1
|
Kim J, Kim JH, Kim Y, Lee J, Lee HJ, Koh SJ, Im JP, Kim JS. iRhom2 deficiency reduces sepsis-induced mortality associated with the attenuation of lung macrophages in mice. Histochem Cell Biol 2024; 162:415-428. [PMID: 39134731 PMCID: PMC11393161 DOI: 10.1007/s00418-024-02318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/13/2024]
Abstract
Sepsis has a high mortality rate and leads to multi-organ failure, including lung injury. Inactive rhomboid protease family protein (iRhom2) has been identified as accountable for the release of TNF-α, a crucial mediator in the development of sepsis. This study aimed to evaluate the role of iRhom2 in sepsis and sepsis-induced acute lung injury (ALI). TNF-α and IL-6 secretion in vitro by peritoneal macrophages from wild-type (WT) and iRhom2 knoukout (KO) mice was assessed by enzyme-linked immunosorbent assay. Cecal ligation and puncture (CLP)-induced murine sepsis model was used for in vivo experiments. To evaluate the role of iRhom2 deficiency on survival during sepsis, both WT and iRhom2 KO mice were monitored for 8 consecutive days following the CLP. For histologic and biochemical examination, the mice were killed 18 h after CLP. iRhom2 deficiency improved the survival of mice after CLP. iRhom2 deficiency decreased CD68+ macrophage infiltration in lung tissues. Multiplex immunohistochemistry revealed that the proportion of Ki-67+ CD68+ macrophages was significantly lower in iRhom2 KO mice than that in WT mice after CLP. Moreover, CLP-induced release of TNF-α and IL-6 in the serum were significantly inhibited by iRhom2 deficiency. iRhom2 deficiency reduced NF-kB p65 and IκBα phosphorylation after CLP. iRhom2 deficiency reduces sepsis-related mortality associated with attenuated macrophage infiltration and proliferation in early lung injury. iRhom2 may play a pivotal role in the pathogenesis of sepsis and early stage of sepsis-induced ALI. Thus, iRhom2 may be a potential therapeutic target for the management of sepsis and sepsis-induced ALI.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
- Center for Health Promotion and Optimal Aging, Seoul National University Hospital, Seoul, South Korea
| | - Jee Hyun Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Younghoon Kim
- Department of Pathology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jooyoung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Hyun Jung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
2
|
Götz L, Rueckschloss U, Reimer A, Bömmel H, Beilhack A, Ergün S, Kleefeldt F. Vascular inflammaging: Endothelial CEACAM1 expression is upregulated by TNF-α via independent activation of NF-κB and β-catenin signaling. Aging Cell 2024:e14384. [PMID: 39434463 DOI: 10.1111/acel.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/01/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Chronic inflammation with progressive age, called inflammaging, contributes to the pathogenesis of cardiovascular diseases. Previously, we have shown increased vascular expression of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in aged mice and humans, presumably via mutual upregulation with the pro-inflammatory cytokine TNF-α. CEACAM1 is critical for aging-associated vascular alterations like endothelial dysfunction, fibrosis, oxidative stress, and sustained inflammation and can be regarded as a main contributor to vascular inflammaging. This study was conducted to elucidate the mechanisms underlying endothelial CEACAM1 upregulation by TNF-α in detail. Using wildtype (WT) and TNF-α knockout (Tnf-/-) mice, we confirmed that the aging-related upregulation of endothelial CEACAM1 critically depends on TNF-α. The underlying mechanisms were analyzed in an endothelial cell culture model. TNF-α time-dependently upregulated CEACAM1 in vitro. In pharmacological experiments, we identified an early NF-κB- and a delayed β-catenin-mediated response. Involvement of β-catenin was further substantiated by siRNA-mediated knockdown of the β-catenin-targeted transcription factor TCF4. Both signaling pathways acted independent from each other. Elucidating the delayed response, co-immunoprecipitation analysis revealed release of β-catenin from adherens junctions by TNF-α. Finally, TNF-α activated Akt kinase by increasing its Ser473 phosphorylation. Consequently, Akt kinase facilitated β-catenin signaling by inhibiting its degradation via phosphorylation of GSK3β at Ser9 and by increased phosphorylation of β-catenin at Ser552 that augments its transcriptional activity. Taken together, our study provides novel mechanistic insights into the aging-related, inflammation-mediated endothelial upregulation of CEACAM1. Beyond the pathogenesis of cardiovascular diseases, these findings may be significant to all fields of inflammaging.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Reimer
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Heike Bömmel
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Manzhula K, Rebl A, Budde-Sagert K, Rebl H. Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells. Int J Mol Sci 2024; 25:10967. [PMID: 39456749 PMCID: PMC11507371 DOI: 10.3390/ijms252010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress.
Collapse
Affiliation(s)
- Kristina Manzhula
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
4
|
Wang Q, Qiu P, Peng Z, Wu J, Bao R, Huang L, Li X, Shi H, Zhang H, Wang X. Stability of Fly Maggot Peptides and Its Alleviating Effect on Lipopolysaccharide Combined with Hemocoagulase Oxidative Stress in Arbor Acres Chicks. Vet Sci 2024; 11:470. [PMID: 39453062 PMCID: PMC11511490 DOI: 10.3390/vetsci11100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Recently, there has been fast-growing interest among researchers in discovering bioactive peptides from insects and evaluating their potential applications in livestock production. The present study aimed to assess the antioxidant properties and stability of fly maggot peptide (FMP) and its effects on Arbor Acres (AA) broilers' oxidative stress induced by lipopolysaccharide (LPS) and hemocoagulase (HC). A total of 108 one-day-old AA broilers were randomly divided into six groups: CG (normal saline, basal diet), DG (LPS + HC, basal diet), VG (DG + vitamin C 50 ug/kg), LPG (DG + FMP 5 mg/kg), MPG (DG + FMP 15 mg/kg), and HPG (DG + FMP 25 mg/kg). The results showed that the addition of FMP to the diet promoted LPS+ HC-induced increases in average daily gain (ADG), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC). Meanwhile, FMP regulated the intestinal morphology. Additionally, FMP decreased the increase in the contents of malondialdehyde (MDA), the relative weight of immune organs, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In conclusion, this research suggested that the addition of FMP can relieve the LPS+ HC-induced oxidative stress of AA broilers and the recommended dose of FMP is 25 mg/kg. This study presents a theoretical foundation for the addition of an FMP supplement for the purpose of protecting broilers' growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xuemei Wang
- Animal Nutrition, Reproduction and Breeding Laboratory, Department of Animal Science, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (Q.W.); (P.Q.); (Z.P.); (J.W.); (R.B.); (L.H.); (X.L.); (H.S.); (H.Z.)
| |
Collapse
|
5
|
Delyea CJ, Forster MD, Luo S, Dubrule BE, Julien O, Bhavsar AP. The Salmonella Effector SspH2 Facilitates Spatially Selective Ubiquitination of NOD1 to Enhance Inflammatory Signaling. Biochemistry 2024; 63:2266-2279. [PMID: 39189508 PMCID: PMC11412229 DOI: 10.1021/acs.biochem.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
As part of its pathogenesis, Salmonella enterica serovar Typhimurium delivers effector proteins into host cells. One effector is SspH2, a member of the so-called novel E3 ubiquitin ligase family, that interacts with and enhances, NOD1 pro-inflammatory signaling, though the underlying mechanisms are unclear. Here, we report that SspH2 interacts with multiple members of the NLRC family to enhance pro-inflammatory signaling by targeted ubiquitination. We show that SspH2 modulates host innate immunity by interacting with both NOD1 and NOD2 in mammalian epithelial cell culture via the NF-κB pathway. Moreover, purified SspH2 and NOD1 directly interact, where NOD1 potentiates SspH2 E3 ubiquitin ligase activity. Mass spectrometry and mutational analyses identified four key lysine residues in NOD1 that are required for its enhanced activation by SspH2, but not its basal activity. These critical lysine residues are positioned in the same region of NOD1 and define a surface on the receptor that appears to be targeted by SspH2. Overall, this work provides evidence for post-translational modification of NOD1 by ubiquitin and uncovers a unique mechanism of spatially selective ubiquitination to enhance the activation of an archetypal NLR.
Collapse
Affiliation(s)
- Cole J. Delyea
- Department
of Medical Microbiology and Immunology, Faculty of Medicine &
Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Malcolm D. Forster
- Department
of Medical Microbiology and Immunology, Faculty of Medicine &
Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Shu Luo
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Bradley E. Dubrule
- Department
of Medical Microbiology and Immunology, Faculty of Medicine &
Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Amit P. Bhavsar
- Department
of Medical Microbiology and Immunology, Faculty of Medicine &
Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
6
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Wang X, Tian H, Chen J, Huang D, Ding F, Ma T, Xi J, Wu C, Zhang Y. Isobavachalcone attenuates liver fibrosis via activation of the Nrf2/HO-1 pathway in rats. Int Immunopharmacol 2024; 128:111398. [PMID: 38171054 DOI: 10.1016/j.intimp.2023.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Liver fibrosis, a progression of chronic liver disease, is a significant concern worldwide due to the lack of effective treatment modalities. Recent studies have shown that natural products play a crucial role in preventing and treating liver fibrosis. Isobavachalcone (IBC) is a chalcone compound with anti-inflammatory, antioxidant, and anti-cancer properties. However, its potential antifibrotic effects remain to be elucidated. This study aimed to investigate the antifibrotic effects of IBC on liver fibrosis and its underlying mechanisms in rats. The results showed that IBC significantly ameliorated the pathological damage and collagen deposition in liver tissues; it also reduced the levels of hydroxyproline (HYP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). In addition, IBC activated Nuclear factor E2-associated factor 2/Hemeoxygenase-1 (Nrf2/HO-1) signaling, leading to the nuclear translocation of Nrf2. This translocation subsequently increased the levels of superoxide dismutase (SOD) and glutathione (GSH) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), thereby alleviating oxidative stress-induced damage. Moreover, it inhibited the expression of nuclear factor kappa B (NF-κB), which further reduced the levels of downstream inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta (IL-1β), thereby suppressing the activation of HSCs and weakening liver fibrosis. In HSC-T6 cell experiments, changes observed in inflammatory responses, oxidative stress indicators, and protein expression were consistent with the in vivo results. Furthermore, the Nrf2 inhibitor (ML385) attenuated the effect of IBC on inhibiting the activation of quiescent HSCs. Consequently, IBC could alleviate liver fibrosis by activating Nrf2/ HO-1 signaling.
