1
|
Farr NTH, Workman VL, Saad S, Roman S, Hearnden V, Chapple CR, Murdoch C, Rodenburg C, MacNeil S. Uncovering the relationship between macrophages and polypropylene surgical mesh. BIOMATERIALS ADVANCES 2024; 159:213800. [PMID: 38377947 DOI: 10.1016/j.bioadv.2024.213800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Currently, in vitro testing examines the cytotoxicity of biomaterials but fails to consider how materials respond to mechanical forces and the immune response to them; both are crucial for successful long-term implantation. A notable example of this failure is polypropylene mid-urethral mesh used in the treatment of stress urinary incontinence (SUI). The mesh was largely successful in abdominal hernia repair but produced significant complications when repurposed to treat SUI. Developing more physiologically relevant in vitro test models would allow more physiologically relevant data to be collected about how biomaterials will interact with the body. This study investigates the effects of mechanochemical distress (a combination of oxidation and mechanical distention) on polypropylene mesh surfaces and the effect this has on macrophage gene expression. Surface topology of the mesh was characterised using SEM and AFM; ATR-FTIR, EDX and Raman spectroscopy was applied to detect surface oxidation and structural molecular alterations. Uniaxial mechanical testing was performed to reveal any bulk mechanical changes. RT-qPCR of selected pro-fibrotic and pro-inflammatory genes was carried out on macrophages cultured on control and mechanochemically distressed PP mesh. Following exposure to mechanochemical distress the mesh surface was observed to crack and craze and helical defects were detected in the polymer backbone. Surface oxidation of the mesh was seen after macrophage attachment for 7 days. These changes in mesh surface triggered modified gene expression in macrophages. Pro-fibrotic and pro-inflammatory genes were upregulated after macrophages were cultured on mechanochemically distressed mesh, whereas the same genes were down-regulated in macrophages exposed to control mesh. This study highlights the relationship between macrophages and polypropylene surgical mesh, thus offering more insight into the fate of an implanted material than existing in vitro testing.
Collapse
Affiliation(s)
- Nicholas T H Farr
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK.
| | - Victoria L Workman
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Sanad Saad
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sabiniano Roman
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | | | - Craig Murdoch
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield, UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| |
Collapse
|
2
|
Gong X, Liang Y, Wang J, Pang Y, Wang F, Chen X, Zhang Q, Song C, Wang Y, Zhang C, Fang X, Chen X. Highly pathogenic PRRSV upregulates IL-13 production through nonstructural protein 9-mediated inhibition of N6-methyladenosine demethylase FTO. J Biol Chem 2024; 300:107199. [PMID: 38508309 PMCID: PMC11017062 DOI: 10.1016/j.jbc.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.
Collapse
Affiliation(s)
- Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yuan Liang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jingjing Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fang Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Viana Silva M, Valente RS, Annes K, Marsico TV, Oliveira AM, Maiollo BAP, Lopes NJ, Tannura JH, Sudano MJ. Effect of IL-10 and TNF-α on the competence and cryosurvival of in vitro produced Bos indicus embryos. Theriogenology 2024; 215:170-176. [PMID: 38071763 DOI: 10.1016/j.theriogenology.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
In vitro-produced embryos are constantly exposed to stressful conditions that can lead to the activation of the apoptotic pathway. The nuclear Kappa B factor (NF-κB) is an inflammatory mediator that induces the expression of tumor necrosis factor (TNF-α), a pro-inflammatory cytokine, while interleukin-10 (IL-10), an anti-inflammatory cytokine, inhibits NF-κB activity. This study aimed to investigate the effects of IL-10 and TNF-α on the competence and cryosurvival of in vitro-produced bovine embryos. Embryos were produced in vitro using standard protocols, and Grade I blastocysts were vitrified using the Cryotop method. Non-vitrified and vitrified blastocysts were subjected to the TUNEL assay. In Experiment I, on day 6.5 (156 h post-insemination), the embryos were treated with PBS (control), 50 ng/mL of IL-10, or a combination of 25 ng/mL of TNF-α and 50 ng/mL of IL-10. Embryonic development and apoptotic rates were monitored. In Experiment II, the same groups were set up, with the addition of a group treated with 25 ng/mL of TNF-α alone. Grade I blastocysts were vitrified 5 h after treatment, and cryosurvival was monitored at until 48 h post-warming. The apoptosis rate and total cell number were investigated in the vitrified-hatched blastocysts. IL-10 alone did not affect developmental competence or cryosurvival (P > 0.05). The IL-10-treated embryos, when exposed in combination with TNF-α, presented a detrimental effect (P < 0.05) in the embryonic development of non-vitrified embryos. However, vitrified blastocysts had no negative effect (P > 0.05). The TNF-α treatment reduced (P < 0.05) the re-expansion rate at 6 h post-warming and increased (P < 0.05) the apoptosis rate in vitrified hatched blastocysts, whereas no effect (P > 0.05) of the treatments was detected in the hatching rate and total cell number post-warming. In conclusion, TNF-α has a detrimental effect on embryonic developmental competence and cryosurvival by compromising the development of non-vitrified embryos and apoptotic-related events of vitrified blastocysts, whereas IL-10, when in combination with TNF-α, appears to attenuate the detrimental effects of TNF-α.
Collapse
Affiliation(s)
- Mara Viana Silva
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Roniele Santana Valente
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Thamiris Vieira Marsico
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Andressa Minozzo Oliveira
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | | | | | | | - Mateus José Sudano
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Zhai Z, Shao L, Lu Z, Yang Y, Wang J, Liu Z, Wang H, Zheng Y, Lu H, Song X, Zhang Y. Characteristics of mucin hypersecretion in different inflammatory patterns based on endotypes of chronic rhinosinusitis. Clin Transl Allergy 2024; 14:e12334. [PMID: 38282195 PMCID: PMC10802810 DOI: 10.1002/clt2.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is usually accompanied by mucin hypersecretion that can lead to mucus accumulation and impair nasal mucociliary clearance, thus exacerbating airway inflammation. Abnormal mucin hypersecretion is regulated by different T helper (Th) cytokines, which are associated with different endotype-driven inflammatory responses. Therefore, it is of great significance to understand how these factors regulate mucin hypersecretion to provide precise treatment strategies for different endotypes of CRS. BODY: Thus far, the most common endotypes of CRS are classified as type 1, type 2, or type 3 immune responses based on innate and adaptive cell-mediated effector immunity, and the representative Th cytokines in these immune responses, such as IFN-γ, TNF-α, IL-4, IL-5, IL-13, IL-10, IL-17, and IL-22, play an important regulatory role in mucin secretion. We reviewed all the related literature in the PubMed database to determine the expression of these Th cytokines in CRS and the role they play in the regulation of mucin secretion. CONCLUSION We believe that the main Th cytokines involved in specific endotypes of CRS play a key role in regulating abnormal mucin secretion, which contributes to better understanding of the pathogenesis of CRS and provides therapeutic targets for airway inflammatory diseases associated with mucin hypersecretion.
Collapse
Affiliation(s)
- Zhaoxue Zhai
- Second Clinical Medicine CollegeBinzhou Medical UniversityYantaiChina
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Liting Shao
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Zhaoyang Lu
- Second Clinical Medicine CollegeBinzhou Medical UniversityYantaiChina
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Yujuan Yang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Jianwei Wang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Zhen Liu
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Huikang Wang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Yang Zheng
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Haoran Lu
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Xicheng Song
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Yu Zhang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| |
Collapse
|
5
|
Singh G, Warang P, García-Bernalt Diego J, Chang L, Bykov Y, Singh S, Pache L, Cuadrado-Castano S, Webb B, Garcia-Sastre A, Schotsaert M. Host immune responses associated with SARS-CoV-2 Omicron infection result in protection or pathology during reinfection depending on mouse genetic background. RESEARCH SQUARE 2023:rs.3.rs-3637405. [PMID: 38077015 PMCID: PMC10705603 DOI: 10.21203/rs.3.rs-3637405/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid emergence of antigenic distinct SARS-CoV-2 variants implies a greater risk of reinfection as viruses can escape neutralizing antibodies induced by vaccination or previous viral exposure. Disease severity during COVID-19 depends on many variables such as age-related comorbidities, host immune status and genetic variation. The host immune response during infection with SARS-CoV-2 may contribute to disease severity, which can range from asymptomatic to severe with fatal outcome. Furthermore, the extent of host immune response activation may rely on underlying genetic predisposition for disease or protection. To address these questions, we performed immune profiling studies in mice with different genetic backgrounds - transgenic K18-hACE2 and wild-type 129S1 mice - subjected to reinfection with the severe disease-causing SARS-CoV-2 B.1.351 variant, 30 days after experimental milder BA.1 infection. BA.1 preinfection conferred protection against B.1.351-induced morbidity in K18-hACE2 mice but aggravated disease in 129S1 mice. We found that he cytokine/chemokine profile in B.1.351 re-infected 129S1mice is similar to that during severe SARS-CoV-2 infection in humans and is characterized by a much higher level of IL-10, IL-1β, IL-18 and IFN-γ, whereas in B.1.351 re-infected K18-hACE2 mice, the cytokine profile echoes the signature of naïve mice undergoing viral infection for the first time. Interestingly, the enhanced pathology observed in 129S1 mice upon reinfection cannot be attributed to a less efficient induction of adaptive immune responses to the initial BA.1 infection, as both K18-hACE2 and 129S1 mice exhibited similar B and T cell responses at 30 DPI against BA.1, with similar anti-BA.1 or B.1.351 spike-specific ELISA binding titers, levels of germinal center B-cells, and SARS-CoV-2-Spike specific tissue-resident T-cells. Long-term effects of BA.1 infection are associated with differential transcriptional changes in bronchoalveolar lavage-derived CD11c + immune cells from K18-hACE2 and 129S1, with K18-hACE2 CD11c + cells showing a strong antiviral defense gene expression profile whereas 129S1 CD11c + cells showed a more pro-inflammatory response. In conclusion, initial infection with BA.1 induces cross-reactive adaptive immune responses in both K18-hACE2 and 129S1 mice, however the different disease outcome of reinfection seems to be driven by differential responses of CD11c + cells in the alveolar space.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute
| | | | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming
| | | | | |
Collapse
|
6
|
Attafi IM, Bakheet SA, Ahmad SF, Belali OM, Alanazi FE, Aljarboa SA, Al-Alallah IA, Korashy HM. Lead Nitrate Induces Inflammation and Apoptosis in Rat Lungs Through the Activation of NF-κB and AhR Signaling Pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64959-64970. [PMID: 35482242 PMCID: PMC9481511 DOI: 10.1007/s11356-022-19980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/25/2022] [Indexed: 05/28/2023]
Abstract
Lead (Pb) is one of the most frequent hazardous air contaminants, where the lungs are particularly vulnerable to its toxicity. However, the Pb distribution and its impact on lung inflammation/apoptosis and particularly the involvement of nuclear factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways in Pb-induced lung toxicity have not yet been fully investigated. Adult male Wistar albino rats were exposed to Pb nitrate 25, 50, and 100 mg/kg b.w. orally for 3 days. The histopathological changes of several rat organs were analyzed using hematoxylin and eosin staining. The concentrations of Pb ion in different organ tissues were quantified using inductive coupled plasma mass spectrometry, while gas chromatography-mass spectrometry was used to identify organic compounds. The changes in the mRNA and protein expression levels of inflammatory and apoptotic genes in response to Pb exposure were quantified by using RT-PCR and Western blot analyses, respectively. Treatment of rats with Pb for three consecutive days significantly increased the accumulation of Pb in lung tissues causing severe interstitial inflammation. Pb treatment also increased the percentage of lung apoptotic cells and modulated apoptotic genes (Bc2, p53, and TGF-α), inflammatory markers (IL-4, IL-10, TNF-α), and oxidative stress biomarkers (iNOS, CYP1A1, EphX) in rat lung tissues. These effects were associated with a significant increase in organic compounds, such as 3-nitrotyrosine and myeloperoxidase, and some inorganic elements, such as selenium. Importantly, the Pb-induced lung inflammation and apoptosis were associated with a proportional increase in the expression of NF-κB and AhR mRNAs and proteins. These findings clearly show that Pb induces severe inflammation and apoptosis in rat lungs and suggest that NF-κB and AhR may play a role in Pb-induced lung toxicity.
