1
|
Chea M, Bouvier S, Gris JC. The hemostatic system in chronic brain diseases: A new challenging frontier? Thromb Res 2024; 243:109154. [PMID: 39305718 DOI: 10.1016/j.thromres.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Neurological diseases (ND), including neurodegenerative diseases (NDD) and psychiatric disorders (PD), present a significant public health challenge, ranking third in Europe for disability and premature death, following cardiovascular diseases and cancers. In 2017, approximately 540 million cases of ND were reported among Europe's 925 million people, with strokes, dementia, and headaches being most prevalent. Nowadays, more and more evidence highlight the hemostasis critical role in cerebral homeostasis and vascular events. Indeed, hemostasis, thrombosis, and brain abnormalities contributing to ND form a complex and poorly understood equilibrium. Alterations in vascular biology, particularly involving the blood-brain barrier, are implicated in ND, especially dementia, and PD. While the roles of key coagulation players such as thrombin and fibrinogen are established, the roles of other hemostasis components are less clear. Moreover, the involvement of these elements in psychiatric disease pathogenesis is virtually unstudied, except in specific pathological models such as antiphospholipid syndrome. Advanced imaging techniques, primarily functional magnetic resonance imaging and its derivatives like diffusion tensor imaging, have been developed to study brain areas affected by ND and to improve our understanding of the pathophysiology of these diseases. This literature review aims to clarify the current understanding of the connections between hemostasis, thrombosis, and neurological diseases, as well as explore potential future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mathias Chea
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France.
| | - Sylvie Bouvier
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France
| | - Jean-Christophe Gris
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
2
|
Joshi A, Giorgi FM, Sanna PP. Transcriptional Patterns in Stages of Alzheimer's Disease Are Cell-Type-Specific and Partially Converge with the Effects of Alcohol Use Disorder in Humans. eNeuro 2024; 11:ENEURO.0118-24.2024. [PMID: 39299805 PMCID: PMC11485264 DOI: 10.1523/eneuro.0118-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Advances in single-cell technologies have led to the discovery and characterization of new brain cell types, which in turn lead to a better understanding of the pathogenesis of Alzheimer's disease (AD). Here, we present a detailed analysis of single-nucleus (sn)RNA-seq data for three stages of AD from middle temporal gyrus and compare it with snRNA-seq data from the prefrontal cortices from individuals with alcohol use disorder (AUD). We observed a significant decrease in both inhibitory and excitatory neurons, in general agreement with previous reports. We observed several cell-type-specific gene expressions and pathway dysregulations that delineate AD stages. Endothelial and vascular leptomeningeal cells showed the greatest degree of gene expression changes. Cell-type-specific evidence of neurodegeneration was seen in multiple neuronal cell types particularly in somatostatin and Layer 5 extratelencephalic neurons, among others. Evidence of inflammatory responses was seen in non-neuronal cells, particularly in intermediate and advanced AD. We observed common perturbations in AD and AUD, particularly in pathways, like transcription, translation, apoptosis, autophagy, calcium signaling, neuroinflammation, and phosphorylation, that imply shared transcriptional pathogenic mechanisms and support the role of excessive alcohol intake in AD progression. Major AUD gene markers form and perturb a network of genes significantly associated with intermediate and advanced AD. Master regulator analysis from AUD gene markers revealed significant correlation with advanced AD of transcription factors that have implications in intellectual disability, neuroinflammation, and other neurodegenerative conditions, further suggesting a shared nexus of transcriptional changes between AD and AUD.
Collapse
Affiliation(s)
- Arpita Joshi
- The Scripps Research Institute, San Diego, California 92117
| | - Federico Manuel Giorgi
- The Scripps Research Institute, San Diego, California 92117
- University of Bologna, Bologna 40136, Italy
| | | |
Collapse
|
3
|
Liccardo D, Valletta A, Spagnuolo G, Vinciguerra C, Lauria MR, Perrotta A, Del Giudice C, De Luca F, Rengo G, Rengo S, Rengo C, Cannavo A. Porphyromonas gingivalis virulence factors induce toxic effects in SH-SY5Y neuroblastoma cells: GRK5 modulation as a protective strategy. J Biotechnol 2024; 393:7-16. [PMID: 39033880 DOI: 10.1016/j.jbiotec.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Periodontitis (PDS) is a chronic inflammatory disease initiated by a dysbiosis of oral pathogenic bacterial species, such as Porphyromonas gingivalis (Pg). These bacteria can penetrate the bloodstream, releasing various endo and exotoxins that fuel the infection, and stimulate toxic inflammation in different compartments, including the brain. However, the specific mechanisms by which PDS/Pg contribute to brain disorders, such as Alzheimer's disease (AD), remain unclear. This study assessed the effects of Pg's virulence factors - lipopolysaccharide (LPS-Pg) and gingipains (gps) K (Kgp) and Rgp - on SH-SY5Y cells. Our results demonstrated that LPS-Pg activated signaling through the Toll-like receptor (TLR)-2/4 induced a significant downregulation of G protein-coupled receptor kinase 5 (GRK5). Additionally, LPS-Pg stimulation resulted in a robust increase in Tau phosphorylation (pTau) and p53 levels, while causing a marked reduction in Bcl2 and increased cell death compared to unstimulated cells (Ns). LPS-Pg also elevated inducible nitric oxide synthase (iNOS) expression, leading to oxidative damage. In cells overexpressing GRK5 via Adenovirus, LPS-Pg failed to increase iNOS and pTau levels compared to GFP control cells. High GRK5 levels also prevented the nuclear accumulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, the overexpression of a GRK5 mutant form lacking the nuclear localization signal (ΔNLS) nearly abolished LPS-Pg induced p53 and iNOS upregulation. Finally, we tested whether Kgp and Rgp mediated similar effects and our data showed that both gps caused a marked downregulation of GRK5 leading to increased p53 and pTau levels. In conclusion, this study provides further insight into the toxic effects elicited by Pg in cells and suggests that preventing GRK5 deficiency may be a valid strategy to mitigate Pg-induced toxic effects (i.e. cell death, oxidative damage, and Tau hyperphosphorylation) in SH-SY5Y cells, which are typical molecular hallmarks of neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniela Liccardo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Maria Rosaria Lauria
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Alessia Perrotta
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Carmela Del Giudice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Francesca De Luca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; Istituti Clinici Scientifici Maugeri IRCCS - Scientific Institute of Telese Terme (BN), Italy
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Carlo Rengo
- Dental School of Periodontology, University of Naples Federico II, Napoli 80127, Italy.
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
4
|
Oldak L, Zielinska Z, Socha K, Bogdan S, Gorodkiewicz E. Phospho-Tau 181 quantification method for Alzheimer's disease based on an array 2D biosensor combined with surface plasmon resonance imaging. Talanta 2024; 271:125736. [PMID: 38316077 DOI: 10.1016/j.talanta.2024.125736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Alzheimer's disease is among the neurodegenerative diseases for which there is a lack of rapid, effective, and non-invasive diagnostic methods. The development of a phospho-Tau 181 assay biosensor is therefore a response to the need for methods to diagnose AD. The present work was aimed at developing a fast, selective, and repeatable method for the quantitative determination of phospho-Tau 181, which could be used even during routine blood tests. Our method is a form of what is called liquid biopsy. The developed method underwent validation, as a result of which its analytical parameters were determined. An LOQ of 3.35 pg mL-1 was obtained, confirming the possibility of trace analysis of phospho-Tau 181 in human plasma. Relative percentage error values below 15 % and CVs in the range 1.47-7.09 % attest to the high accuracy and precision of the presented method. Also, the sample matrix was not found to significantly affect the results obtained for phospho-Tau 181 concentrations. The new SPRi biosensor provides reproducible measurements of the analyte under study (CV = 3.18-4.26 %). Although the method requires absolute adherence to the recommendations of the analytical procedure protocol, it achieves high selectivity and provides 90 % certainty of the correctness of the diagnosis based on measurements of phospho-Tau 181 concentration.
