and Notch ligands modulates signaling, suggesting that choreography of ligand and receptor translocation is essential for optimal Notch activity. Indeed, a major model for Notch signaling posits that Notch trans-endocytosis into the ligand-expressing (signal sending) cell is a key driving force for Notch signal transduction. The extracellular protein thrombospondin-2 (TSP2) enhances Notch signaling and binds to both Jagged1 and Notch3 ectodomains, potentially bridging two essential extracellular components of Notch signaling. We investigated the role of low density lipoprotein receptor-related protein-1 (LRP1), a TSP2 receptor, in the regulation of Notch3 signaling. TSP2 potentiation of Notch is blocked by the receptor-associated protein (an inhibitor of low density lipoprotein receptor-related protein function) and requires LRP1 expression in the signal-sending cell. TSP2 stimulates Notch3 endocytosis into wild type fibroblasts but not LRP1-deficient fibroblasts. Finally, recombinant Notch3 and Jagged1 interact with the LRP1 85-kDa B-chain, a subunit that lacks known ligand binding function. Our data suggest that LRP1 and TSP2 stimulate Notch activity by driving trans-endocytosis of the Notch ectodomain into the signal-sending cell and demonstrate a novel, non-cell autonomous function of LRP1 in cell-cell signaling.
Collapse
Affiliation(s)
- He Meng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622, USA
| | | | | | | | | | | |
Collapse
|
15
|
Jensen JK, Dolmer K, Gettins PGW. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1. J Biol Chem 2009; 284:17989-97. [PMID: 19439404 DOI: 10.1074/jbc.m109.009530] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein (LRP) is the principal clearance receptor for serpins and serpin-proteinase complexes. The ligand binding regions of LRP consist of clusters of cysteine-rich approximately 40-residue complement-like repeats (CR), with cluster II being the principal ligand-binding region. To better understand the specificity of binding at different sites within the cluster and the ability of LRP to discriminate in vivo between uncomplexed and proteinase-complexed serpins, we have systematically examined the affinities of plasminogen activator inhibitor-1 (PAI-1) and proteinase nexin-1 (PN-1) in their native, cleaved, and proteinase-complexed states to (CR)(2) and (CR)(3) fragments of LRP cluster II. A consistent blue shift of the CR domain tryptophan fluorescence suggested a common mode of serpin binding, involving lysines on the serpin engaging the acidic region around the calcium binding site of the CR domain. High affinity binding of non-proteinase-complexed PAI-1 and PN-1 occurred to all fragments containing three CR domains (3-59 nm) and most that contain only two CR domains, although binding energies to different (CR)(3) fragments differed by up to 18% for PAI-1 and 9% for PN-1. No detectable difference in affinity was seen between native and cleaved serpin. However, the presence of proteinase in complex with the serpin enhanced affinity modestly and presumably nonspecifically. This may be sufficient to give preferential binding of such complexes in vivo at the relevant physiological concentrations.
Collapse
Affiliation(s)
- Jan K Jensen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
16
|
Dedieu S, Langlois B. LRP-1: a new modulator of cytoskeleton dynamics and adhesive complex turnover in cancer cells. Cell Adh Migr 2009; 2:77-80. [PMID: 19271352 DOI: 10.4161/cam.2.2.6374] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP-1)is a large scavenger receptor mediating the internalization and catabolism of various biological components from the extracellular matrix. In the past decade, LRP-1 appeared as an attractive receptor for targeting the invasive behavior of cancer cells since this protein is able to reduce the accumulation of extracellular proteinases by endocytosis. However, recent data suggest that LRP-1 could support carcinoma cell invasion depending on the cellular environment. Indeed, in addition to its well-determined role in ligand binding and endocytosis, LRP-1 emerges as a central molecular regulator of cytoskeleton organization and adhesive complex turnover in malignant cells. This commentary reviews the functions played by LRP-1 in cancer-related events and discusses the potential mechanisms whereby LRP-1 is able to control the cellular phenotype of cancer cells.
Collapse
Affiliation(s)
- Stéphane Dedieu
- Université de Reims Champagne-Ardenne (URCA), CNRS UMR MEDyC 6237, Laboratoire SiRMa, Reims, France.
| | | |
Collapse
|
17
|
Liu Q, Zhang J, Tran H, Verbeek MM, Reiss K, Estus S, Bu G. LRP1 shedding in human brain: roles of ADAM10 and ADAM17. Mol Neurodegener 2009; 4:17. [PMID: 19371428 PMCID: PMC2672942 DOI: 10.1186/1750-1326-4-17] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/16/2009] [Indexed: 11/30/2022] Open
Abstract
Background The low-density lipoprotein receptor-related protein 1 (LRP1) plays critical roles in lipid metabolism, cell survival, and the clearance of amyloid-β (Aβ) peptide. Functional soluble LRP1 (sLRP1) has been detected in circulating human placenta; however, whether sLRP1 is also present in the central nervous system is unclear. Results Here we show that abundant sLRP1 capable of binding its ligands is present in human brain tissue and cerebral spinal fluid (CSF). Interestingly, the levels of sLRP1 in CSF are significantly increased in older individuals, suggesting that either LRP1 shedding is increased or sLRP1 clearance is decreased during aging. To examine potential effects of pathological ligands on LRP1 shedding, we treated MEF cells with Aβ peptide and found that LRP1 shedding was increased. ADAM10 and ADAM17 are key members of the ADAM family that process membrane-associated proteins including amyloid precursor protein and Notch. We found that LRP1 shedding was significantly decreased in MEF cells lacking ADAM10 and/or ADAM17. Furthermore, forced expression of ADAM10 increased LRP1 shedding, which was inhibited by ADAM-specific inhibitor TIMP-3. Conclusion Our results demonstrate that LRP1 is shed by ADAM10 and ADAM17 and functional sLRP1 is abundantly present in human brain and CSF. Dysregulated LRP1 shedding during aging could alter its function and may contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sorice M, Molinari S, Di Marzio L, Mattei V, Tasciotti V, Ciarlo L, Hiraiwa M, Garofalo T, Misasi R. Neurotrophic signalling pathway triggered by prosaposin in PC12 cells occurs through lipid rafts. FEBS J 2008; 275:4903-12. [DOI: 10.1111/j.1742-4658.2008.06630.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Gaultier A, Arandjelovic S, Niessen S, Overton CD, Linton MF, Fazio S, Campana WM, Cravatt BF, Gonias SL. Regulation of tumor necrosis factor receptor-1 and the IKK-NF-kappaB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor. Blood 2008; 111:5316-25. [PMID: 18369152 PMCID: PMC2396725 DOI: 10.1182/blood-2007-12-127613] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/18/2008] [Indexed: 12/18/2022] Open
Abstract
Low-density lipoprotein receptor-related protein (LRP-1) functions in endocytosis and in cell signaling directly (by binding signaling adaptor proteins) or indirectly (by regulating levels of other cell-surface receptors). Because recent studies in rodents suggest that LRP-1 inhibits inflammation, we conducted activity-based protein profiling experiments to discover novel proteases, involved in inflammation, that are regulated by LRP-1. We found that activated complement proteases accumulate at increased levels when LRP-1 is absent. Although LRP-1 functions as an endocytic receptor for C1r and C1s, complement protease mRNA expression was increased in LRP-1-deficient cells, as was expression of inducible nitric oxide synthase (iNOS) and interleukin-6. Regulation of expression of inflammatory mediators was explained by the ability of LRP-1 to suppress basal cell signaling through the I kappaB kinase-nuclear factor-kappaB (NF-kappaB) pathway. LRP-1-deficient macrophages, isolated from mice, demonstrated increased expression of iNOS, C1r, and monocyte chemoattractant protein-1 (MCP-1); MCP-1 expression was inhibited by NF-kappaB antagonism. The mechanism by which LRP-1 inhibits NF-kappaB activity involves down-regulating cell-surface tumor necrosis factor receptor-1 (TNFR1) and thus, inhibition of autocrine TNFR1-initiated cell signaling. TNF-alpha-neutralizing antibody inhibited NF-kappaB activity selectively in LRP-1-deficient cells. We propose that LRP-1 suppresses expression of inflammatory mediators indirectly, by regulating TNFR1-dependent cell signaling through the I kappaB kinase-NF-kappaB pathway.
