1
|
Considine MJ, Foyer CH. Redox regulation of meristem quiescence: outside/in. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6037-6046. [PMID: 38676562 PMCID: PMC11480653 DOI: 10.1093/jxb/erae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 04/29/2024]
Abstract
Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimizing DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (O2·-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest that ROS are a critical component of the feedback loops that control stem cell identity and fate, and suggest that the ROS/hypoxia interface is an important 'outside/in' positional cue for plant cells, particularly in meristems.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, and the School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- The Department of Primary Industries and Regional Development, Perth, Western Australia 6000, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
2
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
3
|
Wei X, Zhu Y, Xie W, Ren W, Zhang Y, Zhang H, Dai S, Huang CF. H2O2 negatively regulates aluminum resistance via oxidation and degradation of the transcription factor STOP1. THE PLANT CELL 2024; 36:688-708. [PMID: 37936326 PMCID: PMC10896299 DOI: 10.1093/plcell/koad281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Aluminum (Al) stress triggers the accumulation of hydrogen peroxide (H2O2) in roots. However, whether H2O2 plays a regulatory role in aluminum resistance remains unclear. In this study, we show that H2O2 plays a crucial role in regulation of Al resistance, which is modulated by the mitochondrion-localized pentatricopeptide repeat protein REGULATION OF ALMT1 EXPRESSION 6 (RAE6). Mutation in RAE6 impairs the activity of complex I of the mitochondrial electron transport chain, resulting in the accumulation of H2O2 and increased sensitivity to Al. Our results suggest that higher H2O2 concentrations promote the oxidation of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1), an essential transcription factor that promotes Al resistance, thereby promoting its degradation by enhancing the interaction between STOP1 and the F-box protein RAE1. Conversely, decreasing H2O2 levels or blocking the oxidation of STOP1 leads to greater STOP1 stability and increased Al resistance. Moreover, we show that the thioredoxin TRX1 interacts with STOP1 to catalyze its chemical reduction. Thus, our results highlight the importance of H2O2 in Al resistance and regulation of STOP1 stability in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Xiang Wei
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhu
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenxiang Xie
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weiwei Ren
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yang Zhang
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Fuchs P, Feixes-Prats E, Arruda P, Feitosa-Araújo E, Fernie AR, Grefen C, Lichtenauer S, Linka N, de Godoy Maia I, Meyer AJ, Schilasky S, Sweetlove LJ, Wege S, Weber APM, Millar AH, Keech O, Florez-Sarasa I, Barreto P, Schwarzländer M. PLANT UNCOUPLING MITOCHONDRIAL PROTEIN 2 localizes to the Golgi. PLANT PHYSIOLOGY 2024; 194:623-628. [PMID: 37820040 DOI: 10.1093/plphys/kiad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 10/13/2023]
Abstract
In contrast to its close homolog PLANT UNCOUPLING MITOCHONDRIAL PROTEIN 1 (UCP1), which is an abundant carrier protein in the mitochondria, UCP2 localizes to the Golgi.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elisenda Feixes-Prats
- Centre for Research in Agricultural Genomics (CRAG), Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875 Campinas, Brazil
| | - Elias Feitosa-Araújo
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, D-14476 Postdam-Golm, Germany
| | - Christopher Grefen
- Institute of Molecular and Cellular Botany, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Ivan de Godoy Maia
- Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, Brazil
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sören Schilasky
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Lee J Sweetlove
- Department of Biology, South Parks Road, University of Oxford, OX1 3RB Oxford, UK
| | - Stefanie Wege
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 6009 Perth, Western Australia, Australia
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG), Campus UAB Bellaterra, 08193 Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Pedro Barreto
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| |
Collapse
|
5
|
Lin YC, Lin YC, Tsai ML, Liao WT, Hung CH. TSLP regulates mitochondrial ROS-induced mitophagy via histone modification in human monocytes. Cell Biosci 2022; 12:32. [PMID: 35292112 PMCID: PMC8925056 DOI: 10.1186/s13578-022-00767-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) is a Th2-like cytokine involved in asthma pathogenesis. Excessive reactive oxygen species (ROS) production can lead to airway inflammation, hyperresponsiveness and remodeling. Mitophagy, followed by ROS production, is the selective degradation of mitochondria by autophagy and often occurs in defective mitochondria. In the present study, we aimed to examine the effects of TSLP on ROS production and mitophagy in human monocytes and to investigate the underlying mechanisms, including epigenetic regulation. Results TSLP induced ROS generation, and the effects were reversed by the antioxidant N-acetylcysteine (NAC) in THP-1 cells. Transmission electron microscopy images showed donut-shaped mitochondria that lost the cristae ultrastructure after TSLP stimulation. A decrease in mitochondrial membrane potential, decreased MTCO2 expression, and increased mitochondrial DNA release after TSLP stimulation were found. TSLP enhanced mitochondrial complex I and complex II/III activity and increased mitochondrial copy numbers and the expression of the complex II SHDA gene. TSLP-induced SHDA expression was inhibited by the histone acetyltransferase inhibitor anacardic acid (AA) and the histone methyltransferase inhibitor methylthioadenosine (MTA), and chromatin immunoprecipitation assays revealed that TSLP enhanced H3 acetylation, H4 acetylation, and H3K4 and H3K36 trimethylation in the SHDA promoter. Confocal laser microscopy showed that TSLP treatment increased the signals of the mitophagy-related proteins PINK1, LC3, phospho-parkin and phospho-ubiquitin, and pretreatment with AA and MTA reduced TSLP-induced PINK1 and LC3 accumulation in mitochondria. Western blot analysis showed that TSLP significantly increased phosphor-AMPK signal intensity, and the effects were inhibited by the antioxidant NAC. The increased signal intensities of the mitophagy-related proteins PINK1, Parkin and LC3 I/II were decreased by dorsomorphin, an AMPK inhibitor. TSLP decreased M1-related cytokine CXCL-10 production and increased M2-related cytokine CCL-1 and CCL-22 production, which was suppressed by the mitophagy inhibitor Mdivi-1 and PINK1 gene knockdown. Conclusions Epithelial-derived TSLP regulates ROS production and mitophagy through AMPK activation and histone modification and alters M1/M2 chemokine expression in human monocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00767-w.
Collapse
|
6
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
7
|
Isolation of Highly Purified, Intact, and Functional Mitochondria from Potato Tubers Using a Two-in-One Percoll Density Gradient. Methods Mol Biol 2021. [PMID: 34545484 DOI: 10.1007/978-1-0716-1653-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The isolation of mitochondria from potato tubers (Solanum tuberosum L.) is described, but the methodology can easily be adapted to other storage tissues. After homogenization of the tissue, filtration and differential centrifugation, the key step is a Percoll density gradient centrifugation. The Percoll gradient contains two parts: a bottom part containing Percoll in 0.3 M sucrose, and a slightly less dense top part containing Percoll in 0.3 M mannitol. After centrifugation, a density gradient is formed that is almost linear in the central part, and this is where the band containing the purified intact mitochondria is formed. This method makes it possible to process large amounts of plant material (2-6 kg) and saves at least 1.5 h on the preparation time compared to methods where two consecutive purification methods are used. Nonetheless, it yields large amounts of mitochondria (50-125 mg protein) of very high purity, intactness and functionality.
