1
|
Tikhonova IV, Dyukina AR, Grinevich AA, Shaykhutdinova ER, Safronova VG. Changed regulation of granulocyte NADPH oxidase activity in the mouse model of obesity-induced type 2 diabetes mellitus. Free Radic Biol Med 2024; 216:33-45. [PMID: 38479632 DOI: 10.1016/j.freeradbiomed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia.
| | - Alsu R Dyukina
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Elvira R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Prospect Nauki, 6, Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| |
Collapse
|
2
|
Sobrano Fais R, Menezes da Costa R, Carvalho Mendes A, Mestriner F, Comerma‐Steffensen SG, Tostes RC, Simonsen U, Silva Carneiro F. NLRP3 activation contributes to endothelin-1-induced erectile dysfunction. J Cell Mol Med 2022; 27:1-14. [PMID: 36515571 PMCID: PMC9806301 DOI: 10.1111/jcmm.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB ) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3-/- and caspase-/- mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM-10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA - and ETB -mediated activation of NLRP3 in mouse CC via Ca2+ -dependent ROS generation.
Collapse
Affiliation(s)
- Rafael Sobrano Fais
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil,Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | | | - Allan Carvalho Mendes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Fabíola Mestriner
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | | | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular PharmacologyAarhus UniversityAarhusDenmark
| | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| |
Collapse
|
3
|
Endoplasmic reticulum Ca2+ release causes Rieske iron-sulfur protein-mediated mitochondrial ROS generation in pulmonary artery smooth muscle cells. Biosci Rep 2020; 39:221066. [PMID: 31710081 PMCID: PMC6893167 DOI: 10.1042/bsr20192414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) cause Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptors (RyRs) in pulmonary artery smooth muscle cells (PASMCs), playing an essential role in hypoxic pulmonary vasoconstriction (HPV). Here we tested a novel hypothesis that hypoxia-induced RyR-mediated Ca2+ release may, in turn, promote mitochondrial ROS generation contributing to hypoxic cellular responses in PASMCs. Our data reveal that application of caffeine to elevate intracellular Ca2+ concentration ([Ca2+]i) by activating RyRs results in a significant increase in ROS production in cytosol and mitochondria of PASMCs. Norepinephrine to increase [Ca2+]i due to the opening of inositol 1,4,5-triphosphate receptors (IP3Rs) produces similar effects. Exogenous Ca2+ significantly increases mitochondrial-derived ROS generation as well. Ru360 also inhibits the hypoxic ROS production. The RyR antagonist tetracaine or RyR2 gene knockout (KO) suppresses hypoxia-induced responses as well. Inhibition of mitochondrial Ca2+ uptake with Ru360 eliminates N- and Ca2+-induced responses. RISP KD abolishes the hypoxia-induced ROS production in mitochondria of PASMCs. Rieske iron–sulfur protein (RISP) gene knockdown (KD) blocks caffeine- or NE-induced ROS production. Taken together, these findings have further demonstrated that ER Ca2+ release causes mitochondrial Ca2+ uptake and RISP-mediated ROS production; this novel local ER/mitochondrion communication-elicited, Ca2+-mediated, RISP-dependent ROS production may play a significant role in hypoxic cellular responses in PASMCs.
Collapse
|
4
|
Patente TA, Mohammedi K, Bellili-Muñoz N, Driss F, Sanchez M, Fumeron F, Roussel R, Hadjadj S, Corrêa-Giannella ML, Marre M, Velho G. Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney complications in patients with type 1 diabetes. Free Radic Biol Med 2015; 86:16-24. [PMID: 25862415 DOI: 10.1016/j.freeradbiomed.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/03/2015] [Accepted: 04/01/2015] [Indexed: 11/22/2022]
Abstract
Oxidative stress plays a pivotal role in the pathophysiology of diabetic nephropathy, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is an important source of reactive oxygen species in hyperglycemic conditions in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, is increased in patients with diabetic nephropathy. We investigated associations of variants in the CYBA gene, encoding the regulatory subunit p22(phox) of NADPH oxidase, with diabetic nephropathy and plasma AOPP and myeloperoxidase (MPO) concentrations in type 1 diabetic patients. Seven SNPs in the CYBA region were analyzed in 1357 Caucasian subjects with type 1 diabetes from the SURGENE (n=340), GENEDIAB (n=444), and GENESIS (n=573) cohorts. Duration of follow-up was 10, 9, and 6 years, respectively. Cox proportional hazards and logistic regression analyses were used to estimate hazard ratios (HR) or odds ratios (OR) for incidence and prevalence of diabetic nephropathy. The major G-allele of rs9932581 was associated with the incidence of renal events defined as new cases of microalbuminuria or the progression to a more severe stage of nephropathy during follow-up (HR 1.59, 95% CI 1.17-2.18, P=0.003) in SURGENE. The same allele was associated with established/advanced nephropathy (OR 1.52, 95% CI 1.22-1.92, P=0.0001) and with the incidence of end-stage renal disease (ESRD) (HR 2.01, 95% CI 1.30-3.24, P=0.001) in GENEDIAB/GENESIS pooled studies. The risk allele was also associated with higher plasma AOPP concentration in subsets of SURGENE and GENEDIAB, with higher plasma MPO concentration in a subset of GENEDIAB, and with lower estimated glomerular filtration rate (eGFR) in the three cohorts. In conclusion, a functional variant in the promoter of the CYBA gene was associated with lower eGFR and with prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. These results are consistent with a role for NADPH oxidase in the pathophysiology of kidney complications of diabetes.