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA 92093-0612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Betts GN, van der Geer P, Komives EA. Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain. J Biol Chem 2008; 283:15656-64. [PMID: 18381291 DOI: 10.1074/jbc.m709514200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic domain of LRP1 contains two NPXY motifs that have been shown to interact with signaling proteins. In previous work, we showed that Tyr(4507) in the distal NPXY motif is phosphorylated by v-Src, whereas denaturation of the protein was required for phosphorylation of Tyr(4473) in the membraneproximal NPXY motif. Amide H/D exchange studies reveal that the distal NPXY motif is fully solvent-exposed, whereas the proximal one is not. Phosphopeptide mapping combined with in vitro and in vivo kinase experiments show that Tyr(4473) can be phosphorylated, but only if Tyr(4507) is phosphorylated or substituted with glutamic acid. Amide H/D exchange experiments indicate that solvent accessibility increases across the entire LRP1 cytoplasmic region upon phosphorylation at Tyr(4507); in particular the NPXY(4473) motif becomes much more exposed. This differential phosphorylation is functionally relevant: binding of Snx17, which is known to bind at the proximal NPXY motif, is inhibited by phosphorylation at Tyr(4473). Conversely, Shp2 binds most strongly when both of the NPXY motifs in LRP1 are phosphorylated.
Collapse
Affiliation(s)
- Gina N Betts
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0378, USA
| | | | | |
Collapse
|
21
|
Trypanosoma cruzi: Alpha-2-macroglobulin regulates host cell apoptosis induced by the parasite infection in vitro. Exp Parasitol 2008; 118:331-7. [DOI: 10.1016/j.exppara.2007.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 08/10/2007] [Accepted: 09/07/2007] [Indexed: 11/22/2022]
|
22
|
Montel V, Gaultier A, Lester RD, Campana WM, Gonias SL. The low-density lipoprotein receptor-related protein regulates cancer cell survival and metastasis development. Cancer Res 2007; 67:9817-24. [PMID: 17942912 DOI: 10.1158/0008-5472.can-07-0683] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional receptor involved in receptor-mediated endocytosis and cell signaling. In this study, we show that LRP-1 is abundantly expressed in severe combined immunodeficient (SCID) mouse xenografts by various human cancer cell lines that express very low or undetectable levels of LRP-1 when cultured in 21% O2 in vitro (standard cell culture conditions). To test whether LRP-1 expression in vivo may be explained by hypoxia in the xenografts, CL16 cells, which are derived from the MDA-MB-435 cell line, were cultured in 1.0% O2. A substantial increase in LRP-1 expression was observed. To test the activity of LRP-1 in cancer progression in vivo, LRP-1 expression was silenced in CL16 cells with short hairpin RNA. These cells formed tumors in SCID mice, in which LRP-1 expression remained silenced. Although LRP-1 gene silencing did not inhibit CL16 cell dissemination from the primary tumors to the lungs, the pulmonary metastases failed to enlarge, suggesting compromised survival or growth at the implantation site. In cell culture experiments, significantly increased cell death was observed when LRP-1-silenced CL16 cells were exposed to CoCl2, which models changes that occur in hypoxia. Furthermore, LRP-1-silenced cells expressed decreased levels of vascular endothelial growth factor in response to 1.0% O2. These results suggest mechanisms by which LRP-1 may facilitate the development and growth of cancer metastases in vivo.
Collapse
Affiliation(s)
- Valérie Montel
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California 92093-0612, USA
| | | | | | | | | |
Collapse
|
23
|
Amos S, Mut M, diPierro CG, Carpenter JE, Xiao A, Kohutek ZA, Redpath GT, Zhao Y, Wang J, Shaffrey ME, Hussaini IM. Protein kinase C-alpha-mediated regulation of low-density lipoprotein receptor related protein and urokinase increases astrocytoma invasion. Cancer Res 2007; 67:10241-51. [PMID: 17974965 DOI: 10.1158/0008-5472.can-07-0030] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aggressive and infiltrative invasion is one of the hallmarks of glioblastoma. Low-density lipoprotein receptor-related protein (LRP) is expressed by glioblastoma, but the role of this receptor in astrocytic tumor invasion remains poorly understood. We show that activation of protein kinase C-alpha (PKC-alpha) phosphorylated and down-regulated LRP expression. Pretreatment of tumor cells with PKC inhibitors, phosphoinositide 3-kinase (PI3K) inhibitor, PKC-alpha small interfering RNA (siRNA), and short hairpin RNA abrogated phorbol 12-myristate 13-acetate-induced down-regulation of LRP and inhibited astrocytic tumor invasion in vitro. In xenograft glioblastoma mouse model and in vitro transmembrane invasion assay, LRP-deficient cells, which secreted high levels of urokinase-type plasminogen activator (uPA), invaded extensively the surrounding normal brain tissue, whereas the LRP-overexpressing and uPA-deficient cells did not invade into the surrounding normal brain. siRNA, targeted against uPA in LRP-deficient clones, attenuated their invasive potential. Taken together, our results strongly suggest the involvement of PKC-alpha/PI3K signaling pathways in the regulation of LRP-mediated astrocytoma invasion. Thus, a strategy of combining small molecule inhibitors of PKC-alpha and PI3K could provide a new treatment paradigm for glioblastomas.
Collapse
Affiliation(s)
- Samson Amos
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ambjørn M, Asmussen JW, Lindstam M, Gotfryd K, Jacobsen C, Kiselyov VV, Moestrup SK, Penkowa M, Bock E, Berezin V. Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family. J Neurochem 2007; 104:21-37. [PMID: 17986228 DOI: 10.1111/j.1471-4159.2007.05036.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that metallothionein (MT)-I and -II promote neuronal survival and regeneration in vivo. The present study investigated the molecular mechanisms underlying the differentiation and survival-promoting effects of MT and a peptide modeled after MT, EmtinB. Both MT and EmtinB directly stimulated neurite outgrowth and promoted survival in vitro using primary cultures of cerebellar granule neurons. In addition, expression and surface localization of megalin, a known MT receptor, and the related lipoprotein receptor-related protein-1 (LRP) are demonstrated in cerebellar granule neurons. By means of surface plasmon resonance MT and EmtinB were found to bind to both megalin and LRP. The bindings were abrogated in the presence of receptor-associated protein-1, an antagonist of the low-density lipoprotein receptor family, which also inhibited MT- and EmtinB-induced neurite outgrowth and survival. MT-mediated neurite outgrowth was furthermore inhibited by an anti-megalin serum. EmtinB-mediated inhibition of apoptosis occurred without a reduction of caspase-3 activity, but was associated with reduced expression of the pro-apoptotic B-cell leukemia/lymphoma-2 interacting member of cell death (Bim(S)). Finally, evidence is provided that MT and EmtinB activate extracellular signal-regulated kinase, protein kinase B, and cAMP response element binding protein. Altogether, these results strongly suggest that MT and EmtinB induce their neuronal effects through direct binding to surface receptors belonging to the low-density lipoprotein receptor family, such as megalin and LRP, thereby activating signal transduction pathways resulting in neurite outgrowth and survival.