Collapse
|
8
|
Gandin A, Dizengremel P, Jolivet Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:202-210. [PMID: 33385703 DOI: 10.1016/j.plaphy.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 05/27/2023]
Abstract
Ozone is a secondary air pollutant, which causes oxidative stress in plants by producing reactive oxygen species (ROS) starting by an external attack of leaf apoplast. ROS have a dual role, acting as signaling molecules, regulating different physiological processes and response to stress, but also inducing oxidative damage. The production of ROS in plant cells is compartmented and regulated by scavengers and specific enzyme pathways. Chronic doses of ozone are known to trigger an important increase of the respiratory process while decreasing photosynthesis. Mitochondria, which normally operate with usual levels of intracellular ROS, would have to play a prominent role to cope with an enhanced ozone-derived ROS production. It is thus needed to compile the available literature on the effects of ozone on mitochondria to precise their strategy facing oxidative stress. An overview of the mitochondrial fate in three steps is proposed, i) starting with the initial responses of the mitochondria for alleviating the overproduction of ROS by the enhancement of existing antioxidant metabolism and adjustments of the electron transport chain, ii) followed by the setting up of detoxifying processes through exchanges between mitochondria and the cell, and iii) ending by an accelerated senescence initiated by mitochondrial membrane permeability and leading to programmed cell death.
Collapse
Affiliation(s)
- Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| | - Pierre Dizengremel
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France.
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| |
Collapse
|
9
|
Grieco JP, Allen ME, Perry JB, Wang Y, Song Y, Rohani A, Compton SLE, Smyth JW, Swami NS, Brown DA, Schmelz EM. Progression-Mediated Changes in Mitochondrial Morphology Promotes Adaptation to Hypoxic Peritoneal Conditions in Serous Ovarian Cancer. Front Oncol 2021; 10:600113. [PMID: 33520711 PMCID: PMC7838066 DOI: 10.3389/fonc.2020.600113] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer in women, with a survival rate of less than 30% when the cancer has spread throughout the peritoneal cavity. Aggregation of cancer cells increases their viability and metastatic potential; however, there are limited studies that correlate these functional changes to specific phenotypic alterations. In this study, we investigated changes in mitochondrial morphology and dynamics during malignant transition using our MOSE cell model for progressive serous ovarian cancer. Mitochondrial morphology was changed with increasing malignancy from a filamentous network to single, enlarged organelles due to an imbalance of mitochondrial dynamic proteins (fusion: MFN1/OPA1, fission: DRP1/FIS1). These phenotypic alterations aided the adaptation to hypoxia through the promotion of autophagy and were accompanied by changes in the mitochondrial ultrastructure, mitochondrial membrane potential, and the regulation of reactive oxygen species (ROS) levels. The tumor-initiating cells increased mitochondrial fragmentation after aggregation and exposure to hypoxia that correlated well with our previously observed reduced growth and respiration in spheroids, suggesting that these alterations promote viability in non-permissive conditions. Our identification of such mitochondrial phenotypic changes in malignancy provides a model in which to identify targets for interventions aimed at suppressing metastases.
Collapse
Affiliation(s)
- Joseph P Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Mitchell E Allen
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Justin B Perry
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Yipei Song
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ali Rohani
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Stephanie L E Compton
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion (VTC), Roanoke, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - David A Brown
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Eva M Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Barreto P, Couñago RM, Arruda P. Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response. Mitochondrion 2020; 53:109-120. [DOI: 10.1016/j.mito.2020.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/06/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
|
11
|
Hua D, Duan J, Ma M, Li Z, Li H. Reactive oxygen species induce cyanide-resistant respiration in potato infected by Erwinia carotovora subsp. Carotovora. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153132. [PMID: 32062292 DOI: 10.1016/j.jplph.2020.153132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Studies have shown that pathogenic bacteria infections induce the overproduction of reactive oxygen species (ROS) in plants. Cyanide-resistant respiration, an energy-dissipating pathway in plants, has also been induced by a pathogenic bacteria infection. However, it is unknown whether the induction of cyanide-resistant respiration under the pathogenic bacteria infection was caused by ROS. In this study, two pathogenic Erwinia strains were used to infect potato tuber, and membrane lipid peroxidation levels and the cyanide-resistant respiration capacity were determined. In addition, StAOX expression and regulation by ROS in potato tuber were analyzed. Moreover, the role of the Ca2+ pathway in regulating cyanide-resistant respiration was determined. The results showed that ROS induced cyanide-resistant respiration in potato tuber infected by Erwinia. Cyanide-resistant respiration inhibited the production of H2O2. Intracellular Ca2+ regulated the expression of calcium-dependent protein kinase (StCDPK1, StCDPK4, and StCDPK5) in potato, which indirectly controlled intracellular ROS levels. These results indicate that Ca2+ metabolism is involved in ROS-induced cyanide-resistant respiration.
Collapse
Affiliation(s)
- Dong Hua
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jiangong Duan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Minzhi Ma
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongping Li
- Key Laboratory of Petroleum Resources Research, Lanzhou Petroleum Resources Research Center, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
13
|
Poór P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020; 10:E341. [PMID: 32098073 PMCID: PMC7072379 DOI: 10.3390/biom10020341] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Different abiotic and biotic stresses lead to the production and accumulation of reactive oxygen species (ROS) in various cell organelles such as in mitochondria, resulting in oxidative stress, inducing defense responses or programmed cell death (PCD) in plants. In response to oxidative stress, cells activate various cytoprotective responses, enhancing the antioxidant system, increasing the activity of alternative oxidase and degrading the oxidized proteins. Oxidative stress responses are orchestrated by several phytohormones such as salicylic acid (SA). The biomolecule SA is a key regulator in mitochondria-mediated defense signaling and PCD, but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in mitochondrial ROS metabolism is summarized to gain a better understanding of SA-regulated processes at the subcellular level in plant defense responses.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
14
|
McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM. Deficiencies in the Mitochondrial Electron Transport Chain Affect Redox Poise and Resistance Toward Colletotrichum higginsianum. FRONTIERS IN PLANT SCIENCE 2019; 10:1262. [PMID: 31681368 PMCID: PMC6812661 DOI: 10.3389/fpls.2019.01262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
To investigate if and how the integrity of the mitochondrial electron transport chain (mETC) influences susceptibility of Arabidopsis toward Colletotrichum higginsianum, we have selected previously characterized mutants with defects at different stages of the mETC, namely, the complex I mutant ndufs4, the complex II mutant sdh2-1, the complex III mutant ucr8-1, and a mutant of the uncoupling protein ucp1-2. Relative to wild type, the selected complex I, II, and III mutants showed decreased total respiration, increased alternative respiration, as well as increased redox charge of the NADP(H) pool and decreased redox charge of the NAD(H) pool in the dark. In the light, mETC mutants accumulated free amino acids, albeit to varying degrees. Glycine and serine, which are involved in carbon recycling from photorespiration, and N-rich amino acids were predominantly increased in mETC mutants compared to the wild type. Taking together the physiological phenotypes of all examined mutants, our results suggest a connection between the limitation in the re-oxidation of reducing equivalents in the mitochondrial matrix and the induction of nitrate assimilation into free amino acids in the cytosol, which seems to be engaged as an additional sink for reducing power. The sdh2-1 mutant was less susceptible to C. higginsianum and did not show hampered salicylic acid (SA) accumulation as previously reported for SDH1 knock-down plants. The ROS burst remained unaffected in sdh2-1, emonstrating that subunit SDH2 is not involved in the control of ROS production and SA signaling by complex II. Moreover, the ndufs4 mutant showed only 20% of C. higginsianum colonization compared to wild type, with the ROS burst and the production of callose papillae being significantly increased compared to wild type. This indicates that a restriction of respiratory metabolism can positively affect pre-penetration resistance of Arabidopsis. Taking metabolite profiling data from all investigated mETC mutants, a strong positive correlation of resistance toward C. higginsianum with NADPH pool size, pyruvate contents, and other metabolites associated with redox poise and energy charge was evident, which fosters the hypothesis that limitations in the mETC can support resistance at post-penetration stages by improving the availability of metabolic power.