Collapse
Affiliation(s)
- Thiago A Patente
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, 15 rue de l׳École de Médecine, 75006 Paris, France; Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 455, CEP 01246903, São Paulo, SP, Brazil
| | - Kamel Mohammedi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, 15 rue de l׳École de Médecine, 75006 Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, 46 rue Henri Huchard, 75018 Paris, France
| | - Naïma Bellili-Muñoz
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, 15 rue de l׳École de Médecine, 75006 Paris, France
| | - Fathi Driss
- INSERM, Research Unit 773, 16 rue Henri Huchard, 75018 Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, Department of Biochemistry, 46 rue Henri Huchard, 75018 Paris, France
| | - Manuel Sanchez
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, 15 rue de l׳École de Médecine, 75006 Paris, France
| | - Frédéric Fumeron
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, 15 rue de l׳École de Médecine, 75006 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, 16 rue Henri Huchard, 75018 Paris, France
| | - Ronan Roussel
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, 15 rue de l׳École de Médecine, 75006 Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, 46 rue Henri Huchard, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, 16 rue Henri Huchard, 75018 Paris, France
| | - Samy Hadjadj
- Centre Hospitalier Universitaire de Poitiers, Department of Endocrinology and Diabetology, 2 Rue de la Milétrie, 86021 Poitiers, France; INSERM, Research Unit 1082, 2 Rue de la Milétrie, 86021 Poitiers, France; INSERM, CIC 1402, 2 Rue de la Milétrie, 86021 Poitiers, France; Université de Poitiers, UFR de Médecine et Pharmacie, 6 Rue de la Milétrie, 86073 Poitiers, France
| | - Maria Lúcia Corrêa-Giannella
- Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 455, CEP 01246903, São Paulo, SP, Brazil; Centro de Terapia Celular e Molecular (NUCEL/NETCEM) da FMUSP, Avenida Dr. Arnaldo 455, CEP 01246903, São Paulo, SP, Brazil
| | - Michel Marre
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, 15 rue de l׳École de Médecine, 75006 Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Department of Diabetology, Endocrinology and Nutrition, 46 rue Henri Huchard, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, 16 rue Henri Huchard, 75018 Paris, France
| | - Gilberto Velho
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, 15 rue de l׳École de Médecine, 75006 Paris, France.
| |
Collapse
|
5
|
Hirano K, Chen WS, Chueng ALW, Dunne AA, Seredenina T, Filippova A, Ramachandran S, Bridges A, Chaudry L, Pettman G, Allan C, Duncan S, Lee KC, Lim J, Ma MT, Ong AB, Ye NY, Nasir S, Mulyanidewi S, Aw CC, Oon PP, Liao S, Li D, Johns DG, Miller ND, Davies CH, Browne ER, Matsuoka Y, Chen DW, Jaquet V, Rutter AR. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor. Antioxid Redox Signal 2015; 23:358-74. [PMID: 26135714 PMCID: PMC4545375 DOI: 10.1089/ars.2014.6202] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.
Collapse
Affiliation(s)
- Kazufumi Hirano
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Woei Shin Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Adeline L W Chueng
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela A Dunne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Tamara Seredenina
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Aleksandra Filippova
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Sumitra Ramachandran
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela Bridges
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Laiq Chaudry
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Gary Pettman
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Craig Allan
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Sarah Duncan
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Kiew Ching Lee
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Jean Lim
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - May Thu Ma
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Agnes B Ong
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Nicole Y Ye
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shabina Nasir
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Sri Mulyanidewi
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Chiu Cheong Aw
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Pamela P Oon
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shihua Liao
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Dizheng Li
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Douglas G Johns
- 5 Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline , King of Prussia, Pennsylvania
| | - Neil D Miller
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Ceri H Davies
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Edward R Browne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Yasuji Matsuoka
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Deborah W Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Vincent Jaquet
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - A Richard Rutter
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| |
Collapse
|
6
|
Sakata K, Kondo T, Mizuno N, Shoji M, Yasui H, Yamamori T, Inanami O, Yokoo H, Yoshimura N, Hattori Y. Roles of ROS and PKC-βII in ionizing radiation-induced eNOS activation in human vascular endothelial cells. Vascul Pharmacol 2015; 70:55-65. [DOI: 10.1016/j.vph.2015.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/14/2015] [Accepted: 03/28/2015] [Indexed: 12/20/2022]
|
7
|
Gorin Y, Wauquier F. Upstream regulators and downstream effectors of NADPH oxidases as novel therapeutic targets for diabetic kidney disease. Mol Cells 2015; 38:285-96. [PMID: 25824546 PMCID: PMC4400302 DOI: 10.14348/molcells.2015.0010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas,
USA
| | - Fabien Wauquier
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas,
USA
| |
Collapse
|
8
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
9
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Marrazzo G, Barbagallo I, Galvano F, Malaguarnera M, Gazzolo D, Frigiola A, D'Orazio N, Li Volti G. Role of dietary and endogenous antioxidants in diabetes. Crit Rev Food Sci Nutr 2014; 54:1599-616. [PMID: 24580561 DOI: 10.1080/10408398.2011.644874] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Diabetes affects different people of all ages, race, and sex. This is a condition characterized by a state of chronic hyperglycaemia that leads to an increase of intracellular oxidative stress linked to the overproduction of free radicals. In the present review, we focus our attention on the molecular mechanisms leading to oxidative stress-mediates complications with particular regard to central nervous system (CNS). Furthermore, the present review reports the effects of different kind of antioxidants with enzymatic and nonenzymatic action that may significantly decrease the intracellular free radicals' overproduction and prevents the hyperglycaemia-mediated complications.
Collapse
Affiliation(s)
- Giuseppina Marrazzo
- a Department of Drug Science, Section of Biochemistry , University of Catania , Catanina , Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hong NJ, Garvin JL. Endogenous flow-induced superoxide stimulates Na/H exchange activity via PKC in thick ascending limbs. Am J Physiol Renal Physiol 2014; 307:F800-5. [PMID: 25080525 DOI: 10.1152/ajprenal.00260.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Luminal flow stimulates Na reabsorption along the nephron and activates protein kinase C (PKC) which enhances endogenous superoxide (O(2) (-)) production by thick ascending limbs (TALs). Exogenously-added O(2) (-) augments TAL Na reabsorption, a process also dependent on PKC. Luminal Na/H exchange (NHE) mediates NaHCO₃reabsorption. However, whether flow-stimulated, endogenously-produced O(2) (-) enhances luminal NHE activity and the signaling pathway involved are unclear. We hypothesized that flow-induced production of endogenous O2 (-) stimulates luminal NHE activity via PKC in TALs. Intracellular pH recovery was measured as an indicator of NHE activity in isolated, perfused rat TALs. Increasing luminal flow from 5 to 20 nl/min enhanced total NHE activity from 0.104 ± 0.031 to 0.167 ± 0.036 pH U/min, 81%. The O(2) (-) scavenger tempol decreased total NHE activity by 0.066 ± 0.011 pH U/min at 20 nl/min but had no significant effect at 5 nl/min. With the NHE inhibitor EIPA in the bath to block basolateral NHE, tempol reduced flow-enhanced luminal NHE activity by 0.029 ± 0.010 pH U/min, 30%. When experiments were repeated with staurosporine, a nonselective PKC inhibitor, tempol had no effect. Because PKC could mediate both induction of O2 (-) by flow and the effect of O(()-) on luminal NHE activity, we used hypoxanthine/xanthine oxidase to elevate O(2) (-). Hypoxanthine/xanthine oxidase increased luminal NHE activity by 0.099 ± 0.020 pH U/min, 137%. Staurosporine and the PKCα/β1-specific inhibitor Gö6976 blunted this effect. We conclude that flow-induced O(2) (-) stimulates luminal NHE activity in TALs via PKCα/β1. This accounts for part of flow-stimulated bicarbonate reabsorption by TALs.