Collapse
Affiliation(s)
- Lukasz Oldak
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Zuzanna Zielinska
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Sylwia Bogdan
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
5
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
7
|
Kim S, Sharma C, Jung UJ, Kim SR. Pathophysiological Role of Microglial Activation Induced by Blood-Borne Proteins in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051383. [PMID: 37239054 DOI: 10.3390/biomedicines11051383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) restricts entry of neurotoxic plasma components, blood cells, and pathogens into the brain, leading to proper neuronal functioning. BBB impairment leads to blood-borne protein infiltration such as prothrombin, thrombin, prothrombin kringle-2, fibrinogen, fibrin, and other harmful substances. Thus, microglial activation and release of pro-inflammatory mediators commence, resulting in neuronal damage and leading to impaired cognition via neuroinflammatory responses, which are important features observed in the brain of Alzheimer's disease (AD) patients. Moreover, these blood-borne proteins cluster with the amyloid beta plaque in the brain, exacerbating microglial activation, neuroinflammation, tau phosphorylation, and oxidative stress. These mechanisms work in concert and reinforce each other, contributing to the typical pathological changes in AD in the brain. Therefore, the identification of blood-borne proteins and the mechanisms involved in microglial activation and neuroinflammatory damage can be a promising therapeutic strategy for AD prevention. In this article, we review the current knowledge regarding the mechanisms of microglial activation-mediated neuroinflammation caused by the influx of blood-borne proteins into the brain via BBB disruption. Subsequently, the mechanisms of drugs that inhibit blood-borne proteins, as a potential therapeutic approach for AD, along with the limitations and potential challenges of these approaches, are also summarized.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
9
|
Massimini M, Bachetti B, Dalle Vedove E, Benvenga A, Di Pierro F, Bernabò N. A Set of Dysregulated Target Genes to Reduce Neuroinflammation at Molecular Level. Int J Mol Sci 2022; 23:ijms23137175. [PMID: 35806178 PMCID: PMC9266409 DOI: 10.3390/ijms23137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds’ screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.
Collapse
Affiliation(s)
- Marcella Massimini
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Benedetta Bachetti
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Elena Dalle Vedove
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Alessia Benvenga
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Francesco Di Pierro
- Velleja Research, 20125 Milan, Italy;
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| |
Collapse
|
10
|
Wang H, Liu Y, Guo Z, Wu K, Zhang Y, Tian Y, Zhao B, Lu H. Aconitine induces cell apoptosis via mitochondria and death receptor signaling pathways in hippocampus cell line. Res Vet Sci 2022; 143:124-133. [PMID: 35026629 DOI: 10.1016/j.rvsc.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023]
Abstract
Aconitine is a plant toxin derived from aconitum genus and well known for its neurological and vascular toxicity. However, the mechanism of toxicity on the growth and apoptosis of the neurological cells has not been well investigated. In this study, we used HT22 cell lines derived from hippocampus to explore the mechanism. We began with examination of the viability and DA (dopamine) contents of cells treated with different dose of aconitine. In this study, we investigated the role of apoptosis in AC-induced HT22 cells. Our results showed that aconitine inhibited HT22 cells growth and increased DA contents in a dose dependent manner. Aconitine treatment induced apoptosis in HT22 cells and we found aconitine induced apoptosis by upregulating the expression of Bax, Cyto c, Apaf-1, Caspase9, Fas, Fas-L, Fadd, Caspase8, Caspase3 with concomitant decreasing of Bcl-2 and Bid expression. Collectively, results suggest that aconitine induce apoptosis through mitochondrial-mediated and death receptor signaling pathways in HT22 cells.
Collapse
Affiliation(s)
- Hui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziyu Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kexin Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunhao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Boyarko B, Hook V. Human Tau Isoforms and Proteolysis for Production of Toxic Tau Fragments in Neurodegeneration. Front Neurosci 2021; 15:702788. [PMID: 34744602 PMCID: PMC8566764 DOI: 10.3389/fnins.2021.702788] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/09/2021] [Indexed: 01/27/2023] Open
Abstract
The human tau protein is implicated in a wide range of neurodegenerative “tauopathy” diseases, consisting of Alzheimer’s disease (AD) and frontotemporal lobar degeneration which includes progressive supranuclear palsy, corticobasal degeneration, Pick’s disease, and FTLD-tau (frontotemporal dementia with parkinsonism caused by MAPT mutations). Tau gene transcripts in the human brain undergo alternative splicing to yield 6 different tau protein isoforms that are expressed in different ratios in neurodegeneration which result in tau pathology of paired-helical filaments, neurofibrillary tangles, and tau fibrillar aggregates with detrimental microtubule destabilization. Protease-mediated tau truncation is an important post-translational modification (PTM) which drives neurodegeneration in a tau fragment-dependent manner. While numerous tau fragments have been identified, knowledge of the proteolytic steps that convert each parent tau isoform into specific truncated tau fragments has not yet been fully defined. An improved understanding of the relationships between tau isoforms and their proteolytic processing to generate neurotoxic tau fragments is important to the field. This review evaluates tau isoform expression patterns including PTMs and mutations that influence proteolysis of tau to generate toxic fragments that drive cognitive deficits in AD and other tauopathy models. This assessment identifies the gap in the field on understanding the details of proteolytic steps used to convert each tau isoform into fragments. Knowledge of the processing mechanisms of tau isoforms can lead to new protease targeted drug strategies to prevent the formation of toxic tau fragments in tauopathy neurodegenerative diseases.
Collapse
Affiliation(s)
- Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Vittal Rao H, Bihaqi SW, Iannucci J, Sen A, Grammas P. Thrombin Signaling Contributes to High Glucose-Induced Injury of Human Brain Microvascular Endothelial Cells. J Alzheimers Dis 2021; 79:211-224. [PMID: 33252072 DOI: 10.3233/jad-200658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes is one of the strongest disease-related risk factors for Alzheimer's disease (AD). In diabetics, hyperglycemia-induced microvascular complications are the major cause of end-organ injury, contributing to morbidity and mortality. Microvascular pathology is also an important and early feature of AD. The cerebral microvasculature may be a point of convergence of both diseases. Several lines of evidence also implicate thrombin in AD as well as in diabetes. OBJECTIVE Our objective was to investigate the role of thrombin in glucose-induced brain microvascular endothelial injury. METHODS Cultured Human brain microvascular endothelial cells (HBMVECs) were treated with 30 mM glucose±100 nM thrombin and±250 nM Dabigatran or inhibitors of PAR1, p38MAPK, MMP2, or MMP9. Cytotoxicity and thrombin activity assays on supernatants and western blotting for protein expression in lysates were performed. RESULTS reatment of HBMVECs with 30 mM glucose increased thrombin activity and expression of inflammatory proteins TNFα, IL-6, and MMPs 2 and 9; this elevation was reduced by the thrombin inhibitor dabigatran. Direct treatment of brain endothelial cells with thrombin upregulated p38MAPK and CREB, and induced TNFα, IL6, MMP2, and MMP9 as well as oxidative stress proteins NOX4 and iNOS. Inhibition of thrombin, thrombin receptor PAR1 or p38MAPK decrease expression of inflammatory and oxidative stress proteins, implying that thrombin may play a central role in glucose-induced endothelial injury. CONCLUSION Since preventing brain endothelial injury would preserve blood-brain barrier integrity, prevent neuroinflammation, and retain intact functioning of the neurovascular unit, inhibiting thrombin, or its downstream signaling effectors, could be a therapeutic strategy for mitigating diabetes-induced dementia.
Collapse
Affiliation(s)
- Haripriya Vittal Rao
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Syed Waseem Bihaqi
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Jaclyn Iannucci
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.,Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Paula Grammas
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
13
|
Sobreira DR, Joslin AC, Zhang Q, Williamson I, Hansen GT, Farris KM, Sakabe NJ, Sinnott-Armstrong N, Bozek G, Jensen-Cody SO, Flippo KH, Ober C, Bickmore WA, Potthoff M, Chen M, Claussnitzer M, Aneas I, Nóbrega MA. Extensive pleiotropism and allelic heterogeneity mediate metabolic effects of IRX3 and IRX5. Science 2021; 372:1085-1091. [PMID: 34083488 PMCID: PMC8386003 DOI: 10.1126/science.abf1008] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
Whereas coding variants often have pleiotropic effects across multiple tissues, noncoding variants are thought to mediate their phenotypic effects by specific tissue and temporal regulation of gene expression. Here, we investigated the genetic and functional architecture of a genomic region within the FTO gene that is strongly associated with obesity risk. We show that multiple variants on a common haplotype modify the regulatory properties of several enhancers targeting IRX3 and IRX5 from megabase distances. We demonstrate that these enhancers affect gene expression in multiple tissues, including adipose and brain, and impart regulatory effects during a restricted temporal window. Our data indicate that the genetic architecture of disease-associated loci may involve extensive pleiotropy, allelic heterogeneity, shared allelic effects across tissues, and temporally restricted effects.