Collapse
Affiliation(s)
- Malene Ambjørn
- Protein Laboratory, Institute of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen S, Bu G, Takei Y, Sakamoto K, Ikematsu S, Muramatsu T, Kadomatsu K. Midkine and LDL-receptor-related protein 1 contribute to the anchorage-independent cell growth of cancer cells. J Cell Sci 2007; 120:4009-15. [PMID: 17971413 DOI: 10.1242/jcs.013946] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The growth factor midkine (MK) is highly associated with cancer progression. Knockdown of MK expression strikingly suppresses tumor growth in nude mice. Thus, MK is a candidate target for cancer treatment. LDL-receptor-related protein 1 (LRP1) is a receptor for MK. We found that among the four ligand-binding domains of LRP1, the N-terminal half of the second domain (designated as MK-TRAP) had the strongest affinity to MK. MK-TRAP bound to MK, but not to HB-GAM/pleiotrophin, basic fibroblast growth factor or platelet-derived growth factor (PDGF)-BB. Exogenous MK-TRAP inhibited the binding between MK and LRP1. G401 cells that transiently or stably overexpress MK-TRAP showed decreased cell growth in monolayer culture and reduced colony formation in soft agar, which could be rescued by exogenous MK administration. MK-TRAP collected from conditioned medium also inhibited anchorage-independent growth of G401 cells and CMT-93 cells. Anti-MK antibody also inhibited the anchorage-independent growth. CMT-93 cells stably expressing MK-TRAP formed smaller tumors in a xenograft nude mouse model than control cells. Moreover, GST-RAP, a potent inhibitor of LRP1, inhibited the anchorage-independent growth of control G401 cells but not that of MK-TRAP stable transformants. Collectively, these data demonstrate a crucial role of MK-LRP1 signaling in anchorage-independent cell growth.
Collapse
Affiliation(s)
- Sen Chen
- Department of Biochemistry, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Arandjelovic S, Dragojlovic N, Li X, Myers RR, Campana WM, Gonias SL. A derivative of the plasma protease inhibitor alpha(2)-macroglobulin regulates the response to peripheral nerve injury. J Neurochem 2007; 103:694-705. [PMID: 17725582 DOI: 10.1111/j.1471-4159.2007.04800.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Peripheral nerve injury induces endoneural inflammation, controlled by diverse cytokines and extracellular mediators. Although inflammation is coupled to axonal regeneration, fulminant inflammation may increase nerve damage and neuropathic pain. alpha(2)-Macroglobulin (alpha2M) is a plasma protease inhibitor, cytokine carrier, and ligand for cell-signaling receptors, which exists in two well-characterized conformations and in less well-characterized intermediate states. Previously, we generated an alpha2M derivative (alpha(2)-macroglobulin activated for cytokine binding; MAC) similar in structure to alpha(2)M conformational intermediates, which binds tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), and inhibits endotoxin toxicity. In this study, we report that the continuum of cytokines that bind to MAC includes IL-6 and IL-18. MAC inhibited TNF-alpha-induced p38 mitogen-activated protein kinase activation and cell death in cultured Schwann cells. When administered by i.p. injection to mice with sciatic nerve crush injury, MAC decreased inflammation and preserved axons. Macrophage infiltration and TNF-alpha expression also are decreased. MAC inhibited TNF-alpha expression in the chronic constriction injury model of nerve injury. When MAC was prepared using a mutated recombinant alpha2M, which does not bind to the alpha2M receptor, low-density lipoprotein receptor-related protein-1, activity in the chronic constriction injury model was blocked. These studies demonstrate that an alpha2M derivative is capable of regulating the response to peripheral nerve injury by a mechanism that requires low-density lipoprotein receptor-related protein-1.
Collapse
Affiliation(s)
- Sanja Arandjelovic
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
27
|
Usynin I, Klotz C, Frevert U. Malaria circumsporozoite protein inhibits the respiratory burst in Kupffer cells. Cell Microbiol 2007; 9:2610-28. [PMID: 17573905 DOI: 10.1111/j.1462-5822.2007.00982.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
After transmission by infected mosquitoes, malaria sporozoites rapidly travel to the liver. To infect hepatocytes, sporozoites traverse Kupffer cells, but surprisingly, the parasites are not killed by these resident macrophages of the liver. Here we show that Plasmodium sporozoites and recombinant circumsporozoite protein (CSP) suppress the respiratory burst in Kupffer cells. Sporozoites and CSP increased the intracellular concentration of cyclic adenosyl mono-phosphate (cAMP) and inositol 1,4,5-triphosphate in Kupffer cells, but not in hepatocytes or liver endothelia. Preincubation with cAMP analogues or inhibition of phosphodiesterase also inhibited the respiratory burst. By contrast, adenylyl cyclase inhibition abrogated the suppressive effect of sporozoites. Selective protein kinase A (PKA) inhibitors failed to reverse the CSP-mediated blockage and stimulation of the exchange protein directly activated by cAMP (EPAC), but not PKA inhibited the respiratory burst. Both blockage of the low-density lipoprotein receptor-related protein (LRP-1) with receptor-associated protein and elimination of cell surface proteoglycans inhibited the cAMP increase in Kupffer cells. We propose that by binding of CSP to LRP-1 and cell surface proteoglycans, malaria sporozoites induce a cAMP/EPAC-dependent, but PKA-independent signal transduction pathway that suppresses defence mechanisms in Kupffer cells. This allows the sporozoites to safely pass through these professional phagocytes and to develop inside neighbouring hepatocytes.
Collapse
Affiliation(s)
- Ivan Usynin
- Department of Medical Parasitology, New York University School of Medicine, 341 E 25 St, New York, NY 10010, USA
| | | | | |
Collapse
|
28
|
Beffert U, Nematollah Farsian F, Masiulis I, Hammer RE, Yoon SO, Giehl KM, Herz J. ApoE receptor 2 controls neuronal survival in the adult brain. Curr Biol 2007; 16:2446-52. [PMID: 17174920 DOI: 10.1016/j.cub.2006.10.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/06/2006] [Accepted: 10/13/2006] [Indexed: 11/29/2022]
Abstract
A central pathogenic feature of neurodegenerative diseases and neurotrauma is the death of neurons. A mechanistic understanding of the factors and conditions that induce the dysfunction and death of neurons is essential for devising effective treatment strategies against neuronal loss after trauma or during aging. Because Apolipoprotein E (ApoE) is a major risk factor for several neurodegenerative diseases, including Alzheimer's disease , a direct or indirect role of ApoE receptors in the disease process is likely. Here we have used gene targeting in mice to investigate possible roles of ApoE receptors in the regulation of neuronal survival. We demonstrate that a differentially spliced isoform of an ApoE receptor, ApoE receptor 2 (Apoer2), is essential for protection against neuronal cell loss during normal aging. Furthermore, the same splice form selectively promotes neuronal cell death after injury through mechanisms that may involve serine/threonine kinases of the Jun N-terminal kinase (JNK) family. These findings raise the possibility that ApoE and its receptors cooperatively regulate common mechanisms that are essential to neuronal survival in the adult brain.