Collapse
Affiliation(s)
- Xiangshu Wang
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Haozhe Tian
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jie Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Di Huang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Feng Ding
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Chengzhu Wu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China.
| | - Yuxin Zhang
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China.
| |
Collapse
|
8
|
Amin Mohedin J, Rezaiemanesh A, Asadi S, Haddadi M, Abdul Ahmed B, Gorgin Karaji A, Salari F. Resolvin D1 (Rvd1) Attenuates In Vitro LPS-Stimulated Inflammation Through Downregulation of miR-155, miR -146, miR -148 and Krupple Like Factor 5. Rep Biochem Mol Biol 2024; 12:566-574. [PMID: 39086587 PMCID: PMC11288237 DOI: 10.61186/rbmb.12.4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/15/2024] [Indexed: 08/02/2024]
Abstract
Background Chronic inflammation is associated with many inflammatory diseases. Specialized pro-resolving mediators (SPMs) are well known for their crucial role in promoting the resolution phase of inflammation and restoring tissue homeostasis. Resolvin D1 (RvD1) is an endogenous omega-3-derived lipid mediator with pro-resolving activity. This study aimed to evaluate the effect of Resolvin D1 (RvD1) on some inflammatory miRNAs (mir-155-5p, miR146a-5p and miR148-3p) and Krüppel-like factors 5 (KLF5) in an LPS-stimulated THP-1 preclinical model of inflammation. Methods PMA-differentiated THP-1 cells (macrophages) were pre-incubated with or without various concentrations of RvD1 (10, 50, or 100 nM) for 2 h prior to stimulation by 1 μg/ml LPS. Un-stimulated PMA-differentiated THP-1 cells were as the control group. Then, the expression levels of target genes were evaluated by real-time PCR. Results Compared with untreated macrophages, stimulation with 1 µg/ml LPS increased mRNA expression levels of TNF-α, KLF5, miR-155-5p, miR-146-5p, and miR-148a-3p. When the cells were exposed to various concentrations (10, 50 and 100 nM) of RvD1 for 2 h prior to LPS stimulation, the TNF-α, KLF5, miR-155-5p, miR-146-5p, and miR-148a-3p mRNA expression levels were significantly downregulated in a dose-dependent manner, compared to the LPS group. Conclusions The results demonstrate that RvD1 can attenuate inflammatory response in LPS-stimulated macrophages. Our data also showed that RvD1 may exert anti-inflammatory effects by inhibiting miR-155-5p, miR-146a-5p, and miR-148-3p.
Collapse
Affiliation(s)
- Jabbar Amin Mohedin
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Laboratory, Ministry of Health, Sulamania, KRG, Iraq.
| | - Alireza Rezaiemanesh
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Soheila Asadi
- Department of biochemistry, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Maryam Haddadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahroz Abdul Ahmed
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Gorgin Karaji
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Farhad Salari
- Department of immunology, school of medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| |
Collapse
|
9
|
Stelling-Férez J, Cappellacci I, Pandolfi A, Gabaldón JA, Pipino C, Nicolás FJ. Oleanolic acid rescues critical features of umbilical vein endothelial cells permanently affected by hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1308606. [PMID: 38192424 PMCID: PMC10773851 DOI: 10.3389/fendo.2023.1308606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Skin wound healing is a physiological process that involves several cell types. Among them, endothelial cells are required for inflammation resolution and neo-angiogenesis, both necessary for tissue restoration after injury. Primary human umbilical vein endothelial cells (C-HUVECs) are derived from the umbilical cord. When women develop gestational diabetes, chronic exposure to hyperglycemia induces epigenetic modifications in these cells (GD-HUVECs), leading to a permanent pro-inflammatory phenotype and impaired angiogenesis in contrast to control cells. Oleanolic acid (OA) is a bioactive triterpenoid known for its epithelial cell migration promotion stimulation and higher tensile strength of wounds. However, the potentially anti-inflammatory and pro-angiogenic properties of OA are still under investigation. We tested OA on C- and GD-HUVECs under inflammatory conditions induced by low levels of the inflammatory cytokine TNF-α. Reduced expression of adhesion molecules VCAM1, ICAM1, and SELE was obtained in OA-pre-treated C- and GD-HUVECs. Additionally, protein VCAM1 levels were also decreased by OA. Coherently, monocyte adhesion assays showed that a lower number of monocytes adhered to GD-HUVEC endothelium under OA pre-treatment when compared to untreated ones. It is noteworthy that OA improved angiogenesis parameters in both phenotypes, being especially remarkable in the case of GD-HUVECs, since OA strongly rescued their poor tube formation behavior. Moreover, endothelial cell migration was improved in C- and GD-HUVECs in scratch assays, an effect that was further confirmed by focal adhesion (FA) remodeling, revealed by paxillin staining on immunocytochemistry assays. Altogether, these results suggest that OA could be an emergent wound healing agent due to its capacity to rescue endothelial malfunction caused by hyperglycemia.
Collapse
Affiliation(s)
- Javier Stelling-Férez
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de Murcia (UCAM), Murcia, Spain
- Regeneration, Molecular Oncology, and TGF-β, IMIB-Pascual Parrilla, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ilaria Cappellacci
- Department of Medical, Oral and Biotechnological Sciences, StemTeCh Group, Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, StemTeCh Group, Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - José Antonio Gabaldón
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, StemTeCh Group, Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Francisco José Nicolás
- Regeneration, Molecular Oncology, and TGF-β, IMIB-Pascual Parrilla, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
10
|
Latifi-Navid H, Barzegar Behrooz A, Jamehdor S, Davari M, Latifinavid M, Zolfaghari N, Piroozmand S, Taghizadeh S, Bourbour M, Shemshaki G, Latifi-Navid S, Arab SS, Soheili ZS, Ahmadieh H, Sheibani N. Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related? Pharmaceuticals (Basel) 2023; 16:1555. [PMID: 38004422 PMCID: PMC10674956 DOI: 10.3390/ph16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.
Collapse
Affiliation(s)
- Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3T 2N2, Canada;
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Masoud Latifinavid
- Department of Mechatronic Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey;
| | - Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Golnaz Shemshaki
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore 570005, India;
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Seyed Shahriar Arab
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran 1666673111, Iran;
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
11
|
Zhang L, Wu JH, Jean-Charles PY, Murali P, Zhang W, Jazic A, Kaur S, Nepliouev I, Stiber JA, Snow K, Freedman NJ, Shenoy SK. Phosphorylation of USP20 on Ser334 by IRAK1 promotes IL-1β-evoked signaling in vascular smooth muscle cells and vascular inflammation. J Biol Chem 2023; 299:104911. [PMID: 37311534 PMCID: PMC10362797 DOI: 10.1016/j.jbc.2023.104911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Reversible lysine-63 (K63) polyubiquitination regulates proinflammatory signaling in vascular smooth muscle cells (SMCs) and plays an integral role in atherosclerosis. Ubiquitin-specific peptidase 20 (USP20) reduces NFκB activation triggered by proinflammatory stimuli, and USP20 activity attenuates atherosclerosis in mice. The association of USP20 with its substrates triggers deubiquitinase activity; this association is regulated by phosphorylation of USP20 on Ser334 (mouse) or Ser333 (human). USP20 Ser333 phosphorylation was greater in SMCs of atherosclerotic segments of human arteries as compared with nonatherosclerotic segments. To determine whether USP20 Ser334 phosphorylation regulates proinflammatory signaling, we created USP20-S334A mice using CRISPR/Cas9-mediated gene editing. USP20-S334A mice developed ∼50% less neointimal hyperplasia than congenic WT mice after carotid endothelial denudation. WT carotid SMCs showed substantial phosphorylation of USP20 Ser334, and WT carotids demonstrated greater NFκB activation, VCAM-1 expression, and SMC proliferation than USP20-S334A carotids. Concordantly, USP20-S334A primary SMCs in vitro proliferated and migrated less than WT SMCs in response to IL-1β. An active site ubiquitin probe bound to USP20-S334A and USP20-WT equivalently, but USP20-S334A associated more avidly with TRAF6 than USP20-WT. IL-1β induced less K63-linked polyubiquitination of TRAF6 and less downstream NFκB activity in USP20-S334A than in WT SMCs. Using in vitro phosphorylation with purified IRAK1 and siRNA-mediated gene silencing of IRAK1 in SMCs, we identified IRAK1 as a novel kinase for IL-1β-induced USP20 Ser334 phosphorylation. Our findings reveal novel mechanisms regulating IL-1β-induced proinflammatory signaling: by phosphorylating USP20 Ser334, IRAK1 diminishes the association of USP20 with TRAF6 and thus augments NFκB activation, SMC inflammation, and neointimal hyperplasia.
Collapse
Affiliation(s)
- Lisheng Zhang
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Jiao-Hui Wu
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Pierre-Yves Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Pavitra Murali
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Wenli Zhang
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Aeva Jazic
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Suneet Kaur
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Igor Nepliouev
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Jonathan A Stiber
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Kamie Snow
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Neil J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
12
|
DeMichele E, Sosnowski O, Buret AG, Allain T. Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa. Microorganisms 2023; 11:1598. [PMID: 37375100 PMCID: PMC10303274 DOI: 10.3390/microorganisms11061598] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.