Collapse
Affiliation(s)
- Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Poison Control and Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osamah M Belali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Aseer Central Hospital, Asser health affairs, Ministry of Health, Abha, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Suliman A Aljarboa
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Al-Alallah
- Pathology and Clinical Laboratories Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Heldner A, Alessandrini F, Russkamp D, Heine S, Schnautz B, Chaker A, Mwange J, Carreno Velazquez TL, Heath MD, Skinner MA, Kramer MF, Zissler UM, Schmidt‐Weber CB, Blank S. Immunological effects of adjuvanted low-dose allergoid allergen-specific immunotherapy in experimental murine house dust mite allergy. Allergy 2022; 77:907-919. [PMID: 34287971 DOI: 10.1111/all.15012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Native allergen extracts or chemically modified allergoids are routinely used to induce allergen tolerance in allergen-specific immunotherapy (AIT), although mechanistic side-by-side studies are rare. It is paramount to balance optimal dose and allergenicity to achieve efficacy warranting safety. AIT safety and efficacy could be addressed by allergen dose reduction and/or use of allergoids and immunostimulatory adjuvants, respectively. In this study, immunological effects of experimental house dust mite (HDM) AIT were investigated applying high-dose HDM extract and low-dose HDM allergoids with and without the adjuvants microcrystalline tyrosine (MCT) and monophosphoryl lipid A (MPL) in a murine model of HDM allergy. METHODS Cellular, humoral, and clinical effects of the different AIT strategies were assessed applying a new experimental AIT model of murine allergic asthma based on physiological, adjuvant-free intranasal sensitization followed by subcutaneous AIT. RESULTS While low-dose allergoid and high-dose extract AIT demonstrated comparable potency to suppress allergic airway inflammation and Th2-type cytokine secretion of lung-resident lymphocytes and draining lymph node cells, low-dose allergoid AIT was less effective in inducing a potentially protective IgG1 response. Combining low-dose allergoid AIT with MCT or MCT and dose-adjusted MPL promoted Th1-inducing mechanisms and robust B-cell activation counterbalancing the allergic Th2 immune response. CONCLUSION Low allergen doses induce cellular and humoral mechanisms counteracting Th2-driven inflammation by using allergoids and dose-adjusted adjuvants. In light of safety and efficacy improvement, future therapeutic approaches may use low-dose allergoid strategies to drive cellular tolerance and adjuvants to modulate humoral responses.
Collapse
Affiliation(s)
- Alexander Heldner
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Dennis Russkamp
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Sonja Heine
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
- Department of Otolaryngology, Klinikum rechts der Isar Faculty of Medicine Technical University of Munich Munich Germany
| | | | | | | | | | - Matthias F. Kramer
- Allergy Therapeutic PLC. Worthing UK
- Bencard Allergie GmbH Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| |
Collapse
|
8
|
Huaux F. Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Front Immunol 2021; 12:690375. [PMID: 34489937 PMCID: PMC8417606 DOI: 10.3389/fimmu.2021.690375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Immunostimulation is recognized as an important contribution in lung fibrosis in some animal models and patient subsets. With this review, we illustrate an additional scenario covering the possible implication of immunoregulation during fibrogenesis. Available animal and human data indicate that pulmonary fibrosis also includes diverse and discrete immunoregulating populations comprising regulatory lymphocytes (T and B regs) and myeloid cells (immunosuppressive macrophages and myeloid-derived suppressive cells; MDSC). They are initially recruited to limit the establishment of deleterious inflammation but participate in the development of lung fibrosis by producing immunoregulatory mediators (mainly TGF-β1 and IL-10) that directly or indirectly stimulate fibroblasts and matrix protein deposition. The existence of this silent immunoregulatory environment sustains an alternative mechanism of fibrosis that explains why in some conditions neither pro-inflammatory cytokine deficiency nor steroid and immunosuppressive therapies limit lung fibrosis. Therefore, the persistent presence of immunoregulation is an important parameter to consider for refining therapeutical strategies in lung fibrotic disorders under non-immunostimulatory conditions.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
9
|
L S Alves C, F Santiago L, B R Santana M, C P Figueiredo B, B Morais S, C Oliveira S, G C Pacheco L, M Alcantara-Neves N, S Pinheiro C. Immunomodulatory properties of Schistosoma mansoni proteins Sm200 and SmKI-1 in vitro and in a murine model of allergy to the mite Blomia tropicalis. Mol Immunol 2020; 124:91-99. [PMID: 32544656 DOI: 10.1016/j.molimm.2020.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
The prevalence of allergic diseases in Brazil is one of the biggest in the world. Among these pathologies, we highlight asthma as one of the most importance. Asthma is characterized as a chronic inflammatory disease of airways, associated with hyperresponsiveness. Many environmental factors can trigger asthma symptoms, among them house dust mites can stimulate hypersensitivity type I reaction. The most common in house dust mite, in tropical countries, are Dermatophagoides pteronysinus and Blomia tropicalis. Several studies have shown that helminths, especially Schistosoma mansoni, lead to reduction of symptoms of atopy and allergic diseases. Therefore, the present study aims to evaluate the ability of recombinant S. mansoni proteins Sm200, and SmKI-1 to induce immunomodulation in vitro, using peripheral blood mononuclear cells (PBMCs) from atopic and non-atopic individuals, stimulated or not with B. tropicalis extract, and in vivo, in a murine model of allergy to the mite B. tropicalis. As results, we observed that the fragment called rSm200-3 and the protein rSmKI-1 stood out for their immunomodulatory potential, stimulating IL-10 production by human PBMCs in vitro. When these proteins were associated with B. tropicalis extract, it was observed the reduction of the production of the cytokine IL-5, with a statistically significant difference in non-atopic individual's cells. In vivo, both proteins presented similar results, with a reduction of IL-5 and IL-4 levels in lung homogenates and of serum IgE. SmKI-1 was also able to decrease the levels of EPO in lung homogenates and in BAL. These results showed that both proteins were able to downmodulate Th2 cells on human PBMCs, and in a murine model of allergy. However, SmKI-1 also reduced significantly the levels of EPO in BAL and lungs showing that this protein may be a good candidate to be used as a possible replacement or in conjunction with pharmacotherapy in individuals with unregulated immune response in asthma.
Collapse
Affiliation(s)
- Camile L S Alves
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Leonardo F Santiago
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Marina B R Santana
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | - Suellen B Morais
- Institute of Biological Science - ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio C Oliveira
- Institute of Biological Science - ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis G C Pacheco
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | - Carina S Pinheiro
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|
10
|
Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv Wound Care (New Rochelle) 2020; 9:184-198. [PMID: 32117582 PMCID: PMC7047112 DOI: 10.1089/wound.2019.1032] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Significance: Fibrosis is the endpoint of chronic disease in multiple organs, including the skin, heart, lungs, intestine, liver, and kidneys. Pathologic accumulation of fibrotic tissue results in a loss of structural integrity and function, with resultant increases in morbidity and mortality. Understanding the pathways governing fibrosis and identifying therapeutic targets within those pathways is necessary to develop novel antifibrotic therapies for fibrotic disease. Recent Advances: Given the connection between inflammation and fibrogenesis, Interleukin-10 (IL-10) has been a focus of potential antifibrotic therapies because of its well-known role as an anti-inflammatory mediator. Despite the apparent dissimilarity of diseases associated with fibrotic progression, pathways involving IL-10 appear to be a conserved molecular theme. More recently, many groups have worked to develop novel delivery tools for recombinant IL-10, such as hydrogels, and cell-based therapies, such as ex vivo activated macrophages, to directly or indirectly modulate IL-10 signaling. Critical Issues: Some efforts in this area, however, have been stymied by IL-10's pleiotropic and sometimes conflicting effects. A deeper, contextual understanding of IL-10 signaling and its interaction with effector cells, particularly immune cells, will be critical to future studies in the field. Future Directions: IL-10 is clearly a gatekeeper of fibrotic/antifibrotic signaling. The development of novel therapeutics and cell-based therapies that capitalize on targets within the IL-10 signaling pathway could have far-reaching implications for patients suffering from the consequences of organ fibrosis.
Collapse
Affiliation(s)
- Emily H. Steen
- Department of Surgery, Baylor College of Medicine, Houston, Texas
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas
| | - Manish J. Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sundeep G. Keswani
- Department of Surgery, Baylor College of Medicine, Houston, Texas
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
11
|
Malinina A, Dikeman D, Westbrook R, Moats M, Gidner S, Poonyagariyagorn H, Walston J, Neptune ER. IL10 deficiency promotes alveolar enlargement and lymphoid dysmorphogenesis in the aged murine lung. Aging Cell 2020; 19:e13130. [PMID: 32170906 PMCID: PMC7189990 DOI: 10.1111/acel.13130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/22/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The connection between aging-related immune dysfunction and the lung manifestations of aging is poorly understood. A detailed characterization of the aging IL10-deficient murine lung, a model of accelerated aging and frailty, reconciles features of both immunosenescence and lung aging in a coherent model. Airspace enlargement developed in the middle-aged (12 months old) and aged (20-22 months old) IL10-deficient lung punctuated by an expansion of macrophages and alveolar cell apoptosis. Compared to wild-type (WT) controls, the IL10-deficient lungs from young (4-month-old) mice showed increased oxidative stress which was enhanced in both genotypes by aging. Active caspase 3 staining was increased in the alveolar epithelial cells of aged WT and mutant lungs but was greater in the IL10-deficient milieu. Lung macrophages were increased in the aged IL10-deficient lungs with exuberant expression of MMP12. IL10 treatment of naïve and M2-polarized bone marrow-derived WT macrophages reduced MMP12 expression. Conditioned media studies demonstrated the secretome of aged mutant macrophages harbors reduced AECII prosurvival factors, specifically keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), promotes cell death, and reduces survival of primary alveolar epithelial cells. Compared to WT controls, aged IL10-deficient mice have increased parenchymal lymphoid collections comprised of a reduced number of apoptotic cells and B cells. We establish that IL10 is a key modulator of airspace homeostasis and lymphoid morphogenesis in the aging lung enabling macrophage-mediated alveolar epithelial cell survival and B-cell survival within tertiary lymphoid structures.