Collapse
Affiliation(s)
- Christopher McCollum
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sonja Geißelsöder
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Engelsdorf
- Molecular Plant Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Anna Maria Voitsik
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars M. Voll
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Molecular Plant Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
15
|
O'Leary BM, Asao S, Millar AH, Atkin OK. Core principles which explain variation in respiration across biological scales. THE NEW PHYTOLOGIST 2019; 222:670-686. [PMID: 30394553 DOI: 10.1111/nph.15576] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
Contents Summary 670 I. Introduction 671 II. Principle 1 - Plant respiration performs three distinct functions 673 III. Principle 2 - Metabolic pathway flexibility underlies plant respiratory performance 676 IV. Principle 3 - Supply and demand interact over time to set plant respiration rate 677 V. Principle 4 - Plant respiratory acclimation involves adjustments in enzyme capacities 679 VI. Principle 5 - Respiration is a complex trait that helps to define, and is impacted by, plant lifestyle strategies 680 VII. Future directions 680 Acknowledgements 682 References 682 SUMMARY: Respiration is a core biological process that has important implications for the biochemistry, physiology, and ecology of plants. The study of plant respiration is thus conducted from several different perspectives by a range of scientific disciplines with dissimilar objectives, such as metabolic engineering, crop breeding, and climate-change modelling. One aspect in common among the different objectives is a need to understand and quantify the variation in respiration across scales of biological organization. The central tenet of this review is that different perspectives on respiration can complement each other when connected. To better accommodate interdisciplinary thinking, we identify distinct mechanisms which encompass the variation in respiratory rates and functions across biological scales. The relevance of these mechanisms towards variation in plant respiration are explained in the context of five core principles: (1) respiration performs three distinct functions; (2) metabolic pathway flexibility underlies respiratory performance; (3) supply and demand interact over time to set respiration rates; (4) acclimation involves adjustments in enzyme capacities; and (5) respiration is a complex trait that helps to define, and is impacted by, plant lifestyle strategies. We argue that each perspective on respiration rests on these principles to varying degrees and that broader appreciation of how respiratory variation occurs can unite research across scales.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
16
|
Kerbler SM, Taylor NL, Millar AH. Cold sensitivity of mitochondrial ATP synthase restricts oxidative phosphorylation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1776-1788. [PMID: 30281799 DOI: 10.1111/nph.15509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/20/2018] [Indexed: 05/03/2023]
Abstract
The combined action of the electron transport chain (ETC) and ATP synthase is essential in determining energy efficiency in plants, and so is important for cellular biosynthesis, growth and development. Owing to the sessile nature of plants, mitochondria must operate over a wide temperature range in the environment, necessitating a broad temperature tolerance of their biochemical reactions. We investigated the temperature response of mitochondrial respiratory processes in isolated mitochondria and intact plants of Arabidopsis thaliana and considered the effect of instantaneous responses to temperature and acclimation responses to low temperatures. We show that at 4°C the plant mitochondrial ATP synthase is differentially inhibited compared with other elements of the respiratory pathway, leading to decreased ADP : oxygen ratios and a limitation to the rate of ATP synthesis. This effect persists in vivo and cannot be overcome by cold-temperature acclimation of plants. This mechanism adds a new element to the respiratory acclimation model and provides a direct means of temperature perception by plant mitochondria. This also provides an alternative explanation for non-phosphorylating ETC bypass mechanisms, like the alternative oxidase to maintain respiratory rates, albeit at lower ATP synthesis efficiency, in response to the sensitivity of ATP synthase to the prevailing temperature.
Collapse
Affiliation(s)
- Sandra M Kerbler
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicolas L Taylor
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- The Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
17
|
Czobor Á, Hajdinák P, Németh B, Piros B, Németh Á, Szarka A. Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS One 2019; 14:e0210592. [PMID: 30629714 PMCID: PMC6328269 DOI: 10.1371/journal.pone.0210592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant UCPs are proved to take part in the fine-tuning of mitochondrial ROS generation. It has emerged that mitochondrion can be an important early source of intracellular ROS during plant-pathogen interaction thus plant UCPs must also play key role in this redox fine-tuning during the early phase of plant-pathogen interaction. On the contrary of this well-established assumption, the expression of plant UCPs and their activity has not been investigated in elicitor induced oxidative burst. Thus, the level of plant UCPs both at RNA and protein level and their activity was investigated and compared to AOX as a reference in Arabidopsis thaliana cells due to bacterial harpin treatments. Similar to the expression and activity of AOX, the transcript level of UCP4, UCP5 and the UCP activity increased due to harpin treatment and the consequential oxidative burst. The expression of UCP4 and UCP5 elevated 15-18-fold after 1 h of treatment, then the activity of UCP reached its maximal value at 4h of treatment. The quite rapid activation of UCP due to harpin treatment gives another possibility to fine tune the redox balance of plant cell, furthermore explains the earlier observed rapid decrease of mitochondrial membrane potential and consequent decrease of ATP synthesis after harpin treatment.
Collapse
Affiliation(s)
- Ádám Czobor
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Hajdinák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bence Németh
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Borbála Piros
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Áron Németh
- Department of Applied Biotechnology and Food Science, Fermentation Pilot Plant Laboratory, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
18
|
Xu J, Tran T, Padilla Marcia CS, Braun DM, Goggin FL. Superoxide-responsive gene expression in Arabidopsis thaliana and Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 117:51-60. [PMID: 28587993 DOI: 10.1016/j.plaphy.2017.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 05/06/2023]
Abstract
Superoxide (O2-) and other reactive oxygen species (ROS) are generated in response to numerous biotic and abiotic stresses. Different ROS have been reported to elicit different transcriptional responses in plants, and so ROS-responsive marker genes and promoter::reporter gene fusions have been proposed as indirect means of detecting ROS and discriminating among different species. However, further information about the specificity of transcriptional responses to O2- is needed in order to assess potential markers for this critical stress-responsive signaling molecule. Using qRT-PCR, the expression of 12 genes previously reported to be upregulated by O2- was measured in Arabidopsis thaliana plants exposed to elicitors of common stress-responsive ROS: methyl viologen (an inducer of O2-), rose bengal (an inducer of singlet oxygen, 1ΔO2), and exogenous hydrogen peroxide (H2O2). Surprisingly, Zinc-Finger Protein 12 (AtZAT12), which had previously been used as a reporter for H2O2, responded more strongly to O2- than to H2O2; moreover, the expression of an AtZAT12 promoter-reporter fusion (AtZAT12::Luc) was enhanced by diethyldithiocarbamate, which inhibits dismutation of O2- to H2O2. These results suggest that AtZAT12 is transcriptionally upregulated in response to O2-, and that AtZAT12::Luc may be a useful biosensor for detecting O2- generation in vivo. In addition, transcripts encoding uncoupling proteins (AtUCPs) showed selectivity for O2- in Arabidopsis, and an AtUCP homolog upregulated by methyl viologen was also identified in maize (Zea mays L.), indicating that there are O2--responsive members of this family in monocots. These results expand our limited knowledge of ROS-responsive gene expression in monocots, as well as O2--selective responses in dicots.