Collapse
Affiliation(s)
- Emily DeMichele
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Li D, Guo M, Liang W, Jin C, Li C. CHOP promotes coelomocyte apoptosis through p38-MAPK pathway in Vibrio splendidus-challenged sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023:108855. [PMID: 37257572 DOI: 10.1016/j.fsi.2023.108855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) belongs to the C/EBP family of transcription factors that has been proven to regulate apoptosis in many vertebrate species. However, the functional role of CHOP in invertebrates is largely unknown. In this paper, the open reading frame of CHOP was cloned and characterized in the sea cucumber Apostichopus japonicus (AjCHOP). The deuced amino acid of AjCHOP shared a conserved RTP801_C domain from 63 to 171 aa. Phylogenetic analysis indicated that AjCHOP clustered with CHOPs from Lytechinus variegatus and Strongylocentrotus purpuratus. To confirm the immune function of AjCHOP, the time-course expression profiles of AjCHOP were investigated, and the findings revealed AjCHOP was significantly induced in coelomocytes at mRNA and protein levels after Vibro splendidus challenge. Furthermore, knockdown of AjCHOP in coelomocyes by siRNA transfection significantly decreased the apoptosis level induced by V. splendidus. Mechanically, AjCHOP-mediated apoptosis was dependent on the activation of p38-MAPK pathway but not JNK/ERK-MAPK. Overall, our results supported that V. splendidus triggers apoptosis among the coelomocytes, whereas AjCHOP mediates through the p38-MAPK pathway in A. japonicus.
Collapse
Affiliation(s)
- Dongdong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China.
| | - Chunhua Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
14
|
Andreozzi F, Di Fatta C, Spiga R, Mannino GC, Mancuso E, Averta C, De Caro C, Tallarico M, Leo A, Citraro R, Russo E, De Sarro G, Sesti G. Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo. Diabetes Obes Metab 2023; 25:556-569. [PMID: 36305474 DOI: 10.1111/dom.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute-phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)-1β (r = 0.252, p = .042), IL-6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C-reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4-week continuous treatment with glucagon induced a significant increase in circulating IL-1β (p = .02), and IL-6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA-II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF-κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose-dependently stimulated the expression of IL-1β (p < .002), IL-6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C-reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase-1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF-κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA-II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose-dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF-κB and STAT3, in the absence of GRA-II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Concetta Di Fatta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carolina Averta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carmen De Caro
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Martina Tallarico
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| |
Collapse
|
15
|
Cl-amidine attenuates lipopolysaccharide-induced inflammation in human gingival fibroblasts via the JNK/MAPK, NF-κB, and Nrf2 signalling pathways. Hum Cell 2023; 36:223-233. [PMID: 36352311 DOI: 10.1007/s13577-022-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Cl-amidine has been reported to have anti-inflammatory properties in a variety of diseases. However, the role of Cl-amidine in periodontal disease remains unclear. Here, the purpose of this study was to investigate the effect of Cl-amidine on lipopolysaccharide (LPS)-induced inflammation in human gingival fibroblasts (HGFs). The cytotoxic effect of Cl-amidine was measured with the Cell Counting Kit-8 (CCK-8) assay and Annexin V-FITC/PI staining. The protein levels of IL-6 and IL-8 in culture supernatants were measured with enzyme-linked immunosorbent assay (ELISA). The mRNA levels of inflammatory cytokines, TLR4 and MyD88 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression patterns of IL-6, TNF-ɑ, and IL-1β in HGFs were tested with western blot. The levels of NF-κB, MAPK, and Nrf2 pathway-related proteins were detected by western blot. Immunofluorescence (IF) staining was used to examine the nuclear translocation of NF-κB p65. Moreover, a rat gingivitis model was established to further clarify the role of Cl-amidine. Our results showed that Cl-amidine suppressed LPS-induced gingival inflammation both in vitro and in vivo. Mechanistically, Cl-amidine inhibited LPS-induced MyD88 expression, NF-κB activation, and JNK phosphorylation. Additionally, Cl-amidine upregulated Nrf2 and Ho-1 expression both with and without LPS stimulation but did not alter ROS levels or Keap1 expression. Overall, our data suggest that Cl-amidine acts as an inhibitor of LPS-induced gingival inflammation via the JNK/MAPK, NF-κB, and Nrf2 signalling pathways.
Collapse
|
16
|
Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA, De Luca C, Kaniusas E, Papa M, Panetsos F. Vagus Nerve Stimulation: A Personalized Therapeutic Approach for Crohn's and Other Inflammatory Bowel Diseases. Cells 2022; 11:cells11244103. [PMID: 36552867 PMCID: PMC9776705 DOI: 10.3390/cells11244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Flor Negrete-Diaz
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
| | - Daniela Yucuma
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Andalusian School of Public Health, University of Granada, 18011 Granada, Spain
| | - Assunta Virtuoso
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Sohaib Ali Korai
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Ciro De Luca
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Michele Papa
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence: (M.P.); (F.P.)
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Correspondence: (M.P.); (F.P.)
| |
Collapse
|
17
|
De Chirico F, Poeta E, Babini G, Piccolino I, Monti B, Massenzio F. New models of Parkinson's like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors. Front Cell Neurosci 2022; 16:1038721. [PMID: 36523814 PMCID: PMC9744797 DOI: 10.3389/fncel.2022.1038721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 09/17/2023] Open
Abstract
Microglia activation and neuroinflammation have been extensively studied in murine models of neurodegenerative diseases; however, to overcome the genetic differences between species, a human cell model of microglia able to recapitulate the activation profiles described in patients is needed. Here we developed human models of Parkinson's like neuroinflammation by using the human microglia clone 3 (HMC3) cells, whose activation profile in response to classic inflammatory stimuli has been controversial and reported only at mRNA levels so far. In fact, we showed the increased expression of the pro-inflammatory markers iNOS, Caspase 1, IL-1β, in response to IFN-γ plus high glucose, a non-specific disease stimulus that emphasized the dynamic polarization and heterogenicity of the microglial population. More specifically, we demonstrated the polarization of HMC3 cells through the upregulation of iNOS expression and nitrite production in response to the Parkinson's like stimuli, 6-hydroxidopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the latter depending on the NF-κB pathway. Furthermore, we identified inflammatory mediators that promote the pro-inflammatory activation of human microglia as function of different pathways that can simulate the phenotypic transition according to the stage of the pathology. In conclusion, we established and characterized different systems of HMC3 cells activation as in vitro models of Parkinson's like neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Yamane T, Kanamori Y, Sawayama H, Yano H, Nita A, Ohta Y, Hinokuma H, Maeda A, Iwai A, Matsumoto T, Shimoda M, Niimura M, Usuki S, Yasuda-Yoshihara N, Niwa M, Baba Y, Ishimoto T, Komohara Y, Sawa T, Hirayama T, Baba H, Moroishi T. Iron accelerates Fusobacterium nucleatum-induced CCL8 expression in macrophages and is associated with colorectal cancer progression. JCI Insight 2022; 7:156802. [PMID: 36136589 PMCID: PMC9675438 DOI: 10.1172/jci.insight.156802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that high levels of Fusobacterium nucleatum in colorectal tumor tissues can be associated with poor prognosis in patients with colorectal cancer (CRC); however, data regarding distinct prognostic subgroups in F. nucleatum-positive CRC remain limited. Herein, we demonstrate that high-iron status was associated with a worse prognosis in patients with CRC with F. nucleatum. Patients with CRC presenting elevated serum transferrin saturation exhibited preferential iron deposition in macrophages in the tumor microenvironment. In addition, F. nucleatum induced CCL8 expression in macrophages via the TLR4/NF-κB signaling pathway, which was inhibited by iron deficiency. Mechanistically, iron attenuated the inhibitory phosphorylation of NF-κB p65 by activating serine/threonine phosphatases, augmenting tumor-promoting chemokine production in macrophages. Our observations indicate a key role for iron in modulating the NF-κB signaling pathway and suggest its prognostic potential as a determining factor for interpatient heterogeneity in F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Taishi Yamane
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Yohei Kanamori
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, and
| | - Akihiro Nita
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Yudai Ohta
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Hironori Hinokuma
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Ayato Maeda
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Akiko Iwai
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Takashi Matsumoto
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Mayuko Shimoda
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Mayumi Niimura
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | - Masato Niwa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences,,Gastrointestinal Cancer Biology, International Research Center for Medical Sciences
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, and,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences,,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| |
Collapse
|
19
|
Lin CT, Lin CF, Wu JT, Tsai HP, Cheng SY, Liao HJ, Lin TC, Wu CH, Lin YC, Wang JH, Chang GR. Effects of Para-Toluenesulfonamide on Canine Melanoma Xenotransplants in a BALB/c Nude Mouse Model. Animals (Basel) 2022; 12:2272. [PMID: 36077992 PMCID: PMC9454485 DOI: 10.3390/ani12172272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The pharmacological pathway of para-toluenesulfonamide (PTS) restricts the kinase activity of the mammalian target of rapamycin, potentially leading to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical effect on tumorigenesis. We aimed to examine the antitumor effect of PTS or PTS combined with cisplatin on canine melanoma implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. The mice were randomly divided into four groups: control, cisplatin, PTS, and PTS combined with cisplatin. Mice treated with PTS or PTS combined with cisplatin had retarded tumor growth and increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase phosphorylation, decreased inflammatory cytokine levels, reduced inflammation-related factors, enhanced anti-inflammation-related factors, and inhibition of metastasis-related factors. Mice treated with PTS combined with cisplatin exhibited significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with those treated with cisplatin or PTS alone. PTS or PTS combined with cisplatin could retard canine melanoma growth and inhibit tumorigenesis. PTS and cisplatin were found to have an obvious synergistic tumor-inhibiting effect on canine melanoma. PTS alone and PTS combined with cisplatin may be antitumor agents for canine melanoma treatment.