Collapse
Affiliation(s)
- Alla Malinina
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Dustin Dikeman
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Reyhan Westbrook
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Michelle Moats
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
- Departments of Biology and Chemistry and Biochemistry Florida International University Miami FL USA
| | - Sarah Gidner
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | | | - Jeremy Walston
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Enid R. Neptune
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| |
Collapse
|
12
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
13
|
Wilson ME, McCandless EE, Olszewski MA, Robinson NE. Alveolar macrophage phenotypes in severe equine asthma. Vet J 2020; 256:105436. [PMID: 32113585 PMCID: PMC7768773 DOI: 10.1016/j.tvjl.2020.105436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/20/2019] [Accepted: 02/09/2020] [Indexed: 12/20/2022]
Abstract
Because the alveolar macrophage (AM) phenotype of horses with severe equine asthma (SEA) is unknown, the cytokines expressed by M1- and M2-polarized AM were determined and the hypothesis that natural hay/straw challenge (NC) induces divergent AM phenotypes in control horses and horses with SEA was tested. Macrophages from control horses were activated either with eIFNγ + lipolysaccharide (LPS) or eIL-4 to characterize M1- or M2-polarized AM gene expression, respectively and determine the response of polarized cells to pathogen-associated molecular patterns (PAMPS): LPS, zymosan, peptidoglycan and hay dust. Subsequently, gene expression was explored in AM of control horses and horses with SEA at pasture and after NC. M1 polarization increased expression of pro-inflammatory cytokines (TNFα, IL-8, IL-12p40), IL-10, and CD80. M2 polarization increased CD206 and down-regulated arginase-II and IL-10. Expression of pro-inflammatory cytokines and CD80 in response to PAMPS was further increased by M1 pre-polarization whereas M2 pre-polarization down-regulated expression of pro-inflammatory cytokines and IL-10 but increased CD206. In horses with SEA, AMs had elevated expression of IL-10 both at pasture and after NC, but only after NC in control horses. CD206 expression increased in both groups during NC. At pasture, stimulation by PAMPS augmented expression of IL-8 and IL-10 in horses with SEA compared to control horses. NC eliminated this difference by selectively increasing expression of IL-10 in control horses. A fundamental shift in the macrophage phenotype in SEA is supported by consistently elevated production of IL-10. A similar non-canonical phenotype develops temporarily in control horses upon NC suggesting that AMs in horses with SEA have lost the ability to respond dynamically to environmental cues.
Collapse
Affiliation(s)
- M E Wilson
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - E E McCandless
- Global Therapeutics Research, Zoetis, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - M A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, VA Ann Arbor Healthcare System, Research Service (151), Ann Arbor, MI, 48105, USA
| | - N Edward Robinson
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Huaux F. Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Front Immunol 2018; 9:2364. [PMID: 30510551 PMCID: PMC6252316 DOI: 10.3389/fimmu.2018.02364] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Fibrosis, cancer, and autoimmunity developing upon particle exposure have been exclusively linked with uncontrolled inflammatory processes. The critical role of inflammation is now challenged by several contradictory observations indicating that the emergence of these chronic disorders may result from non-inflammatory events. A growing number of studies reveals that micro- and nano-particles can cause exaggerated and persistent immunosuppression characterized by the release of potent anti-inflammatory cytokines (IL-10 and TGF-β), and the recruitment of major regulatory immune cells (M2 macrophages, T and B regs, and MDSC). This persistent immunosuppressive environment is initially established to limit early inflammation but contributes later to fibrosis, cancer, and infection. Immunosuppression promotes fibroblast proliferation and matrix element synthesis and subverts innate and adaptive immune surveillance against tumor cells and microorganisms. This review details the contribution of immunosuppressive cells and their derived immunoregulatory mediators and delineates the mutual role of inflammatory vs. immunosuppressive mechanisms in the pathogenesis of chronic diseases induced by particles. The consideration of these new results explains how particle-related diseases can develop independently of chronic inflammation, enriches current bioassays predicting particle toxicity and suggests new clinical strategies for treating patients affected by particle-associated diseases.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Experimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
15
|
Antagonism of Interleukin-17A ameliorates experimental hepatic fibrosis by restoring the IL-10/STAT3-suppressed autophagy in hepatocytes. Oncotarget 2018; 8:9922-9934. [PMID: 28039485 PMCID: PMC5354781 DOI: 10.18632/oncotarget.14266] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Interleukin-17A has been identified as a driver of hepatic stellate cell activation and plays a critical role in the pathogenesis of hepatic fibrosis. However, the underlining fibrosis-promoting mechanism of IL-17A is far from understood. Here we aimed to define whether hepatocytes directly respond to IL-17A stimulation and are associated with the development of hepatic fibrosis. The functional significance of IL-17A was evaluated in bile duct ligation (BDL) or thioacetamide (TAA) injection-induced mouse models of hepatic fibrosis. Human cirrhosis and control tissues were obtained from the patients with cirrhosis who received an open surgical repair process. Neutralizing IL-17A promoted the resolution of BDL or TAA-induced acute or chronic inflammation and fibrosis, resulted in a shift of the suppressive immune response in fibrotic liver toward a Th1-type immune response, and restored autophagy activity in both cholestatic and hepatotoxic liver injury induced fibrotic liver tissues, which was accompanied by a significant inhibition of STAT3 phosphorylation. Moreover, we found that IL-17A stimulated the concentration-and time-dependent phosphorylation of STAT3 in AML-12 liver cells. Blocking STAT3 with a specific inhibitor STATTIC or STAT3 siRNA protected from the IL-17A-induced autophagy suppression in AML-12 cells, indicating that STAT3 mediates IL-17A-suppressed autophagy. Administration of IL-10, which activated STAT3 and inhibited autophagy, reversed the therapeutic effect of IL-17A antagonism in vivo. Our study suggests that the IL-17A/STAT3 signaling pathway plays a crucial role in the pathogenesis of hepatic fibrosis through suppressing hepatocellular autophagy and that blocking this pathway may provide therapeutic benefits for the treatment of hepatic fibrosis.
Collapse
|
16
|
Fonceca AM, Zosky GR, Bozanich EM, Sutanto EN, Kicic A, McNamara PS, Knight DA, Sly PD, Turner DJ, Stick SM. Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung. Respir Res 2018; 19:15. [PMID: 29357863 PMCID: PMC5778683 DOI: 10.1186/s12931-017-0701-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/13/2017] [Indexed: 02/08/2023] Open
Abstract
Background Accumulation mode particles (AMP) are formed from engine combustion and make up the inhalable vapour cloud of ambient particulate matter pollution. Their small size facilitates dispersal and subsequent exposure far from their original source, as well as the ability to penetrate alveolar spaces and capillary walls of the lung when inhaled. A significant immuno-stimulatory component of AMP is lipopolysaccharide (LPS), a product of Gram negative bacteria breakdown. As LPS is implicated in the onset and exacerbation of asthma, the presence or absence of LPS in ambient particulate matter (PM) may explain the onset of asthmatic exacerbations to PM exposure. This study aimed to delineate the effects of LPS and AMP on airway inflammation, and potential contribution to airways disease by measuring airway inflammatory responses induced via activation of the LPS cellular receptor, Toll-like receptor 4 (TLR-4). Methods The effects of nebulized AMP, LPS and AMP administered with LPS on lung function, cellular inflammatory infiltrate and cytokine responses were compared between wildtype mice and mice not expressing TLR-4. Results The presence of LPS administered with AMP appeared to drive elevated airway resistance and sensitivity via TLR-4. Augmented TLR4 driven eosinophilia and greater TNF-α responses observed in AMP-LPS treated mice independent of TLR-4 expression, suggests activation of allergic responses by TLR4 and non-TLR4 pathways larger than those induced by LPS administered alone. Treatment with AMP induced macrophage recruitment independent of TLR-4 expression. Conclusions These findings suggest AMP-LPS as a stronger stimulus for allergic inflammation in the airways then LPS alone. Electronic supplementary material The online version of this article (10.1186/s12931-017-0701-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela M Fonceca
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.
| | | | | | - Erika N Sutanto
- Telethon Kids Institute, Subiaco, WA, Australia.,Department of Respiratory Medicine Princess Margaret Hospital for Children Perth, Subiaco, WA, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, Subiaco, WA, Australia.,Department of Respiratory Medicine Princess Margaret Hospital for Children Perth, Subiaco, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Paul S McNamara
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Peter D Sly
- Queensland Children's Medical Research Institute, University of Queensland, Royal Children's Hospital, Herston, QLD, Australia
| | | | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, Subiaco, WA, Australia.,Department of Respiratory Medicine Princess Margaret Hospital for Children Perth, Subiaco, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, 6009, Australia
| |
Collapse
|
17
|
Yoshizaki A. Pathogenic roles of B lymphocytes in systemic sclerosis. Immunol Lett 2018; 195:76-82. [PMID: 29307688 DOI: 10.1016/j.imlet.2018.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
Systemic sclerosis (SSc) is a collagen disease characterized by autoimmunity and excessive extracellular matrix deposition in the skin and visceral organs. Although the pathogenic relationship between systemic autoimmunity and the clinical manifestations of SSc remains unknown, SSc patients show a variety of abnormal immune activation including the production of disease-specific autoantibodies and cytokine production. Many recent studies have demonstrated that immune cells, including T cells, B cells, and macrophages, have a variety of immunological abnormalities in SSc. So far, several groups and our group reported that B cells play a critical role in systemic autoimmunity and disease expression through various functions, such as cytokine production, lymphoid organogenesis, and induction of other immune cell activation in addition to autoantibody production. Recent studies show that B cells from SSc patients demonstrate an up-regulated CD19 expression, a crucial regulator of B cell activation, which induces chronic hyper-reactivity of memory B cells and SSc-specific autoantibody production and also causes fibrosis of several organs. Furthermore, in SSc-model mice, such as tight-skin mice, bleomycin-induced SSc model mice, and DNA topoisomerase I and complete Freund's adjuvant-induced SSc model mice, have abnormal B cell activation which associates with skin and lung fibrosis. Indeed, B cell depletion therapy using anti-CD20 Ab, Rituximab, is considered to one potential beneficial treatment for patients with SSc. However, there is no direct evidence which can explain how B cells, especially autoantigen-reactive B cells, progress or regulate disease manifestations of SSc. Collectively, B cell abnormalities in SSc is most likely participating in fibrosis and tissue damage of SSc. If the relationship between SSc-specific tissue damage and B cell abnormalities is revealed, these findings lead to novel effective therapy for SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Japan.