Collapse
Affiliation(s)
- Uwe Beffert
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Campana WM, Li X, Dragojlovic N, Janes J, Gaultier A, Gonias SL. The low-density lipoprotein receptor-related protein is a pro-survival receptor in Schwann cells: possible implications in peripheral nerve injury. J Neurosci 2006; 26:11197-207. [PMID: 17065459 PMCID: PMC6674644 DOI: 10.1523/jneurosci.2709-06.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Schwann cells undergo phenotypic modulation in peripheral nerve injury. In the adult rodent, Schwann cells are resistant to death-promoting challenges. The responsible receptors and signaling pathways are incompletely understood. In this study, we demonstrate that low-density lipoprotein receptor-related protein-1 (LRP-1) is expressed in adult sciatic nerve. After crush injury, LRP-1 is lost from the axoplasm and substantially upregulated in Schwann cells. Increased LRP-1 mRNA expression was observed locally at the injury site in multiple forms of sciatic nerve injury, including crush injury, chronic constriction injury, and axotomy. Endogenously produced tumor necrosis factor-alpha (TNF-alpha) was mostly responsible for the increase in LRP-1 expression; this activity was reproduced by direct injection of TNF-alpha into injured nerves in the TNF-alpha gene knock-out mouse. TNF receptor II was primarily involved. TNF-alpha also increased LRP-1 mRNA in Schwann cells in primary culture. Silencing of Schwann cell LRP-1 with siRNA decreased phosphorylated Akt and increased activated caspase-3. Equivalent changes in cell signaling were observed in LRP-1-deficient murine embryonic fibroblasts. Schwann cell death was induced in vitro by serum withdrawal or TNF-alpha, to a greater extent when LRP-1 was silenced. Schwann cell death was induced in vivo by injecting the LRP-1 antagonist, receptor-associated protein, into axotomy sites in adult rats. These results support a model in which LRP-1 functions as a pro-survival receptor in Schwann cells.
Collapse
Affiliation(s)
- W Marie Campana
- Department of Anesthesiology, University of California, San Diego School of Medicine, La Jolla, California 92093-0629, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Dolmer K, Gettins PGW. Three complement-like repeats compose the complete alpha2-macroglobulin binding site in the second ligand binding cluster of the low density lipoprotein receptor-related protein. J Biol Chem 2006; 281:34189-96. [PMID: 16982616 DOI: 10.1074/jbc.m604389200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the importance of the low density lipoprotein receptor-related protein (LRP) as an essential endocytosis and signaling receptor for many protein ligands, and of alpha2-macroglobulin (alpha2M)-proteinase complexes as one such set of ligands, an understanding of the specificity of their interaction with LRP is an important goal. A starting point is the known role of the 138-residue receptor binding domain (RBD) in binding to LRP. Previous studies have localized high affinity alpha2M binding to the eight complement repeat (CR)-containing cluster 2 of LRP. In the present study we have identified the minimum CR domains that constitute the full binding site for RBD and, hence, for alpha2M on LRP. We report on the ability of the triple construct of CR3-4-5 to bind RBD with an affinity (Kd = 130 nM) the same as for isolated RBD to intact LRP. This Kd is 30-fold smaller than for RBD to CR5-6-7, demonstrating the specificity of the interaction with CR3-4-5. Binding requires previously identified critical lysine residues but is almost pH-independent within the range of pH values encountered between extracellular and internal compartments, consistent with an earlier proposed model of intracellular ligand displacement by intramolecular YWTD domains. The present findings suggest a model to explain the ability of LRP to bind a wide range of structurally unrelated ligands in which a nonspecific ligand interaction with the acidic region present in most CR domains is augmented by interactions with other CR surface residues that are unique to a particular CR cluster.
Collapse
Affiliation(s)
- Klavs Dolmer
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
31
|
Saraswathi V, Hasty AH. The role of lipolysis in mediating the proinflammatory effects of very low density lipoproteins in mouse peritoneal macrophages. J Lipid Res 2006; 47:1406-15. [PMID: 16639077 DOI: 10.1194/jlr.m600159-jlr200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypertriglyceridemia is an important risk factor for atherosclerosis, especially in obesity. Macrophages are one of the primary cell types involved in atherogenesis and are thought to contribute to lesion formation through both lipid accumulation and proinflammatory gene expression. In this study, we sought to determine the direct impact of triglyceride (TG)-rich VLDL-induced lipid accumulation on macrophage proinflammatory processes. Incubation of mouse peritoneal macrophages with 100 microg/ml VLDL for 6 h led to 2.8- and 3.7-fold increases in intracellular TGs and FFAs, respectively (P < 0.05). The inflammatory proteins tumor necrosis factor-alpha, interleukin-1beta, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, matrix metalloproteinase 3 (MMP3), and macrophage inflammatory protein-1alpha (MIP-1alpha) were all upregulated by at least 2-fold (P < 0.05) in a dose-dependent manner in VLDL-treated macrophages. The increase in inflammatory gene expression coincided with the phosphorylation of the mitogen-activated protein kinase (MAPK) pathway members extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38 MAPK and was ameliorated by U0126, an inhibitor of ERK1/2. Inhibition of extracellular TG hydrolysis with tetrahydrolipstatin (Orlistat) resulted in the absence of intracellular TG and FFA accumulation and was accompanied by the amelioration of ERK1/2 phosphorylation and MIP-1alpha gene expression. These data indicate that VLDL hydrolysis, and the subsequent accumulation of intracellular FFAs and TGs, plays a substantive role in mediating the proinflammatory effects of VLDL. These data have important implications for the direct proatherogenic effects of VLDL on macrophage-driven atherosclerosis.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Department of Molecular Physiology and Biophysics,Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
32
|
Llorente-Cortés V, Costales P, Bernués J, Camino-Lopez S, Badimon L. Sterol regulatory element-binding protein-2 negatively regulates low density lipoprotein receptor-related protein transcription. J Mol Biol 2006; 359:950-60. [PMID: 16697011 DOI: 10.1016/j.jmb.2006.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 03/08/2006] [Accepted: 04/05/2006] [Indexed: 11/17/2022]
Abstract
Low density lipoprotein receptor-related protein (LRP1) binds aggregated LDL (agLDL) leading to a high intracellular cholesteryl ester (CE) accumulation. AgLDL up-regulates LRP1 expression concomitantly with an LDL receptor (LDLR) and sterol regulatory element binding protein (SREBP-2) down-regulation. The objectives were to investigate whether SREBP-2 regulates LRP1 transcription and determine the molecular mechanisms involved in the process. Down-regulation of active SREBP-2 by nLDL and agLDL led to LDLR down-regulation and LRP1 up-regulation. Enforced expression of an active form of SREBP-2 (SREBP-2-NT, amino acid residues 1-468) decreased LRP1 expression and LRP1 promoter (WT-LRP1) luciferase activity in a dose-dependent manner. LDL did not exert any significant effect on LRP1 promoter activity when a putative sterol regulatory element (SRE) (5-GTGGGGTGA-3'; +225 to +233) was mutated (SRE-MT-LRP1). SREBP-2 overexpression exerted stronger down-regulatory effects on WT-LRP1 than on SRE-MT-LRP1 promoter activity both in control, nLDL- and agLDL-exposed HeLa cells. Gel mobility shift assays showed that recombinant SREBP-2-NT protein (1-468) binds to a double-stranded LRP1 DNA fragment (215 to 245) containing a wild-type (wt) SRE sequence but not to a mutated SRE (mt) sequence (5-GAATTCGA-3'). Our results demonstrate that LDL stimulates LRP1 transcription and decreases SREBP-2 active form which negatively regulates LRP1 transcription. SRE sequence (+225 to +233) plays a pivotal role for the down-regulatory effect of SREBP-2 on LRP1 promoter activity.