Collapse
Affiliation(s)
- Junhuan Xu
- Department of Entomology, 319 Agriculture Building, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Thu Tran
- Division of Biological Sciences, 308 Tucker Hall, University of Missouri, Columbia, MO 65211, United States.
| | - Carmen S Padilla Marcia
- Department of Entomology, 319 Agriculture Building, University of Arkansas, Fayetteville, AR 72701, United States.
| | - David M Braun
- Division of Biological Sciences, 308 Tucker Hall, University of Missouri, Columbia, MO 65211, United States.
| | - Fiona L Goggin
- Department of Entomology, 319 Agriculture Building, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
19
|
Zhang Y, Beard KFM, Swart C, Bergmann S, Krahnert I, Nikoloski Z, Graf A, Ratcliffe RG, Sweetlove LJ, Fernie AR, Obata T. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun 2017; 8:15212. [PMID: 28508886 PMCID: PMC5440813 DOI: 10.1038/ncomms15212] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/09/2017] [Indexed: 11/29/2022] Open
Abstract
Protein complexes of sequential metabolic enzymes, often termed metabolons, may permit direct channelling of metabolites between the enzymes, providing increased control over metabolic pathway fluxes. Experimental evidence supporting their existence in vivo remains fragmentary. In the present study, we test binary interactions of the proteins constituting the plant tricarboxylic acid (TCA) cycle. We integrate (semi-)quantitative results from affinity purification-mass spectrometry, split-luciferase and yeast-two-hybrid assays to generate a single reliability score for assessing protein–protein interactions. By this approach, we identify 158 interactions including those between catalytic subunits of sequential enzymes and between subunits of enzymes mediating non-adjacent reactions. We reveal channelling of citrate and fumarate in isolated potato mitochondria by isotope dilution experiments. These results provide evidence for a functional TCA cycle metabolon in plants, which we discuss in the context of contemporary understanding of this pathway in other kingdoms. A metabolon is a complex of sequential metabolic enzymes that channels substrates directly between enzymes, thus optimizing metabolic flux. Here Zhang et al. provide protein interaction and isotope dilution data that support the existence of a metabolon that channels both citrate and fumarate in the plant TCA cycle.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Corné Swart
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Susan Bergmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
20
|
The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:21-33. [PMID: 27751905 DOI: 10.1016/j.bbabio.2016.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.
Collapse
|
21
|
Rao RSP, Salvato F, Thal B, Eubel H, Thelen JJ, Møller IM. The proteome of higher plant mitochondria. Mitochondrion 2016; 33:22-37. [PMID: 27405097 DOI: 10.1016/j.mito.2016.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
Abstract
Plant mitochondria perform a wide range of functions in the plant cell ranging from providing energy and metabolic intermediates, via coenzyme biosynthesis and their own biogenesis to retrograde signaling and programmed cell death. To perform these functions, they contain a proteome of >2000 different proteins expressed in some cells under some conditions. The vast majority of these proteins are imported, in many cases by a dedicated protein import machinery. Recent proteomic studies have identified about 1000 different proteins in both Arabidopsis and potato mitochondria, but even for energy-related proteins, the most well-studied functional protein group in mitochondria, <75% of the proteins are recognized as mitochondrial by even one of six of the most widely used prediction algorithms. The mitochondrial proteomes contain proteins representing a wide range of different functions. Some protein groups, like energy-related proteins, membrane transporters, and de novo fatty acid synthesis, appear to be well covered by the proteome, while others like RNA metabolism appear to be poorly covered possibly because of low abundance. The proteomic studies have improved our understanding of basic mitochondrial functions, have led to the discovery of new mitochondrial metabolic pathways and are helping us towards appreciating the dynamic role of the mitochondria in the responses of the plant cell to biotic and abiotic stress.
Collapse
Affiliation(s)
- R S P Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore 575018, India
| | - F Salvato
- Institute of Biology, Department of Plant Biology, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas CEP: 13083-970, São Paulo, Brazil
| | - B Thal
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, DE-30419 Hannover, Germany
| | - H Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, DE-30419 Hannover, Germany
| | - J J Thelen
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - I M Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| |
Collapse
|
22
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
23
|
Wang R, MoYung KC, Zhang MH, Poon K. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19618-19631. [PMID: 26276275 DOI: 10.1007/s11356-015-5155-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, China, 201499.
| | - K C MoYung
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China, 519085.
| | - M H Zhang
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China, 519085
| | - Karen Poon
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China, 519085.
| |
Collapse
|
24
|
Oliveira MG, Mazorra LM, Souza AF, Silva GMC, Correa SF, Santos WC, Saraiva KDC, Teixeira AJ, Melo DF, Silva MG, Silva MAP, Arrabaça JDC, Costa JH, Oliveira JG. Involvement of AOX and UCP pathways in the post-harvest ripening of papaya fruits. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:42-50. [PMID: 26513459 DOI: 10.1016/j.jplph.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Enhanced respiration during ripening in climacteric fruits is sometimes associated with an uncoupling between the ATP synthesis and the mitochondrial electron transport chain. While the participation of two energy-dissipating systems, one of which is mediated by the alternative oxidase (AOX) and the other mediated by the uncoupling protein (UCP), has been linked to fruit ripening, the relation between the activation of both mitochondrial uncoupling systems with the transient increase of ethylene synthesis (ethylene peak) remains unclear. To elucidate this question, ethylene emission and the two uncoupling (AOX and UCP) pathways were monitored in harvested papaya fruit during the ripening, from green to fully yellow skin. The results confirmed the typical climacteric behavior for papaya fruit: an initial increase in endogenous ethylene emission which reaches a maximum (peak) in the intermediate ripening stage, before finally declining to a basal level in ripe fruit. Respiration of intact fruit also increased and achieved higher levels at the end of ripening. On the other hand, in purified mitochondria extracted from fruit pulp the total respiration and respiratory control decrease while an increase in the participation of AOX and UCP pathways was markedly evident during papaya ripening. There was an increase in the AOX capacity during the transition from green fruit to the intermediate stage that accompanied the transient ethylene peak, while the O2 consumption triggered by UCP activation increased by 80% from the beginning to end stage of fruit ripening. Expression analyses of AOX (AOX1 and 2) and UCP (UCP1-5) genes revealed that the increases in the AOX and UCP capacities were linked to a higher expression of AOX1 and UCP (mainly UCP1) genes, respectively. In silico promoter analyses of both genes showed the presence of ethylene-responsive cis-elements in UCP1 and UCP2 genes. Overall, the data suggest a differential activation of AOX and UCP pathways in regulation related to the ethylene peak and induction of specific genes such as AOX1 and UCP1.