Collapse
Affiliation(s)
- Nancy J Hong
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
12
|
Gorin Y, Block K. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free Radic Biol Med 2013; 61:130-42. [PMID: 23528476 PMCID: PMC3716866 DOI: 10.1016/j.freeradbiomed.2013.03.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, a complication of diabetes in the kidney. NADPH oxidases of the Nox family are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current understanding of the roles of Nox catalytic and regulatory subunits in the processes that control mesangial cell, podocyte, and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The role of the Nox isoform Nox4 in the redox processes that alter renal biology in diabetes is highlighted.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Liu GC, Fang F, Zhou J, Koulajian K, Yang S, Lam L, Reich HN, John R, Herzenberg AM, Giacca A, Oudit GY, Scholey JW. Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia 2012; 55:2522-32. [PMID: 22653270 DOI: 10.1007/s00125-012-2586-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/17/2012] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Reactive oxygen species (ROS) contribute to diabetes-induced glomerular injury and endoplasmic reticulum (ER) stress-induced beta cell dysfunction, but the source of ROS has not been fully elucidated. Our aim was to determine whether p47(phox)-dependent activation of NADPH oxidase is responsible for hyperglycaemia-induced glomerular injury in the Akita mouse, a model of type 1 diabetes mellitus resulting from ER stress-induced beta cell dysfunction. METHODS We examined the effect of deleting p47 (phox) (also known as Ncf1), the gene for the NADPH oxidase subunit, on diabetic nephropathy in the Akita mouse (Ins2 (WT/C96Y)) by studying four groups of mice: (1) non-diabetic mice (Ins2 (WT/WT)/p47 (phox+/+)); (2) non-diabetic p47 (phox)-null mice (Ins2 (WT/WT)/p47 (phox-/-)); (3) diabetic mice: (Ins2 (WT/C96Y)/p47 (phox+/+)); and (4) diabetic p47 (phox)-null mice (Ins2 (WT/C96Y)/p47 (phox-/-)). We measured the urinary albumin excretion rate, oxidative stress, mesangial matrix expansion, and plasma and pancreatic insulin concentrations in 16-week-old mice; we also measured glucose tolerance and insulin sensitivity, islet and glomerular NADPH oxidase activity and subunit expression, and pro-fibrotic gene expression in 8-week-old mice. In addition, we measured NADPH oxidase activity, subunit expression and pro-fibrotic gene expression in high glucose-treated murine mesangial cells. RESULTS Deletion of p47 (phox) reduced kidney hypertrophy, oxidative stress and mesangial matrix expansion, and also reduced hyperglycaemia by increasing pancreatic and circulating insulin concentrations. p47 (phox-/-) mice exhibited improved glucose tolerance, but modestly decreased insulin sensitivity. Deletion of p47 (phox) attenuated high glucose-induced activation of NADPH oxidase and pro-fibrotic gene expression in glomeruli and mesangial cells. CONCLUSIONS/INTERPRETATION Deletion of p47 (phox) attenuates diabetes-induced glomerular injury and beta cell dysfunction in the Akita mouse.
Collapse
Affiliation(s)
- G C Liu
- Institute of Medical Sciences, University of Toronto, 7326 Medical Sciences Building, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ren Y, D'Ambrosio MA, Wang H, Peterson EL, Garvin JL, Carretero OA. Mechanisms of angiotensin II-enhanced connecting tubule glomerular feedback. Am J Physiol Renal Physiol 2012; 303:F259-65. [PMID: 22461303 PMCID: PMC3404582 DOI: 10.1152/ajprenal.00689.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/27/2012] [Indexed: 02/08/2023] Open
Abstract
Increasing Na delivery to the connecting tubule (CNT) causes afferent arteriole (Af-Art) dilation, a process we call CNT glomerular feedback (CTGF). Angiotensin II (ANG II) in the CNT lumen enhances CTGF via PKC. We hypothesized that luminal ANG II stimulates CTGF via activation of protein kinase C (PKC), NADPH oxidase 2 (NOX2), and enhanced production of superoxide (O(2)(-)). Rabbit Af-Arts and adherent CNTs were microdissected and microperfused in vitro. Dilation of the Af-Art was induced by increasing luminal CNT NaCl from 0 to 5, 10, 30, 45, and 80 mM, and the concentration of NaCl that elicited a half-maximal response (EC(50)) was calculated. Compared with vehicle, adding ANG II (10(-9) M) to the CNT lumen reduced EC(50) from 37 ± 3 to 14 ± 1 mM (P < 0.001), indicating ANG II potentiates CTGF. In the presence of ANG II, the O(2)(-) scavenger tempol (10(-4) M) increased EC(50) from 20 ± 4 to 41 ± 3 mM (P < 0.01), the NOX inhibitor apocynin (10(-5) M) increased EC(50) from 17 ± 2 to 39 ± 4 mM (P < 0.01), and the specific NOX2 inhibitor gp91ds-tat (10(-5) M) increased EC(50) from 19 ± 2 to 34 ± 2 mM (P < 0.01). However, tempol, apocynin, and gp91ds-tat had no effect on CTGF in the absence of ANG II. Compared with vehicle, the PKC activator PMA (2 × 10(-7) M) decreased EC(50) from 35 ± 2 to 14 ± 1 (P < 0.001). In the presence of PMA, tempol increased EC(50) from 14 ± 2 to 35 ± 2 mM (P < 0.01). We conclude the PKC/NOX2/O(2)(-) pathway mediates the enhancement of CTGF by luminal ANG II but it does not participate in CTGF in the absence of ANG II.