Collapse
Affiliation(s)
- Débora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Amelia C Joslin
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Qi Zhang
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Grace T Hansen
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn M Farris
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Nasa Sinnott-Armstrong
- Department of Genetics, Stanford University, Stanford 94305 CA, USA
- Metabolism Program and Cardiovascular Disease Initiative, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Grazyna Bozek
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Sharon O Jensen-Cody
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Matthew Potthoff
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mengjie Chen
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Melina Claussnitzer
- Metabolism Program and Cardiovascular Disease Initiative, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02131, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Marcelo A Nóbrega
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer's diseases. Psychopharmacology (Berl) 2021; 238:1645-1656. [PMID: 33624157 DOI: 10.1007/s00213-021-05798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive brain disorder accompanied with synaptic failures and decline in cognitive and learning processes. Protease-activated receptor 1 (PAR1) is the major thrombin receptor in the brain that is implicated in synaptic plasticity and memory formation. In the current study, we hypothesized that inhibition of PAR1 would theoretically prevent amyloid beta (Aβ) accumulation in the brain and then contribute to reduce risk of AD. The aim of the present study was to evaluate the effect of PAR1 inhibition by using SCH (as an inhibitor of PAR1) on spatial learning, memory, and synaptic plasticity in the CA1 region of the hippocampus in rat model of Alzheimer's disease. METHODS For the induction of Alzheimer's disease, amyloid beta (Aβ) 1-42 was injected in the CA1 region of the hippocampus. The rats were divided into four groups: group I (surgical sham); group II rat mode of Alzheimer's disease (AD); group III (SCH) (25 μg/kg) intraperitoneally (i.p.), and group IV (AD + SCH). After 14 days of protocol, the rats in group III received SCH and 30 min after injection behavioral and electrophysiological tests were performed. Learning and memory ability was assessed by Morris water maze and novel object recognition tests. Extracellular evoked field excitatory postsynaptic potentials (fEPSP) were recorded in the stratum radiatum of the CA1 area. RESULTS Our results showed that AD rats showed impairments in learning and memory, and long-term potentiation (LTP) was not induced in these rats. However, injection of SCH overcame the AD-induced impairment in LTP generation in the CA1 area of the hippocampus and improved learning and memory impairment.
Collapse
|
15
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
16
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Bihaqi SW, Rao HV, Sen A, Grammas P. Dabigatran reduces thrombin-induced neuroinflammation and AD markers in vitro: Therapeutic relevance for Alzheimer's disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100014. [PMID: 36324711 PMCID: PMC9616330 DOI: 10.1016/j.cccb.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Thrombin treatment induced proteins linked to neuroinflammation in SH-SY5Y cells. Thrombin exposure elevated the expression/ levels of proteins of AD pathway. EMSA showed dabigatran reduced activation of NFκB in SH-SY5Y cells. Dabigatran reduced thrombin-driven neuroinflammation and downstream AD pathology.
Background Vascular risk factors such as atherosclerosis, diabetes, and elevated homocysteine levels are strongly correlated with onset of Alzheimer's disease (AD). Emerging evidence indicates that blood coagulation protein thrombin is associated with vascular and non-vascular risk factors of AD. Here, we examined the effect of thrombin and its direct inhibitor dabigatran on key mediators of neuro-inflammation and AD pathology in the retinoic acid (RA)-differentiated human neuroblastoma cell line SH-SY5Y. Methods SH-SY5Y cells exposed to thrombin concentrations (10–100 nM) +/- 250 nM dabigatran for 24 h were analyzed for protein and gene expression. Electrophoretic mobility shift assay (EMSA) was used to determine DNA binding of NFkB. Western blotting, qRT-PCR and ELISA were used to measure the protein, mRNA, and activity levels of known AD hallmarks and signaling molecules. Results Dabigatran treatment attenuated thrombin-induced increase in DNA binding of NFκB by 175% at 50 nM and by 77% at 100 nM thrombin concentration. Thrombin also augmented accumulation of Aβ protein expression and phosphorylation of p38 MAPK, a downstream molecule in the signaling cascade, expression of pro-apoptotic mediator caspase 3, APP, tTau and pTau. Additionally, thrombin increased BACE1 activity, GSK3β expression, and APP, BACE1, Tau and GSK3β mRNA levels. Co-incubation with dabigatran attenuated thrombin-induced increases in the protein, mRNA, and activities of the aforesaid molecules to various extents (between −31% and −283%). Conclusion Our data demonstrates that thrombin promotes AD-related pathological changes in neuronal cultures and suggests that use of direct oral anticoagulants may provide a therapeutic benefit against thrombin-driven neuroinflammation and downstream pathology in AD.
Collapse
Affiliation(s)
- Syed Waseem Bihaqi
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Pathology, Anatomy and Cell biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
- Corresponding author at: Department of Pathology, Anatomy and Cell biology, 1020 Locust Street, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Haripriya Vittal Rao
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Wake Forest Alzheimer's Disease Research Center, Winston Salem, NC 27101, United States
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| |
Collapse
|
19
|
Iannucci J, Johnson SL, Majchrzak M, Barlock BJ, Akhlaghi F, Seeram NP, Sen A, Grammas P. Short-term treatment with dabigatran alters protein expression patterns in a late-stage tau-based Alzheimer's disease mouse model. Biochem Biophys Rep 2020; 24:100862. [PMID: 33294639 PMCID: PMC7689047 DOI: 10.1016/j.bbrep.2020.100862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Proteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer's disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510. Aged Tg4510 mice were treated with the direct thrombin inhibitor dabigatran or vehicle for 7 days, brains collected, and western blot and data-independent proteomics using mass spectrometry with SWATH-MS acquisition performed to evaluate proteins related to oxidative stress, intracellular signaling, inflammation, and AD pathology. Dabigatran reduced iNOS, NOX4, and phosphorylation of tau (S396, S416). Additionally, dabigatran treatment increased expression of several signaling proteins related to cell survival and synaptic function. Increasing evidence supports a chronic procoagulant state in AD, highlighting a possible pathogenic role for thrombin. Our data demonstrate that inhibiting thrombin produces alterations in the expression of proteins involved in oxidative stress, inflammation, and AD-related pathology, suggesting that thrombin-mediated signaling affects multiple AD-related pathways providing a potential future therapeutic target. Thrombin inhibition with dabigatran reduces markers of oxidative stress in vivo. Dabigatran treatment reduces tau pathology in vivo. Dabigatran treatment promotes factors related to cell survival, synaptic function.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Shelby L Johnson
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Mark Majchrzak
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Benjamin J Barlock
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
20
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
21
|
Non-genomic mechanisms mediate androgen-induced PSD95 expression. Aging (Albany NY) 2020; 11:2281-2294. [PMID: 31005955 PMCID: PMC6520003 DOI: 10.18632/aging.101913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
The non-genomic actions of androgen-induced synaptic plasticity have been extensively studied. However, the underlying mechanisms remain controversial. We recently found that testosterone-fetal bovine serum albumin (T-BSA), a cell membrane-impermeable complex, led to a rapid increase in the postsynaptic density 95 (PSD95) protein level through a transcription-independent mechanism in mouse hippocampal HT22 cells. Using T-BSA conjugated FITC, we verified the presence of membrane androgen-binding sites. Here, we show that T-BSA-induced PSD95 expression is mediated by G-protein-coupled receptor (GPCR)-zinc transporter ZIP9 (SLC39A9), one of the androgen membrane binding sites, rather than the membrane-localized androgen receptor. Furthermore, we found that T-BSA induced an interaction between ZIP9 and Gnα11 that lead to the phosphorylation of Erk1/2 MAPK and eIF4E, which are critical in the mRNA translation process. The PSD95 and p-eIF4E expression decreased when knockdown of ZIP9 or Gnα11 expression or inhibition of Erk1/2 activation. Taken together, these findings suggest that ZIP9 mediates the non-genomic action of androgen on synaptic protein PSD95 synthesis through the Gnα11/Erk1/2/eIF4E pathway in HT22 cells. This novel mechanism provides a theoretical basis to understand the neuroprotective mechanism of androgen.