Collapse
Affiliation(s)
- V Llorente-Cortés
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
| | | | | | | | | |
Collapse
|
33
|
Gaultier A, Salicioni AM, Arandjelovic S, Gonias SL. Regulation of the composition of the extracellular matrix by low density lipoprotein receptor-related protein-1: activities based on regulation of mRNA expression. J Biol Chem 2006; 281:7332-40. [PMID: 16407289 DOI: 10.1074/jbc.m511857200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Low density lipoprotein receptor-related protein-1 (LRP-1) is a catabolic receptor for extracellular matrix (ECM) structural proteins and for proteins that bind to ECM. LRP-1 also is implicated in integrin maturation. In this study, we applied a proteomics strategy to identify novel proteins involved in ECM modeling that are regulated by LRP-1. We show that LRP-1 deficiency in murine embryonic fibroblasts (MEFs) is associated with increased levels of type III collagen and pigment epithelium-derived factor, which accumulate in the substratum surrounding cells. The collagen receptor, uPAR-AP/Endo-180, is also increased in LRP-1-deficient MEFs. Human LRP-1 reversed the changes in protein expression associated with LRP-1 deficiency; however, the endocytic activity of LRP-1 was not involved. Instead, regulation occurred at the mRNA level. Inhibition of c-Jun amino-terminal kinase (JNK) blocked type III collagen expression in LRP-1-deficient MEFs, suggesting regulation of JNK activity as a mechanism by which LRP-1 controls mRNA expression. The ability of LRP-1 to regulate expression of the factors identified here suggests a role for LRP-1 in determining blood vessel structure and in angiogenesis.
Collapse
MESH Headings
- Animals
- Biotin/chemistry
- Cell Line
- Cell Membrane/metabolism
- Cloning, Molecular
- Collagen/chemistry
- Culture Media, Conditioned/metabolism
- Culture Media, Conditioned/pharmacology
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Endocytosis
- Extracellular Matrix/metabolism
- Fibrinogen/chemistry
- Gene Expression Regulation
- Humans
- LDL-Receptor Related Proteins/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/physiology
- Mass Spectrometry
- Mice
- Microscopy, Fluorescence
- Neovascularization, Pathologic
- Phosphorylation
- Proteomics
- RNA, Messenger/metabolism
- Receptors, LDL/metabolism
- Receptors, LDL/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Surface Properties
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
34
|
Abstract
The low-density lipoprotein receptor (LDLR)-related protein, LRP, is a unique member of the LDLR family. Frequently referred to as a scavenger receptor, LRP is a large transmembrane endocytic receptor that can bind and internalize many functionally distinct ligands. Besides its role as a cargo-receptor, LRP has also been implicated in many signaling pathways. LRP knockout mice die at early embryonic age, which strongly suggests that LRP's functions are essential for normal development. Within the CNS, LRP is highly expressed in neuronal cell bodies and dendritic processes. In vitro, neurite outgrowth is stimulated by apolipoprotein E (apoE)-containing lipoprotein particles via binding to LRP. ApoE is the major cholesterol transporter in the brain and human carriers of one or two copies of the e4 allele of apoE are at a higher risk of developing Alzheimer's disease (AD). LRP also binds the amyloid precursor protein (APP) and its proteolytic fragment, the amyloid-beta peptide (Abeta), which are major players in the pathogenesis of AD. Finally, LRP has been linked to AD by genetic evidence. In this review we discuss the potential mechanisms by which LRP can affect APP and Abeta metabolism, and therefore contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Celina V Zerbinatti
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
35
|
Huang SS, Leal SM, Chen CL, Liu IH, Huang JS. Identification of insulin receptor substrate proteins as key molecules for the TβR‐V/LRP‐1‐mediated growth inhibitory signaling cascade in epithelial and myeloid cells. FASEB J 2004; 18:1719-21. [PMID: 15371331 DOI: 10.1096/fj.04-1872fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The type V TGF-beta receptor (TbetaR-V) mediates IGF-independent growth inhibition by IGFBP-3 and mediates growth inhibition by TGF-beta1 in concert with the other TGF-beta receptor types. TbetaR-V was recently found to be identical to LRP-1. Here we find that insulin and (Q3A4Y15L16) IGF-I (an IGF-I analog that has a low affinity for IGFBP-3) antagonize growth inhibition by IGFBP-3 in mink lung epithelial cells (Mv1Lu cells) stimulated by serum. In these cells, IGFBP-3 induces serine-specific dephosphorylation of IRS-1 and IRS-2. The IGFBP-3-induced dephosphorylation of IRS-2 is prevented by cotreatment of cells with insulin, (Q3A4Y15L16) IGF-I, or TbetaR-V/LRP-1 antagonists. The magnitude of the IRS-2 dephosphorylation induced by IGFBP-3 positively correlates with the degree of growth inhibition by IGFBP-3 in Mv1Lu cells and mutant cells derived from Mv1Lu cells. Stable transfection of murine 32D myeloid cells (which lack endogenous IRS proteins and are insensitive to growth inhibition by IGFBP-3) with IRS-1 or IRS-2 cDNA confers sensitivity to growth inhibition by IGFBP-3; this IRS-mediated growth inhibition can be completely reversed by insulin in 32D cells stably expressing IRS-2 and the insulin receptor. These results suggest that IRS-1 and IRS-2 are key molecules for the TbetaR-V/LRP-1-mediated growth inhibitory signaling cascade.