Collapse
Affiliation(s)
- Yilin Ren
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wu Y, Viana M, Thirumangalathu S, Loeken MR. AMP-activated protein kinase mediates effects of oxidative stress on embryo gene expression in a mouse model of diabetic embryopathy. Diabetologia 2012; 55:245-54. [PMID: 21993711 PMCID: PMC3342033 DOI: 10.1007/s00125-011-2326-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/25/2011] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Neural tube defects (NTDs) are a common malformation associated with diabetic embryopathy. Maternal hyperglycaemia-induced oxidative stress inhibits the expression of Pax3, a gene that is essential for neural tube closure, and increases the incidence of NTDs. Because oxidative stress can stimulate AMP-activated kinase (AMPK) activity, and AMPK can regulate gene transcription, we hypothesised that increased AMPK activity would mediate the adverse effects of maternal hyperglycaemia-induced oxidative stress on Pax3 expression and NTDs. METHODS Pregnant mice were made transiently hyperglycaemic by glucose injection, or hypoxic by housing in a hypoxic chamber, or were treated with antimycin A to induce oxidative stress, and AMPK activity in the embryos was assayed. The effects of stimulating AMPK activity with 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on Pax3 expression and NTDs were determined. Vitamin E or glutathione ethyl ester was used to reduce oxidative stress, and compound C was used to inhibit AMPK activation. Murine embryonic stem cells were employed as an in vitro model to study the effects of oxidative stress on AMPK activity and the effects of AMPK stimulation on Pax3 expression. RESULTS Maternal hyperglycaemia stimulated AMPK activity, and stimulation of AMPK with AICAR inhibited Pax3 expression (in vivo and in vitro) and increased NTDs (in vivo). Stimulation of AMPK by hyperglycaemia, hypoxia or antimycin A was inhibited by antioxidants. The AMPK inhibitor compound C blocked the effects of hyperglycaemia or AA on Pax3 expression and NTDs. CONCLUSIONS/INTERPRETATION Stimulation of AMPK in embryos during a diabetic pregnancy mediates the effects of hyperglycaemia-induced oxidative stress to disturb the expression of the critical Pax3 gene, thereby causing NTDs.
Collapse
Affiliation(s)
- Y Wu
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
16
|
Antioxidant and anti-inflammatory effects of exercise in diabetic patients. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:941868. [PMID: 22007193 PMCID: PMC3191828 DOI: 10.1155/2012/941868] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic metabolic disease which is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action. The key roles of oxidative stress and inflammation in the progression of vascular complications of this disease are well recognized. Accumulating epidemiologic evidence confirms that physical inactivity is an independent risk factor for insulin resistance and type II diabetes. This paper briefly reviews the pathophysiological pathways associated with oxidative stress and inflammation in diabetes mellitus and then discusses the impact of exercise on these systems. In this regard, we discuss exercise induced activation of cellular antioxidant systems through “nuclear factor erythroid 2-related factor.” We also discuss anti-inflammatory myokines, which are produced and released by contracting muscle fibers. Antiapoptotic, anti-inflammatory and chaperon effects of exercise-induced heat shock proteins are also reviewed.
Collapse
|
17
|
Zhang Y, Peng F, Gao B, Ingram AJ, Krepinsky JC. High glucose-induced RhoA activation requires caveolae and PKCβ1-mediated ROS generation. Am J Physiol Renal Physiol 2011; 302:F159-72. [PMID: 21975875 DOI: 10.1152/ajprenal.00749.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We previously showed that RhoA activation by high glucose in mesangial cells (MC) leads to matrix upregulation (Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC. Diabetes 57: 1683-1692, 2008). Here, we study the mechanism whereby RhoA is activated. In primary rat MC, RhoA activation required glucose entry and metabolism. Broad PKC inhibitors (PMA, bisindolylmaleimide, Gö6976), as well as specific PKCβ blockade with an inhibitor and small interfering RNA (siRNA), prevented RhoA activation by glucose. PKCβ inhibition also abrogated reactive oxygen species (ROS) generation by glucose. The ROS scavenger N-acetylcysteine (NAC) or NADPH oxidase inhibitors apocynin and DPI prevented glucose-induced RhoA activation. RhoA and some PKC isoforms localize to caveolae. Chemical disruption of these microdomains prevented RhoA and PKCβ1 activation by glucose. In caveolin-1 knockout cells, glucose did not induce RhoA and PKCβ1 activation; these responses were rescued by caveolin-1 reexpression. Furthermore, glucose-induced ROS generation was significantly attenuated by chemical disruption of caveolae and in knockout cells. Downstream of RhoA signaling, activator protein-1 (AP-1) activation was also inhibited by disrupting caveolae, was absent in caveolin-1 knockout MC and rescued by caveolin-1 reexpression. Finally, transforming growth factor (TGF)-β1 upregulation, mediated by AP-1, was prevented by RhoA signaling inhibition and by disruption or absence of caveolae. In conclusion, RhoA activation by glucose is dependent on PKCβ1-induced ROS generation, most likely through NADPH oxidase. The activation of PKCβ1 and its downstream effects, including upregulation of TGF-β1, requires caveolae. These microdomains are thus important mediators of the profibrogenic process associated with diabetic nephropathy.
Collapse
Affiliation(s)
- Y Zhang
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
19
|
Zabihi S, Loeken MR. Understanding diabetic teratogenesis: where are we now and where are we going? BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:779-90. [PMID: 20706996 PMCID: PMC5070114 DOI: 10.1002/bdra.20704] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maternal pregestational diabetes (type 1 or type 2) poses an increased risk for a broad spectrum of birth defects. To our knowledge, this problem first came to the attention of the Teratology Society at the 14th Annual Meeting in Vancouver, B.C. in 1974, with a presentation by Lewis Holmes, "Etiologic heterogeneity of neural tube defects". Although advances in the control of diabetes in the decades since the discovery of insulin in the 1920's have reduced the risk for birth defects during diabetic pregnancy, the increasing incidence of diabetes among women of childbearing years indicates that this cause of birth defects is a growing public health concern. Major advances in understanding how a disease of maternal fuel metabolism can interfere with embryogenesis of multiple organ systems have been made in recent years. In this review, we trace the history of the study of diabetic teratogenesis and discuss a model in which tissue-specific developmental control genes are regulated at specific times in embryonic development by glucose metabolism. The major function of such genes is to suppress apoptosis, perhaps to preserve proliferative capability, and inhibit premature senescence.