| |
Collapse
|
18
|
Zhang S, Li H, Yuan M, Yuan M, Chen H. Poly(Lactic Acid) Blends with Poly(Trimethylene Carbonate) as Biodegradable Medical Adhesive Material. Int J Mol Sci 2017; 18:ijms18102041. [PMID: 28956808 PMCID: PMC5666723 DOI: 10.3390/ijms18102041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023] Open
Abstract
A novel medical adhesive was prepared by blending poly(lactic acid) (PLA) with poly(trimethylene carbonate) (PTMC) in ethyl acetate, and the two materials were proven to be biodegradable and biocompatible. The medical adhesive was characterized by 1H nuclear magnetic resonance (1HNMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The water vapor transmission rate (WVTR) of this material was measured to be 7.13 g·cm−2·24 h−1. Its degree of comfortability was confirmed by the extensibility (E) and the permanent set (PS), which were approximately 7.83 N·cm−2 and 18.83%, respectively. In vivo tests regarding rabbit immunoglobulin M (IgM), rabbit immunoglobulin G (IgG), rabbit bone alkaline phosphatase (BALP), rabbit interleukin 6 (IL-6), rabbit interleukin 10 (IL-10), rabbit tumor necrosis factor α(TNFα), glutamic-oxaloacetic transaminase (AST/GOT), glutamic-pyruvic transaminase (ALT/GPT), alkaline phosphatase (AKP), blood urea nitrogen (BUN) and creatinine (Cr) indicated that the PLA-PTMC medical adhesive was not harmful to the liver and kidneys. Finally, pathological sections indicated that PLA-PTMC was more effective than the control group. These data suggest that in addition to having a positive effect on hemostasis and no sensibility to wounds, PLA-PTMC can efficiently prevent infections and has great potential as a medical adhesive.
Collapse
Affiliation(s)
- Shuang Zhang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| | - Hongli Li
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| | - Mingwei Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| | - Haiyun Chen
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming 650500, China.
| |
Collapse
|
19
|
Beneficial Effects of Prebiotic Saccharomyces cerevisiae Mannan on Allergic Asthma Mouse Models. J Immunol Res 2017; 2017:3432701. [PMID: 28835901 PMCID: PMC5556605 DOI: 10.1155/2017/3432701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 12/21/2022] Open
Abstract
One of the unmet needs for asthma management is a new therapeutic agent with both anti-inflammatory and anti-smooth muscle (ASM) remodeling effects. The mannose receptor (MR) family plays an important role in allergen uptake and processing of major allergens Der p 1 and Fel d 1. We have previously reported that ASM cells express a mannose receptor (ASM-MR) and that mannan derived from Saccharomyces cerevisiae (SC-MN) inhibits mannosyl-rich lysosomal hydrolase-induced bovine ASM cell proliferation. Using a humanized transgenic mouse strain (huASM-MRC2) expressing the human MRC2 receptor in a SM tissue-specific manner, we have demonstrated that ASM hyperplasia/hypertrophy can occur as early as 15 days after allergen challenge in this mouse model and this phenomenon is preventable with SC-MN treatment. This proof-of-concept study would facilitate future development of a potential asthma therapeutic agent with dual function of anti-inflammatory and anti-smooth muscle remodeling effects.
Collapse
|
20
|
Park E, Song JH, Kim MS, Park SH, Kim TS. Costunolide, a sesquiterpene lactone, inhibits the differentiation of pro-inflammatory CD4 + T cells through the modulation of mitogen-activated protein kinases. Int Immunopharmacol 2016; 40:508-516. [DOI: 10.1016/j.intimp.2016.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 01/10/2023]
|
21
|
Andrade-Sousa AS, Rogério Pereira P, MacKenzie B, Oliveira-Junior MC, Assumpção-Neto E, Brandão-Rangel MAR, Damaceno-Rodrigues NR, Garcia Caldini E, Velosa APP, Teodoro WR, Ligeiro de Oliveira AP, Dolhnikoff M, Eickelberg O, Vieira RP. Aerobic Exercise Attenuated Bleomycin-Induced Lung Fibrosis in Th2-Dominant Mice. PLoS One 2016; 11:e0163420. [PMID: 27677175 PMCID: PMC5038953 DOI: 10.1371/journal.pone.0163420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/08/2016] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The aim of this study was to investigate the effect of aerobic exercise (AE) in reducing bleomycin-induced fibrosis in mice of a Th2-dominant immune background (BALB/c). METHODS BALB/c mice were distributed into: sedentary, control (CON), Exercise-only (EX), sedentary, bleomycin-treated (BLEO) and bleomycin-treated+exercised (BLEO+EX); (n = 8/group). Following treadmill adaptation, 15 days following a single, oro-tracheal administration of bleomycin (1.5U/kg), AE was performed 5 days/week, 60min/day for 4 weeks at moderate intensity (60% of maximum velocity reached during a physical test) and assessed for pulmonary inflammation and remodeling, and cytokine levels in bronchoalveolar lavage (BAL). RESULTS At 45 days post injury, compared to BLEO, BLEO+EX demonstrated reduced collagen deposition in the airways (p<0.001) and also in the lung parenchyma (p<0.001). In BAL, a decreased number of total leukocytes (p<0.01), eosinophils (p<0.001), lymphocytes (p<0.01), macrophages (p<0.01), and neutrophils (p<0.01), as well as reduced pro-inflammatory cytokines (CXCL-1; p<0.01), (IL-1β; p<0.001), (IL-5; p<0.01), (IL-6; p<0.001), (IL-13; p<0.01) and pro-fibrotic growth factor IGF-1 (p<0.001) were observed. Anti-inflammatory cytokine IL-10 was increased (p<0.001). CONCLUSION AE attenuated bleomycin-induced collagen deposition, inflammation and cytokines accumulation in the lungs of mice with a predominately Th2-background suggesting that therapeutic AE (15-44 days post injury) attenuates the pro-inflammatory, Th2 immune response and fibrosis in the bleomycin model.
Collapse
Affiliation(s)
- Adilson Santos Andrade-Sousa
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Paulo Rogério Pereira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - BreAnne MacKenzie
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Manoel Carneiro Oliveira-Junior
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Erasmo Assumpção-Neto
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Maysa Alves Rodrigues Brandão-Rangel
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Nilsa Regina Damaceno-Rodrigues
- Laboratory of Cellular Biology (LIM 59), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Elia Garcia Caldini
- Laboratory of Cellular Biology (LIM 59), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Ana Paula Pereira Velosa
- Laboratory of Medical Investigation (LIM 17), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Walcy Rosolia Teodoro
- Laboratory of Medical Investigation (LIM 17), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Ana Paula Ligeiro de Oliveira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Marisa Dolhnikoff
- Department of Pathology, School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), Ludwig Maximilian Universität München and Helmholtz Zentrum München, Max-Lebsche-Platz 31, München, Germany
| | - Rodolfo Paula Vieira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| |
Collapse
|
22
|
Cope EK, Goldberg AN, Pletcher SD, Lynch SV. A chronic rhinosinusitis-derived isolate of Pseudomonas aeruginosa induces acute and pervasive effects on the murine upper airway microbiome and host immune response. Int Forum Allergy Rhinol 2016; 6:1229-1237. [PMID: 27598436 DOI: 10.1002/alr.21819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/12/2016] [Accepted: 05/28/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Diverse microbial communities colonize healthy sinus mucosa and specific species within these communities are capable of protecting the host from pathogenic infection. However, little is known of the dynamics of upper airway infection and the role of the sinus mucosal microbiome in short- and longer-term outcomes using clinical isolates from patients with chronic rhinosinusitis. METHODS We examine microbiome and immune dynamics after murine sinus infection with Pseudomonas aeruginosa EC1, isolated previously from a chronic rhinosinusitis patient. Microbiota profiling (16S rRNA sequencing), histologic, and immunologic analyses [interferon-gamma (IFN-γ) and eotaxin-1 (CCL11) gene expression] were performed at 1, 7, and 10 days postinfection (D1PI, D7PI, and D10PI) in antimicrobial-treated and untreated animals. RESULTS At D1PI, P. aeruginosa EC1 dominated the upper airway microbiome and was associated with a significant increase in sinus mucosa goblet cell hyperplasia, mucin hypersecretion (p < 0.001), and IFN-γ expression in antibiotic-treated and untreated animals, although the magnitude of pathogen enrichment was lower in the latter group. Mucin hypersecretion and IFN-γ expression subsided by 7D7PI in both groups of mice, coincident with a depletion of the infectious strain. However, other members of the Pseudomonadaceae family remained significantly enriched (p < 0.05, q < 0.05) in the microbiome at D7PI and D10PI and this perturbation was associated with induction of eotaxin-1 at these later time-points. CONCLUSION Murine intranasal P. aeruginosa EC1 infection causes a pervasive shift in the sinus microbiome that persists despite histologic resolution and is associated with a reproducible immunologic shift from an initial IFN-γ response to a temporal induction of eotaxin-1.
Collapse
Affiliation(s)
- Emily K Cope
- Department of Biological Sciences, Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011
| | - Andrew N Goldberg
- Department of Otolaryngology-, University of California, San Francisco, San Francisco, CA
| | - Steven D Pletcher
- Department of Otolaryngology-, University of California, San Francisco, San Francisco, CA
| | - Susan V Lynch
- Division of Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
23
|
Maria ATJ, Toupet K, Bony C, Pirot N, Vozenin MC, Petit B, Roger P, Batteux F, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Antifibrotic, Antioxidant, and Immunomodulatory Effects of Mesenchymal Stem Cells in HOCl-Induced Systemic Sclerosis. Arthritis Rheumatol 2016; 68:1013-25. [PMID: 26474311 DOI: 10.1002/art.39477] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a rare intractable disease with unmet medical need and fibrosis-related mortality. Absence of efficient treatments has prompted the development of novel therapeutic strategies, among which mesenchymal stem cells/stromal cells (MSCs) or progenitor stromal cells appear to be one of the most attractive options. The purpose of this study was to use the murine model of hypochlorite-induced SSc to investigate the systemic effects of MSCs on the main features of the diffuse form of the disease: skin and lung fibrosis, autoimmunity, and oxidative status. METHODS We compared the effects of different doses of MSCs (2.5 × 10(5) , 5 × 10(5) , and 10(6) ) infused at different time points. Skin thickness was assessed during the experiment. At the time of euthanasia, biologic parameters were quantified in blood and tissues (by enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, assessment of collagen content). Assessments of histology and immunostaining were also performed. RESULTS A lower expression of markers of fibrosis (Col1, Col3, Tgfb1, and aSma) was observed in both skin and lung following MSC infusion, which was consistent with histologic improvement and was inversely proportional to the injected dose. Importantly, sera from treated mice exhibited lower levels of anti-Scl-70 autoantibodies and enhanced antioxidant capacity, confirming the systemic effect of MSCs. Of interest, MSC administration was efficient in both the preventive and the curative approach. We further provide evidence that MSCs exerted an antifibrotic role by normalizing extracellular matrix remodeling parameters as well as reducing proinflammatory cytokine levels and increasing antioxidant defenses. CONCLUSION The results of this study demonstrate the beneficial and systemic effects of MSC administration in the HOCl murine model of diffuse SSc, which is a promising finding from a clinical perspective.