Collapse
Affiliation(s)
- M G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - L M Mazorra
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - A F Souza
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - G M C Silva
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - S F Correa
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - W C Santos
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - K D C Saraiva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - A J Teixeira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - D F Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - M G Silva
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - M A P Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570000, Brazil
| | - J D C Arrabaça
- Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749016, Portugal
| | - J H Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - J G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil.
| |
Collapse
|
25
|
Hsu HC, Chen CY, Chen MF. N-3 polyunsaturated fatty acids decrease levels of doxorubicin-induced reactive oxygen species in cardiomyocytes -- involvement of uncoupling protein UCP2. J Biomed Sci 2014; 21:101. [PMID: 25407516 PMCID: PMC4237738 DOI: 10.1186/s12929-014-0101-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/31/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Use of the chemotherapeutic drug doxorubicin (DOX) is associated with serious cardiotoxicity, as it increases levels of reactive oxygen species (ROS). N-3 polyunsaturated fatty acid dietary supplements can be of benefit to patients undergoing cancer therapy. The aims of this study were to determine whether DOX-induced cardiotoxicity is related to mitochondrial uncoupling proteins and whether eicosapentaenoic acid (EPA, C20:5 n-3) or docosahexaenoic acid (DHA, C22:6 n-3) affects DOX-induced cardiomyocyte toxicity. RESULTS Treatment of H9C2 cells with DOX resulted in decreased cell viability and UCP2 expression. Treatment with 100 μM EPA or 50 μM DHA for 24 h resulted in a maximal mitochondria concentration of these fatty acids and increased UCP2 expression. Pretreatment with 100 μM EPA or 50 μM DHA prevented the DOX-induced decrease in UCP2 mRNA and protein levels, but these effects were not seen with EPA or DHA and DOX cotreatment. In addition, the DOX-induced increase in ROS production and subsequent mitochondrial membrane potential change (∆ψ) were significantly attenuated by pretreatment with EPA or DHA. CONCLUSION EPA or DHA pre-treatment inhibits the DOX-induced decrease in UCP2 expression, increase in ROS production, and subsequent mitochondrial membrane potential change that contribute to the cardiotoxicity of DOX.
Collapse
Affiliation(s)
- Hsiu-Ching Hsu
- />Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan S Rd, Taipei, Taiwan
| | - Ching-Yi Chen
- />Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672 Taiwan
- />Present address: 50, Lane 155, Sec 3, Keelung Rd, Taipei, 106 Taiwan
| | - Ming-Fong Chen
- />Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan S Rd, Taipei, Taiwan
| |
Collapse
|
26
|
Alves-Bezerra M, Cosentino-Gomes D, Vieira LP, Rocco-Machado N, Gondim KC, Meyer-Fernandes JR. Identification of uncoupling protein 4 from the blood-sucking insect Rhodnius prolixus and its possible role on protection against oxidative stress. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:24-33. [PMID: 24746771 DOI: 10.1016/j.ibmb.2014.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Uncoupling proteins (UCPs) play a critical role in the control of the mitochondrial membrane potential (ΔΨm) due to their ability to dissipate the proton gradient, which results in the uncoupling of mitochondrial respiration from ATP production. Most reactive oxygen species generation in mitochondria occurs in complex III, due to an increase of semiquinone (Q(-)) half-life. When active, UCPs can account as a potential antioxidant system by decreasing ΔΨm and increasing mitochondrial respiration, thus reducing Q(-) life time. The hematophagous insect Rhodnius prolixus, a vector of Chagas disease, is exposed to a huge increase in oxidative stress after a blood meal because of the hydrolysis of hemoglobin and the release of the cytotoxic heme molecule. Although some protective mechanisms were already described for this insect and other hematophagous arthropods, the putative role of UCP proteins as antioxidants in this context has not been explored. In this report, two genes encoding UCP proteins (RpUcp4 and RpUcp5) were identified in the R. prolixus genome. RpUcp4 is the predominant transcript in most analyzed organs, and both mRNA and protein expression are upregulated (13- and 3-fold increase, respectively) in enterocytes the first day after the blood feeding. The increase in UCP4 expression is coincident with the decrease in hydrogen peroxide (H2O2) generation by midgut cells. Furthermore, in mitochondria isolated from enterocytes, the modulation of UCP activity by palmitic acid and GDP resulted in altered ΔΨm, as well as modulation of H2O2 generation rates. These results indicate that R. prolixus UCP4 may function in an antioxidation mechanism to protect the midgut cells against oxidative damage caused by blood digestion.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Cosentino-Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lisvane P Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathália Rocco-Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| |
Collapse
|
27
|
Woyda-Ploszczyca AM, Jarmuszkiewicz W. Sensitivity of the aldehyde-induced and free fatty acid-induced activities of plant uncoupling protein to GTP is regulated by the ubiquinone reduction level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 79:109-116. [PMID: 24705332 DOI: 10.1016/j.plaphy.2014.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
Using isolated potato tuber mitochondria possessing uncoupling protein (StUCP), we found that, under non-phosphorylating conditions, the sensitivity of aldehyde (all trans-retinal or 4-hydroxy-2-nonenal)-induced and fatty acid (linoleic acid)-induced StUCP-mediated proton leaks to GTP is controlled by the endogenous ubiquinone (Q) reduction level. The action of StUCP activators was abolished by GTP only when Q was sufficiently oxidized, but no inhibitory effect was observed when Q was highly reduced. Thus, the Q reduction level-dependent regulation of StUCP inhibition functions independently of the type of UCP activation and could be an important physiological factor affecting the efficiency of UCP-catalyzed uncoupling in plant mitochondria.
Collapse
Affiliation(s)
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| |
Collapse
|
28
|
Trono D, Laus MN, Soccio M, Pastore D. Transport pathways--proton motive force interrelationship in durum wheat mitochondria. Int J Mol Sci 2014; 15:8186-215. [PMID: 24821541 PMCID: PMC4057727 DOI: 10.3390/ijms15058186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 12/25/2022] Open
Abstract
In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoK(ATP) neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoK(ATP) to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoK(ATP) and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
29
|
Wu Z, Zhu Y, Cao X, Sun S, Zhao B. Mitochondrial toxic effects of Aβ through mitofusins in the early pathogenesis of Alzheimer's disease. Mol Neurobiol 2014; 50:986-96. [PMID: 24710686 DOI: 10.1007/s12035-014-8675-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/11/2014] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of Alzheimer's disease (AD). However, it is obscure how amyloid-beta (Aβ) can impair mitochondria in the early stage of AD pathology. Using PrP-hAPP/hPS1 double-transgenic AD mouse model, we find that abnormal mitochondrial morphology and damaged mitochondrial structure in hippocampal neurons appear in the early stage of AD-like disease development. We also find consistent mitochondrial abnormalities in the SH-SY5Y cells, which express amyloid precursor protein (APP) Swedish mutation (APPsw) and have been used as a cell model of the early-onset AD. Significant changes of mitofusin GTPases (Mfn1 and Mfn2) were detected both in the PrP-hAPP/hPS1 brains and SH-SY5Y cells. Moreover, our results show that Aβ accumulation in neurons of PrP-hAPP/hPS1 mice can affect the neurogenesis prior to plaque formation. These findings suggest that mitochondrial impairment is a very early event in AD pathogenesis and abnormal expression of Mfn1 and Mfn2 caused by excessive intracellular Aβ is the possible molecular mechanism. Interestingly, L-theanine has significant effects on regulating mitochondrial fusion proteins in SH-SY5Y (APPsw) cells. Overall, our results not only suggest a new early mechanism of AD pathogenesis but also propose a preventive candidate, L-theanine, for the treatment of AD.