Collapse
Affiliation(s)
- Sheller Zabihi
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
| |
Collapse
|
20
|
Zhang XH, Yokoo H, Nishioka H, Fujii H, Matsuda N, Hayashi T, Hattori Y. Beneficial effect of the oligomerized polyphenol oligonol on high glucose-induced changes in eNOS phosphorylation and dephosphorylation in endothelial cells. Br J Pharmacol 2010; 159:928-38. [PMID: 20128797 DOI: 10.1111/j.1476-5381.2009.00594.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Hyperglycaemia is known to reduce nitric oxide (NO) bioavailability by modulating endothelial NO synthase (eNOS) activity, and polyphenols are believed to have cardiovascular benefit. One possible mechanism could be through interaction with eNOS. EXPERIMENTAL APPROACH The effects of the oligomerized polyphenol oligonol on eNOS phosphorylation status and activity were examined in porcine aortic endothelial cells cultured in high glucose concentrations. KEY RESULTS Exposure to high glucose concentrations strongly inhibited eNOS phosphorylation at Ser-1177 and dephosphorylation at Thr-495 in bradykinin (BK)-stimulated cells. These inhibitory effects of high glucose were significantly prevented by treatment with oligonol. Akt and p38 mitogen-activated protein kinase (MAPK) were activated in BK-stimulated cells. High glucose inhibited Akt activation but enhanced p38 MAPK activation, both of which were reversed by oligonol treatment. The phosphatidylinositol 3-kinase inhibitor wortmannin blocked the reversal by oligonol of phosphorylation at Ser-1177, but not dephosphorylation at Thr-495, in BK-stimulated cells exposed to high glucose. The effect of oligonol on BK dephosphorylation under high glucose was mimicked by protein kinase C (PKC) epsilon-neutralizing peptides. These data suggest that the effects of oligonol on high glucose-induced attenuation of eNOS Ser-1177 phosphorylation and Thr-495 dephosphorylation may be regulated by Akt activation and PKCepsilon inhibition respectively. Oligonol also prevented high glucose-induced attenuation of BK-stimulated NO production. CONCLUSIONS AND IMPLICATIONS Oligonol prevented the impairment of eNOS activity induced by high glucose through reversing altered eNOS phosphorylation status. This mechanism may underlie the beneficial cardiovascular health effects of this oligomerized polyphenol.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Sadreyev RI, Feramisco JD, Tsao H, Grishin NV. Phenotypic categorization of genetic skin diseases reveals new relations between phenotypes, genes and pathways. ACTA ACUST UNITED AC 2009; 25:2891-6. [PMID: 19744994 PMCID: PMC2773259 DOI: 10.1093/bioinformatics/btp538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Motivation: Systematic analysis of connection between proteins, their cellular function and phenotypic manifestations in disease is a central problem of biological and clinical research. The solution to this problem requires the development of new approaches to link the rapidly growing dataset of gene–disease associations with the many complex and overlapping phenotypes of human disease. Results: We analyze genetic skin disorders and suggest a manually designed set of elementary phenotypes whose combinations define diseases as points in a multidimensional space, providing a basis for phenotypic disease clustering. Placing the known gene–disease associations in the context of this space reveals new patterns that suggest previously unknown functional links between proteins, signaling pathways and disease phenotypes. For example, analysis of telangiectasias (spider vein diseases) reveals a previously unrecognized interplay between the TGF-β signaling pathway and pentose phosphate pathway. This interaction may mediate glucose-dependent regulation of TGF-β signaling, providing a clue to the known association between angiopathies and diabetes and implying new gene candidates for mutational analysis and drug targeting. Contact:grishin@chop.swmed.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruslan I Sadreyev
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9050, USA
| | | | | | | |
Collapse
|
22
|
Yang J, Lane PH, Pollock JS, Carmines PK. PKC-dependent superoxide production by the renal medullary thick ascending limb from diabetic rats. Am J Physiol Renal Physiol 2009; 297:F1220-8. [PMID: 19741016 DOI: 10.1152/ajprenal.00314.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 1 diabetes (T1D) is a state of oxidative stress accompanied by PKC activation in many tissues. The primary site of O2*- production by the normal rat kidney is the medullary thick ascending limb (mTAL). We hypothesized that T1D increases O2*- production by the mTAL through a PKC-dependent mechanism involving increased expression and translocation of one or more PKC isoforms. mTAL suspensions were prepared from rats with streptozotocin-induced T1D (STZ mTALs) and from normal or sham rats (normal/sham mTALs). O2*- production by STZ mTALs was fivefold higher than normal/sham mTALs (P < 0.05). PMA (30 min) mimicked the effect of T1D on O2*- production. Exposure to calphostin C or chelerythrine (PKC inhibitors), Gö6976 (PKCalpha/beta inhibitor), or rottlerin (PKCdelta inhibitor) decreased O2*- production to <20% of untreated baseline in both normal/sham and STZ mTALs. PKCbeta inhibitors had no effect. PKC activity was increased in STZ mTALs (P < 0.05 vs. normal/sham mTALs) and was unaltered by antioxidant exposure (tempol). PKCalpha protein levels were increased by 70% in STZ mTALs, with a approximately 30% increase in the fraction associated with the membrane (both P < 0.05 vs. sham). PKCbeta protein levels were elevated by 29% in STZ mTALs (P < 0.05 vs. sham) with no change in the membrane-bound fraction. Neither PKCdelta protein levels nor its membrane-bound fraction differed between groups. Thus STZ mTALs display PKC activation, upregulation of PKCalpha and PKCbeta protein levels, increased PKCalpha translocation to the membrane, and accelerated O2*- production that is eradicated by inhibition of PKCalpha or PKCdelta (but not PKCbeta). We conclude that increased PKCalpha expression and activity are primarily responsible for PKC-dependent O2*- production by the mTAL during T1D.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
23
|
Meier M, Menne J, Haller H. Targeting the protein kinase C family in the diabetic kidney: lessons from analysis of mutant mice. Diabetologia 2009; 52:765-75. [PMID: 19238353 DOI: 10.1007/s00125-009-1278-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
The protein kinase C (PKC) superfamily comprises proteins that are activated in response to various pathogenic stimuli in the diabetic state. Hyperglycaemia is the predominant stimulus that induces the activation of distinct PKC isoforms within a cell, each mediating specific functions, probably through differential subcellular localisation. The contribution of individual PKC isoforms can be directly addressed in vivo using innovative PKC-isoform-specific knockout (KO) mouse models, which are providing key insights into the physiological function of PKC isoform diversity in the development of diabetic nephropathy. Such studies can be a valuable complementary approach to more commonly used pharmacological analyses using agents such as ruboxistaurin mesylate (Arxxant, LY333531), which is claimed to specifically inhibit the PKC-beta-isoform. As expected given the multiple and specific properties of the isoforms in vitro, deletion of different PKC isoform signalling pathways leads to distinct phenotypes in mice. Notably, KOs of the individual PKCs assigned specific non-redundant biological functions to each isoform, which were not compensated for by the others. Thus, PKC isoform specificity and cellular diversity seem to be responsible for the divergent outcomes leading to albuminuria and/or renal fibrosis according to studies on the streptozotocin-induced mouse model of diabetes. This review discusses the role of individual PKC isoforms in diabetic nephropathy and their potential therapeutic implications. Defining and targeting mediators of increased intracellular activation in the diabetic microvasculature will have important clinical and therapeutic benefits and help in the design of novel effective therapies in the near future.