Collapse
Affiliation(s)
- Alexandre T J Maria
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| | - Karine Toupet
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| | - Claire Bony
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| | - Nelly Pirot
- INSERM U1194 and UMS BioCampus Montpellier, Montpellier, France
| | | | - Benoît Petit
- University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Pascal Roger
- Montpellier University Medical School, Montpellier, France, and Caremeau Hospital, Nîmes, France
| | | | - Alain Le Quellec
- St. Eloi Hospital and Montpellier University Medical School, Montpellier, France
| | - Christian Jorgensen
- INSERM U1183, St. Eloi Hospital, Montpellier University Medical School, and Lapeyronie Hospital, Montpellier, France
| | - Danièle Noël
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| | - Philippe Guilpain
- INSERM U1183, St. Eloi Hospital, and Montpellier University Medical School, Montpellier, France
| |
Collapse
|
24
|
Silva RC, Terra FF, Guise YF, Prado MAM, Prado VF, Hiyane MI, Costa Malheiros DMA, Prado CM, Camara NOS, Braga TT. Reduced expression of VAChT increases renal fibrosis. ACTA ACUST UNITED AC 2016; 23:229-36. [PMID: 27524473 DOI: 10.1016/j.pathophys.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is associated with several other long-lasting conditions such as diabetes and cardiovascular diseases and it is a significant contributor to mortality worldwide. Obstructive kidney disease is one of the leading causes of CKD in children and may result from a wide variety of pathologic processes. Recent studies have shown that α7 nicotinic acetylcholine receptor (α7 nAChR) activation in the cholinergic anti-inflammatory pathway reduces production of inflammatory mediators and consequently prevents tissue injury and death. Here, we examined the role of endogenous release of acetylcholine on the development of fibrosis in renal tissue using a model of unilateral ureter obstruction (UUO)-induced CKD, in which obstruction promotes inflammation-mediated kidney damages. To interfere with acetylcholine secretion, we used mice in which the vesicular acetylcholine transporter is genetically reduced (VAChT KD(hom) mice). We observed a higher renal damage in VAChT mutant mice when compared to wild type controls, exemplified by higher proteinuria and increased amount of type 1 collagen in the kidney tissue, indicating accentuated fibrogenesis. These results were accompanied by enhanced localized kidney inflammation, with increased TH1/TH17 profile response. Administration of PNU-282987, a selective agonist of α7 nAChR, significantly attenuated kidney injury after UUO in VAChT KD(hom) mice, indicating that the lack of acetylcholine release decrease the action of the cholinergic anti-inflammatory pathway, promoting an up-regulation of pro-inflammatory and pro-fibrotic pathways. These results suggest that physiological activation of the cholinergic anti-inflammatory pathway regulates inflammatory responses in the kidney suggesting a new therapeutic approach for kidney disease.
Collapse
Affiliation(s)
- Reinaldo Correia Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Fernandes Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Yuri Felipe Guise
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Marco Antônio Máximo Prado
- Robarts Research Institute, Department of Anatomy & Cell Biology and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Vânia Ferreira Prado
- Robarts Research Institute, Department of Anatomy & Cell Biology and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | | | - Carla Maximo Prado
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil; Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; Renal Pathophysiology Laboratory (LIM16), Faculty of Medicine, University of São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
25
|
Polukort SH, Rovatti J, Carlson L, Thompson C, Ser-Dolansky J, Kinney SRM, Schneider SS, Mathias CB. IL-10 Enhances IgE-Mediated Mast Cell Responses and Is Essential for the Development of Experimental Food Allergy in IL-10-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:4865-76. [PMID: 27183617 DOI: 10.4049/jimmunol.1600066] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022]
Abstract
IL-10 is a key pleiotropic cytokine that can both promote and curb Th2-dependent allergic responses. In this study, we demonstrate a novel role for IL-10 in promoting mast cell expansion and the development of IgE-mediated food allergy. Oral OVA challenge in sensitized BALB/c mice resulted in a robust intestinal mast cell response accompanied by allergic diarrhea, mast cell activation, and a predominance of Th2 cytokines, including enhanced IL-10 expression. In contrast, the development of intestinal anaphylaxis, including diarrhea, mast cell activation, and Th2 cytokine production, was significantly attenuated in IL-10(-/-) mice compared with wild-type (WT) controls. IL-10 also directly promoted the expansion, survival, and activation of mast cells; increased FcεRI expression on mast cells; and enhanced the production of mast cell cytokines. IL-10(-/-) mast cells had reduced functional capacity, which could be restored by exogenous IL-10. Similarly, attenuated passive anaphylaxis in IL-10(-/-) mice could be restored by IL-10 administration. The adoptive transfer of WT mast cells restored allergic symptoms in IL-10(-/-) mice, suggesting that the attenuated phenotype observed in these animals is due to a deficiency in IL-10-responding mast cells. Lastly, transfer of WT CD4 T cells also restored allergic diarrhea and intestinal mast cell numbers in IL-10(-/-) mice, suggesting that the regulation of IL-10-mediated intestinal mast cell expansion is T cell dependent. Our observations demonstrate a critical role for IL-10 in driving mucosal mast cell expansion and activation, suggesting that, in its absence, mast cell function is impaired, leading to attenuated food allergy symptoms.
Collapse
Affiliation(s)
- Stephanie H Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Logan Carlson
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Chelsea Thompson
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199; and
| | - Shannon R M Kinney
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199; and Department of Animal and Veterinary Sciences, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119; Department of Animal and Veterinary Sciences, University of Massachusetts at Amherst, Amherst, MA 01003
| |
Collapse
|
26
|
Kawano H, Kayama H, Nakama T, Hashimoto T, Umemoto E, Takeda K. IL-10-producing lung interstitial macrophages prevent neutrophilic asthma. Int Immunol 2016; 28:489-501. [PMID: 26976823 DOI: 10.1093/intimm/dxw012] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/09/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammatory responses contribute to host defense against harmful organisms and allergens, whereas a failure of immune tolerance can cause chronic inflammation including asthma. The lung has several innate myeloid cell subsets. Among these subsets, there are two types of macrophages: alveolar macrophages (AMs) and interstitial macrophages (IMs). However, compared with AMs, the role of IMs in lung homeostasis remains poorly understood. In this study, we characterized AMs and IMs in healthy and inflammatory conditions. Pulmonary IMs constitutively produce the anti-inflammatory cytokine IL-10 through activation of the TLR4/MyD88 pathway in a microbiota-independent manner. In addition to IMs, Foxp3+ Treg cells show persistent IL-10 expression in the lung, with IL-10-producing IMs more prevalent than Foxp3+ Treg cells. IMs, but not Foxp3+ Treg cells, increased IL-10 production in house dust mite (HDM)-challenged mice, a model of human asthma. HDM-challenged Il10 -/- mice exhibited severe lung pathology characterized by neutrophilia compared with that of wild-type mice. In addition, transplantation of wild-type IMs reduced neutrophilic inflammation, goblet cell mucus production and decreased expression of lung IL-13 and Th17-related neutrophil-activating cytokines such as IL-17, GM-CSF, and TNF-α. Together these results demonstrate that IL-10-producing IMs negatively regulate Th2- and Th17-mediated inflammatory responses, helping prevent neutrophilic asthma.
Collapse
Affiliation(s)
- Hideo Kawano
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine and Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Department of Dermatology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine and Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Takekuni Nakama
- Department of Dermatology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Takashi Hashimoto
- Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka 830-0011, Japan
| | - Eiji Umemoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine and Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine and Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
27
|
Tukler Henriksson J, Coursey TG, Corry DB, De Paiva CS, Pflugfelder SC. IL-13 Stimulates Proliferation and Expression of Mucin and Immunomodulatory Genes in Cultured Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci 2015; 56:4186-97. [PMID: 26132778 PMCID: PMC4495812 DOI: 10.1167/iovs.14-15496] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 05/17/2015] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To investigate the effects of IL-13 on goblet cell proliferation, differentiation, and expression of mucin and immunomodulatory genes. METHODS Explants were excised from the conjunctiva of young C57BL/6 mice. Cultures received 200 μL per week of either Keratinocyte media (KSFM) or KSFM supplemented with 10 ng/mL IL-13 and were incubated for 3 (D3), 7 (D7), or 14 (D14) days. Subsequently, cell proliferation was assessed or cultures were immunostained, collected for dot blot, or for reverse transcription (RT) and quantitative real-time PCR (qPCR) or for RT-PCR gene array. RESULTS The cultured conjunctival epithelium expressed goblet cell associated keratin 7 and mucins MUC5AC and MUC2 and when stimulated with IL-13 showed increased proliferation at D3 and D7 (P < 0.05) compared with control. MUC5AC expression was increased in the IL-13-treated group at D3 and D14 (P < 0.05). IL-13-treated cultures showed increased chemokine ligand 26 (CCL26), chloride channel calcium activated channel 3 (CLCA3), fas ligand (FasL), and Relm-β at D7. All conjunctival cultures expressed MUC2, and its expression was decreased at D3 (P < 0.05) and increased at D14 (P < 0.05) with IL-13 treatment. CONCLUSIONS This study demonstrated that conjunctival goblet cells are IL-13 responsive cells that produce factors known to maintain epithelial barrier, stimulate mucin production, and modulate immune response in nonocular mucosa when treated with IL-13. The functional significance of IL-13-stimulated factors remains to be determined.