Collapse
Affiliation(s)
- Chien-Teng Lin
- Ph.D. Program of Agriculture Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan
| | - Jui-Te Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Hsiao-Pei Tsai
- Ph.D. Program of Agriculture Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Shu-Ying Cheng
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Chao-Hsuan Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Yu-Chin Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Jiann-Hsiung Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| |
Collapse
|
20
|
Chang X, Wang J, Bian J, Liu Z, Guo M, Li Z, Wu Y, Zhai X, Zuo D. 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42) inhibits cell proliferation and induces apoptosis via inhibiting ALK and its downstream pathways in Karpas299 cells. Toxicol Appl Pharmacol 2022; 450:116156. [PMID: 35803438 DOI: 10.1016/j.taap.2022.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Anaplastic lymphoma kinase (ALK) belongs to the family of receptor tyrosine kinases. Recently, the incidence of anaplastic large cell lymphoma (ALCL) with ALK rearrangement has raised considerably. The application of ALK-targeted inhibitors such as ceritinib provides an effective therapy for the treatment of ALK-positive cancers. However, with the prolongation of treatment time, the emergence of resistance is inevitable. We found that 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42), a novel ceritinib derivative, could inhibit the proliferation of ALK-positive ALCL cells, induce the apoptosis of Karpas299 cells through the mitochondrial pathway in a caspase-dependent manner. In addition, ZX-42 could suppress ALK and downstream pathways including PI3K/Akt, Erk and JAK3/STAT3 and reduce the nuclear translocation of NFκB by inhibiting TRAF2/IKK/IκB pathway. Taken together, our findings indicate that ZX-42 shows more effective activity than ceritinib against ALK-positive ALCL. We hope this study can provide a direction for the structural modification of ceritinib and lay the foundation for the further development of clinical research in ALK-positive ALCL.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Junfang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jiang Bian
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
21
|
Gallego-Selles A, Galvan-Alvarez V, Martinez-Canton M, Garcia-Gonzalez E, Morales-Alamo D, Santana A, Gonzalez-Henriquez JJ, Dorado C, Calbet JAL, Martin-Rincon M. Fast regulation of the NF-κB signalling pathway in human skeletal muscle revealed by high-intensity exercise and ischaemia at exhaustion: Role of oxygenation and metabolite accumulation. Redox Biol 2022; 55:102398. [PMID: 35841628 PMCID: PMC9287614 DOI: 10.1016/j.redox.2022.102398] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
The NF-κB signalling pathway plays a critical role in inflammation, immunity, cell proliferation, apoptosis, and muscle metabolism. NF-κB is activated by extracellular signals and intracellular changes in Ca2+, Pi, H+, metabolites and reactive oxygen and nitrogen species (RONS). However, it remains unknown how NF-κB signalling is activated during exercise and how metabolite accumulation and PO2 influence this process. Eleven active men performed incremental exercise to exhaustion (IE) in normoxia and hypoxia (PIO2:73 mmHg). Immediately after IE, the circulation of one leg was instantaneously occluded (300 mmHg). Muscle biopsies from m. vastus lateralis were taken before (Pre), and 10s (Post, occluded leg) and 60s after exercise from the occluded (Oc1m) and free circulation (FC1m) legs simultaneously together with femoral vein blood samples. NF-κB signalling was activated by exercise to exhaustion, with similar responses in normoxia and acute hypoxia, as reflected by the increase of p105, p50, IKKα, IκBβ and glutathione reductase (GR) protein levels, and the activation of the main kinases implicated, particularly IKKα and CaMKII δD, while IKKβ remained unchanged. Postexercise ischaemia maintained and stimulated further NF-κB signalling by impeding muscle reoxygenation. These changes were quickly reverted at the end of exercise when the muscles recovered with open circulation. Finally, we have shown that Thioredoxin 1 (Trx1) protein expression was reduced immediately after IE and after 1 min of occlusion while the protein expression levels of glutathione peroxidase 1 (Gpx1) and thioredoxin reductase 1 (TrxR1) remained unchanged. These novel data demonstrate that exercising to exhaustion activates NF-κB signalling in human skeletal muscle and regulates the expression levels of antioxidant enzymes in human skeletal muscle. The fast regulation of NF-κB at exercise cessation has implications for the interpretation of published studies and the design of new experiments.
Collapse
Affiliation(s)
- Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alfredo Santana
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Mathematics, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
22
|
Zhang H, Jiang X, Ma L, Wei W, Li Z, Chang S, Wen J, Sun J, Li H. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front Cell Dev Biol 2022; 10:964075. [PMID: 36092715 PMCID: PMC9459380 DOI: 10.3389/fcell.2022.964075] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Synaptic dysfunction is closely related to Alzheimer’s disease (AD) which is also recognized as synaptic disorder. β-amyloid (Aβ) is one of the main pathogenic factors in AD, which disrupts synaptic plasticity and mediates the synaptic toxicity through different mechanisms. Aβ disrupts glutamate receptors, such as NMDA and AMPA receptors, which mediates calcium dyshomeostasis and damages synapse plasticity characterized by long-term potentiation (LTP) suppression and long-term depression (LTD) enhancement. As Aβ stimulates and Ca2+ influx, microglial cells and astrocyte can be activated and release cytokines, which reduces glutamate uptake and further impair synapse function. Besides, extracellular glutamate accumulation induced by Aβ mediates synapse toxicity resulting from reduced glutamate receptors and glutamate spillovers. Aβ also mediates synaptic dysfunction by acting on various signaling pathways and molecular targets, disrupting mitochondria and energy metabolism. In addition, Aβ overdeposition aggravates the toxic damage of hyperphosphorylated tau to synapses. Synaptic dysfunction plays a critical role in cognitive impairment of AD. The review addresses the possible mechanisms by which Aβ mediates AD-related synaptic impairment from distant perspectives.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehui Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Surui Chang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wen
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Li,
| |
Collapse
|
23
|
Zhou H, Dong Y, Alhaskawi A, Lai J, Wang Z, Ezzi SHA, Kota VG, Abdulla MHAH, Sun Z, Lu H. The Roles of TNF Signaling Pathways in Metabolism of Bone Tumors. Front Pharmacol 2022; 13:907629. [PMID: 35847045 PMCID: PMC9277014 DOI: 10.3389/fphar.2022.907629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
The metabolism of bone tumors is extraordinarily complex and involves many signaling pathways and processes, including the tumor necrosis factor (TNF) signaling pathway, which consists of TNF factors and the TNF receptors that belong to the TNF receptor superfamily (TNFRSF). It is appreciated that signaling events and pathways involving TNFRSF components are essential in coordinating the functions of multiple cell types that act as a host defense network against pathogens and malignant cells, the implications of TNFRSF-related signaling pathways on bone tumor metabolism remain to be summarized, which is one of the significant obstacles to the application of TNF-related treatment modalities in the domain of bone oncology. This review will discuss and summarize the anti-tumor properties of important TNFRSF components concerning osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | - Zhenyu Sun
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
- *Correspondence: Hui Lu,
| |
Collapse
|
24
|
Yang Y, Zhang Y, Chen X, Su Z, Deng Y, Zhao Q. Khasianine ameliorates psoriasis-like skin inflammation and represses TNF-α/NF-κB axis mediated transactivation of IL-17A and IL-33 in keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115124. [PMID: 35183690 DOI: 10.1016/j.jep.2022.115124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Khasianine is recently identified as a bioactive compound from Solanum nigrum L. (SNL) which is a traditional Chinese herb (named LongKui in China) and has been clinically applied for treating psoriasis in China but with limited knowledge about the active ingredients. AIM OF THE STUDY This study tried to explore the bioactivity of Khasianine and showed that Khasianine possessed highly anti-inflammatory bioactivity which rapidly alleviated psoriasis-like mice skin inflammation. MATERIALS AND METHODS Imiquimod induced psoriasis-like mouse model, and human keratinocytes were employed in this study. In vivo, immunohistochemistry and immunofluorescence were performed to evaluate the pathological improvement in psoriatic lesions after Khasianine treatment. In vitro, tumor necrosis factor α (TNF-α) treated HaCaT cells with or without Khasianine, were used to analyze the expression and cellular location of NF-κB p65, the expression of IL-17A and IL-33, and the binding intensity of NF-κB p65 on the promoter of IL-17A and IL-33 to understand the molecular mechanism of Khasianine mediated anti-inflammatory effect. RESULTS Khasianine reduced infiltration of CD4+ T helper cells (Th cells) and macrophages in mice psoriatic lesions. Immunohistochemistry analysis revealed that Khasianine reduced TNF-α levels in lesions and suppressed NF-κB p65 activation as well as expression of IL-17A and IL-33 in mice epidermal keratinocytes. Further studies in human keratinocytes demonstrated that Khasianine inhibited TNF-α-induced transcriptional activation (transactivation) of NF-κB p65 such as evicting NF-κB p65 binding from the promoter regions of IL-17A and IL-33 and preventing NF-κB nuclear translocation. CONCLUSIONS Our results suggested that Khasianine is a potent anti-inflammatory compound with the bioactivity of NF-κB inhibition and is a promising candidate for psoriasis topical therapy.
Collapse
Affiliation(s)
- Yixi Yang
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yujin Zhang
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xun Chen
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhou Su
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yu Deng
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
25
|
Hung H, Tsai S, Sie S, Kuo Y. High glucose enhances lipopolysaccharide‐induced inflammation in cultured BV2 microglial cell line. Immun Inflamm Dis 2022; 10:e610. [PMID: 35478445 PMCID: PMC9017628 DOI: 10.1002/iid3.610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hao‐Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - Sheng‐Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine National Cheng Kung University Tainan Taiwan
- Department of Cell Biology and Anatomy, College of Medicine National Cheng Kung University Tainan Taiwan
| | - Shih‐Ren Sie
- Department of Anesthesiology Ditmanson Medical Foundation Chia‐Yi Christian Hospital Chiayi Taiwan
| | - Yu‐Min Kuo
- Institute of Basic Medical Sciences, College of Medicine National Cheng Kung University Tainan Taiwan
- Department of Cell Biology and Anatomy, College of Medicine National Cheng Kung University Tainan Taiwan
| |
Collapse
|
26
|
Dana AH, Alejandro SP. Role of sulforaphane in endoplasmic reticulum homeostasis through regulation of the antioxidant response. Life Sci 2022; 299:120554. [PMID: 35452639 DOI: 10.1016/j.lfs.2022.120554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/09/2023]
Abstract
Nowadays, the nutraceutical agent sulforaphane (SFN) shows great versatility in turning on different cellular responses. Mainly, this isothiocyanate acts as a master regulator of cellular homeostasis due to its antioxidant response and cytoplasmic, mitochondrial, and endoplasmic reticulum (ER) protein modulation. Even more, SFN acts as an effective strategy to counteract oxidative stress, apoptosis, and ER stress, among others as seen in different injury models. Particularly, ER stress is buffered by the unfolded protein response (UPR) activation, which is the first instance in orchestrating the recovery of ER function. Interestingly, different studies highlight a close interrelationship between ER stress and oxidative stress, two events driven by the accumulation of reactive oxygen species (ROS). This response inevitably perpetuates itself and acts as a vicious cycle that triggers the development of different pathologies, such as cardiovascular diseases, neurodegenerative diseases, and others. Accordingly, it is vital to target ER stress and oxidative stress to increase the effectiveness of clinical therapies used to treat these diseases. Therefore, our study is focused on the role of SFN in preserving cellular homeostasis balance by regulating the ER stress response through the Nrf2-modulated antioxidant pathway.