Collapse
|
22
|
Klohs J. An Integrated View on Vascular Dysfunction in Alzheimer's Disease. NEURODEGENER DIS 2020; 19:109-127. [PMID: 32062666 DOI: 10.1159/000505625] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD). It is believed to contribute additively to the cognitive impairment and to lower the threshold for the development of dementia. However, accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Vascular processes even proceed AD neuropathology, implicating a causal role in the etiology of AD. Thus, the review aims to provide an integrated view on vascular dysfunction in AD. SUMMARY In AD, the cerebral vasculature undergoes pronounced cellular, morphological and structural changes, which alters regulation of blood flow, vascular fluid dynamics and vessel integrity. Stiffening of central blood vessels lead to transmission of excessive pulsatile energy to the brain microvasculature, causing end-organ damage. Moreover, a dysregulated hemostasis and chronic vascular inflammation further impede vascular function, where its mediators interact synergistically. Changes of the cerebral vasculature are triggered and driven by systemic vascular abnormalities that are part of aging, and which can be accelerated and aggravated by cardiovascular diseases. Key Messages: In AD, the cerebral vasculature is the locus where multiple pathogenic processes converge and contribute to cognitive impairment. Understanding the molecular mechanism and pathophysiology of vascular dysfunction in AD and use of vascular blood-based and imaging biomarker in clinical studies may hold promise for future prevention and therapy of the disease.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland, .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,
| |
Collapse
|
23
|
Hansra GK, Popov G, Banaczek PO, Vogiatzis M, Jegathees T, Goldsbury CS, Cullen KM. The neuritic plaque in Alzheimer's disease: perivascular degeneration of neuronal processes. Neurobiol Aging 2019; 82:88-101. [PMID: 31437721 DOI: 10.1016/j.neurobiolaging.2019.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
Cerebrovascular pathology is common in aging and Alzheimer's disease (AD). The microvasculature is particularly vulnerable, with capillary-level microhemorrhages coinciding with amyloid beta deposits in senile plaques. In the current analysis, we assessed the relationship between cerebral microvessels and the neuritic component of the plaque in cortical and hippocampal 50- to 200-μm sections from 11 AD, 3 Down syndrome, and 7 nondemented cases in neuritic disease stages 0-VI. We report that 77%-97% of neuritic plaques are perivascular, independently of disease stage or dementia diagnosis. Within neuritic plaques, dystrophic hyperphosphorylated tau-positive neurites appear as clusters of punctate, bulbous, and thread-like structures focused around capillaries and colocalize with iron deposits characteristic of microhemorrhage. Microvessels within the neuritic plaque are narrowed by 1.0 ± 1.0 μm-4.4 ± 2.0 μm, a difference of 16%-65% compared to blood vessel segments with diameters 7.9 ± 2.0-6.4 ± 0.8 μm (p < 0.01) outside the plaque domain. The reduced capacity of microvessels within plaques, frequently below patency, likely compromises normal microlocal cerebrovascular perfusion. These data link the neuritic and amyloid beta components of the plaque directly to microvascular degeneration. Strategies focused on cerebrovascular antecedents to neuritic dystrophy in AD have immediate potential for prevention, detection, and therapeutic intervention.
Collapse
Affiliation(s)
- Gurpreet Kaur Hansra
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Glib Popov
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Patricia O Banaczek
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Monica Vogiatzis
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Thuvarahan Jegathees
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Claire S Goldsbury
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Karen M Cullen
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia.
| |
Collapse
|
24
|
Festoff BW, Citron BA. Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Front Neurol 2019; 10:59. [PMID: 30804878 PMCID: PMC6371052 DOI: 10.3389/fneur.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
This review details our current understanding of thrombin signaling in neurodegeneration, with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease) as well as future directions to be pursued. The key factors are multifunctional and involved in regulatory pathways, namely innate immune and the coagulation cascade activation, that are essential for normal nervous system function and health. These two major host defense systems have a long history in evolution and include elements and regulators of the coagulation pathway that have significant impacts on both the peripheral and central nervous system in health and disease. The clotting cascade responds to a variety of insults to the CNS including injury and infection. The blood brain barrier is affected by these responses and its compromise also contributes to these detrimental effects. Important molecules in signaling that contribute to or protect against neurodegeneration include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1) and those released from mitochondria (mtDAMPs). Each of these molecules are entangled in choices dependent upon specific signaling pathways in play. For example, the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have downstream effects through coupled factors to result in toxicity or neuroprotection. Furthermore, numerous interactions influence these choices such as the interplay between HMGB1, thrombin, and TM. Our hope is that improved understanding of the ways that components of the coagulation cascade affect innate immune inflammatory responses and influence the course of neurodegeneration, especially after injury, will lead to effective therapeutic approaches for ALS, traumatic brain injury, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, Fairway, KS, United States.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bruce A Citron
- Laboratory of Molecular Biology Research & Development, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
25
|
Sung JY, Bae JH, Lee JH, Kim YN, Kim DK. The Melatonin Signaling Pathway in a Long-Term Memory In Vitro Study. Molecules 2018; 23:molecules23040737. [PMID: 29570621 PMCID: PMC6017053 DOI: 10.3390/molecules23040737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
The activation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) via phosphorylation in the hippocampus is an important signaling mechanism for enhancing memory processing. Although melatonin is known to increase CREB expression in various animal models, the signaling mechanism between melatonin and CREB has been unknown in vitro. Thus, we confirmed the signaling pathway between the melatonin receptor 1 (MT1) and CREB using melatonin in HT-22 cells. Melatonin increased MT1 and gradually induced signals associated with long-term memory processing through phosphorylation of Raf, ERK, p90RSK, CREB, and BDNF expression. We also confirmed that the calcium, JNK, and AKT pathways were not involved in this signaling pathway by melatonin in HT-22 cells. Furthermore, we investigated whether melatonin regulated the expressions of CREB-BDNF associated with long-term memory processing in aged HT-22 cells. In conclusion, melatonin mediated the MT1-ERK-p90RSK-CREB-BDNF signaling pathway in the in vitro long-term memory processing model and increased the levels of p-CREB and BDNF expression in melatonin-treated cells compared to untreated HT-22 cells in the cellular aged state. Therefore, this paper suggests that melatonin induces CREB signaling pathways associated with long-term memory processing in vitro.
Collapse
Affiliation(s)
- Jin-Young Sung
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Ji-Hyun Bae
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Jong-Ha Lee
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Yoon-Nyun Kim
- Dongsan Medical Center, Department of Internal Medicine, Keimyung University, Daegu 42931, Korea.
| | - Dae-Kwang Kim
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
26
|
Bonaterra GA, Schwendler A, Hüther J, Schwarzbach H, Schwarz A, Kolb C, Abdel-Aziz H, Kinscherf R. Neurotrophic, Cytoprotective, and Anti-inflammatory Effects of St. John's Wort Extract on Differentiated Mouse Hippocampal HT-22 Neurons. Front Pharmacol 2018; 8:955. [PMID: 29403374 PMCID: PMC5778116 DOI: 10.3389/fphar.2017.00955] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022] Open
Abstract
Introduction: Since ancient times Hypericum perforatum L. named St. John's wort (SJW), has been used in the management of a wide range of applications, including nervous disorders. Development of mood disorders are due to alterations in glutamate metabolism, initiation of inflammatory pathways, and changes of the neuronal plasticity. Previous studies suggest that the glutamatergic system contributes to the pathophysiology of depression. Extracts of SJW have been recommended for the treatment of depression. The aim of the present in vitro study was to evaluate the action of STW3-VI, a special SJW extract in differentiated mouse hippocampal HT-22 neurons. We evaluated the stimulation of neurogenesis, the protective effect against glutamate or N-methyl-D-aspartate receptor induced-excitotoxicity and its anti-inflammatory properties in LPS-activated human macrophages. Results: After 48 h treatment, STW3-VI stimulated the neurite formation by 25% in comparison with the control and showed protective effects against glutamate- or NMDA-induced cytotoxicity by significantly increasing the viability about +25 or +50%. In conjunction with these effects, after pretreatment with STW3-VI, the intracellular reduced glutathione content was significantly 2.3-fold increased compared with the neurons incubated with glutamate alone. Additionally, pre-treatment of human macrophages with STW3-VI showed anti-inflammatory effects after 24 or 48 h concerning inhibition of LPS-induced TNF release by -47.3 and -53.8% (24 h) or -25.0 to -64.8% (48 h). Conclusions: Our data provide new evidence that STW3-VI protects hippocampal cells from NMDA- or glutamate-induced cytotoxicity. Moreover, our results indicate a morphological remodeling by increasing neurite outgrowth and activation of the anti-inflammatory defense by inhibition of the cytokine production in human macrophages after STW3-VI treatment. These protective, neurotrophic and anti-inflammatory properties may be beneficial in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Anna Schwendler
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Julian Hüther
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Anja Schwarz
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Christiane Kolb
- Steigerwald Arzneimittelwerk GmbH, Scientific Department, Darmstadt, Germany
| | - Heba Abdel-Aziz
- Steigerwald Arzneimittelwerk GmbH, Scientific Department, Darmstadt, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
27
|
Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1549194. [PMID: 28890893 PMCID: PMC5584365 DOI: 10.1155/2017/1549194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/09/2017] [Indexed: 12/14/2022]
Abstract
Current projections are that by 2050 the numbers of people aged 65 and older with Alzheimer's disease (AD) in the US may increase threefold while dementia is projected to double every 20 years reaching ~115 million by 2050. AD is clinically characterized by progressive dementia and neuropathologically by neuronal and synapse loss, accumulation of amyloid plaques, and neurofibrillary tangles (NFTs) in specific brain regions. The preclinical or presymptomatic stage of AD-related brain changes may begin over 20 years before symptoms occur, making development of noninvasive biomarkers essential. Distinct from neuroimaging and cerebrospinal fluid biomarkers, plasma or serum biomarkers can be analyzed to assess (i) the presence/absence of AD, (ii) the risk of developing AD, (iii) the progression of AD, or (iv) AD response to treatment. No unifying theory fully explains the neurodegenerative brain lesions but neuroinflammation (a lethal stressor for healthy neurons) is universally present. Current consensus is that the earlier the diagnosis, the better the chance to develop treatments that influence disease progression. In this article we provide a detailed review and analysis of the role of the blood-brain barrier (BBB) and damage-associated molecular patterns (DAMPs) as well as coagulation molecules in the onset and progression of these neurodegenerative disorders.