Collapse
Affiliation(s)
- M Meier
- Department of Nephrology, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
24
|
Menne J, Meier M, Park JK, Haller H. Inhibition of protein kinase C in diabetic nephropathy--where do we stand? Nephrol Dial Transplant 2009; 24:2021-3. [PMID: 19349294 DOI: 10.1093/ndt/gfp150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 2009; 82:9-20. [DOI: 10.1093/cvr/cvp031] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Lagranha CJ, Fiorino P, Casarini DE, Schaan BD, Irigoyen MC. [Molecular bases of diabetic nephropathy]. ACTA ACUST UNITED AC 2009; 51:901-12. [PMID: 17934656 DOI: 10.1590/s0004-27302007000600003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 05/14/2007] [Indexed: 11/22/2022]
Abstract
The determinant of the diabetic nephropathy is hyperglycemia, but hypertension and other genetic factors are also involved. Glomerulus is the focus of the injury, where mesangial cell proliferation and extracellular matrix occur because of the increase of the intra- and extracellular glucose concentration and overexpression of GLUT1. Sequentially, there are increases in the flow by the poliol pathway, oxidative stress, increased intracellular production of advanced glycation end products (AGEs), activation of the PKC pathway, increase of the activity of the hexosamine pathway, and activation of TGF-beta1. High glucose concentrations also increase angiotensin II (AII) levels. Therefore, glucose and AII exert similar effects in inducing extracellular matrix formation in the mesangial cells, using similar transductional signal, which increases TGF-beta1 levels. In this review we focus in the effect of glucose and AII in the mesangial cells in causing the events related to the genesis of diabetic nephropathy. The alterations in the signal pathways discussed in this review give support to the observational studies and clinical assays, where metabolic and antihypertensive controls obtained with angiotensin-converting inhibitors have shown important and additive effect in the prevention of the beginning and progression of diabetic nephropathy. New therapeutic strategies directed to the described intracellular events may give future additional benefits.
Collapse
Affiliation(s)
- Claudia J Lagranha
- Laboratório de Hipertensão Experimental, Unidade de Hipertensão, Instituto do Coração, HC-FMUSP, São Paulo
| | | | | | | | | |
Collapse
|
27
|
Regulation of the renal microcirculation by ryanodine receptors and calcium-induced calcium release. Curr Opin Nephrol Hypertens 2009; 18:40-9. [DOI: 10.1097/mnh.0b013e32831cf5bd] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Abstract
Loss of redox homeostasis and formation of excessive free radicals play an important role in the pathogenesis of kidney disease and hypertension. Free radicals such as reactive oxygen species (ROS) are necessary in physiologic processes. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways in the kidney, which in turn lead to reduced vascular compliance and proteinuria. The kidney is susceptible to the influence of various extracellular and intracellular cues, including the renin-angiotensin-aldosterone system (RAAS), hyperglycemia, lipid peroxidation, inflammatory cytokines, and growth factors. Redox control of kidney function is a dynamic process with reversible pro- and anti-free radical processes. The imbalance of redox homeostasis within the kidney is integral in hypertension and the progression of kidney disease. An emerging paradigm exists for renal redox contribution to hypertension.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri-Columbia School of Medicine, Department of Internal Medicine, Columbia, Missouri 65212, USA.
| | | | | |
Collapse
|
29
|
Silva GB, Garvin JL. Angiotensin II-dependent hypertension increases Na transport-related oxygen consumption by the thick ascending limb. Hypertension 2008; 52:1091-8. [PMID: 19001187 DOI: 10.1161/hypertensionaha.108.120212] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal medullary superoxide (O(2)(-)) increases in angiotensin (Ang) II-dependent hypertension. O(2)(-) increases thick ascending limb Na transport, but the effect of Ang II-dependent hypertension on the thick ascending limb is unknown. We hypothesized that Ang II-dependent hypertension increases thick ascending limb NaCl transport because of enhanced O(2)(-) production and increased protein kinase C (PKC) alpha activity. We measured the effect of Ang II-dependent hypertension on furosemide-sensitive oxygen consumption (a measure of Na transport), O(2)(-) production, and PKCalpha translocation (a measure of PKCalpha activity) in thick ascending limb suspensions. Ang II-dependent hypertension increased furosemide-sensitive oxygen consumption (26.2+/-1.0% versus 36.6+/-1.2% of total oxygen consumption; P<0.01). O(2)(-) was also increased (1.1+/-0.2 versus 3.2+/-0.5 nmol of O(2)(-)/min per milligram of protein; P<0.03) in thick ascending limbs. Unilateral renal infusion of Tempol decreased O(2)(-) (2.4+/-0.4 versus 1.2+/-0.2 nmol of O(2)(-)/min per milligram of protein; P<0.04) and furosemide-sensitive oxygen consumption (32.8+/-1.3% versus 24.0+/-2.1% of total oxygen consumption; P<0.01) in hypertensive rats. Tempol did not affect O(2)(-) or furosemide-sensitive oxygen consumption in normotensive controls and did not alter systolic blood pressure. Ang II-dependent hypertension increased PKCalpha translocation (5.7+/-0.3 versus 13.8+/-1.4 AU per milligram of protein; P<0.01). Unilateral renal infusion of Tempol reduced PKCalpha translocation (5.0+/-0.9 versus 10.4+/-2.6 AU per milligram of protein; P<0.04) in hypertensive rats. Unilateral renal infusion of the PKCalpha inhibitor Gö6976 reduced furosemide-sensitive oxygen consumption (37.4+/-1.5% versus 25.1+/-1.0% of total oxygen consumption; P<0.01) in hypertensive rats. We conclude that Ang II-dependent hypertension enhances thick ascending limb Na transport-related oxygen consumption by increasing O(2)(-) and PKCalpha activity.