Collapse
Affiliation(s)
- Arana-Hidalgo Dana
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Silva-Palacios Alejandro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
27
|
Titi-Lartey O, Mohammed I, Amoaku WM. Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:850394. [PMID: 38983565 PMCID: PMC11182157 DOI: 10.3389/fopht.2022.850394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 07/11/2024]
Abstract
There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.
Collapse
Affiliation(s)
| | | | - Winfried M. Amoaku
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
28
|
Oda T, Nakamura R, Kasamatsu T, Gotoh N, Okuda K, Saitoh T, Handa H, Murakami H, Yamashita T. DNA-double strand breaks enhance the expression of major histocompatibility complex class II through the ATM-NF-κΒ-IRF1-CIITA pathway. Cancer Gene Ther 2022; 29:225-240. [PMID: 33619341 DOI: 10.1038/s41417-021-00302-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Major histocompatibility complex class II (MHC II) is important for the adaptive immune response because MHC II presents processed antigens to a cluster of differentiation 4 (CD4)-positive T-cells. Conventional doses of chemotherapeutic agents induce tumor cell death by causing DNA double-strand breaks (DSBs). However, cellular responses caused by sub-lethal doses of chemotherapeutic agents are poorly understood. In this study, using low doses of chemotherapeutic agents, we showed that DSBs enhanced the expression of MHC II on cells that originate from antigen-presenting cells (APCs). These agents induced the MHC class II transactivator (CIITA), the master regulator of MHC II, and interferon regulatory factor 1 (IRF1), a transcription factor for CIITA. Short hairpin RNA against IRF1 suppressed chemotherapeutic agent-induced CIITA expression, whereas exogenous expression of IRF1 induced CIITA. Inhibition of ataxia-telangiectasia mutated (ATM), a DSB-activated kinase, suppressed induction of IRF1, CIITA, and MHC II. Similar results were observed by inhibiting NF-κB, a downstream target of ATM. These results suggest that DSBs induce MHC II activity via the ATM-NF-κB-IRF1-CIITA pathway in cells that intrinsically present antigens. Additionally, chemotherapeutic agents induced T-cell regulatory molecules. Our findings suggest that chemotherapeutic agents enhance the antigen presentation activity of APCs for T-cell activation.
Collapse
Affiliation(s)
- Tsukasa Oda
- Laboratory of Molecular Genetics, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan. .,Center for Food Science and Wellness, Gunma University, Maebashi, Gunma, Japan.
| | - Ruri Nakamura
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Tetsuhiro Kasamatsu
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Nanami Gotoh
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Keiko Okuda
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Takayuki Saitoh
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Handa
- Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hirokazu Murakami
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan.,Gunma University of Health and Welfare, Maebashi, Gunma, Japan
| | - Takayuki Yamashita
- Laboratory of Molecular Genetics, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
29
|
Tang Z, Wang P, Dong C, Zhang J, Wang X, Pei H. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5913374. [PMID: 35103095 PMCID: PMC8800599 DOI: 10.1155/2022/5913374] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
As a serious cardiovascular complication, diabetic cardiomyopathy (DCM) refers to diabetes-related changes in myocardial structure and function, which is obviously different from those cardiomyopathy secondary to hypertension, coronary heart disease, and valvular disease. The clinical features of DCM are left ventricular hypertrophy, myocardial fibrosis, and impaired diastolic function. DCM will lead to cardiac dysfunction, eventually progress to cardiac arrhythmia, heart failure, and sudden cardiac death. At present, the pathogenesis of DCM is complex and not fully elucidated, and oxidative stress (OS), inflammatory response, glucolipid metabolism disorder, etc., are considered as the potential pathophysiological mechanisms. As a consequence, there is no specific and effective treatment for DCM. OS refers to the imbalance between reactive oxygen species (ROS) accumulation and scavenging, oxidation, and antioxidants in vivo, which is widely studied in DCM. Numerous studies have pointed out that regulating the OS signaling pathways and reducing the generation and accumulation of ROS are potential directions for the treatment of DCM. This review summarizes the major OS signaling pathways that are related to the pathogenesis of DCM, providing ideas about further research and therapy.
Collapse
Affiliation(s)
- Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Chao Dong
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Juan Zhang
- Emei Rehabilitation and Sanatorium Center of PLA, Leshan 614201, China
| | - Xiong Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
30
|
Li XX, Chen SG, Yue GGL, Kwok HF, Lee JKM, Zheng T, Shaw PC, Simmonds MSJ, Lau CBS. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153625. [PMID: 34256329 DOI: 10.1016/j.phymed.2021.153625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ulcerative colitis is a subtype of inflammatory bowel disease, characterized by relapsing inflammation in the gastrointestinal tract with limited treatment options. Previous studies suggested that the natural compound tricin, a flavone isolated from rice bran, could suppress chemically-induced colitis in mice, while our recent study also demonstrated the anti-metastatic effect of tricin in colon tumor-bearing mice. HYPOTHESIS/PURPOSE Here we further investigated the underlying mechanism of the inhibitory effects of tricin on lipopolysaccharides-activated macrophage RAW264.7 cells and explored the efficacy of tricin in acute colitis mouse model induced by 4.5% dextran sulfate sodium (DSS) for 7 days. METHODS Tricin (75, 100, and 150 mg/kg) or the positive control drug sulfasalazine (200 mg/kg) were orally administered to mice for 7 days. Stool consistency scores, stool blood scores, and body weight were recorded daily. Disease activity index (DAI) was examined on day 7, and colon tissues were collected for biochemical analyses. The fecal microbiome of colitis mice after tricin treatment was characterized for the first time in this study using 16S rDNA amplicon sequencing. RESULTS Results showed that tricin (50 µM) remarkably reduced nitric oxide production in lipopolysaccharides-activated RAW264.7 cells and the anti-inflammatory activity of tricin was shown to act through the NF-κB pathway. Besides, tricin treatment at 150 mg/kg significantly reversed colon length reduction, reduced myeloperoxidase activities and DAI scores, as well as restored the elevated myeloid-derived suppressive cells population in acute colitis mice. The influence from DSS on gut microbiota, such as the increased population of Proteobacteria phylum and Ruminococcaceae family, was shown to be relieved after tricin treatment. CONCLUSION Our present study firstly demonstrated that tricin ameliorated acute colitis by improving colonic inflammation and modulating gut microbiota profile, which supports the potential therapeutic use of tricin for colitis treatment.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sin-Guang Chen
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Tao Zheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | - Clara Bik-San Lau
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
31
|
Truong VNP, Nguyen YTK, Cho SK. Ampelopsin Suppresses Stem Cell Properties Accompanied by Attenuation of Oxidative Phosphorylation in Chemo- and Radio-Resistant MDA-MB-231 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14080794. [PMID: 34451892 PMCID: PMC8400665 DOI: 10.3390/ph14080794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
Ampelopsin, also known as dihydromyricetin, is a commonly found flavonoid in medicinal plants. The cancer stem cell (CSC) population is a promising target for triple-negative breast cancer (TNBC). In this study, flavonoid screening was performed in the established MDA-MB-231/IR cell line, which is enriched in CSCs. Ampelopsin suppressed the proliferation and colony formation of stem cell-rich MDA-MB-231/IR, while inducing their apoptosis. Importantly, ampelopsin displayed an inhibitory impact on the stemness features of MDA-MB-231/IR cells, demonstrated by decreases in mammosphere formation, the CD44+/CD24-/low population, aldehyde dehydrogenase activity, and the levels of stem cell markers (e.g., CD44, MRP1, β-catenin, and KLF4). Ampelopsin also suppressed the epithelial-mesenchymal transition, as evidenced by decreases in migration, invasion capacity, and mesenchymal markers, as well as an increase in the epithelial marker E-cadherin. Moreover, ampelopsin significantly impaired oxidative phosphorylation by reducing the oxygen consumption rate and adenosine triphosphate production in MDA-MB-231/IR cells. Notably, ampelopsin treatment significantly reduced the levels of the phosphorylated forms of IκBα and NF-κB p65, as well as the levels of tumor necrosis factor (TNF)-α-stimulated phosphorylation of IκBα and NF-κB p65. These results demonstrated that ampelopsin prevents the TNF-α/NF-κB signaling axis in breast CSCs.
Collapse
Affiliation(s)
- Vi Nguyen-Phuong Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
| | - Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
| | - Somi-Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-10-8660-1842
| |
Collapse
|
32
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
33
|
The inflammatory signalling mediator TAK1 mediates lymphocyte recruitment to lipopolysaccharide-activated murine mesenchymal stem cells through interleukin-6. Mol Cell Biochem 2021; 476:3655-3670. [PMID: 34052945 PMCID: PMC8382631 DOI: 10.1007/s11010-021-04180-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/12/2021] [Indexed: 10/29/2022]
Abstract
As a response to pro-inflammatory signals mesenchymal stem cells (MSCs) secrete agents and factors leading to lymphocyte recruitment, counteracting inflammation, and stimulating immunosuppression. On a molecular level, the signalling mediator TGF-β-activated kinase 1 (TAK1) is activated by many pro-inflammatory signals, plays a critical role in inflammation and regulates innate and adaptive immune responses as well. While the role of TAK1 as a signalling factor promoting inflammation is well documented, we also considered a role for TAK1 in anti-inflammatory actions exerted by activated MSCs. We, therefore, investigated the capacity of lipopolysaccharide (LPS)-treated murine MSCs with lentivirally modulated TAK1 expression levels to recruit lymphocytes. TAK1 downregulated by lentiviral vectors expressing TAK1 shRNA in murine MSCs interfered with the capacity of murine MSCs to chemoattract lymphocytes, indeed. Analysing a pool of 84 secreted factors we found that among 26 secreted cytokines/factors TAK1 regulated expression of one cytokine in LPS-activated murine MSCs in particular: interleukin-6 (IL-6). IL-6 in LPS-treated MSCs was responsible for lymphocyte recruitment as substantiated by neutralizing antibodies. Our studies, therefore, suggest that in LPS-treated murine MSCs the inflammatory signalling mediator TAK1 may exert anti-inflammatory properties via IL-6.