Collapse
|
28
|
Yu IC, Kuo PC, Yen JH, Paraiso HC, Curfman ET, Hong-Goka BC, Sweazey RD, Chang FL. A Combination of Three Repurposed Drugs Administered at Reperfusion as a Promising Therapy for Postischemic Brain Injury. Transl Stroke Res 2017. [PMID: 28624878 DOI: 10.1007/s12975-017-0543-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia leads to multifaceted injury to the brain. A polytherapeutic drug that can be administered immediately after reperfusion may increase protection to the brain by simultaneously targeting multiple deleterious cascades. This study evaluated efficacy of the combination of three clinically approved drugs: lamotrigine, minocycline, and lovastatin, using two mouse models: global and focal cerebral ischemia induced by transient occlusion of the common carotid arteries or the middle cerebral artery, respectively. In vitro, the combination drug, but not single drug, protected neurons against oxygen-glucose deprivation (OGD)-induced cell death. The combination drug simultaneously targeted cell apoptosis and DNA damage induced by ischemia. Besides acting on neurons, the combination drug suppressed inflammatory processes in microglia and brain endothelial cells induced by ischemia. In a transient global ischemia model, the combination drug, but not single drug, suppressed microglial activation and inflammatory cytokine production, and reduced neuronal damage. In a transient focal ischemia model, the combination drug, but not single drug, attenuated brain infarction, suppressed infiltration of peripheral neutrophils, and reduced neurological deficits following ischemic stroke. In summary, the combination drug confers a broad-spectrum protection against ischemia/reperfusion (I/R) injury and could be a promising approach for early neuroprotection after out-of-hospital cardiac arrest or ischemic stroke.
Collapse
Affiliation(s)
- I-Chen Yu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA.
| | - Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Hallel C Paraiso
- Department of Biology, Indiana University-Purdue University Fort Wayne, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Eric T Curfman
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Benecia C Hong-Goka
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Robert D Sweazey
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Fen-Lei Chang
- Department of Neurology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA.
| |
Collapse
|
29
|
Radulovic M, Yoon H, Wu J, Mustafa K, Scarisbrick IA. Targeting the thrombin receptor modulates inflammation and astrogliosis to improve recovery after spinal cord injury. Neurobiol Dis 2016; 93:226-42. [PMID: 27145117 PMCID: PMC4930708 DOI: 10.1016/j.nbd.2016.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/08/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023] Open
Abstract
The deregulation of serine protease activity is a common feature of neurological injury, but little is known regarding their mechanisms of action or whether they can be targeted to facilitate repair. In this study we demonstrate that the thrombin receptor (Protease Activated Receptor 1, (PAR1)) serves as a critical translator of the spinal cord injury (SCI) proteolytic microenvironment into a cascade of pro-inflammatory events that contribute to astrogliosis and functional decline. PAR1 knockout mice displayed improved locomotor recovery after SCI and reduced signatures of inflammation and astrogliosis, including expression of glial fibrillary acidic protein (GFAP), vimentin, and STAT3 signaling. SCI-associated elevations in pro-inflammatory cytokines such as IL-1β and IL-6 were also reduced in PAR1-/- mice and co-ordinate improvements in tissue sparing and preservation of NeuN-positive ventral horn neurons, and PKCγ corticospinal axons, were observed. PAR1 and its agonist's thrombin and neurosin were expressed by perilesional astrocytes and each agonist increased the production of IL-6 and STAT3 signaling in primary astrocyte cultures in a PAR1-dependent manner. In turn, IL-6-stimulated astrocytes increased expression of PAR1, thrombin, and neurosin, pointing to a model in which PAR1 activation contributes to increased astrogliosis by feedforward- and feedback-signaling dynamics. Collectively, these findings identify the thrombin receptor as a key mediator of inflammation and astrogliosis in the aftermath of SCI that can be targeted to reduce neurodegeneration and improve neurobehavioral recovery.
Collapse
Affiliation(s)
- Maja Radulovic
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Karim Mustafa
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States
| | - Isobel A Scarisbrick
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States.
| |
Collapse
|
30
|
Festoff BW, Sajja RK, van Dreden P, Cucullo L. HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer's disease. J Neuroinflammation 2016; 13:194. [PMID: 27553758 PMCID: PMC4995775 DOI: 10.1186/s12974-016-0670-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023] Open
Abstract
Background The blood-brain barrier (BBB) dysfunction represents an early feature of Alzheimer’s disease (AD) that precedes the hallmarks of amyloid beta (amyloid β) plaque deposition and neuronal neurofibrillary tangle (NFT) formation. A damaged BBB correlates directly with neuroinflammation involving microglial activation and reactive astrogliosis, which is associated with increased expression and/or release of high-mobility group box protein 1 (HMGB1) and thrombin. However, the link between the presence of these molecules, BBB damage, and progression to neurodegeneration in AD is still elusive. Therefore, we aimed to profile and validate non-invasive clinical biomarkers of BBB dysfunction and neuroinflammation to assess the progression to neurodegeneration in mild cognitive impairment (MCI) and AD patients. Methods We determined the serum levels of various proinflammatory damage-associated molecules in aged control subjects and patients with MCI or AD using validated ELISA kits. We then assessed the specific and direct effects of such molecules on BBB integrity in vitro using human primary brain microvascular endothelial cells or a cell line. Results We observed a significant increase in serum HMGB1 and soluble receptor for advanced glycation end products (sRAGE) that correlated well with amyloid beta levels in AD patients (vs. control subjects). Interestingly, serum HMGB1 levels were significantly elevated in MCI patients compared to controls or AD patients. In addition, as a marker of BBB damage, soluble thrombomodulin (sTM) antigen, and activity were significantly (and distinctly) increased in MCI and AD patients. Direct in vitro BBB integrity assessment further revealed a significant and concentration-dependent increase in paracellular permeability to dextrans by HMGB1 or α-thrombin, possibly through disruption of zona occludins-1 bands. Pre-treatment with anti-HMGB1 monoclonal antibody blocked HMGB1 effects and leaving BBB integrity intact. Conclusions Our current studies indicate that thrombin and HMGB1 are causal proximate proinflammatory mediators of BBB dysfunction, while sTM levels may indicate BBB endothelial damage; HMGB1 and sRAGE might serve as clinical biomarkers for progression and/or therapeutic efficacy along the AD spectrum.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, 4220 Shawnee Mission Parkway, Fairway, KS, 66205, USA.,Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Ravi K Sajja
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Patrick van Dreden
- Clinical Research Department, R&D, Diagnostica Stago, Gennevilliers, France
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA.
| |
Collapse
|
31
|
Citron BA, Ameenuddin S, Uchida K, Suo WZ, SantaCruz K, Festoff BW. Membrane lipid peroxidation in neurodegeneration: Role of thrombin and proteinase-activated receptor-1. Brain Res 2016; 1643:10-7. [DOI: 10.1016/j.brainres.2016.04.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 04/10/2016] [Accepted: 04/28/2016] [Indexed: 02/08/2023]
|
32
|
Rohatgi T, Sedehizade F, Reymann KG, Reiser G. Protease-Activated Receptors in Neuronal Development, Neurodegeneration, and Neuroprotection: Thrombin as Signaling Molecule in the Brain. Neuroscientist 2016; 10:501-12. [PMID: 15534036 DOI: 10.1177/1073858404269955] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protease-activated receptors (PARs) belong to the superfamily of seven transmembrane domain G protein-coupled receptors. Four PAR subtypes are known, PAR-1 to -4. PARs are highly homologous between the species and are expressed in a wide variety of tissues and cell types. Of particular interest is the role which these receptors play in the brain, with regard to neuroprotection or degeneration under pathological conditions. The main agonist of PARs is thrombin, a multifunctional serine protease, known to be present not only in blood plasma but also in the brain. PARs possess an irreversible activation mechanism. Binding of agonist and subsequent cleavage of the extracellular N-terminus of the receptor results in exposure of a so-called tethered ligand domain, which then binds to extracellular loop 2 of the receptor leading to receptor activation. PARs exhibit an extensive expression pattern in both the central and the peripheral nervous system. PARs participate in several mechanisms important for normal cellular functioning and during critical situations involving cellular survival and death. In the last few years, research on Alzheimer’s disease and stroke has linked PARs to the pathophysiology of these neurodegenerative disorders. Actions of thrombin are concentration-dependent, and therefore, depending on cellular function and environment, serve as a double-edged sword. Thrombin can be neuroprotective during stress conditions, whereas under normal conditions high concentrations of thrombin are toxic to cells.