Collapse
Affiliation(s)
- Shuan Shian Huang
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard St. Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
36
|
Ling TY, Chen CL, Huang YH, Liu IH, Huang SS, Huang JS. Identification and Characterization of the Acidic pH Binding Sites for Growth Regulatory Ligands of Low Density Lipoprotein Receptor-related Protein-1. J Biol Chem 2004; 279:38736-48. [PMID: 15226301 DOI: 10.1074/jbc.m310537200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The type V TGF-beta receptor (TbetaR-V) plays an important role in growth inhibition by IGFBP-3 and TGF-beta in responsive cells. Unexpectedly, TbetaR-V was recently found to be identical to the LRP-1/alpha(2)M receptor; this has disclosed previously unreported growth regulatory functions of LRP-1. Here we demonstrate that, in addition to expressing LRP-1, all cells examined exhibit low affinity but high density acidic pH binding sites for LRP-1 growth regulatory ligands (TGF-beta(1), IGFBP-3, and alpha(2)M(*)). These sites, like LRP-1, are sensitive to receptor-associated protein and calcium depletion but, unlike LRP-1, are also sensitive to chondroitin sulfate and heparin and capable of directly binding ligands, which do not bind to LRP-1. Annexin VI has been identified as a major membrane-associated protein capable of directly binding alpha(2)M(*) at acidic pH. This is evidenced by: 1) structural and Western blot analyses of the protein purified from bovine liver plasma membranes by alpha(2)M(*) affinity column chromatography at acidic pH, and 2) dot blot analysis of the interaction of annexin VI and (125)I-alpha(2)M(*). Cell surface annexin VI is involved in (125)I-TGF-beta(1) and (125)I-alpha(2)M(*) binding to the acidic pH binding sites and (125)I-alpha(2)M(*) binding to LRP-1 at neutral pH as demonstrated by the sensitivity of cells to pretreatment with anti-annexin VI IgG. Cell surface annexin VI is also capable of mediating internalization and degradation of cell surface-bound (125)I-TGF-beta(1) and (125)I-alpha(2)M(*) at pH 6 and of forming ternary complexes with (125)I-alpha(2)M(*) and LRP-1 at neutral pH as demonstrated by co-immunoprecipitation. Trifluoperazine and fluphenazine, which inhibit ligand binding to the acidic pH binding sites, block degradation after internalization of cell surface-bound (125)I-TGF-beta(1) or (125)I-alpha(2)M(*). These results suggest that cell surface annexin VI may function as an acidic pH binding site or receptor and may also function as a co-receptor with LRP-1 at neutral pH.
Collapse
Affiliation(s)
- Thai-Yen Ling
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Llorente-Cortés V, Otero-Viñas M, Camino-López S, Llampayas O, Badimon L. Aggregated low-density lipoprotein uptake induces membrane tissue factor procoagulant activity and microparticle release in human vascular smooth muscle cells. Circulation 2004; 110:452-9. [PMID: 15238452 DOI: 10.1161/01.cir.0000136032.40666.3d] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tissue factor (TF) is the main initiator of the arterial blood coagulation system, and aggregated LDL (agLDL) are found in the arterial intima. Our hypothesis is that agLDL internalization by vascular smooth muscle cells (VSMCs) may trigger TF-procoagulant activity. METHODS AND RESULTS Cultured human VSMCs were obtained from human coronary arteries of explanted hearts during transplant operations. VSMCs were incubated with native LDL (nLDL) or agLDL. TF mRNA was analyzed by real-time polymerase chain reaction, and cellular and released TF protein antigen were analyzed by Western blot. TF microparticle (MP) content was analyzed by flow cytometry and TF activity by a factor Xa generation test. Both nLDL and agLDL strongly and equally increased TF mRNA and cell membrane protein expression, by approximately 5- and 9-fold, respectively. A sustained TF procoagulant activity was induced by agLDL but not by nLDL (agLDL 2.46+/-0.22 versus nLDL 0.72+/-0.12 mU/mg protein at 12 hours). AgLDL increased TF antigen release (agLDL 5.64+/-0.4 versus nLDL 3.28+/-0.22 AU) and TF MP release (agLDL 89.85+/-8.51 versus nLDL 19.69+/-4.59 TF MP/10(3) cells). TF activation and release induced by agLDL is not related to apoptosis. Blockade of LDL receptor-related protein, a receptor for agLDL, prevented the agLDL-induced release of TF protein and TF MP. CONCLUSIONS VSMC-TF expression is upregulated by both nLDL and agLDL. However, only agLDL engagement to LDL receptor-related protein induced cellular TF procoagulant activity and TF release by human VSMCs.
Collapse
MESH Headings
- Annexin A5/analysis
- Cells, Cultured/cytology
- Cells, Cultured/metabolism
- Coronary Vessels/cytology
- Factor Xa/biosynthesis
- Gene Expression Regulation/drug effects
- Genes, bcl-2
- Humans
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Membrane Lipids/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Phospholipids/metabolism
- Polymerase Chain Reaction
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Thromboplastin/metabolism
- bcl-2-Associated X Protein
Collapse
Affiliation(s)
- Vicenta Llorente-Cortés
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Tseng WF, Huang SS, Huang JS. LRP-1/TbetaR-V mediates TGF-beta1-induced growth inhibition in CHO cells. FEBS Lett 2004; 562:71-8. [PMID: 15044004 DOI: 10.1016/s0014-5793(04)00185-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 02/06/2004] [Indexed: 11/17/2022]
Abstract
The type V transforming growth factor-beta (TGF-beta) receptor (TbetaR-V) is hypothesized to be involved in cellular growth inhibition by TGF-beta(1). Recently, TbetaR-V was found to be identical to low density lipoprotein receptor-related protein-1 (LRP-1). Here we demonstrate that TGF-beta(1) inhibits growth of wild-type CHO cells but not LRP-1-deficient mutant cells (CHO-LRP-1(-) cells). Stable transfection of CHO-LRP-1(-) cells with LRP-1 cDNA restores the wild-type morphology and the sensitivity to growth inhibition by TGF-beta(1). In addition, overexpression of LRP-1 minireceptors exerts a dominant negative effect and attenuates the growth inhibitory response to TGF-beta(1) in wild-type CHO cells. These results suggest that LRP-1/TbetaR-V is critical for TGF-beta(1)-mediated growth inhibition in CHO cells.
Collapse
Affiliation(s)
- Wen-Fang Tseng
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
39
|
Huang SS, Leal SM, Chen CL, Liu IH, Huang JS. Cellular growth inhibition by TGF-β1involves IRS proteins. FEBS Lett 2004; 565:117-21. [PMID: 15135063 DOI: 10.1016/j.febslet.2004.03.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 11/17/2022]
Abstract
In Mv1Lu cells, insulin partially reverses transforming growth factor-beta1 (TGF-beta1) growth inhibition in the presence of alpha5beta1 integrin antagonists. TGF-beta1 appears to induce phosphorylation of IRS-2 in these cells; this is inhibited by a TGF-beta antagonist known to reverse TGF-beta growth inhibition. Stable transfection of 32D myeloid cells (which lack endogenous IRS proteins and are insensitive to growth inhibition by TGF-beta1) with IRS-1 or IRS-2 cDNA confers sensitivity to growth inhibition by TGF-beta1; this IRS-mediated growth inhibition can be partially reversed by insulin in 32D cells stably expressing IRS-2 and the insulin receptor (IR). These results suggest that growth inhibition by TGF-beta1 involves IRS proteins.