Collapse
Affiliation(s)
- Zhaofei Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
30
|
Salvato F, Havelund JF, Chen M, Rao RSP, Rogowska-Wrzesinska A, Jensen ON, Gang DR, Thelen JJ, Møller IM. The potato tuber mitochondrial proteome. PLANT PHYSIOLOGY 2014; 164:637-53. [PMID: 24351685 PMCID: PMC3912095 DOI: 10.1104/pp.113.229054] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/16/2013] [Indexed: 05/17/2023]
Abstract
Mitochondria are called the powerhouses of the cell. To better understand the role of mitochondria in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from dormant potato tubers (Solanum tuberosum 'Folva') and their proteome investigated. Proteins were resolved by one-dimensional gel electrophoresis, and tryptic peptides were extracted from gel slices and analyzed by liquid chromatography-tandem mass spectrometry using an Orbitrap XL. Using four different search programs, a total of 1,060 nonredundant proteins were identified in a quantitative manner using normalized spectral counts including as many as 5-fold more "extreme" proteins (low mass, high isoelectric point, hydrophobic) than previous mitochondrial proteome studies. We estimate that this compendium of proteins represents a high coverage of the potato tuber mitochondrial proteome (possibly as high as 85%). The dynamic range of protein expression spanned 1,800-fold and included nearly all components of the electron transport chain, tricarboxylic acid cycle, and protein import apparatus. Additionally, we identified 71 pentatricopeptide repeat proteins, 29 membrane carriers/transporters, a number of new proteins involved in coenzyme biosynthesis and iron metabolism, the pyruvate dehydrogenase kinase, and a type 2C protein phosphatase that may catalyze the dephosphorylation of the pyruvate dehydrogenase complex. Systematic analysis of prominent posttranslational modifications revealed that more than 50% of the identified proteins harbor at least one modification. The most prominently observed class of posttranslational modifications was oxidative modifications. This study reveals approximately 500 new or previously unconfirmed plant mitochondrial proteins and outlines a facile strategy for unbiased, near-comprehensive identification of mitochondrial proteins and their modified forms.
Collapse
Affiliation(s)
| | - Jesper F. Havelund
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Mingjie Chen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - R. Shyama Prasad Rao
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Ole N. Jensen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - David R. Gang
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | | |
Collapse
|
31
|
Araújo WL, Nunes-Nesi A, Fernie AR. On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. PHOTOSYNTHESIS RESEARCH 2014; 119:141-156. [PMID: 23456269 DOI: 10.1007/s11120-013-9807-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Given that the pathways of photosynthesis and respiration catalyze partially opposing processes, it follows that their relative activities must be carefully regulated within plant cells. Recent evidence has shown that the components of the mitochondrial electron transport chain are essential for the proper maintenance of intracellular redox gradients, to allow considerable rates of photorespiration and in turn efficient photosynthesis. Thus considerable advances have been made in understanding the interaction between respiration and photosynthesis during the last decades and the potential mechanisms linking mitochondrial function and photosynthetic efficiency will be reviewed. Despite the fact that manipulation of various steps of mitochondrial metabolism has been demonstrated to alter photosynthesis under optimal growth conditions, it is likely that these changes will, by and large, not be maintained under sub-optimal situations. Therefore producing plants to meet this aim remains a critical challenge. It is clear, however, that although there have been a range of studies analysing changes in respiratory and photosynthetic rates in response to light, temperature and CO2, our knowledge of the environmental impact on these processes and its linkage still remains fragmented. We will also discuss the metabolic changes associated to plant respiration and photosynthesis as important components of the survival strategy as they considerably extend the period that a plant can withstand to a stress situation.
Collapse
Affiliation(s)
- Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | |
Collapse
|
32
|
Havelund J, Salvato F, Chen M, Rao R, Rogowska-Wrzesinska A, Jensen O, Gang D, Thelen J, Møller I. Isolation of Mitochondria from Potato Tubers. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
33
|
Functional characterization of an uncoupling protein in goldfish white skeletal muscle. J Bioenerg Biomembr 2013; 45:243-51. [DOI: 10.1007/s10863-013-9512-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/05/2013] [Indexed: 11/27/2022]
|
34
|
Yoshida K, Noguchi K, Motohashi K, Hisabori T. Systematic Exploration of Thioredoxin Target Proteins in Plant Mitochondria. ACTA ACUST UNITED AC 2013; 54:875-92. [DOI: 10.1093/pcp/pct037] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Wang H, Qian Z, Ma S, Zhou Y, Patrick JW, Duan X, Jiang Y, Qu H. Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn.). BMC PLANT BIOLOGY 2013; 13:55. [PMID: 23547657 PMCID: PMC3636124 DOI: 10.1186/1471-2229-13-55] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/18/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Recent studies have demonstrated that cellular energy is a key factor switching on ripening and senescence of fruit. However, the factors that influence fruit energy status remain largely unknown. RESULTS HPLC profiling showed that ATP abundance increased significantly in developing preharvest litchi fruit and was strongly correlated with fruit fresh weight. In contrast, ATP levels declined significantly during postharvest fruit senescence and were correlated with the decrease in the proportion of edible fruit. The five gene transcripts isolated from the litchi fruit pericarp were highly expressed in vegetative tissues and peaked at 70 days after flowering (DAF) consistent with fruit ADP concentrations, except for uncoupling mitochondrial protein 1 (UCP1), which was predominantly expressed in the root, and ATP synthase beta subunit (AtpB), which was up-regulated significantly before harvest and peaked 2 days after storage. These results indicated that the color-breaker stage at 70 DAF and 2 days after storage may be key turning points in fruit energy metabolism. Transcript abundance of alternative oxidase 1 (AOX1) increased after 2 days of storage to significantly higher levels than those of LcAtpB, and was down-regulated significantly by exogenous ATP. ATP supplementation had no significant effect on transcript abundance of ADP/ATP carrier 1 (AAC1) and slowed the changes in sucrose non-fermenting-1-related kinase 2 (SnRK2) expression, but maintained ATP and energy charge levels, which were correlated with delayed senescence. CONCLUSIONS Our results suggest that senescence of litchi fruit is closely related with energy. A surge of LcAtpB expression marked the beginning of fruit senescence. The findings may provide a new strategy to extend fruit shelf life by regulating its energy level.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
- University of Chinese Academy of Sciences, Beijing, 100049, P R China
| | - Zhengjiang Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
- University of Chinese Academy of Sciences, Beijing, 100049, P R China
| | - Sanmei Ma
- Department of Biotechnology, Jinan University, Guangzhou, 510632, P R China
| | - Yuchuan Zhou
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane St Lucia, QLD, 4072, Australia
| | - John W Patrick
- School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| |
Collapse
|
36
|
Havelund JF, Thelen JJ, Møller IM. Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells. FRONTIERS IN PLANT SCIENCE 2013; 4:51. [PMID: 23494127 PMCID: PMC3595712 DOI: 10.3389/fpls.2013.00051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/26/2013] [Indexed: 05/24/2023]
Abstract
Mitochondria fulfill some basic roles in all plant cells. They supply the cell with energy in the form of ATP and reducing equivalents [NAD(P)H] and they provide the cell with intermediates for a range of biosynthetic pathways. In addition to this, mitochondria contribute to a number of specialized functions depending on the tissue and cell type, as well as environmental conditions. We will here review the biochemistry and proteomics of mitochondria from non-green cells and organs, which differ from those of photosynthetic organs in a number of respects. We will briefly cover purification of mitochondria and general biochemical properties such as oxidative phosphorylation. We will then mention a few adaptive properties in response to water stress, seed maturation and germination, and the ability to function under hypoxic conditions. The discussion will mainly focus on Arabidopsis cell cultures, etiolated germinating rice seedlings and potato tubers as model plants. It will cover the general proteome as well as the posttranslational modification protein phosphorylation. To date 64 phosphorylated mitochondrial proteins with a total of 103 phosphorylation sites have been identified.