Collapse
Affiliation(s)
- Tanuja Rohatgi
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | | | | | | |
Collapse
|
33
|
He M, Singh P, Cheng S, Zhang Q, Peng W, Ding X, Li L, Liu J, Premont RT, Morgan D, Burns JM, Swerdlow RH, Suo WZ. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability. Sci Rep 2016; 6:26116. [PMID: 27193825 PMCID: PMC4872166 DOI: 10.1038/srep26116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/27/2016] [Indexed: 02/05/2023] Open
Abstract
Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer’s disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration.
Collapse
Affiliation(s)
- Minchao He
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Prabhakar Singh
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Shaowu Cheng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Qiang Zhang
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Wei Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - XueFeng Ding
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA.,Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Longxuan Li
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Jun Liu
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Richard T Premont
- Department of Medicine, Duke Univ. Med. Center, Durham, NC 27710, USA
| | - Dave Morgan
- The Johnnie B. Byrd Alzheimer's Center &Research Institute, Tampa, FL 33620, USA.,Deptment of Molecular Pharmacology &Physiology, University of South Florida, Tampa, FL 33620, USA
| | - Jeffery M Burns
- Department of Neurology, University of Kansas Medical College, Kansas City, KS 66170, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical College, Kansas City, KS 66170, USA.,The University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical College, Kansas City, KS 66170, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical College, Kansas City, KS 66170, USA.,The University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - William Z Suo
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA.,Department of Neurology, University of Kansas Medical College, Kansas City, KS 66170, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical College, Kansas City, KS 66170, USA.,The University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
The Importance of Thrombin in Cerebral Injury and Disease. Int J Mol Sci 2016; 17:ijms17010084. [PMID: 26761005 PMCID: PMC4730327 DOI: 10.3390/ijms17010084] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence that prothrombin and its active derivative thrombin are expressed locally in the central nervous system. So far, little is known about the physiological and pathophysiological functions exerted by thrombin in the human brain. Extra-hepatic prothrombin expression has been identified in neuronal cells and astrocytes via mRNA measurement. The actual amount of brain derived prothrombin is expected to be 1% or less compared to that in the liver. The role in brain injury depends upon its concentration, as higher amounts cause neuroinflammation and apoptosis, while lower concentrations might even be cytoprotective. Its involvement in numerous diseases like Alzheimer’s, multiple sclerosis, cerebral ischemia and haemorrhage is becoming increasingly clear. This review focuses on elucidation of the cerebral thrombin expression, local generation and its role in injury and disease of the central nervous system.
Collapse
|
35
|
Exploring novel mechanistic insights in Alzheimer's disease by assessing reliability of protein interactions. Sci Rep 2015; 5:13634. [PMID: 26346705 PMCID: PMC4562155 DOI: 10.1038/srep13634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 08/03/2015] [Indexed: 01/08/2023] Open
Abstract
Protein interaction networks are widely used in computational biology as a graphical means of representing higher-level systemic functions in a computable form. Although, many algorithms exist that seamlessly collect and measure protein interaction information in network models, they often do not provide novel mechanistic insights using quantitative criteria. Measuring information content and knowledge representation in network models about disease mechanisms becomes crucial particularly when exploring new target candidates in a well-defined functional context of a potential disease mechanism. To this end, we have developed a knowledge-based scoring approach that uses literature-derived protein interaction features to quantify protein interaction confidence. Thereby, we introduce the novel concept of knowledge cliffs, regions of the interaction network where a significant gap between high scoring and low scoring interactions is observed, representing a divide between established and emerging knowledge on disease mechanism. To show the application of this approach, we constructed and assessed reliability of a protein-protein interaction model specific to Alzheimer’s disease, which led to screening, and prioritization of four novel protein candidates. Evaluation of the identified candidates showed that two of them are already followed in clinical trials for testing potential AD drugs.
Collapse
|
36
|
Janota C, Lemere CA, Brito MA. Dissecting the Contribution of Vascular Alterations and Aging to Alzheimer's Disease. Mol Neurobiol 2015; 53:3793-3811. [PMID: 26143259 DOI: 10.1007/s12035-015-9319-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 06/24/2015] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that afflicts as many as 45 % of individuals who survive past the age of 85. AD has been associated with neurovascular dysfunction and brain accumulation of amyloid-β peptide, as well as tau phosphorylation and neurodegeneration, but the pathogenesis of the disease is still somewhat unclear. According to the amyloid cascade hypothesis of AD, accumulation of amyloid-β peptide (Aβ) aggregates initiates a sequence of events leading to neuronal injury and loss, and dementia. Alternatively, the vascular hypothesis of AD incorporates the vascular contribution to the disease, stating that a primary insult to brain microcirculation (e.g., stroke) not only contributes to amyloidopathy but initiates a non-amyloidogenic pathway of vascular-mediated neuronal dysfunction and injury, which involves blood-brain barrier compromise, with increased permeability of blood vessels, leakage of blood-borne components into the brain, and, consequently, neurotoxicity. Vascular dysfunction also includes a diminished brain capillary flow, causing multiple focal ischemic or hypoxic microinjuries, diminished amyloid-β clearance, and formation of neurotoxic oligomers, which lead to neuronal dysfunction. Here we present and discuss relevant findings on the contribution of vascular alterations during aging to AD, with the hope that a better understanding of the players in the "orchestra" of neurodegeneration will be useful in developing therapies to modulate the "symphony".
Collapse
Affiliation(s)
- Cátia Janota
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur (NRB 636F), Boston, MA, 02115, USA
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
37
|
Canobbio I, Abubaker AA, Visconte C, Torti M, Pula G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease. Front Cell Neurosci 2015; 9:65. [PMID: 25784858 PMCID: PMC4347625 DOI: 10.3389/fncel.2015.00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD (SAD). According to the "vascular hypothesis", AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorrhagic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review, we analyze the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.
Collapse
Affiliation(s)
- Ilaria Canobbio
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Aisha Alsheikh Abubaker
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Caterina Visconte
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Giordano Pula
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| |
Collapse
|
38
|
He M, Liu J, Cheng S, Xing Y, Suo WZ. Differentiation renders susceptibility to excitotoxicity in HT22 neurons. Neural Regen Res 2014; 8:1297-306. [PMID: 25206424 PMCID: PMC4107644 DOI: 10.3969/j.issn.1673-5374.2013.14.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/23/2013] [Indexed: 12/31/2022] Open
Abstract
HT22 is an immortalized mouse hippocampal neuronal cell line that does not express cholinergic and glutamate receptors like mature hippocampal neurons in vivo. This in part prevents its use as a model for mature hippocampal neurons in memory-related studies. We now report that HT22 cells were appropriately induced to differentiate and possess properties similar to those of mature hippocampal neurons in vivo, such as becoming more glutamate-receptive and excitatory. Results showed that sensitivity of HT22 cells to glutamate-induced toxicity changed dramatically when comparing undifferentiated with differentiated cells, with the half-effective concentration for differentiated cells reducing approximately two orders of magnitude. Moreover, glutamate-induced toxicity in differentiated cells, but not undifferentiated cells, was inhibited by the N-methyl-D- aspartate receptor antagonists MK-801 and memantine. Evidently, differentiated HT22 cells expressed N-methyl-D-aspartate receptors, while undifferentiated cells did not. Our experimental findings indicated that differentiation is important for immortalized cell lines to render post-mitotic neuronal properties, and that differentiated HT22 neurons represent a better model of hippocampal neurons than undifferentiated cells.