Collapse
|
34
|
Choi SH, Yoon HS, Yoo SA, Yun SH, Park JH, Han EH, Chi SG, Chung YH. Co-relation with novel phosphorylation sites of IκBα and necroptosis in breast cancer cells. BMC Cancer 2021; 21:596. [PMID: 34030642 PMCID: PMC8147041 DOI: 10.1186/s12885-021-08304-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background Phosphorylation of NF-kappaB inhibitor alpha (IκBα) is key to regulation of NF-κB transcription factor activity in the cell. Several sites of IκBα phosphorylation by members of the IκB kinase family have been identified, but phosphorylation of the protein by other kinases remains poorly understood. We investigated a new phosphorylation site on IκBα and identified its biological function in breast cancer cells. Methods Previously, we observed that aurora kinase (AURK) binds IκBα in the cell. To identify the domains of IκBα essential for phosphorylation by AURK, we performed kinase assays with a series of IκBα truncation mutants. AURK significantly promoted activation of IκBα at serine 32 but not serine 36; by contrast, IκB kinase (IKK) family proteins activated both of these residues. We also confirmed phosphorylation of IκBα by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and nano-liquid chromatography hybrid quadrupole orbitrap mass spectrometer (nanoLC-MS/MS; Q-Exactive). Results We identified two novel sites of serine phosphorylation, S63 and S262. Alanine substitution of S63 and S262 (S63A and S262A) of IκBα inhibited proliferation and suppressed p65 transcription activity. In addition, S63A and/or S262A of IκBα regulated apoptotic and necroptotic effects in breast cancer cells. Conclusions Phosphorylation of IκBα by AURK at novel sites is related to the apoptosis and necroptosis pathways in breast cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08304-7.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea.,Yonsei Liver Center, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee-Sub Yoon
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Shin-Ae Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea
| | - Sung Ho Yun
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea
| | - Joo-Hee Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea.,GRAST, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun Hee Han
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| | - Young-Ho Chung
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea. .,Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea. .,GRAST, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
35
|
Biernacki M, Brzóska MM, Markowska A, Gałażyn-Sidorczuk M, Cylwik B, Gęgotek A, Skrzydlewska E. Oxidative Stress and Its Consequences in the Blood of Rats Irradiated with UV: Protective Effect of Cannabidiol. Antioxidants (Basel) 2021; 10:antiox10060821. [PMID: 34063802 PMCID: PMC8224002 DOI: 10.3390/antiox10060821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
UVA/UVB radiation disturbs the redox balance of skin cells, and metabolic consequences can be transferred into the blood and internal tissues, especially after chronic skin exposure to UV radiation. Therefore, the aim of this study was to evaluate the effect of cannabidiol (CBD), an antioxidant and anti-inflammatory phytocannabinoid, on oxidative stress and its consequences in the blood of nude rats whose skin was exposed to UVA/UVB radiation for 4 weeks. It was shown that CBD penetrated the blood and in UVB-irradiated rats was preferentially located in the membranes of polymorphonuclear leukocytes, which promoted reduction of ROS generation and up-regulation of antioxidant ability by increasing the activity of glutathione reductase and thioredoxin reductase, while the level of reduced glutathione decreased by UV radiation. Consequently, reduction in UV-induced lipid peroxidation, assessed as 4-hydroxynonenal (4-HNE) and 8-isoprostane (8-isoPGF2α) as well as protein modifications, estimated as 4-HNE-protein adducts and protein carbonyl groups, was observed. CBD, by countering the UV-induced down-regulation of 2-arachidonylglycerol, promoted its antioxidant/anti-inflammatory effects by reducing CB1 and increasing PPARγ receptor activation and consequently ROS and TNF-α down-regulation. The results suggest that CBD applied topically to the skin minimizes redox changes not only at the skin level, but also at the systemic level.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Michalina Brzóska
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Agnieszka Markowska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Gałażyn-Sidorczuk
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Bogdan Cylwik
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, J. Waszyngtona 17, 15-269 Białystok, Poland;
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
- Correspondence: ; Tel.: +48-857-485-708
| |
Collapse
|
36
|
Wu CF, Wu CY, Chiou RYY, Yang WC, Lin CF, Wang CM, Hou PH, Lin TC, Kuo CY, Chang GR. The Anti-Cancer Effects of a Zotarolimus and 5-Fluorouracil Combination Treatment on A549 Cell-Derived Tumors in BALB/c Nude Mice. Int J Mol Sci 2021; 22:4562. [PMID: 33925400 PMCID: PMC8123799 DOI: 10.3390/ijms22094562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Robin Y.-Y. Chiou
- Department of Food Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan;
| | - Wei-Cheng Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan;
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei City 231405, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| |
Collapse
|
37
|
He G, Gu J, Wang H, Cheng S, Xiong Q, Ke M, Hu Y, Feng J, Song L, Liu Z, Xu Y. Nr2e1 deficiency aggravates insulin resistance and chronic inflammation of visceral adipose tissues in a diet-induced obese mice model. Life Sci 2021; 278:119562. [PMID: 33915130 DOI: 10.1016/j.lfs.2021.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
AIMS To investigate the nuclear receptor subfamily 2 group E member 1 (Nr2e1) expression in adipose tissues of obese mice and assess the role of Nr2e1 in insulin resistance and chronic inflammation of the adipose tissues. MAIN METHODS An obese model was established in Nr2e1 knockout (KO) mice and their wild type (WT) littermates through a long-term high-fat diet (HFD) feeding regime. The epididymal fat weight, body weight, and daily food intake were recorded. The blood lipid profile, blood inflammatory factors, and the levels of fasting blood glucose (FBG) and fasting insulin were determined. We estimated insulin resistance by the homeostasis model assessment (HOMA). The expression of inflammatory factors and F4/80 was examined by polymerase chain reaction (PCR) and western blotting to assess adipose tissues inflammation. We also determined the molecules of insulin signaling and the nuclear factor kappa B (NF-κB) pathway by western blotting. KEY FINDINGS The Nr2e1 expression was upregulated in WT obese mice when compared with that in control mice. Despite a lower body weight and epididymal fat mass in Nr2e1-/- mice, these rats showed increased inflammatory cytokines secretion, more pronounced hyperlipidemia, and impaired insulin sensitivity after HFD treatment. Further investigation revealed that Nr2e1 deletion affected the expression of insulin signaling and NF-κB pathway-related molecules in visceral adipose tissues. SIGNIFICANCE Nr2e1 may act as a potential target to improve insulin sensitivity and inflammation in obesity and related complications.
Collapse
Affiliation(s)
- Guangzhen He
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Jiaowei Gu
- Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyuan Cheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qing Xiong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Mengting Ke
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yong Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zheng Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
Ngo KA, Kishimoto K, Davis-Turak J, Pimplaskar A, Cheng Z, Spreafico R, Chen EY, Tam A, Ghosh G, Mitchell S, Hoffmann A. Dissecting the Regulatory Strategies of NF-κB RelA Target Genes in the Inflammatory Response Reveals Differential Transactivation Logics. Cell Rep 2021; 30:2758-2775.e6. [PMID: 32101750 PMCID: PMC7061728 DOI: 10.1016/j.celrep.2020.01.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/23/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023] Open
Abstract
Nuclear factor κB (NF-κB) RelA is the potent transcriptional activator of inflammatory response genes. We stringently defined a list of direct RelA target genes by integrating physical (chromatin immunoprecipitation sequencing [ChIP-seq]) and functional (RNA sequencing [RNA-seq] in knockouts) datasets. We then dissected each gene’s regulatory strategy by testing RelA variants in a primary-cell genetic-complementation assay. All endogenous target genes require RelA to make DNA-base-specific contacts, and none are activatable by the DNA binding domain alone. However, endogenous target genes differ widely in how they employ the two transactivation domains. Through model-aided analysis of the dynamic time-course data, we reveal the gene-specific synergy and redundancy of TA1 and TA2. Given that post-translational modifications control TA1 activity and intrinsic affinity for coactivators determines TA2 activity, the differential TA logics suggests context-dependent versus context-independent control of endogenous RelA-target genes. Although some inflammatory initiators appear to require co-stimulatory TA1 activation, inflammatory resolvers are a part of the NF-κB RelA core response. Ngo et al. developed a genetic complementation system for NF-κB RelA that reveals that NF-κB target-gene selection requires high-affinity RelA binding and transcriptional activation domains for gene induction. The synergistic and redundant functions of two transactivation domains define pro-inflammatory and inflammation-response genes.
Collapse
Affiliation(s)
- Kim A Ngo
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kensei Kishimoto
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeremy Davis-Turak
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aditya Pimplaskar
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roberto Spreafico
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Y Chen
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Tam
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Simon Mitchell
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Han C, Wang Z, Chen S, Li L, Xu Y, Kang W, Wei C, Ma H, Wang M, Jin X. Berbamine Suppresses the Progression of Bladder Cancer by Modulating the ROS/NF- κB Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8851763. [PMID: 33520087 PMCID: PMC7817266 DOI: 10.1155/2021/8851763] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023]
Abstract
Berbamine (BBM), one of the bioactive ingredients extracted from Berberis plants, has attracted intensive attention because of its significant antitumor activity against various malignancies. However, the exact role and potential molecular mechanism of berbamine in bladder cancer (BCa) remain unclear. In the present study, our results showed that berbamine inhibited cell viability, colony formation, and proliferation. Additionally, berbamine induced cell cycle arrest at S phase by a synergistic mechanism involving stimulation of P21 and P27 protein expression as well as downregulation of CyclinD, CyclinA2, and CDK2 protein expression. In addition to suppressing epithelial-mesenchymal transition (EMT), berbamine rearranged the cytoskeleton to inhibit cell metastasis. Mechanistically, the expression of P65, P-P65, and P-IκBα was decreased upon berbamine treatment, yet P65 overexpression abrogated the effects of berbamine on the proliferative and metastatic potential of BCa cells, which indicated that berbamine attenuated the malignant biological activities of BCa cells by inhibiting the NF-κB pathway. More importantly, berbamine increased the intracellular reactive oxygen species (ROS) level through the downregulation of antioxidative genes such as Nrf2, HO-1, SOD2, and GPX-1. Following ROS accumulation, the intrinsic apoptotic pathway was triggered by an increase in the ratio of Bax/Bcl-2. Furthermore, berbamine-mediated ROS accumulation negatively regulated the NF-κB pathway to a certain degree. Consistent with our in vitro results, berbamine successfully inhibited tumor growth and blocked the NF-κB pathway in our xenograft model. To summarize, our data demonstrated that berbamine exerts antitumor effects via the ROS/NF-κB signaling axis in bladder cancer, which provides a basis for further comprehensive study and presents a potential candidate for clinical treatment strategies against bladder cancer.