Collapse
Affiliation(s)
- Guillermo B Silva
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | |
Collapse
|
30
|
Xia L, Wang H, Munk S, Frecker H, Goldberg HJ, Fantus IG, Whiteside CI. Reactive oxygen species, PKC-beta1, and PKC-zeta mediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells. Am J Physiol Endocrinol Metab 2007; 293:E1280-8. [PMID: 17711990 DOI: 10.1152/ajpendo.00223.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vascular endothelial growth factor (VEGF) is implicated in the development of proteinuria in diabetic nephropathy. High ambient glucose present in diabetes stimulates VEGF expression in several cell types, but the molecular mechanisms are incompletely understood. Here primary cultured rat mesangial cells served as a model to investigate the signal transduction pathways involved in high-glucose-induced VEGF expression. Exposure to high glucose (25 mM) significantly increased VEGF mRNA evaluated by real-time PCR by 3 h, VEGF cellular protein content assessed by immunoblotting or immunofluorescence within 24 h, and VEGF secretion by 24 h. High-glucose-induced VEGF expression was blocked by an antioxidant, Tempol, and antisense oligonucleotides directed against p22(phox), a NADPH oxidase subunit. Inhibition of protein kinase C (PKC)-beta(1) with the specific pharmacological inhibitor LY-333531 or inhibition of PKC-zeta with a cell permeable specific pseudosubstrate peptide also prevented enhanced VEGF expression in high glucose. Enhanced VEGF secretion in high glucose was prevented by Tempol, PKC-beta(1), or PKC-zeta inhibition. In normal glucose (5.6 mM), overexpression of p22(phox) or constitutively active PKC-zeta enhanced VEGF expression. Hypoxia inducible factor-1alpha protein was significantly increased in high glucose only by 24 h, suggesting a possible contribution to high-glucose-stimulated VEGF expression at later time points. Thus reactive oxygen species generated by NADPH oxidase, and both PKC-beta(1) and -zeta, play important roles in high-glucose-stimulated VEGF expression and secretion by mesangial cells.
Collapse
Affiliation(s)
- Ling Xia
- University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang H, Zhang L. Role of protein kinase C isozymes in the regulation of alpha1-adrenergic receptor-mediated contractions in ovine uterine arteries. Biol Reprod 2007; 78:35-42. [PMID: 17901075 PMCID: PMC2391137 DOI: 10.1095/biolreprod.107.063479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previously, we demonstrated that activation of protein kinase C (PRKC) enhanced alpha(1)-adrenergic receptor-induced contractions in nonpregnant ovine uterine arteries but inhibited the contractions in pregnant ovine uterine arteries. The present study tested the hypothesis that differential regulation of PRKC isozyme activities contributes to the different effects of phorbol 12, 13-dibutyrate (PDBu) on alpha(1)-adrenergic receptor-mediated contractions between the pregnant and nonpregnant ovine uterine arteries. Phenylephrine-induced contractions of ovine nonpregnant and pregnant uterine arteries were determined in the absence or presence of the PRKC activator PDBu and/or in combination with conventional and novel PRKC isozyme inhibitor GF109203X, PRKC isozyme-selective inhibitory peptides for conventional PRKC, PRKCB1, PRKCB2, and PRKCE. GF109203X produced a concentration-dependent inhibition of phenylephrine-induced contractions in both nonpregnant and pregnant uterine arteries, and it reversed the PDBu-mediated potentiation and inhibition of phenylephrine-induced contractions in nonpregnant and pregnant uterine artieries, respectively. In addition, PRKCB1, PRKCB2, and PRKCE inhibitory peptides blocked the PDBu-mediated responses in both nonpregnant and pregnant uterine arteries. Western blot analysis showed that PDBu induced a membrane translocation of PRKCA, PRKCB1, PRKCB2, and PRKCE in pregnant uterine arteries, and PRKCB1, PRKCB2, and PRKCE in nonpregnant uterine arteries. The results disprove the hypothesis that the dichotomy of PRKC mechanisms in the regulation of alpha(1)-adrenergic receptor-induced contractions in nonpregnant and pregnant uterine arteries is caused by the activation of different PRKC isozymes, and suggest downstream mechanisms of differential subcellular distributions for the distinct functional effects of PRKC isozymes in the adaptation of uterine arteries to pregnancy.