Collapse
Affiliation(s)
- Minchao He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China ; Laboratory for Alzheimer's Disease & Aging Research, Veterans Affairs Medical Center, Kansas, MO 64128, USA
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China ; Laboratory for Alzheimer's Disease & Aging Research, Veterans Affairs Medical Center, Kansas, MO 64128, USA
| | - Shaowu Cheng
- Laboratory for Alzheimer's Disease & Aging Research, Veterans Affairs Medical Center, Kansas, MO 64128, USA
| | - Yigang Xing
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - William Z Suo
- Laboratory for Alzheimer's Disease & Aging Research, Veterans Affairs Medical Center, Kansas, MO 64128, USA ; Department of Neurology, University of Kansas Medical Center, Kansas, KS 66170, USA ; Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas, KS 66170, USA
| |
Collapse
|
39
|
Zhu Z, Reiser G. PAR-1 activation rescues astrocytes through the PI3K/Akt signaling pathway from chemically induced apoptosis that is exacerbated by gene silencing of β-arrestin 1. Neurochem Int 2014; 67:46-56. [DOI: 10.1016/j.neuint.2013.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
|
40
|
Chen Y, Shin BC, Thamotharan S, Devaskar SU. Differential methylation of the micro-RNA 7b gene targets postnatal maturation of murine neuronal Mecp2 gene expression. Dev Neurobiol 2013; 74:407-425. [PMID: 24039126 DOI: 10.1002/dneu.22126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/31/2013] [Accepted: 08/23/2013] [Indexed: 12/24/2022]
Abstract
DNA methylation and microRNAs (miRNAs) play crucial roles in maturation of postnatal mouse neurons. Aberrant DNA methylation and/or altered miRNA expression cause postnatal neurodevelopmental disorders. In general, DNA methylation in the 5'-flanking region suppresses gene expression through recruitment of methyl-CpG binding domain proteins (MBPs) to the cytosine residues of CpG dinucleotides. X-linked MeCP2 (methyl-CpG binding protein 2), a member of MBPs, is a methylation-associated transcriptional repressor with other functions in the central nervous system (CNS). miRNAs negatively regulate gene expression by targeting the 3'-untranslated region (3'UTR). Some miRNA genes harboring or being embedded in CpG islands undergo methylation-mediated silencing. One such miRNA is miR-7b which is differentially expressed through stages of neurodevelopment. In our present study, we focused on a canonical CpG island located in the 5'-flanking region of the murine miR-7b gene. Hypermethylation of this CpG island down-regulates miR-7b while recruiting MeCP2 to the methylated CpG dinucleotides. Meanwhile, Mecp2, a target of miR-7b, was up-regulated due to lack of restrain exerted by miR-7b during maturation of postnatal (PN) mouse neurons between PN3 and PN14. Our results indicate that miR-7b is a direct downstream gene transcriptional target while also being a negative post-transcriptional regulator of Mecp2 expression. We speculate that this bidirectional feed-back autoregulatory function of miR-7b and Mecp2 while linking DNA methylation and miRNA action maintains the homeostatic control of gene expression necessary during postnatal maturation of mammalian neurons.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of General Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
41
|
Zhao Z, Lu R, Zhang B, Shen J, Yang L, Xiao S, Liu J, Suo WZ. Differentiation of HT22 neurons induces expression of NMDA receptor that mediates homocysteine cytotoxicity. Neurol Res 2013; 34:38-43. [PMID: 22196860 DOI: 10.1179/1743132811y.0000000057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Zhongyan Zhao
- Department of NeurologyDepartment of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiyan Lu
- Department of NeurologyDepartment of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bei Zhang
- Department of NeurologyDepartment of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Shen
- Department of RadiologySun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lianhong Yang
- Department of NeurologyDepartment of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Songhua Xiao
- Department of NeurologyDepartment of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- Department of NeurologyDepartment of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - William Z Suo
- Laboratory for Alzheimer’s Disease and Aging ResearchVeterans Affairs Medical Center, Kansas City, MO, USA
- Department of NeurologyUniversity of Kansas Medical Center, Kansas City, KS, USA
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
42
|
Chesser AS, Pritchard SM, Johnson GVW. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 2013; 4:122. [PMID: 24027553 PMCID: PMC3759803 DOI: 10.3389/fneur.2013.00122] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/15/2013] [Indexed: 12/24/2022] Open
Abstract
One of the defining pathological features of Alzheimer disease (AD) is the intraneuronal accumulation of tau. The tau that forms these accumulations is altered both posttranslationally and conformationally, and there is now significant evidence that soluble forms of these modified tau species are the toxic entities rather than the insoluble neurofibrillary tangles. However there is still noteworthy debate concerning which specific pathological forms of tau are the contributors to neuronal dysfunction and death in AD. Given that increases in aberrant forms of tau play a role in the neurodegeneration process in AD, there is growing interest in understanding the degradative pathways that remove tau from the cell, and the selectivity of these different pathways for various forms of tau. Indeed, one can speculate that deficits in a pathway that selectively removes certain pathological forms of tau could play a pivotal role in AD. In this review we will discuss the different proteolytic and degradative machineries that may be involved in removing tau from the cell. How deficits in these different degradative pathways may contribute to abnormal accumulation of tau in AD will also be considered. In addition, the issue of the selective targeting of specific tau species to a given degradative pathway for clearance from the cell will be addressed.
Collapse
Affiliation(s)
- Adrianne S Chesser
- Neuroscience Graduate Program, Department of Anesthesiology, University of Rochester , Rochester, NY , USA
| | | | | |
Collapse
|
43
|
Christov A, Ottman JT, Grammas P. Vascular inflammatory, oxidative and protease-based processes: implications for neuronal cell death in Alzheimer's disease. Neurol Res 2013; 26:540-6. [PMID: 15265271 DOI: 10.1179/016164104225016218] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A substantial literature demonstrates activation of inflammatory processes in the Alzheimer's disease (AD) brain and an association between inflammation and oxidative stress. We have shown that brain microvessels from AD patients express high levels of inflammatory proteins and that these proteins evoke release of the neurotoxic protease thrombin from brain endothelial cells. The objective of this study was to determine the effects of inflammatory proteins on brain endothelial cell reactive oxygen species generation, protease release and cell apoptosis. Also, the effects of inflammatory proteins on neuronal reactive oxygen species generation, injury and apoptosis were assessed. Treatment of cultured brain endothelial cells with inflammatory proteins (LPS, IL-1beta, IL-6, IFN-gamma, TNF-alpha) resulted in a significant increase (p < 0.01) in intracellular levels of reactive oxygen species by 1 h. Inflammatory proteins also caused release of tissue plasminogen activator and increased apoptosis by 24 h in these cells. In cultured neurons, inflammatory proteins caused an increase in reactive oxygen species, membrane fluidity, and apoptosis by 24 h, as detected by fluorescent microscopy. Taken together, these data support the hypothesis that vascular inflammatory, oxidative and protease-based processes contribute to neuronal cell death, and suggest that therapies targeted at these mediators and processes could be effective in AD.