Collapse
Affiliation(s)
- Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Lin Li
- Department of Orthopedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chunxiao Wei
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hongbin Ma
- Department of Hepatobiliary, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
40
|
Daniel PV, Dogra S, Rawat P, Choubey A, Khan AS, Rajak S, Kamthan M, Mondal P. NF-κB p65 regulates hepatic lipogenesis by promoting nuclear entry of ChREBP in response to a high carbohydrate diet. J Biol Chem 2021; 296:100714. [PMID: 33930463 PMCID: PMC8144664 DOI: 10.1016/j.jbc.2021.100714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Overconsumption of sucrose and other sugars has been associated with nonalcoholic fatty liver disease (NAFLD). Reports suggest hepatic de novo lipogenesis (DNL) as an important contributor to and regulator of carbohydrate-induced hepatic lipid accumulation in NAFLD. The mechanisms responsible for the increase in hepatic DNL due to overconsumption of carbohydrate diet are less than clear; however, literatures suggest high carbohydrate diet to activate the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP), which further transcribes genes involved in DNL. Here, we provide an evidence of an unknown link between nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and increased DNL. Our data indicates high carbohydrate diet to enforce nuclear shuttling of hepatic NF-κB p65 and repress transcript levels of sorcin, a cytosolic interacting partner of ChREBP. Reduced sorcin levels, further prompted ChREBP nuclear translocation, leading to enhanced DNL and intrahepatic lipid accumulation both in vivo and in vitro. We further report that pharmacological inhibition of NF-κB abrogated high carbohydrate diet-mediated sorcin repression and thereby prevented ChREBP nuclear translocation and this, in turn, attenuated hepatic lipid accumulation both in in vitro and in vivo. Additionally, sorcin knockdown blunted the lipid-lowering ability of the NF-κB inhibitor in vitro. Together, these data suggest a heretofore unknown role for NF-κB in regulating ChREBP nuclear localization and activation, in response to high carbohydrate diet, for further explorations in lines of NAFLD therapeutics.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Priya Rawat
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Abhinav Choubey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India.
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
| |
Collapse
|
41
|
Zhang X, Liu Z, Wu S, Sun M, Wei J, Qin Q. Fish RIP1 Mediates Innate Antiviral Immune Responses Induced by SGIV and RGNNV Infection. Front Immunol 2020; 11:1718. [PMID: 32849607 PMCID: PMC7417445 DOI: 10.3389/fimmu.2020.01718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Receptor interacting protein 1 (RIP1) is an essential sensor of cellular stress, which may respond to apoptosis or cell survival and participate in antiviral pathways. To investigate the roles of fish RIP1 in Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection, a RIP1 homolog from orange-spotted grouper (Epinephelus coioides) (EcRIP1) was cloned and characterized. EcRIP1 encoded a 679 amino acid protein that shares 83.28% identity with that of Perca flavescens and contained a homologous N-terminal kinase (S-TKc) domain, a RIP isotype interaction motif (RHIM), and a C-terminal domain (DD). EcRIP1 was predominantly detected in immune tissues, and its expression was induced by RGNNV or SGIV infection in vitro. Subcellular localization showed that EcRIP1 was distributed in the cytoplasm with point-like uniform and dot-like aggregation forms. Overexpression of EcRIP1 inhibited SGIV and RGNNV replication and positively regulated the expression levels of interferon (IFN) and IFN-stimulated genes and pro-inflammatory factors. EcRIP1 may interact with grouper tumor necrosis factor receptor type 1-associated DEATH domain protein (EcTRADD) to promote SGIV-induced apoptosis, and interact with grouper Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-β (EcTRIF) and participate in Myeloid Differentiation Factor 88 (MyD88)-independent toll-like receptor (TLR) signaling. EcRIP1 may also interact with grouper tumor necrosis factor receptor-associated factors (TRAFs) as intracellular linker proteins and mediate the signaling of various downstream signaling pathways, including NF-κB and IFN. These results suggest that EcRIP1 may inhibit SGIV and RGNNV infection by regulating apoptosis and various signaling molecules. Our study offers new insights into the regulatory mechanism of RIP1-related signaling, and provides a novel perspective on fish diseases mediated by RIP1.
Collapse
Affiliation(s)
- Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zetian Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siting Wu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mengshi Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
42
|
Friese N, Gierschner MB, Schadzek P, Roger Y, Hoffmann A. Regeneration of Damaged Tendon-Bone Junctions (Entheses)-TAK1 as a Potential Node Factor. Int J Mol Sci 2020; 21:E5177. [PMID: 32707785 PMCID: PMC7432881 DOI: 10.3390/ijms21155177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.
Collapse
Affiliation(s)
- Nina Friese
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Mattis Benno Gierschner
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Yvonne Roger
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
43
|
17-Aminogeldanamycin Inhibits Constitutive Nuclear Factor-Kappa B (NF-κB) Activity in Patient-Derived Melanoma Cell Lines. Int J Mol Sci 2020; 21:ijms21113749. [PMID: 32466509 PMCID: PMC7312877 DOI: 10.3390/ijms21113749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma remains incurable skin cancer, and targeting heat shock protein 90 (HSP90) is a promising therapeutic approach. In this study, we investigate the effect of 17-aminogeldanamycin, a potent HSP90 inhibitor, on nuclear factor-kappa B (NF-κB) activity in BRAFV600E and NRASQ61R patient-derived melanoma cell lines. We performed time-lapse microscopy and flow cytometry to monitor changes in cell confluence and viability. The NF-κB activity was determined by immunodetection of phospho-p65 and assessment of expression of NF-κB-dependent genes by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Constitutive activity of p65/NF-κB was evident in all melanoma cell lines. Differences in its level might be associated with genetic alterations in CHUK, IL1B, MAP3K14, NFKBIE, RIPK1, and TLR4, while differences in transcript levels of NF-κB-inducible genes revealed by PCR array might result from the contribution of other regulatory mechanisms. 17-Aminogeldanamycin markedly diminished the level of phospho-p65, but the total p65 protein level was unaltered, indicating that 17-aminogeldanamycin inhibited activation of p65/NF-κB. This conclusion was supported by significantly reduced expression of selected NF-κB-dependent genes: cyclin D1 (CCND1), C-X-C motif chemokine ligand 8 (CXCL8), and vascular endothelial growth factor (VEGF), as shown at transcript and protein levels, as well as secretion of IL-8 and VEGF. Our study indicates that 17-aminogeldanamycin can be used for efficient inhibition of NF-κB activity and the simultaneous diminution of IL-8 and VEGF levels in the extracellular milieu of melanoma.
Collapse
|
44
|
Buyandelger U, Walker DG, Yanagisawa D, Morimura T, Tooyama I. Effects of FTMT Expression by Retinal Pigment Epithelial Cells on Features of Angiogenesis. Int J Mol Sci 2020; 21:ijms21103635. [PMID: 32455741 PMCID: PMC7279371 DOI: 10.3390/ijms21103635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant angiogenesis is a pathological feature of a number of diseases and arises from the uncoordinated expression of angiogenic factors as response to different cellular stresses. Age-related macular degeneration (AMD), a leading cause of vision loss, can result from pathological angiogenesis. As a mutation in the mitochondrial ferritin (FTMT) gene has been associated with AMD, its possible role in modulating angiogenic factors and angiogenesis was investigated. FTMT is an iron-sequestering protein primarily expressed in metabolically active cells and tissues with high oxygen demand, including retina. In this study, we utilized the human retinal pigment epithelial cell line ARPE-19, both as undifferentiated and differentiated cells. The effects of proinflammatory cytokines, FTMT knockdown, and transient and stable overexpression of FTMT were investigated on expression of pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial-derived factor (PEDF). Proinflammatory cytokines induced FTMT and VEGF expression, while NF-κB inhibition significantly reduced FTMT expression. VEGF protein and mRNA expression were significantly increased in FTMT-silenced ARPE-19 cells. Using an in vitro angiogenesis assay with endothelial cells, we showed that conditioned media from FTMT-overexpressing cells had significant antiangiogenic effects. Collectively, our findings indicate that increased levels of FTMT inhibit angiogenesis, possibly by reducing levels of VEGF and increasing PEDF expression. The cellular models developed can be used to investigate if increased FTMT may be protective in angiogenic diseases, such as AMD.