Collapse
Affiliation(s)
- Johanna Tukler Henriksson
- Department of Ophthalmology and the Ocular Surface Center Baylor College of Medicine, Houston, Texas, United States
| | - Terry G. Coursey
- Department of Ophthalmology and the Ocular Surface Center Baylor College of Medicine, Houston, Texas, United States
| | - David B. Corry
- Departments of Medicine and Pathology & Immunology and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. De Paiva
- Department of Ophthalmology and the Ocular Surface Center Baylor College of Medicine, Houston, Texas, United States
| | - Stephen C. Pflugfelder
- Department of Ophthalmology and the Ocular Surface Center Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
28
|
IL-10 inhibits neuraminidase-activated TGF-β and facilitates Th1 phenotype during early phase of infection. Nat Commun 2015; 6:6374. [DOI: 10.1038/ncomms7374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022] Open
|
29
|
Zdrenghea MT, Makrinioti H, Muresan A, Johnston SL, Stanciu LA. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma. Rev Med Virol 2014; 25:33-49. [PMID: 25430775 PMCID: PMC4316183 DOI: 10.1002/rmv.1817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/25/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10-IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Mihnea T Zdrenghea
- Ion Chiricuta Oncology InstituteCluj-Napoca, Romania
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Heidi Makrinioti
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Adriana Muresan
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Sebastian L Johnston
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Luminita A Stanciu
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
- *
Correspondence to: Dr. L. A. Stanciu, MD, PhD, Airway Disease Infection Section, Imperial College London, London, UK., E-mail:
| |
Collapse
|
30
|
Gilbane AJ, Denton CP, Holmes AM. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther 2014; 15:215. [PMID: 23796020 PMCID: PMC4060542 DOI: 10.1186/ar4230] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scleroderma (systemic sclerosis; SSc) is characterised by fibrosis of the skin and internal organs in the context of autoimmunity and vascular perturbation. Overproduction of extracellular matrix components and loss of specialised epithelial structures are analogous to the process of scar formation after tissue injury. Fibroblasts are the resident cells of connective tissue that become activated at sites of damage and are likely to be important effector cells in SSc. Differentiation into myofibroblasts is a hallmark process, although the mechanisms and cellular origins of this important fibroblastic cell are still unclear. This article reviews fibroblast biology in the context of SSc and highlights the potentially important place of fibroblast effector cells in fibrosis. Moreover, the heterogeneity of fibroblast properties, multiplicity of regulatory pathways and diversity of origin for myofibroblasts may underpin clinical diversity in SSc, and provide novel avenues for targeted therapy.
Collapse
|
31
|
Martínez-Pérez J, Robles-Pérez D, Rojo-Vázquez F, Martínez-Valladares M. Immunological features of LPS from Ochrobactrum intermedium on sheep experimentally infected with Fasciola hepatica. Res Vet Sci 2014; 97:329-32. [DOI: 10.1016/j.rvsc.2014.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/01/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
|
32
|
Attia MY, Saber HM. Role played by T-helper 2 in resetting the cytokine balance in allergic patients. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2014. [DOI: 10.4103/1110-7782.145311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Uncoupling between inflammatory and fibrotic responses to silica: evidence from MyD88 knockout mice. PLoS One 2014; 9:e99383. [PMID: 25050810 PMCID: PMC4106757 DOI: 10.1371/journal.pone.0099383] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 05/14/2014] [Indexed: 12/21/2022] Open
Abstract
The exact implication of innate immunity in granuloma formation and irreversible lung fibrosis remains to be determined. In this study, we examined the lung inflammatory and fibrotic responses to silica in MyD88-knockout (KO) mice. In comparison to wild-type (WT) mice, we found that MyD88-KO animals developed attenuated lung inflammation, neutrophil accumulation and IL-1β release in response to silica. Granuloma formation was also less pronounced in MyD88-KO mice after silica. This limited inflammatory response was not accompanied by a concomitant attenuation of lung collagen accumulation after silica. Histological analyses revealed that while pulmonary fibrosis was localized in granulomas in WT animals, it was diffusely distributed throughout the parenchyma in MyD88-KO mice. Robust collagen accumulation was also observed in mice KO for several other components of innate immunity (IL-1R, IL-1, ASC, NALP3, IL-18R, IL-33R, TRIF, and TLR2-3-4,). We additionally show that pulmonary fibrosis in MyD88-KO mice was associated with the accumulation of pro-fibrotic regulatory T lymphocytes (T regs) and pro-fibrotic cytokine expression (TGF-β, IL-10 and PDGF-B), not with T helper (Th) 17 cell influx. Our findings indicate that the activation of MyD88-related innate immunity is central in the establishment of particle-induced lung inflammatory and granuloma responses. The development of lung fibrosis appears uncoupled from inflammation and may be orchestrated by a T reg-associated pathway.
Collapse
|
34
|
Math1, retinoic acid, and TNF-α synergistically promote the differentiation of mucous cells in mouse middle ear epithelial cells in vitro. Pediatr Res 2013; 74:259-65. [PMID: 23783432 PMCID: PMC3766487 DOI: 10.1038/pr.2013.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/03/2012] [Indexed: 12/02/2022]
Abstract
BACKGROUND A key issue in otitis media (OM) is mucous cell metaplasia in the middle ear mucosa, a condition for hyperproduction of mucus in the middle ear mucosa and development of chronic OM. However, little is known about the driving force for the differentiation of mucous cells in OM. METHODS Mouse middle ear epithelial cells (mMEECs) were used in this study to test whether Math1, a critical transcription factor for the development of mucous cells in the intestine, synergizes with inflammatory cytokines (tumor necrosis factor-α (TNF-α)) and other epithelial differentiation factors (retinoid acid (RA)) to induce the differentiation of mMEECs into mucus-like cells in vitro. Simultaneously, Math1 was transduced into the middle ear mucosa in order to observe whether it induces mucous cell hyperplasia in vivo. RESULTS Math1 significantly increased the mucus cell numbers in the middle ear mucosa of mice. Math1, in the presence of TNF-α and epithelial differentiation factor RA, synergistically promoted the differentiation of mMEECs into mucus-like cells through upregulation of mucins and their chaperones: trefoil factors in vitro. RA treatment for 12 h activated Math1, although RA alone had very limited effects on mucus-like cell differentiation. CONCLUSION Math1 plays a critical role in the pathogenesis of OM by induction of mucous cell differentiation in the presence of TNF-α and RA.
Collapse
|
35
|
Paats MS, Bergen IM, Bakker M, Hoek RAS, Nietzman-Lammering KJ, Hoogsteden HC, Hendriks RW, van der Eerden MM. Cytokines in nasal lavages and plasma and their correlation with clinical parameters in cystic fibrosis. J Cyst Fibros 2013; 12:623-9. [PMID: 23751406 DOI: 10.1016/j.jcf.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND Because persistent inflammation plays a dominant role in cystic fibrosis (CF), we assessed systemic and local upper airway responses during and after pulmonary exacerbation. METHODS We followed a cohort of Pseudomonas aeruginosa-infected adult CF patients (n=16) over time in pulmonary exacerbation and in stable disease. Interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-17A, IL-22, interferon-γ and TNFα levels were measured in sputum, nasal lavages and plasma. RESULTS In CF patients IL-6 and IL-10 levels in nasal lavages were significantly increased in exacerbation compared with stable disease. Systemic IL-6 significantly correlated with CRP levels and FEV1 (%predicted), independently of disease status. Systemic IL-10 also correlated significantly with CRP and FEV1 (%predicted), but only in exacerbation. Other cytokines tested did not discriminate between exacerbation and stable disease. CONCLUSIONS Determination of IL-6 and IL-10 in nasal lavages may provide a minimally invasive tool in the assessment of an exacerbation in CF.
Collapse
Affiliation(s)
- Marthe S Paats
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ivanova V, Garbuzenko OB, Reuhl KR, Reimer DC, Pozharov VP, Minko T. Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2. Eur J Pharm Biopharm 2013; 84:335-44. [PMID: 23228437 PMCID: PMC3660419 DOI: 10.1016/j.ejpb.2012.11.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal form of interstitial lung disease. We hypothesized that the local pulmonary delivery of prostaglandin E2 (PGE2) by liposomes can be used for the effective treatment of IPF. To test this hypothesis, we used a murine model of bleomycin-induced IPF to evaluate liposomal delivery of PGE2 topically to the lungs. Animal survival, body weight, hydroxyproline content in the lungs, lung histology, mRNA, and protein expression were studied. After inhalation delivery, liposomes accumulated predominately in the lungs. In contrast, intravenous administration led to the accumulation of liposomes mainly in kidney, liver, and spleen. Liposomal PGE2 prevented the disturbances in the expression of many genes associated with the development of IPF, substantially restricted inflammation and fibrotic injury in the lung tissues, prevented decrease in body weight, limited hydroxyproline accumulation in the lungs, and virtually eliminated mortality of animals after intratracheal instillation of bleomycin. In summary, our data provide evidence that pulmonary fibrosis can be effectively treated by the inhalation administration of liposomal form of PGE2 into the lungs. The results of the present investigations make the liposomal form of PGE2 an attractive drug for the effective inhalation treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Vera Ivanova
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
| | - Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
| | - Kenneth R. Reuhl
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ, USA
| | - David C. Reimer
- Laboratory Animal Services, Rutgers, The State University of new Jersey, D 108 Nelson Biological Labs, Busch Campus, Piscataway, NJ, USA
| | - Vitaly P. Pozharov
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ, USA
| |
Collapse
|
37
|
Chang H, Ho CC, Yang CS, Chang WH, Tsai MH, Tsai HT, Lin P. Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. ACTA ACUST UNITED AC 2013; 65:887-96. [PMID: 23352990 DOI: 10.1016/j.etp.2013.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/21/2012] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
Abstract
Zinc oxide nanoparticles (ZnONP) have great potential for medical applications. However, ZnONP is reported to induce acute lung inflammation, which limits its application in humans. We designed in vivo and in vitro studies to clarify ZnONP inflammation and its associated molecular signals. ZnONP with a single dose of 80 μg/30 μl was instilled into the tracheas of mice sacrificed at days 2, 7, 14, and 28 after instillation. Bronchoalveolar lavage fluid showed increased neutrophils and macrophages after treatment. Lung pathology showed a mixed inflammatory infiltrate of neutrophils, lymphocytes, and macrophages primarily in the bronchioles and peribronchiolar areas. Proinflammatory gene expression of TNF-α, IL-6, CXCL1, and MCP-1 was increased at day 2 and decreased after 7 days. The lung pathology resolved at day 28, without fibrosis. It remains unclear whether this acute lung inflammation was caused by ZnONP themselves or Zn(2+) iron released from the nanoparticles. In vitro studies confirming the results of in vivo studies showed increased expression of proinflammatory genes in both MLE12 cells (mouse lung epithelial cells) and RAW264.7 cells (mouse macrophages) with either ZnONP or Zn(NO₃)₂ treatment; notably, increased levels of proinflammatory genes were obviously higher in cells treated with ZnONP than in cells treated with Zn(NO₃)₂ at the same molarity dose. TNF-α and MCP-1 were induced only in MLE12 cells. MyD88, an adaptor protein for most Toll-like receptors (TLR) signaling pathways, initiated the ZnONP or Zn(NO₃)₂-induced lung inflammation. Silencing MyD88 expression with siRNA significantly reduced ZnONP or Zn(NO₃)₂-induced proinflammatory gene expression in MLE12 and RAW264.7 cells. Single-dose exposure to ZnONP produced the short-term lung inflammation via a MyD88-dependent TLR pathway. These data suggest that although both ZnONP and zinc ion might participate in the inflammatory reactions, ZnONP more effectively induced MyD88-dependent proinflammatory cytokines than zinc ion in lung epithelial cells.