Collapse
Affiliation(s)
- Shuan Shian Huang
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
40
|
Zilberberg A, Yaniv A, Gazit A. The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J Biol Chem 2004; 279:17535-42. [PMID: 14739301 DOI: 10.1074/jbc.m311292200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Members of the low density lipoprotein receptor family (LDLR), LRP5/6, were shown to interact with the Frizzled (Fz) receptors and to function as Wnt coreceptors. Here we show that mLRP4T100, a minireceptor of LRP1, another member of the LDLR family, interacts with the human Fz-1 (HFz1), previously shown to serve as a receptor transmitting the canonical Wnt-3a-induced signaling cascade. However, in contrast to LRP5/6, mLRP4T100, as well as the full-length LRP1, did not cooperate with HFz1 in transmitting the Wnt-3a signaling but rather repressed it. mLRP4T100 inhibitory effect was displayed also by endocytosis-defective mLRP4T100 mutants, suggesting that LRP1 repressive effect is not attributable to LRP1-mediated enhanced HFz1 internalization and subsequent degradation. Enforced expression of mLRP4T100 decreased the capacity of HFz1 cysteine-rich domain (CRD) to interact with LRP6, in contrast to HFz1-CRD/Wnt-3a interaction that was not disrupted by overexpressing mLRP4T100. These data suggest that LRP1, by sequestering HFz1, disrupts the receptor/coreceptor complex formation, leading to the repression of the canonical Wnt signaling. Thus, this study implies that the ability to interact with Fz receptors is shared by several members of the LDLR family. However, whereas some members of the LDLR family, such as LRP5/6, interact with Fz and serve as Wnt coreceptors, others negatively regulate Wnt signaling, presumably by sequestering Fz.
Collapse
Affiliation(s)
- Alona Zilberberg
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
41
|
Abstract
Ever more unexpected roles for the LDL receptor gene family in a variety of cellular signaling pathways continue to emerge. Three recent studies now add another function to this collection. By interacting with active tissue-type plasminogen activator, LDL receptor-related protein appears to control permeability of the blood-brain barrier, vascular tone, and the expression of MMPs. All of these parameters impact upon postischemic infarct size following stroke. These novel findings are discussed in the context of known mechanisms of signaling by the LDL receptor family.
Collapse
Affiliation(s)
- Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA.
| |
Collapse
|
42
|
Salicioni AM, Gaultier A, Brownlee C, Cheezum MK, Gonias SL. Low density lipoprotein receptor-related protein-1 promotes beta1 integrin maturation and transport to the cell surface. J Biol Chem 2003; 279:10005-12. [PMID: 14699139 DOI: 10.1074/jbc.m306625200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein receptor-related protein-1 (LRP-1) mediates the endocytosis of multiple plasma membrane proteins and thereby models the composition of the cell surface. LRP-1 also functions as a catabolic receptor for fibronectin, limiting fibronectin accumulation in association with cells. The goal of the present study was to determine whether LRP-1 regulates cell surface levels of the beta(1) integrin subunit. We hypothesized that LRP-1 may down-regulate cell surface beta(1) by promoting its internalization; however, unexpectedly, LRP-1 expression was associated with a substantial increase in cell surface beta(1) integrin in two separate cell lines, murine embryonic fibroblasts (MEFs) and CHO cells. The total amount of beta(1) integrin was unchanged because LRP-1-deficient cells retained increased amounts of beta(1) in the endoplasmic reticulum (ER). Expression of human LRP-1 in LRP-1-deficient MEFs reversed the shift in subcellular beta(1) integrin distribution. Metabolic labeling experiments demonstrated that the precursor form of newly synthesized beta(1) integrin (p105) is converted into mature beta(1) (p125) more slowly in LRP-1-deficient cells. Although low levels of cell surface beta(1) integrin, in LRP-1-deficient MEFs, were associated with decreased adhesion to fibronectin, the subcellular distribution of beta(1) integrin was most profoundly dependent on LRP-1 only after the cell cultures became confluent. A mutagen-treated CHO cell line, in which LRP-1 is expressed but retained in the secretory pathway, also demonstrated nearly complete ER retention of beta(1) integrin. These studies support a model in which LRP-1 either directly or indirectly promotes maturation of beta(1) integrin precursor and thereby increases the level of beta(1) integrin at the cell surface.
Collapse
Affiliation(s)
- Ana María Salicioni
- Department of Pathology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Olav M Andersen
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | |
Collapse
|
44
|
Huang SS, Ling TY, Tseng WF, Huang YH, Tang FM, Leal SM, Huang JS. Cellular growth inhibition by IGFBP‐3 and TGF‐β1requires LRP‐1. FASEB J 2003; 17:2068-81. [PMID: 14597676 DOI: 10.1096/fj.03-0256com] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The type V TGF-beta receptor (TbetaR-V)/IGFBP-3 receptor mediates the IGF-independent growth inhibition induced by IGFBP-3. It also mediates the growth inhibitory response to TGF-beta1 in concert with other TGF-beta receptor types, and its loss may contribute to the malignant phenotype of human carcinoma cells. Here we demonstrate that TbetaR-V is identical to LRP-1/alpha2M receptor as shown by MALDI-TOF analysis of tryptic peptides of TbetaR-V purified from bovine liver. In addition, 125I-IGFBP-3 affinity-labeled TbetaR-V in Mv1Lu cells is immunoprecipitated by antibodies to LRP-1 and TbetaR-V. RAP, an LRP-1 antagonist, inhibits binding of 125I-TGF-beta1 and 125I-IGFBP-3 to TbetaR-V and diminishes IGFBP-3-induced growth inhibition in Mv1Lu cells. Absent or low levels of LRP-1, as with TbetaR-V, have been linked to the malignant phenotype of carcinoma cells. Mutagenized Mv1Lu cells selected for reduced expression of LRP-1 have an attenuated growth inhibitory response to TGF-beta1 and IGFBP-3. LRP-1-deficient mouse embryonic fibroblasts lack a growth inhibitory response to TGF-beta1 and IGFBP-3. On the other hand, stable transfection of H1299 human lung carcinoma cells with LRP-1 cDNA restores the growth inhibitory response. These results suggest that the LRP-1/TbetaR-V/IGFBP-3 receptor is required for the growth inhibitory response to IGFBP-3 and TGF-beta1.
Collapse
Affiliation(s)
- Shuan Shian Huang
- Department of Biochemistry, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gregory CA, Singh H, Perry AS, Prockop DJ. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003; 278:28067-78. [PMID: 12740383 DOI: 10.1074/jbc.m300373200] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adult human mesenchymal stem cells from bone marrow stroma (hMSCs) differentiate into numerous mesenchymal tissue lineages and are attractive candidates for cell and gene therapy. When early passage hMSCs are plated or replated at low density, the cultures display a lag phase of 3-5 days, a phase of rapid exponential growth, and then enter a stationary phase without the cultures reaching confluence. We found that as the cultures leave the lag phase, they secrete high levels of dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt signaling pathway. The addition of recombinant Dkk-1 toward the end of the lag period increased proliferation and decreased the cellular concentration of beta-catenin. The addition of antibodies to Dkk-1 in the early log phase decreased proliferation. Also, expression of Dkk-1 in hMSCs decreased during cell cycle arrest induced by serum starvation. The results indicated that high levels of Dkk-1 allow the cells to reenter the cell cycle by inhibiting the canonical Wnt/beta-catenin signaling pathway. Since antibodies to Dkk-1 also increased the lag phase of an osteosarcoma line that expressed the gene, Dkk-1 may have a similar role in some other cell systems.