Collapse
Affiliation(s)
- Alexander Christov
- Department of Pathology and the Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | | | | |
Collapse
|
44
|
Chen Y, Shin BC, Thamotharan S, Devaskar SU. Creb1-Mecp2-(m)CpG complex transactivates postnatal murine neuronal glucose transporter isoform 3 expression. Endocrinology 2013; 154:1598-611. [PMID: 23493374 PMCID: PMC3602632 DOI: 10.1210/en.2012-2076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The murine neuronal facilitative glucose transporter isoform 3 (Glut3) is developmentally regulated, peaking in expression at postnatal day (PN)14. In the present study, we characterized a canonical CpG island spanning the 5'-flanking region of the glut3 gene. Methylation-specific PCR and bisulfite sequencing identified methylation of this CpG ((m)CpG) island of the glut3 gene, frequency of methylation increasing 2.5-fold with a 1.6-fold increase in DNA methyl transferase 3a concentrations noted with advancing postnatal age (PN14 vs PN3). 5'-flanking region of glut3-luciferase reporter transient transfection in HT22 hippocampal neurons demonstrated that (m)CpGs inhibit glut3 transcription. Contrary to this biological function, glut3 expression rises synchronously with (m)CpGs in PN14 vs PN3 neurons. Chromatin immunoprecipitation (IP) revealed that methyl-CpG binding protein 2 (Mecp2) bound the glut3-(m)CpGs. Depending on association with specific coregulators, Mecp2, a dual regulator of gene transcription, may repress or activate a downstream gene. Sequential chromatin IP uncovered the glut3-(m)CpGs to bind Mecp2 exponentially upon recruitment of Creb1 rather than histone deacetylase 1. Co-IP and coimmunolocalization confirmed that Creb1 associated with Mecp2 and cotransfection with glut3-(m)CpG in HT22 cells enhanced glut3 transcription. Separate 5-aza-2'-deoxycytidine pretreatment or in combination with trichostatin A reduced (m)CpG and specific small interference RNAs targeting Mecp2 and Creb1 separately or together depleting Mecp2 and/or Creb1 binding of glut3-(m)CpGs reduced glut3 expression in HT22 cells. We conclude that Glut3 is a methylation-sensitive neuronal gene that recruits Mecp2. Recruitment of Creb1-Mecp2 by glut3-(m)CpG contributes towards transactivation, formulating an escape from (m)CpG-induced gene suppression, and thereby promoting developmental neuronal glut3 gene transcription and expression.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine University of California LosAngeles, Los Angeles, California 90095-1752, USA
| | | | | | | |
Collapse
|
45
|
Death by a thousand cuts in Alzheimer's disease: hypoxia--the prodrome. Neurotox Res 2013; 24:216-43. [PMID: 23400634 DOI: 10.1007/s12640-013-9379-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/21/2013] [Indexed: 12/30/2022]
Abstract
A wide range of clinical consequences may be associated with obstructive sleep apnea (OSA) including systemic hypertension, cardiovascular disease, pulmonary hypertension, congestive heart failure, cerebrovascular disease, glucose intolerance, impotence, gastroesophageal reflux, and obesity, to name a few. Despite this, 82 % of men and 93 % of women with OSA remain undiagnosed. OSA affects many body systems, and induces major alterations in metabolic, autonomic, and cerebral functions. Typically, OSA is characterized by recurrent chronic intermittent hypoxia (CIH), hypercapnia, hypoventilation, sleep fragmentation, peripheral and central inflammation, cerebral hypoperfusion, and cerebral glucose hypometabolism. Upregulation of oxidative stress in OSA plays an important pathogenic role in the milieu of hypoxia-induced cerebral and cardiovascular dysfunctions. Strong evidence underscores that cerebral amyloidogenesis and tau phosphorylation--two cardinal features of Alzheimer's disease (AD), are triggered by hypoxia. Mice subjected to hypoxic conditions unambiguously demonstrated upregulation in cerebral amyloid plaque formation and tau phosphorylation, as well as memory deficit. Hypoxia triggers neuronal degeneration and axonal dysfunction in both cortex and brainstem. Consequently, neurocognitive impairment in apneic/hypoxic patients is attributable to a complex interplay between CIH and stimulation of several pathological trajectories. The framework presented here helps delineate the emergence and progression of cognitive decline, and may yield insight into AD neuropathogenesis. The global impact of CIH should provide a strong rationale for treating OSA and snoring clinically, in order to ameliorate neurocognitive impairment in aged/AD patients.
Collapse
|
46
|
Geetha T, Zheng C, McGregor WC, White BD, Diaz-Meco MT, Moscat J, Babu JR. TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor. Neurochem Int 2012; 61:1289-93. [PMID: 23017601 PMCID: PMC3972807 DOI: 10.1016/j.neuint.2012.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 09/16/2012] [Indexed: 12/18/2022]
Abstract
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient's brain. Aβ is known to bind p75 neurotrophin receptor (p75(NTR)) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75(NTR) polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75(NTR) polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75(NTR) on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75(NTR) polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75(NTR) with IKKβ. p75(NTR) increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75(NTR) polyubiquitination and restored neuronal cell survival.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, United States
| | - Chen Zheng
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, United States
| | - Wade C. McGregor
- Department of Applied Sciences and Mathematics, Arizona State University, Mesa, AZ 85212, United States
| | - B. Douglas White
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, United States
| | - Maria T. Diaz-Meco
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, United States
| | - Jorge Moscat
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, United States
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
47
|
Geetha T, Zheng C, Unroe B, Sycheva M, Kluess H, Babu JR. Polyubiquitination of the neurotrophin receptor p75 directs neuronal cell survival. Biochem Biophys Res Commun 2012; 421:286-90. [PMID: 22503986 DOI: 10.1016/j.bbrc.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/01/2012] [Indexed: 02/02/2023]
Abstract
Specific binding of nerve growth factor (NGF) to p75 neurotrophin receptor (p75(NTR)) leads to p75(NTR) polyubiquitination and its subsequent interaction with TRAF6 resulting in neuronal cell survival. However, when the binding of NGF to p75(NTR) was blocked with p75 antiserum, p75(NTR) polyubiquitination and neuronal cell survival were impaired. Results showed that tyrosine phosphorylation of p75(NTR) increased the polyubiquitination of p75(NTR) and contributed to the observed apparent neuroprotective effects. Similar to p75(NTR) polyubiquitination, interaction of TRAF6 with p75(NTR) was NGF/tyrosine phosphorylation dependent suggesting that TRAF6 might function as an E3 ubiquitin ligase. In sum, the results show that specific binding of NGF to p75(NTR) mediates neuronal cell survival.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
48
|
Takahashi M, Chin Y, Nonaka T, Hasegawa M, Watanabe N, Arai T. Prolonged nitric oxide treatment induces tau aggregation in SH-SY5Y cells. Neurosci Lett 2012; 510:48-52. [DOI: 10.1016/j.neulet.2011.12.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 01/28/2023]
|
49
|
Zhou H, Liu Z, Liu J, Wang J, Zhou D, Zhao Z, Xiao S, Tao E, Suo WZ. Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic findings. AJNR Am J Neuroradiol 2011; 32:1795-800. [PMID: 21920857 DOI: 10.3174/ajnr.a2643] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Radiation-induced cognitive dysfunction is a common and serious complication after radiation therapy of brain tumor, yet knowledge of its mechanism is poorly understood. The aim of this study was to establish a young rat model for acute radiation encephalopathy, at both cognitive and pathologic levels, induced by fractionated irradiation. MATERIALS AND METHODS Four-week-old male rats were randomized into sham (0 Gy) and 2 experimental groups receiving fractionated irradiation of 5 Gy/day, 5 days/week, with total doses of 20 and 40 Gy, respectively. Cognition, BBB integrity, and potential astrogliosis were evaluated at 0, 4, 8, and 12 weeks' postirradiation. RESULTS Twenty-Gy irradiation led to transient cognitive impairment only at 4 weeks' postirradiation. Forty-Gy irradiation induced cognitive impairment at both 4 and 8 weeks' postirradiation, which was more severe than that induced by 20 Gy. Cognitive impairment was accompanied by a transient increase in BWC only at 4 weeks for the 40-Gy group. Disrupted BBB permeability was detected at 4 and 8 weeks' postirradiation for the 20-Gy group, and at 4, 8, and 12 weeks' postirradiation for 40-Gy group, respectively. Increased astrogliosis in the hippocampus could be detected at 4 weeks' postirradiation for 40-Gy group. CONCLUSIONS Fractionated irradiation in this experiment could induce acute brain injury, leading to cognitive impairment in young rats. BBB disruption might be a sensitive index for acute radiation encephalopathy. In addition, reactive astrogliosis might play an important role in this process. The present model, especially the 40-Gy irradiation group, is useful for basic and therapeutic studies of acute radiation encephalopathy.
Collapse
Affiliation(s)
- H Zhou
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J Neuroinflammation 2011; 8:26. [PMID: 21439035 PMCID: PMC3072921 DOI: 10.1186/1742-2094-8-26] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/25/2011] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related disorder characterized by progressive cognitive decline and dementia. Alzheimer's disease is an increasingly prevalent disease with 5.3 million people in the United States currently affected. This number is a 10 percent increase from previous estimates and is projected to sharply increase to 8 million by 2030; it is the sixth-leading cause of death. In the United States the direct and indirect costs of Alzheimer's and other dementias to Medicare, Medicaid and businesses amount to more than $172 billion each year. Despite intense research efforts, effective disease-modifying therapies for this devastating disease remain elusive. At present, the few agents that are FDA-approved for the treatment of AD have demonstrated only modest effects in modifying clinical symptoms for relatively short periods and none has shown a clear effect on disease progression. New therapeutic approaches are desperately needed. Although the idea that vascular defects are present in AD and may be important in disease pathogenesis was suggested over 25 years ago, little work has focused on an active role for cerebrovascular mechanisms in the pathogenesis of AD. Nevertheless, increasing literature supports a vascular-neuronal axis in AD as shared risk factors for both AD and atherosclerotic cardiovascular disease implicate vascular mechanisms in the development and/or progression of AD. Also, chronic inflammation is closely associated with cardiovascular disease, as well as a broad spectrum of neurodegenerative diseases of aging including AD. In this review we summarize data regarding, cardiovascular risk factors and vascular abnormalities, neuro- and vascular-inflammation, and brain endothelial dysfunction in AD. We conclude that the endothelial interface, a highly synthetic bioreactor that produces a large number of soluble factors, is functionally altered in AD and contributes to a noxious CNS milieu by releasing inflammatory and neurotoxic species.
Collapse
Affiliation(s)
- Paula Grammas
- Garrison Institute on Aging, and Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|