Collapse
Affiliation(s)
- Han Chang
- Department of Pathology, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
38
|
Iacob S, Cicinnati VR, Dechêne A, Lindemann M, Heinemann FM, Rebmann V, Ferencik S, Sotiropoulos GC, Popescu I, Horn PA, Gerken G, Paul A, Beckebaum S. Genetic, immunological and clinical risk factors for biliary strictures following liver transplantation. Liver Int 2012; 32:1253-61. [PMID: 22550960 DOI: 10.1111/j.1478-3231.2012.02810.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 03/19/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Biliary strictures after liver transplantation (LT) are a major cause of morbidity and reduced graft survival. AIMS The purpose of this study was to investigate genetic, immunological and clinical risk factors for the occurrence of post-LT ischaemic type biliary lesions (ITBLs) and biliary anastomotic strictures (AS). METHODS Clinical and laboratory data, chemokine receptor (CCR) genotypes, chemotactic cytokines and anti-major-histocompatibility complex antibodies in serum were investigated in 162 LT patients. RESULTS In the univariate analysis, older donor and recipient age, partial LT, high peak aspartate aminotransaminase (AST) levels and CC chemokine receptor 5 delta32 loss-of-function mutation (CCR5Δ32) were associated with ITBL, whereas LT for acute liver failure (ALF), ABO-compatible non-identical LT, presence of donor-specific anti-human leucocyte antigen (HLA) class II antibodies and fractalkine receptor (CX3CR1)-249II allele were associated with AS. In the multivariate analysis, CCR5Δ32 was an independent risk factor for ITBL, whereas LT for ALF, ABO-compatible non-identical LT, and CX3CR1-249II allele remained predictive for AS. Serum levels of interferon-gamma and interleukin (IL)-6 as well as IL-10 were significantly increased in patients with biliary strictures. CONCLUSION Specific chemokine receptor polymorphisms of the recipient are associated with development of post-LT biliary strictures. Altered cytokine profile may contribute to enhanced fibrotic tissue remodelling and biliary stricture formation. Screening of anti-HLA antibodies might be useful for early identification of at-risk patients who could benefit from closer surveillance and tailored immunosuppressive regimen. Our findings may have relevance for prediction and management of post-LT biliary strictures.
Collapse
Affiliation(s)
- Speranta Iacob
- Department of Gastroenterology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kang MJ, Choi JM, Kim BH, Lee CM, Cho WK, Choe G, Kim DH, Lee CG, Elias JA. IL-18 induces emphysema and airway and vascular remodeling via IFN-γ, IL-17A, and IL-13. Am J Respir Crit Care Med 2012; 185:1205-17. [PMID: 22383501 PMCID: PMC3373071 DOI: 10.1164/rccm.201108-1545oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/20/2012] [Indexed: 01/27/2023] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, alveolar destruction, and airway and vascular remodeling. However, the mechanisms that lead to these diverse alterations have not been defined. OBJECTIVES We hypothesized that IL-18 plays a central role in the pathogenesis of these lesions. METHODS We generated and characterized lung-specific, inducible IL-18 transgenic mice. MEASUREMENTS AND MAIN RESULTS Here we demonstrate that the expression of IL-18 in the mature murine lung induces inflammation that is associated with the accumulation of CD4(+), CD8(+), CD19(+), and NK1.1(+) cells; emphysema; mucus metaplasia; airway fibrosis; vascular remodeling; and right ventricle cardiac hypertrophy. We also demonstrate that IL-18 induces type 1, type 2, and type 17 cytokines with IFN-γ-inhibiting macrophage, lymphocyte, and eosinophil accumulation while stimulating alveolar destruction and genes associated with cell cytotoxicity and IL-13 and IL-17A inducing mucus metaplasia, airway fibrosis, and vascular remodeling. We also highlight interactions between these responses with IL-18 inducing IL-13 via an IL-17A-dependent mechanism and the type 1 and type17/type 2 responses counterregulating each another. CONCLUSIONS These studies define the spectrum of inflammatory, parenchymal, airway, and vascular alterations that are induced by pulmonary IL-18; highlight the similarities between these responses and the lesions in COPD; and define the selective roles that type 1, type 2, and type 17 responses play in the generation of IL-18-induced pathologies.
Collapse
Affiliation(s)
- Min-Jong Kang
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Je-Min Choi
- Department of Life Science, Research Institute for Natural Sciences, and
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Bo Hye Kim
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chang-Min Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Won-Kyung Cho
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gina Choe
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Do-Hyun Kim
- Department of Life Science, Research Institute for Natural Sciences, and
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jack A. Elias
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
40
|
Mucin production and mucous cell metaplasia in otitis media. Int J Otolaryngol 2012; 2012:745325. [PMID: 22685463 PMCID: PMC3364788 DOI: 10.1155/2012/745325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/21/2012] [Indexed: 01/24/2023] Open
Abstract
Otitis media (OM) with mucoid effusion, characterized by mucous cell metaplasia/hyperplasia in the middle ear cleft and thick fluid accumulation in the middle ear cavity, is a subtype of OM which frequently leads to chronic OM in young children. Multiple factors are involved in the developmental process of OM with mucoid effusion, especially disorders of mucin production resulting from middle ear bacterial infection and Eustachian tube dysfunction. In this review, we will focus on several aspects of this disorder by analyzing the cellular and molecular events such as mucin production and mucous cell differentiation in the middle ear mucosa with OM. In addition, infectious agents, mucin production triggers, and relevant signaling pathways will be discussed.
Collapse
|
41
|
Schneider D, Hong JY, Popova AP, Bowman ER, Linn MJ, McLean AM, Zhao Y, Sonstein J, Bentley JK, Weinberg JB, Lukacs NW, Curtis JL, Sajjan US, Hershenson MB. Neonatal rhinovirus infection induces mucous metaplasia and airways hyperresponsiveness. THE JOURNAL OF IMMUNOLOGY 2012; 188:2894-904. [PMID: 22331068 DOI: 10.4049/jimmunol.1101391] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies link early rhinovirus (RV) infections to later asthma development. We hypothesized that neonatal RV infection leads to an IL-13-driven asthma-like phenotype in mice. BALB/c mice were inoculated with RV1B or sham on day 7 of life. Viral RNA persisted in the neonatal lung up to 7 d postinfection. Within this time frame, IFN-α, -β, and -γ peaked 1 d postinfection, whereas IFN-λ levels persisted. Next, we examined mice on day 35 of life, 28 d after initial infection. Compared with sham-treated controls, virus-inoculated mice demonstrated airways hyperresponsiveness. Lungs from RV-infected mice showed increases in several immune cell populations, as well as the percentages of CD4-positive T cells expressing IFN-γ and of NKp46/CD335(+), TCR-β(+) cells expressing IL-13. Periodic acid-Schiff and immunohistochemical staining revealed mucous cell metaplasia and muc5AC expression in RV1B- but not sham-inoculated lungs. Mucous metaplasia was accompanied by induction of gob-5, MUC5AC, MUC5B, and IL-13 mRNA. By comparison, adult mice infected with RV1B showed no change in IL-13 expression, mucus production, or airways responsiveness 28 d postinfection. Intraperitoneal administration of anti-IL-13 neutralizing Ab attenuated RV-induced mucous metaplasia and methacholine responses, and IL-4R null mice failed to show RV-induced mucous metaplasia. Finally, neonatal RV increased the inflammatory response to subsequent allergic sensitization and challenge. We conclude that neonatal RV1B infection leads to persistent airways inflammation, mucous metaplasia, and hyperresponsiveness, which are mediated, at least in part, by IL-13.
Collapse
Affiliation(s)
- Dina Schneider
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109-5688, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mentink-Kane MM, Cheever AW, Wilson MS, Madala SK, Beers LM, Ramalingam TR, A.Wynn T. Accelerated and progressive and lethal liver fibrosis in mice that lack interleukin (IL)-10, IL-12p40, and IL-13Rα2. Gastroenterology 2011; 141:2200-9. [PMID: 21864478 PMCID: PMC3221932 DOI: 10.1053/j.gastro.2011.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 07/29/2011] [Accepted: 08/08/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Progressive fibrosis contributes to the morbidity of several chronic diseases; it typically develops slowly, so the mechanisms that control its progression and resolution have been difficult to model. The proteins interleukin (IL)-10, IL-12p40, and IL-13Rα2 regulate hepatic fibrosis following infection with the helminth parasite Schistosoma mansoni. We examined whether these mediators interact to slow the progression of hepatic fibrosis in mice with schistosomiasis. METHODS IL-10(-/-), IL-12/23(p40)(-/-), and IL-13Rα2(-/-) mice were crossed to generate triple knockout (TKO) mice. We studied these mice to determine whether the simultaneous deletion of these 3 negative regulators of the immune response accelerated mortality from liver fibrosis following infection with S mansoni. RESULTS Induction of inflammation by S mansoni, liver fibrosis, and mortality increased greatly in TKO mice compared with wild-type mice; 100% of the TKO mice died by 10 weeks after infection. Morbidity and mortality were associated with the development of portal hypertension, hepatosplenomegaly, gastrointestinal bleeding, ascites, thrombocytopenia, esophageal and gastric varices, anemia, and increased levels of liver enzymes, all features of advanced liver disease. IL-10, IL-12p40, and IL-13Rα2 reduced the production and activity of the profibrotic cytokine IL-13. A neutralizing antibody against IL-13 reduced the morbidity and mortality of the TKO mice following S mansoni infection. CONCLUSIONS IL-10, IL-12p40, and IL-13Rα2 act cooperatively to suppress liver fibrosis in mice following infection with S mansoni. This model rapidly reproduces many of the complications observed in patients with advanced cirrhosis, so it might be used to evaluate the efficacy of antifibrotic reagents being developed for schistosomiasis or other fibrotic diseases associated with a T-helper 2 cell-mediated immune response.