Collapse
Affiliation(s)
- Carl A Gregory
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
46
|
Battle MA, Maher VM, McCormick JJ. ST7 is a novel low-density lipoprotein receptor-related protein (LRP) with a cytoplasmic tail that interacts with proteins related to signal transduction pathways. Biochemistry 2003; 42:7270-82. [PMID: 12809483 DOI: 10.1021/bi034081y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 1997, McCormick and co-workers identified a novel putative tumor suppressor gene, designated ST7, encoding a unique protein with transmembrane receptor characteristics [Qing et al. (1999) Oncogene 18, 335-342]. Using degenerate primers corresponding to the highly conserved region of the ligand-binding domains of members of the low-density lipoprotein receptor (LDLR) superfamily, Ishii et al. [Genomics (1998) 51, 132-135] discovered a low-density lipoprotein receptor-related protein (LRP) that closely resembles ST7. Later, another LRP closely resembling ST7 and LRP3 was found (murine LRP9) [Sugiyama et al. (2000) Biochemistry 39, 15817-15825]. These results strongly suggested that ST7 was also a novel member of the low-density lipoprotein receptor superfamily. Proteins of this superfamily have been shown to function in endocytosis and/or signal transduction. To evaluate the relationship of ST7 to the LDLR superfamily proteins and to determine whether ST7 may function in endocytosis and/or signal transduction, we used proteomic tools to analyze the functional motifs present in the protein. Our results indicate that ST7 is a member of a subfamily of the LDLR superfamily and that its cytoplasmic domain contains several motifs implicated in endocytosis and signal transduction. Use of the yeast two-hybrid system to identify proteins that associate with ST7's cytoplasmic domain revealed that this domain interacts with three proteins involved in signal transduction and/or endocytosis, viz., receptor for activated protein C kinase 1 (RACK1), muscle integrin binding protein (MIBP), and SMAD anchor for receptor activation (SARA), suggesting that ST7, like other proteins in the LDLR superfamily, functions in these two pathways. Clearly, ST7 is an LRP, and therefore, it should now be referred to as LRP12.
Collapse
Affiliation(s)
- Michele A Battle
- Carcinogenesis Laboratory, Cell and Molecular Biology Program, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1302, USA
| | | | | |
Collapse
|
47
|
Orr AW, Pedraza CE, Pallero MA, Elzie CA, Goicoechea S, Strickland DK, Murphy-Ullrich JE. Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol 2003; 161:1179-89. [PMID: 12821648 PMCID: PMC2172996 DOI: 10.1083/jcb.200302069] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombospondin (TSP) signals focal adhesion disassembly (the intermediate adhesive state) through interactions with cell surface calreticulin (CRT). TSP or a peptide (hep I) of the active site induces focal adhesion disassembly through binding to CRT, which activates phosphoinositide 3-kinase (PI3K) and extracellular signal-related kinase (ERK) through Galphai2 proteins. Because CRT is not a transmembrane protein, it is likely that CRT signals as part of a coreceptor complex. We now show that low density lipoprotein receptor-related protein (LRP) mediates focal adhesion disassembly initiated by TSP binding to CRT. LRP antagonists (antibodies, receptor-associated protein) block hep I/TSP-induced focal adhesion disassembly. LRP is necessary for TSP/hep I signaling because TSP/hep I is unable to stimulate focal adhesion disassembly or ERK or PI3K signaling in fibroblasts deficient in LRP. LRP is important in TSP-CRT signaling, as shown by the ability of hep I to stimulate association of Galphai2 with LRP. The isolated proteins LRP and CRT interact, and LRP and CRT are associated with hep I in molecular complexes extracted from cells. These data establish a mechanism of cell surface CRT signaling through its coreceptor, LRP, and suggest a novel function for LRP in regulating cell adhesion.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, Division of Molecular and Cellular Pathology and The Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, VH 668 1530, 3rd Ave. South, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Beneš P, Jurajda M, Žaloudík J, Izakovičová-Hollá L, Vácha J. C766T low-density lipoprotein receptor-related protein 1 (LRP1) gene polymorphism and susceptibility to breast cancer. Breast Cancer Res 2003; 5:R77-81. [PMID: 12793904 PMCID: PMC165006 DOI: 10.1186/bcr591] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 02/25/2003] [Accepted: 02/28/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor with an important role in regulating the activity of proteinases in extracellular matrix. Several studies have also described its role in intracellular signaling. Previous studies showed that the expression of LRP1 is related to invasiveness of cancer cells. However, recent data on LRP1 suggest that this receptor can also be involved in tumor establishment and progression. METHODS We investigated an association between the C766T polymorphism of the third exon of the LRP1 gene and breast cancer in a sample of women of Caucasian origin. Allele and genotype frequencies of this polymorphism were assessed in 164 women with breast cancer and in 183 age-compatible women without a history of any cancer disease. RESULTS An increase in LRP1 T allele frequency in subjects with breast cancer was observed compared with controls (0.21 versus 0.15, P = 0.01963). A significant excess of genotypes with the T allele (homozygotes plus heterozygotes) was also observed (odds ratio 1.743, 95% confidence interval 1.112-2.732). CONCLUSION The T allele of the C766T polymorphism in the LRP1 gene is associated with an increased risk of breast cancer development in women of Caucasian origin.
Collapse
Affiliation(s)
- Petr Beneš
- Department of Molecular Biology and Genetics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Jurajda
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Žaloudík
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lydie Izakovičová-Hollá
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Vácha
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
49
|
Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM, Gonias SL. Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J Cell Biol 2002; 159:1061-70. [PMID: 12499359 PMCID: PMC2173989 DOI: 10.1083/jcb.200207070] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The low density lipoprotein receptor-related protein (LRP-1) binds and mediates the endocytosis of multiple ligands, transports the urokinase-type plasminogen activator receptor (uPAR) and other membrane proteins into endosomes, and binds intracellular adaptor proteins involved in cell signaling. In this paper, we show that in murine embryonic fibroblasts (MEFs) and L929 cells, LRP-1 functions as a major regulator of Rac1 activation, and that this activity depends on uPAR. LRP-1-deficient MEFs demonstrated increased Rac1 activation compared with LRP-1-expressing MEFs, and this property was reversed by expressing the VLDL receptor, a member of the same gene family as LRP-1, with overlapping ligand-binding specificity. Neutralizing the activity of LRP-1 with receptor-associated protein (RAP) increased Rac1 activation and cell migration in MEFs and L929 cells. The same parameters were unaffected by RAP in uPAR-/- MEFs, prepared from uPAR gene knockout embryos, and in uPAR-deficient LM-TK- cells. Untreated uPAR+/+ MEFs demonstrated substantially increased Rac1 activation compared with uPAR-/- MEFs. In addition to Rac1, LRP-1 suppressed activation of extracellular signal-regulated kinase (ERK) in MEFs; however, it was Rac1 (and not ERK) that was responsible for the effects of LRP-1 on MEF migration. Thus, LRP-1 regulates two signaling proteins in the same cell (Rac1 and ERK), both of which may impact on cell migration. In uPAR-negative cells, LRP-1 neutralization does not affect Rac1 activation, and other mechanisms by which LRP-1 may regulate cell migration are not unmasked.
Collapse
Affiliation(s)
- Zhong Ma
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|