Collapse
Affiliation(s)
| | | | | | | | - Ikuo Tooyama
- Correspondence: ; Tel.: +81-77-548-2330; Fax: +81-77-548-2331
| |
Collapse
|
45
|
Aashaq S, Batool A, Andrabi KI. TAK1 mediates convergence of cellular signals for death and survival. Apoptosis 2020; 24:3-20. [PMID: 30288639 DOI: 10.1007/s10495-018-1490-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
TGF-β activated kinase 1, a MAPK kinase kinase family serine threonine kinase has been implicated in regulating diverse range of cellular processes that include embryonic development, differentiation, autophagy, apoptosis and cell survival. TAK1 along with its binding partners TAB1, TAB2 and TAB3 displays a complex pattern of regulation that includes serious crosstalk with major signaling pathways including the C-Jun N-terminal kinase (JNK), p38 MAPK, and I-kappa B kinase complex (IKK) involved in establishing cellular commitments for death and survival. This review also highlights how TAK1 orchestrates regulation of energy homeostasis via AMPK and its emerging role in influencing mTORC1 pathway to regulate death or survival in tandem.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Asiya Batool
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Khurshid I Andrabi
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| |
Collapse
|
46
|
ER Stress Responses: An Emerging Modulator for Innate Immunity. Cells 2020; 9:cells9030695. [PMID: 32178254 PMCID: PMC7140669 DOI: 10.3390/cells9030695] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER) is a critical organelle, storing the majority of calcium and governing protein translation. Thus, it is crucial to keep the homeostasis in all ER components and machineries. The ER stress sensor pathways, including IRE1/sXBP1, PERK/EIf2 and ATF6, orchestrate the major regulatory circuits to ensure ER homeostasis. The embryonic or postnatal lethality that occurs upon genetic depletion of these sensors reveals the essential role of the ER stress pathway in cell biology. In contrast, the impairment or excessive activation of ER stress has been reported to cause or aggravate several diseases such as atherosclerosis, diabetes, NAFDL/NASH, obesity and cancer. Being part of innate immunity, myeloid cells are the first immune cells entering the inflammation site. Upon entry into a metabolically stressed disease environment, activation of ER stress occurs within the myeloid compartment, leading to the modulation of their phenotype and functions. In this review, we discuss causes and consequences of ER stress activation in the myeloid compartment with a special focus on the crosstalk between ER, innate signaling and metabolic environments.
Collapse
|
47
|
Lee S, Lee Y, Ha S, Chung HY, Kim H, Hur JS, Lee J. Anti-inflammatory effects of usnic acid in an MPTP-induced mouse model of Parkinson's disease. Brain Res 2020; 1730:146642. [PMID: 31930999 DOI: 10.1016/j.brainres.2019.146642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Neuroinflammation is often associated with astrocyte and microglial activations particularly in Parkinson's disease (PD) and other brain damage such as Alzheimer's disease. Therefore, the modulation of glial activation offers a possible target for treating PD-associated pathologies. Here, we evaluated the neuroprotective effects of usnic acid, a naturally occurring dibenzofuran derivative found in several lichen species in an acute mouse model of PD. Male mice were administered with vehicle or usnic acid (5 or 25 mg/kg) for 10 consecutive days, and then on day 11, MPTP (20 mg/kg, i.p.) was administered four times (with 2hrs intervals between injections) to induce PD pathologies. It was found that MPTP-induced motor dysfunction and neuronal loss were ameliorated in the usnic acid-treated mice versus vehicle-treated controls. Further study revealed that usnic acid effectively inhibited MPP+-induced glial activation in primary astrocytes by blocking NF-κB activation. Taken together, these findings suggest that usnic acid could be considered potentially useful therapeutic candidates for PD and other neurodegenerative diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Seulah Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
48
|
Meningher T, Barsheshet Y, Ofir‐Birin Y, Gold D, Brant B, Dekel E, Sidi Y, Schwartz E, Regev‐Rudzki N, Avni O, Avni D. Schistosomal extracellular vesicle-enclosed miRNAs modulate host T helper cell differentiation. EMBO Rep 2020; 21:e47882. [PMID: 31825165 PMCID: PMC6944914 DOI: 10.15252/embr.201947882] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
During the chronic stage of Schistosoma infection, the female lays fertile eggs, triggering a strong anti-parasitic type 2 helper T-cell (Th2) immune response. It is unclear how this Th2 response gradually declines even though the worms live for years and continue to produce eggs. Here, we show that Schistosoma mansoni downregulates Th2 differentiation in an antigen-presenting cell-independent manner, by modulating the Th2-specific transcriptional program. Adult schistosomes secrete miRNA-harboring extracellular vesicles that are internalized by Th cells in vitro. Schistosomal miRNAs are found also in T helper cells isolated from Peyer's patches and mesenteric lymph nodes of infected mice. In T helper cells, the schistosomal miR-10 targets MAP3K7 and consequently downmodulates NF-κB activity, a critical transcription factor for Th2 differentiation and function. Our results explain, at least partially, how schistosomes tune down the Th2 response, and provide further insight into the reciprocal geographic distribution between high prevalence of parasitic infections and immune disorders such as allergy. Furthermore, this worm-host crosstalk mechanism can be harnessed to develop diagnostic and therapeutic approaches for human schistosomiasis and Th2-associated diseases.
Collapse
Affiliation(s)
- Tal Meningher
- Laboratory of Molecular Cell BiologyCenter for Cancer Research and Department of Medicine CSheba Medical CenterTel HashomerIsrael
- Molecular Laboratory for the Study of Tropical DiseasesSheba Medical CenterTel HashomerIsrael
| | | | - Yifat Ofir‐Birin
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Daniel Gold
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineSackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Boris Brant
- Azrieli Faculty of MedicineBar Ilan UniversitySafedIsrael
| | - Elya Dekel
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Yechezkel Sidi
- Laboratory of Molecular Cell BiologyCenter for Cancer Research and Department of Medicine CSheba Medical CenterTel HashomerIsrael
- Faculty of MedicineSackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Eli Schwartz
- Molecular Laboratory for the Study of Tropical DiseasesSheba Medical CenterTel HashomerIsrael
- Faculty of MedicineSackler School of MedicineTel Aviv UniversityTel AvivIsrael
- The Center for Geographic MedicineSheba Medical CenterTel HashomerIsrael
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Orly Avni
- Azrieli Faculty of MedicineBar Ilan UniversitySafedIsrael
| | - Dror Avni
- Laboratory of Molecular Cell BiologyCenter for Cancer Research and Department of Medicine CSheba Medical CenterTel HashomerIsrael
- Molecular Laboratory for the Study of Tropical DiseasesSheba Medical CenterTel HashomerIsrael
| |
Collapse
|
49
|
Wang Y, Kang W, Shang L, Song A, Ge S. N-WASP knockdown upregulates inflammatory cytokines expression in human gingival fibroblasts. Arch Oral Biol 2019; 110:104605. [PMID: 31751919 DOI: 10.1016/j.archoralbio.2019.104605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The neuronal wiskott-aldrich syndrome protein (N-WASP) is a member of the wiskott-aldrich syndrome protein (WASP) family. N-WASP plays a vital role in promoting cell migration, receptor signaling and immune inflammatory responses. This study aimed to observe the changes in the expression of inflammatory factors and involving pathways after N-WASP knockdown in human gingival fibroblasts (HGFs). DESIGN Gingival inflammatory condition of N-WASP knockout mice was evaluated by H&E staining. N-WASP in HGFs was knockdown by siRNA and the best knockdown efficiency was determined by qRT-PCR and immunofluorescence. The mRNA levels of interleukin (IL)-6, IL-8, C-C motif ligand 2 (CCL2), superoxide dismutase 2 (SOD2) and prostaglandin endoperoxide synthase 2 (PTGS2) were evaluated by qRT-PCR after N-WASP knockdown with or without mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors. The protein levels of IL-6, IL-8 and CCL2 were assessed by ELISA. Western blotting was used to detect the activation of NF-κB and MAPK signaling pathways. RESULTS Gingival tissue from N-WASP knockout mice exhibited an inflammatory reaction. The expression of IL-6, IL-8, CCL2, SOD2 and PTGS2 was significantly upregulated after N-WASP knockdown in HGFs for 6, 24 and 48 h, except for the SOD2 at 6 h. N-WASP knockdown significantly activated the signaling pathways of NF-κB and MAPK. The inhibitors of p65, p38, ERK and JNK clearly decreased IL-6, IL-8, CCL2, SOD2 and PTGS2 expression after N-WASP knockdown. CONCLUSION These data indicated that N-WASP deficiency in HGFs increases the production of inflammatory cytokine and is regulated via NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Lingling Shang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Aimei Song
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| |
Collapse
|
50
|
Ji Y, Shen J, Li M, Zhu X, Wang Y, Ding J, Jiang S, Chen L, Wei W. RMP/URI inhibits both intrinsic and extrinsic apoptosis through different signaling pathways. Int J Biol Sci 2019; 15:2692-2706. [PMID: 31754340 PMCID: PMC6854365 DOI: 10.7150/ijbs.36829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
The evading apoptosis of tumor cells may result in chemotherapy resistance. Therefore, investigating what molecular events contribute to drug-induced apoptosis, and how tumors evade apoptotic death, provides a paradigm to explain the relationship between cancer genetics and treatment sensitivity. In this study, we focused on the role of RMP/URI both in cisplatin-induced endogenous apoptosis and in TRAIL-induced exogenous apoptosis in HCC cells. Although flow cytometric analysis indicated that RMP overexpression reduced the apoptosis rate of HCC cells treated with both cisplatin and TRAIL, there was a difference in mechanism between the two treatments. Western blot showed that in intrinsic apoptosis induced by cisplatin, the overexpression of RMP promoted the Bcl-xl expression both in vitro and in vivo. Besides, RMP activated NF-κB/p65(rel) through the phosphorylation of ATM. However, in TRAIL-induced extrinsic apoptosis, RMP significantly suppressed the transcription and expression of P53. Moreover, the forced expression of P53 could offset this inhibitory effect. In conclusion, we presumed that RMP inhibited both intrinsic and extrinsic apoptosis through different signaling pathways. NF-κB was distinctively involved in the RMP circumvention of intrinsic apoptosis, but not in the extrinsic apoptosis of HCC cells. RMP might play an important role in defects of apoptosis, hence the chemotherapeutic resistance in hepatocellular carcinoma. These studies are promising to shed light on a more rational approach to clinical anticancer drug design and therapy.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jian Shen
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Min Li
- Department of Tumor, People Hospital of Maanshan, Maanshan, 243000, China
| | - Xiaoxiao Zhu
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Yanyan Wang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jiazheng Ding
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Shunyao Jiang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Linqi Chen
- Department of Endocrinology, Children's Hospital affiliated to Soochow University, Suzhou, 215000, China
| | - Wenxiang Wei
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| |
Collapse
|