Collapse
Affiliation(s)
- Jesper F. Havelund
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus UniversitySlagelse, Denmark
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri-ColumbiaColumbia, MO, USA
| | - Ian M. Møller
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus UniversitySlagelse, Denmark
| |
Collapse
|
37
|
Valente C, Pasqualim P, Jacomasso T, Maurer JBB, Souza EMD, Martinez GR, Rocha MEM, Carnieri EGS, Cadena SMSC. The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:84-91. [PMID: 23116675 DOI: 10.1016/j.plantsci.2012.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 06/01/2023]
Abstract
In this study, the responses of plant uncoupling mitochondrial protein (PUMP) and alternative oxidase (AOX) in mitochondria from embryogenic cells of A. angustifolia subjected to cold stress (4°C for 24 h or 48 h) is reported. In the mitochondria of stressed cells, PUMP activity increased by approximately 45% (at 24h and 48 h), which was determined by measuring the oxygen consumption after the addition of linoleic acid and the inhibition by BSA and ATP. PUMP activation was confirmed using transmembrane electrical potential (Δψ) assays. Immunoblot assays showed an increase of PUMP expression by 40% and 150% after 24h and 48 h of cold stress, respectively. AOX activity, measured under conditions similar to those of the PUMP assays, was only slightly increased in the mitochondria from stressed cells (at 24h and 48 h), as demonstrated by oxygen consumption experiments. Cell viability was unaffected by cold stress, indicating that the effects on PUMP and AOX were not caused by cell death. These results show that the main response of this gymnosperm to cold stress is the activation of PUMP, which suggests that this protein may be involved in the control of reactive oxygen species generation, which has been previously associated with this condition.
Collapse
Affiliation(s)
- Caroline Valente
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Woyda-Ploszczyca AM, Jarmuszkiewicz W. Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state. J Bioenerg Biomembr 2012; 44:525-38. [PMID: 22798183 DOI: 10.1007/s10863-012-9456-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/19/2012] [Indexed: 01/06/2023]
Abstract
We studied the influence of exogenously generated superoxide and exogenous 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the Acanthamoeba castellanii uncoupling protein (AcUCP). The superoxide-generating xanthine/xanthine oxidase system was insufficient to induce mitochondrial uncoupling. In contrast, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. In non-phosphorylating mitochondria, AcUCP activation by HNE was demonstrated by increased oxygen consumption accompanied by a decreased membrane potential and ubiquinone (Q) reduction level. The HNE-induced GTP-sensitive proton conductance was similar to that observed with linoleic acid. In phosphorylating mitochondria, the HNE-induced AcUCP-mediated uncoupling decreased the yield of oxidative phosphorylation. We demonstrated that the efficiency of GTP to inhibit HNE-induced AcUCP-mediated uncoupling was regulated by the endogenous Q redox state. A high Q reduction level activated AcUCP by relieving the inhibition caused by GTP while a low Q reduction level favoured the inhibition. We propose that the regulation of UCP activity involves a rapid response through the endogenous Q redox state that modulates the inhibition of UCP by purine nucleotides, followed by a late response through lipid peroxidation products resulting from an increase in the formation of reactive oxygen species that modulate the UCP activation.
Collapse
|
39
|
Ivanina AV, Kurochkin IO, Leamy L, Sokolova IM. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. ACTA ACUST UNITED AC 2012; 215:3142-54. [PMID: 22660786 DOI: 10.1242/jeb.071357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intertidal bivalves are commonly exposed to multiple stressors including periodic hypoxia, temperature fluctuations and pollution, which can strongly affect energy metabolism. We used top-down control and elasticity analyses to determine the interactive effects of intermittent hypoxia, cadmium (Cd) exposure and acute temperature stress on mitochondria of the eastern oyster Crassostrea virginica. Oysters were acclimated at 20°C for 30 days in the absence or presence of 50 μg l(-1) Cd and then subjected to a long-term hypoxia (6 days at <0.5% O(2) in seawater) followed by normoxic recovery. Mitochondrial function was assessed at the acclimation temperature (20°C), or at elevated temperature (30°C) mimicking acute temperature stress in the intertidal zone. In the absence of Cd or temperature stress, mitochondria of oysters showed high resilience to transient hypoxia. In control oysters at 20°C, hypoxia/reoxygenation induced elevated flux capacity of all three studied mitochondrial subsystems (substrate oxidation, phosphorylation and proton leak) and resulted in a mild depolarization of resting mitochondria. Elevated proton conductance and enhanced capacity of phosphorylation and substrate oxidation subsystems may confer resistance to hypoxia/reoxygenation stress in oyster mitochondria by alleviating production of reactive oxygen species and maintaining high aerobic capacity and ATP synthesis rates during recovery. Exposure to environmental stressors such as Cd and elevated temperatures abolished the putative adaptive responses of the substrate oxidation and phosphorylation subsystems, and strongly enhanced proton leak in mitochondria of oysters subjected to hypoxia/reoxygenation stress. Our findings suggest that Cd exposure and acute temperature stress may lead to the loss of mitochondrial resistance to hypoxia and reoxygenation and thus potentially affect the ability of oysters to survive periodic oxygen deprivation in coastal and estuarine habitats.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
40
|
Sluse FE. Uncoupling proteins: molecular, functional, regulatory, physiological and pathological aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:137-56. [PMID: 22399421 DOI: 10.1007/978-94-007-2869-1_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Uncoupling proteins are a subfamily of the mitochondrial anion carrier family. They are widespread in the whole eukaryotic world with a few exceptions and present tissue specific isoforms in higher organisms. They mediate purine nucleotide-sensitive free fatty acid-activated proton inward flux through the inner mitochondrial membrane. This proton flux occurs at the expense of the proton motive force build up by the respiration and weakens the coupling between respiration and ATP synthesis. In this chapter we describe current and reliable knowledge of uncoupling proteins. A new methodology allowing study of their activity and regulation during phosphorylating respiration is described. It has entitled us to assert that all uncoupling proteins share common mechanisms of activation and regulation. This is of the utmost importance in order to understand the physiological roles of UCPs as well as their participation in pathological processes since every role of the UCPs in every cell is an integral part of their function and regulation. The central role of reduction level of ubiquinone in the control of their regulation is well-argued. Their potential and reliable roles in thermogenesis, reactive oxygen species prevention and energy flow are discussed as well as their role in some pathological disorders.
Collapse
Affiliation(s)
- Francis E Sluse
- Department of Life Sciences, University of Liege, Liege, Belgium.
| |
Collapse
|
41
|
Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do A, Jung HJ, McCaffery JM, Kurland IJ, Reue K, Lee WNP, Koehler CM, Teitell MA. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 2011; 30:4860-73. [PMID: 22085932 PMCID: PMC3243621 DOI: 10.1038/emboj.2011.401] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/14/2011] [Indexed: 12/15/2022] Open
Abstract
It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O(2) at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F(1)F(0) ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 2011; 12:6894-918. [PMID: 22072926 PMCID: PMC3211017 DOI: 10.3390/ijms12106894] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/26/2011] [Accepted: 10/05/2011] [Indexed: 12/26/2022] Open
Abstract
A general status of oxidative stress in plants caused by exposure to elevated metal concentrations in the environment coincides with a constraint on mitochondrial electron transport, which enhances ROS accumulation at the mitochondrial level. As mitochondria are suggested to be involved in redox signaling under environmental stress conditions, mitochondrial ROS can initiate a signaling cascade mediating the overall stress response, i.e., damage versus adaptation. This review highlights our current understanding of metal-induced responses in plants, with focus on the production and detoxification of mitochondrial ROS. In addition, the potential involvement of retrograde signaling in these processes will be discussed.