Collapse
Affiliation(s)
- Margaret M. Mentink-Kane
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Mark S. Wilson
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Satish K. Madala
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lara Megan Beers
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thirumalai R. Ramalingam
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas A.Wynn
- Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Yoshizaki A, Yanaba K, Ogawa A, Asano Y, Kadono T, Sato S. Immunization with DNA topoisomerase I and Freund's complete adjuvant induces skin and lung fibrosis and autoimmunity via interleukin-6 signaling. ACTA ACUST UNITED AC 2011; 63:3575-85. [DOI: 10.1002/art.30539] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Lee BJ, Moon HG, Shin TS, Jeon SG, Lee EY, Gho YS, Lee CG, Zhu Z, Elias JA, Kim YK. Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-γ. Exp Mol Med 2011; 43:169-78. [PMID: 21297377 DOI: 10.3858/emm.2011.43.4.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent clinical evidence indicates that the non-eosinophilic subtype of severe asthma is characterized by fixed airway obstruction, which may be related to emphysema. Transgenic studies have demonstrated that high levels of IFN-γ in the airways induce emphysema. Fibroblast growth factor 2 (FGF2), which is the downstream mediator of TGF-β, is important in wound healing. We investigated the role of FGF2 in IFN-γ-induced emphysema and the therapeutic effects of recombinant FGF2 in the prevention of emphysema in a severe non-eosinophilic asthma model. To evaluate the role of FGF2 in IFN-γ-induced emphysema, lung targeted IFN-γ transgenic mice were cross-bred with FGF2-deficient mice. A severe non-eosinophilic asthma model was generated by airway application of LPS-containing allergens twice a week for 4 weeks. To evaluate protective effects of FGF2, recombinant FGF2 (10 μg) was injected subcutaneously during allergen challenge in the severe asthma model. We found that non-eosinophilic inflammation and emphysema induced by transgenic overexpression of IFN-γ in the airways were aggravated by the absence of FGF2. Airway challenge with LPS-containing allergens induced more inflammation in mice sensitized with LPS-containing allergens compared to challenge with allergens alone. In addition, LPS-induced lung inflammation and emphysema depended on IFN-γ but not on IL-13. Interestingly, emphysema in the severe asthma model was significantly inhibited by treatment with recombinant FGF2 during allergen challenge, whereas lung inflammation was unaffected. Therefore, our present data suggest that FGF2 may help protect against IFN-γ-induced emphysema, and that recombinant FGF2 may help lessen the severity of emphysema.
Collapse
Affiliation(s)
- Byung-Jae Lee
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lo Re S, Lecocq M, Uwambayinema F, Yakoub Y, Delos M, Demoulin JB, Lucas S, Sparwasser T, Renauld JC, Lison D, Huaux F. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. Am J Respir Crit Care Med 2011; 184:1270-81. [PMID: 21868503 DOI: 10.1164/rccm.201103-0516oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE There is evidence that CD4(+) effector T lymphocytes (T eff) participate in the development of lung fibrosis, but the role of their CD4(+) regulatory T-cell (T reg) counterparts remains to be determined. OBJECTIVES To elucidate the contribution of T reg cells in a mouse model of lung fibrosis induced by silica (SiO(2)) particles. METHODS Lung T reg and T eff cells purified from SiO(2)-treated Foxp3-GFP transgenic mice were cocultured with naive lung fibroblasts or transferred to the lungs of healthy mice. DEREG mice, which express the diphtheria toxin receptor under the control of the foxp3 gene, were used to deplete T reg cells during fibrogenesis. MEASUREMENTS AND MAIN RESULTS CD4(+) Foxp3(+) T reg cells were persistently recruited in the lungs in response to SiO(2). T reg accumulation paralleled the establishment of pulmonary immunosuppression and fibrosis. T reg cells highly expressed platelet-derived growth factor (PDGF)-B via a TGF-β autocrine signaling pathway, directly stimulated fibroblast proliferation in vitro, and increased lung collagen deposition upon transfer in the lung of naive mice. The direct profibrotic effects of T reg cells were abolished by the inhibitor of the PDGF-B/TGF-β signaling pathway, imatinib mesylate. Neutralization of T reg-immunosuppressive activity resulted in enhanced accumulation of T eff cells and IL-4-driven pulmonary fibrogenesis, further demonstrating that T reg cells control T eff cell functions during inflammatory fibrosis. CONCLUSIONS Our study indicates that T reg cells contribute to lung fibrosis by stimulating fibroblasts through the secretion of PDGF-B in noninflammatory conditions and regulate detrimental T eff cell activities during inflammation-related fibrosis.
Collapse
Affiliation(s)
- Sandra Lo Re
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rabolli V, Lo Re S, Uwambayinema F, Yakoub Y, Lison D, Huaux F. Lung fibrosis induced by crystalline silica particles is uncoupled from lung inflammation in NMRI mice. Toxicol Lett 2011; 203:127-34. [PMID: 21414392 DOI: 10.1016/j.toxlet.2011.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/11/2022]
Abstract
Previous studies in rats have suggested a causal relationship between progressive pulmonary inflammation and lung fibrosis induced by crystalline silica particles. We report here that, in NMRI mice, the lung response to silica particles is accompanied by a mild and non progressive pulmonary inflammation which is dispensable for the development of lung fibrosis. We found that glucocorticoid (dexamethasone) dramatically reduced lung injury, cellular inflammation and pro-inflammatory cytokine expression (TNF-α, IL-1β and KC) but had no significant effect on silica-induced lung fibrosis and expression of the fibrogenic and suppressive cytokines TGF-β and IL-10 in mice. Other anti-inflammatory molecules such as the COX inhibitor piroxicam or the phosphodiesterase 5 inhibitor sildenafil also reduced lung inflammation without modifying collagen, TGF-β or IL-10 lung content. Our findings indicate that the development of lung fibrosis in silica-treated NMRI mice is not driven by inflammatory lung responses and suggest that suppressive cytokines may represent critical fibrotic factors and potential therapeutic targets in silicosis.
Collapse
Affiliation(s)
- Virginie Rabolli
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
47
|
Antosova M, Strapkova A, Plevkova J. Bronchial hyperreactivity: pathogenesis and treatment options. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ojmip.2011.13007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Sun L, Louie MC, Vannella KM, Wilke CA, LeVine AM, Moore BB, Shanley TP. New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis. Am J Physiol Lung Cell Mol Physiol 2010; 300:L341-53. [PMID: 21131395 DOI: 10.1152/ajplung.00122.2010] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IL-10 is most commonly recognized as an anti-inflammatory cytokine possessing immunosuppressive effects necessary for regulated resolution of proinflammation. However, its role in the development of fibrosis during inflammatory resolution has not been clear. Few prior studies have linked IL-10 with the inhibition of fibrosis principally on the basis of regulating inflammation thought to be driving fibroproliferation. In contrast, in a model of long-term overexpression of IL-10, we observed marked induction of lung fibrosis in mice. The total cell number retrieved by bronchoalveolar lavage (BAL) increased 10-fold in the IL-10 overexpression (IL-10 OE) mice, with significant infiltration of T and B lymphocytes and collagen-producing cells. The presence of increased fibrocytes, isolated from collagenase-digested lungs, was identified by flow cytometry using dual staining of CD45 and collagen 1. Quantitative PCR analysis on an array of chemokine/chemokine receptor genes showed that receptor CCR2 and its ligand, CCL2, were highly upregulated in IL-10 OE mice, suggesting that IL-10-induced fibrocyte recruitment was CCL2/CCR2 specific. Given the prior association of alternatively activated (M(2)) macrophages with development of fibrosis in other disease states, we also examined the effect of IL-10 OE on the M(2) macrophage axis. We observed significantly increased numbers of M(2) macrophages in both BAL and whole lung tissue from the IL-10 OE mice. Administration of rabbit anti-CCL2 antiserum to IL-10 OE mice for three consecutive weeks significantly decreased fibrosis as evidenced by lung hydroxyproline content, compared with mice that received preimmune rabbit serum. These results indicate that overexpression of IL-10 induces fibrosis, in part, by fibrocyte recruitment and M(2) macrophage activation, and likely in a CCL2/CCR2 axis.
Collapse
Affiliation(s)
- Lei Sun
- Division of Critical Care Medicine, C.S. Mott Children’s Hospital, Department of Pediatrics and Communicable Disease, Univ. of Michigan Medical School, Ann Arbor, 48109, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Dela Cruz CS, Kang MJ, Cho WK, Lee CG. Transgenic modelling of cytokine polarization in the lung. Immunology 2010; 132:9-17. [PMID: 21091906 DOI: 10.1111/j.1365-2567.2010.03376.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The lung is one of the commonest sites of exposure to environmental allergen or pathogen, so the expression of a variety of cytokines in the lung is dynamically regulated by inflammatory or structural cells in the lung. In the last decades, characterization of the local lung cytokine milieu in allergic or injury models has identified a collective role of certain cytokines, such as type 1 or type 2 cytokines, driving polarized inflammatory and tissue phenotypes. With the development of transgenic mouse modelling systems, the effector function of individual cytokine and the pathophysiological consequences of cytokine polarization in the lung have been effectively evaluated. Here, we present an overview of the transgenic systems currently used to assess the biological function of cytokine or other mediators in the lung. We discuss the inflammatory and tissue phenotypes detected in the lungs of transgenic mice over-expressing representative T helper type 1 (interferon-γ, interleukin-12), T helper type 2 (interleukins -4, -5, -9, -10 and -13), and T helper type 17 cytokines. The effects of genetic modification of cytokine receptors or transcriptional factors such as GATA-3 and T-bet in pulmonary inflammation and remodelling tissue responses are also discussed because these transcription factors are regarded as essential regulators of cytokine polarization. Finally, we discuss the limitations and future application of transgenic approaches in the studies of human lung diseases characterized by cytokine polarization.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
50
|
Stoolman JS, Vannella KM, Coomes SM, Wilke CA, Sisson TH, Toews GB, Moore BB. Latent infection by γherpesvirus stimulates profibrotic mediator release from multiple cell types. Am J Physiol Lung Cell Mol Physiol 2010; 300:L274-85. [PMID: 21036917 DOI: 10.1152/ajplung.00028.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although γherpesvirus infections are associated with enhanced lung fibrosis in both clinical and animal studies, there is limited understanding about fibrotic effects of γherpesviruses on cell types present in the lung, particularly during latent infection. Wild-type mice were intranasally infected with a murine γherpesvirus (γHV-68) or mock-infected with saline. Twenty-eight days postinfection (dpi), ∼14 days following clearance of the lytic infection, alveolar macrophages (AMs), mesenchymal cells, and CD19-enriched cell populations from the lung and spleen express M(3) and/or glycoprotein B (gB) viral mRNA and harbor viral genome. AMs from infected mice express more transforming growth factor (TGF)-β(1), CCL2, CCL12, TNF-α, and IFN-γ than AMs from mock-infected mice. Mesenchymal cells express more total TGF-β(1), CCL12, and TNF-α than mesenchymal cells from mock-infected mice. Lung and spleen CD19-enriched cells express more total TGF-β(1) 28 dpi compared with controls. The CD19-negative fraction of the spleen overexpresses TGF-β(1) and harbors viral genome, but this likely represents infection of monocytes. Purified T cells from the lung harbor almost no viral genome. Purified T cells overexpress IL-10 but not TGF-β(1). Intracellular cytokine staining demonstrated that lung T cells at 28 dpi produce IFN-γ but not IL-4. Thus infection with a murine γherpesvirus is sufficient to upregulate profibrotic and proinflammatory factors in a variety of lung resident and circulating cell types 28 dpi. Our results provide new information about possible contributions of these cells to fibrogenesis in the lungs of individuals harboring a γherpesvirus infection and may help explain why γHV-68 infection can augment or exacerbate fibrotic responses in mice.
Collapse
Affiliation(s)
- Joshua S Stoolman
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | | | |
Collapse
|