Collapse
|
43
|
Mailloux RJ, Harper ME. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 2011; 51:1106-15. [PMID: 21762777 DOI: 10.1016/j.freeradbiomed.2011.06.022] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada K1G8M5
| | | |
Collapse
|
44
|
Begcy K, Mariano ED, Mattiello L, Nunes AV, Mazzafera P, Maia IG, Menossi M. An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS One 2011; 6:e23776. [PMID: 21912606 PMCID: PMC3166057 DOI: 10.1371/journal.pone.0023776] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 07/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs) that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking. METHODOLOGY/PRINCIPAL FINDINGS Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1) from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT) plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants. CONCLUSIONS/SIGNIFICANCE Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions.
Collapse
Affiliation(s)
- Kevin Begcy
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Eduardo D. Mariano
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Lucia Mattiello
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alessandra V. Nunes
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ivan G. Maia
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
45
|
Florez-Sarasa I, Flexas J, Rasmusson AG, Umbach AL, Siedow JN, Ribas-Carbo M. In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions. PLANT, CELL & ENVIRONMENT 2011; 34:1373-1383. [PMID: 21486306 DOI: 10.1111/j.1365-3040.2011.02337.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The in vivo activity of the alternative pathway (ν(alt)) has been studied using the oxygen isotope fractionation method in leaves of Arabidopsis thaliana modified for the expression of the AtAOX1a gene by anti-sense (AS-12) or overexpression (XX-2). Under non-stressful conditions, ν(alt) was similar in all plant lines regardless of its different alternative pathway capacities (V(alt)). Total leaf respiration (V(t)) and V(alt) were directly related to growth light conditions while electron partitioning between the cytochrome pathway (CP) and alternative pathway (AP) was unchanged by light levels. Interestingly, the AP functioned at full capacity in anti-sense plants under both growth light conditions. The role of the AP in response to a high light stress induced by short-term high light treatment (HLT) was also studied. In wild type and XX-2, both CP and AP rates increased proportionally after HLT while in AS-12, where the AP was unable to increase its rate, the CP accommodated all the increase in respiration. The results obtained under high light stress suggest that flexibility in the response of the mitochondrial electron transport chain is involved in sustaining photosynthetic rates in response to this stress while the saturated AP in AS-12 plants may contribute to the observed increase in photoinhibition.
Collapse
Affiliation(s)
- Igor Florez-Sarasa
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Figueira TRS, Arruda P. Differential expression of uncoupling mitochondrial protein and alternative oxidase in the plant response to stress. J Bioenerg Biomembr 2011; 43:67-70. [PMID: 21253844 DOI: 10.1007/s10863-011-9333-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Different cell types, organs and tissues shape their mitochondrial proteome according to the cellular environment that is dictated by differentiation, development and metabolic status. Under each circumstance, members of multigenic families that encode mitochondrial proteins are differentially expressed to meet the mitochondrial metabolic demand. However, the mitochondrial proteome may drastically change in response to stress conditions. Examples of the changes in mitochondrial protein expression caused by stress are represented by the energy-dissipating mitochondrial uncoupling protein (UCP) and alternative oxidase (AOx). UCP and AOx belong to multigenic families in plants, and their members, which are expressed in a time/tissue specific manner, respond differentially to stress conditions. In general, UCP and AOx are not expressed at the same levels concurrently in the same tissue, and the level of each protein varies in each stress condition. In addition, under non-stress conditions, UCP is expressed at much higher levels compared with AOx. The role of their differential expression in plant growth, development and response to stress is discussed.
Collapse
Affiliation(s)
- Thais Resende Silva Figueira
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
47
|
Han L, Qin G, Kang D, Chen Z, Gu H, Qu LJ. A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis. J Genet Genomics 2011; 37:667-83. [PMID: 21035093 DOI: 10.1016/s1673-8527(09)60085-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/18/2010] [Accepted: 07/22/2010] [Indexed: 12/27/2022]
Abstract
Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membrane-bound assembly and contains more than 40 different proteins in higher plants. In this paper, we characterize the Arabidopsis homologue (designated as AtCIB22) of the B22 subunit of eukaryotic mitochondrial Complex I. AtCIB22 is a single-copy gene and is highly conserved throughout eukaryotes. AtCIB22 protein is located in mitochondria and the AtCIB22 gene is widely expressed in different tissues. Mutant Arabidopsis plants with a disrupted AtCIB22 gene display pleiotropic phenotypes including shorter roots, smaller plants and delayed flowering. Stress analysis indicates that the AtCIB22 mutants' seed germination and early seedling growth are severely inhibited by sucrose deprivation stress but more tolerant to ethanol stress. Molecular analysis reveals that in moderate knockdown AtCIB22 mutants, genes including cell redox proteins and stress related proteins are significantly up-regulated, and that in severe knockdown AtCIB22 mutants, the alternative respiratory pathways including NDA1, NDB2, AOX1a and AtPUMP1 are remarkably elevated. These data demonstrate that AtCIB22 is essential for plant development and mitochondrial electron transport chains in Arabidopsis. Our findings also enhance our understanding about the physiological role of Complex I in plants.
Collapse
Affiliation(s)
- Lihua Han
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
48
|
Arabidopsis thaliana Uncoupling Proteins (AtUCPs): insights into gene expression during development and stress response and epigenetic regulation. J Bioenerg Biomembr 2011; 43:71-9. [DOI: 10.1007/s10863-011-9336-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Millar AH, Whelan J, Soole KL, Day DA. Organization and regulation of mitochondrial respiration in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:79-104. [PMID: 21332361 DOI: 10.1146/annurev-arplant-042110-103857] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation. We describe recent advances in our understanding of the mitochondrial respiratory machinery of cells, including the presence of a classical oxidative phosphorylation system linked to the cytosol by transporters, discussed alongside nonphosphorylating (and, therefore, non-energy conserving) bypasses that alter the efficiency of ATP synthesis and play a role in oxidative stress responses in plants. We consider respiratory regulation in the context of the contrasting roles mitochondria play in different tissues, from photosynthetic leaves to nutrient-acquiring roots. We focus on the molecular nature of this regulation at transcriptional and post-transcriptional levels that allow the respiratory apparatus of plants to help shape organ development and the response of plants to environmental stress. We highlight the challenges for future research considering spatial and temporal changes of respiration in response to changing climatic conditions.
Collapse
Affiliation(s)
- A Harvey Millar
- Australian Research Council Center of Excellence in Plant Energy Biology, University of Western Australia, M316 Crawley, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
50
|
Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD. Mitochondrial uncoupling and lifespan. Mech Ageing Dev 2010; 131:463-72. [PMID: 20363244 PMCID: PMC2924931 DOI: 10.1016/j.mad.2010.03.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 03/17/2010] [Accepted: 03/29/2010] [Indexed: 12/21/2022]
Abstract
The quest to understand why we age has given rise to numerous lines of investigation that have gradually converged to include metabolic control by mitochondrial activity as a major player. That is, the ideal balance between nutrient uptake, its transduction into usable energy, and the mitigation of damaging byproducts can be regulated by mitochondrial respiration and output (ATP, reactive oxygen species (ROS), and heat). Mitochondrial inefficiency through proton leak, which uncouples substrate oxidation from ADP phosphorylation, can comprise as much as 30% of the basal metabolic rate. This uncoupling is hypothesized to protect cells from conditions that favor ROS production. Uncoupling can also occur through pharmacological induction of proton leak and activity of the uncoupling proteins. Mitochondrial uncoupling is implicated in lifespan extension through its effects on metabolic rate and ROS production. However, evidence to date does not suggest a consistent role for uncoupling in lifespan. The purpose of this review is to discuss recent work examining how mitochondrial uncoupling impacts lifespan.
Collapse
|