Collapse
Affiliation(s)
| | - Lubo Zhang
- Correspondence: Lubo Zhang, Center for Perinatal Biology, Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350. FAX: 909 558 4029; e-mail:
| |
Collapse
|
32
|
Tojo A, Asaba K, Onozato ML. Suppressing renal NADPH oxidase to treat diabetic nephropathy. Expert Opin Ther Targets 2007; 11:1011-8. [PMID: 17665974 DOI: 10.1517/14728222.11.8.1011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Renal nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase is an important source of oxidative stress and its expression is enhanced in the glomerulus and distal tubules of diabetic nephropathy. High glucose-induced protein kinase C signalling or renal angiotensin II signalling increases the membrane translocation of cytosolic component p47phox. NADPH oxidase-derived reactive oxygen species (ROS) in the podocytes damage the glomerular basement membrane and the slit diaphragm causing proteinuria, and mesangial and glomerular endothelial NADPH oxidase increase TGF-beta and cause collagen and fibronectin accumulation. Tubular NADPH oxidase stimulated by angiotensin II or aldosterone contributes to sodium retention and to tubulointerstitial damage. Thus, inhibition of the renal renin-angiotensin II-aldosterone system with angiotensin-converting enzyme inhibitor, angiotensin II type 1 receptor blocker or selective aldosterone inhibitor indirectly suppresses NADPH oxidase reducing renal ROS, proteinuria and glomerulosclerosis. Statins are also effective in blocking the membrane translocation of Rac, especially in diabetes with hypercholesterolemia where ROS is produced by the intrinsic NADPH oxidase and by the activated macrophages. A medical herb, picrorhiza, inhibits the membrane translocation of p47phox, is a specific inhibitor of NADPH oxidase and, more so than superoxide dismutase mimetics, may be a promising strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Akihiro Tojo
- University of Tokyo, Division of Nephrology and Endocrinology, Division of Nephrology and Endocrinology, Japan.
| | | | | |
Collapse
|
33
|
Joo CK, Kim HS, Park JY, Seomun Y, Son MJ, Kim JT. Ligand release-independent transactivation of epidermal growth factor receptor by transforming growth factor-beta involves multiple signaling pathways. Oncogene 2007; 27:614-28. [PMID: 17637750 DOI: 10.1038/sj.onc.1210649] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many of the signaling responses induced by transforming growth factor-beta (TGF-beta) are mediated by Smad proteins, but there is evidence that it can also signal independently of Smads. Here, we provide evidence that multiple signal pathways induced by TGF-beta1-including Src family tyrosine kinases (SFKs), generation of reactive oxygen species (ROS), de novo protein synthesis and E-cadherin-dependent cell-cell interactions-transactivate the epidermal growth factor receptor (EGFR), which in turn regulates expression of c-Fos and c-Jun. Immunoprecipitation and immunofluorescence staining showed that EGFR was phosphorylated on tyrosine in response to TGF-beta1. EGFR transactivation required the activation of SFKs and the production of ROS via NADPH oxidase, but was not dependent on metalloproteases or the release of EGF-like ligands. In addition, the production of ROS was dependent on signaling by specific SFKs as well as de novo protein synthesis. Stable transfection of E-cadherin into MDA-MB-231 cells as well as E-cadherin-blocking assays revealed that E-cadherin-mediated cell-cell interactions were also essential for EGFR transactivation. Finally, EGFR transactivation was involved in the expression of c-Fos and c-Jun via the extracellular signal-regulated kinase signaling cascade. Taken together our data suggest that ligand release-independent transactivation of EGFR may diversify early TGF-beta signaling and represent a novel pathway leading to TGF-beta-mediated gene expression.
Collapse
Affiliation(s)
- C-K Joo
- Laboratory of Visual Science, Korea Eye Tissue and Gene Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Zhu Y, Kataoka Usui H, Sharma K. Regulation of transforming growth factor beta in diabetic nephropathy: implications for treatment. Semin Nephrol 2007; 27:153-60. [PMID: 17418684 PMCID: PMC1948024 DOI: 10.1016/j.semnephrol.2007.01.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recognition that the drivers of matrix accumulation is an appropriate therapeutic target for diabetic nephropathy is now accepted by the nephrology and pharmaceutical communities. Interventions focused around transforming growth factor-beta (TGF-beta) likely will be an important area of clinical investigation in the near future. Understanding the various pathways involved in stimulating TGF-beta in the diabetic kidney is of paramount importance in devising strategies to combat the development and progression of diabetic nephropathy. In this review we highlight the major pathways involved in stimulating TGF-beta production by increased glucose levels and discuss the therapeutic implications thereof.
Collapse
Affiliation(s)
| | | | - Kumar Sharma
- From The Center for Novel Therapies in Kidney Disease, Dorrance Hamilton Research Laboratories , Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Abstract
Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure in the Western World. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. It is well recognized that metabolic and hemodynamic factors play a central role in accelerating renal disease in diabetes. However, recent experimental studies have suggested that increased generation of reactive oxygen species (ROS) as a result of the diabetic milieu may play a central role in the progression of diabetic microvascular complications. These ROS appear to be generated primarily from mitochondrial sources and via the enzyme, NADPH oxidase. This review focuses on how ROS play a deleterious role in the diabetic kidney and how they are involved in crosstalk among various signaling pathways, ultimately leading to renal dysfunction and structural injury.
Collapse
Affiliation(s)
- Melinda T Coughlan
- Albert Einstein Centre for Diabetes Complications, Wynn Domain, Baker Heart Research Institute, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
36
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 4973] [Impact Index Per Article: 276.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
37
|
Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, Curi R, Newsholme P, Carpinelli AR. Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 2007; 50:359-69. [PMID: 17151863 DOI: 10.1007/s00125-006-0462-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 08/21/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Acute or chronic exposure of beta cells to glucose, palmitic acid or pro-inflammatory cytokines will result in increased production of the p47(phox) component of the NADPH oxidase and subsequent production of reactive oxygen species (ROS). METHODS Rat pancreatic islets or clonal rat BRIN BD11 beta cells were incubated in the presence of glucose, palmitic acid or pro-inflammatory cytokines for periods between 1 and 24 h. p47(phox) production was determined by western blotting. ROS production was determined by spectrophotometric nitroblue tetrazolium or fluorescence-based hydroethidine assays. RESULTS Incubation for 24 h in 0.1 mmol/l palmitic acid or a pro-inflammatory cytokine cocktail increased p47(phox) protein production by 1.5-fold or by 1.75-fold, respectively, in the BRIN BD11 beta cell line. In the presence of 16.7 mmol/l glucose protein production of p47(phox) was increased by 1.7-fold in isolated rat islets after 1 h, while in the presence of 0.1 mmol/l palmitic acid or 5 ng/ml IL-1beta it was increased by 1.4-fold or 1.8-fold, respectively. However, palmitic acid or IL-1beta-dependent production was reduced after 24 h. Islet ROS production was significantly increased after incubation in elevated glucose for 1 h and was completely abolished by addition of diphenylene iodonium, an inhibitor of NADPH oxidase or by the oligonucleotide anti-p47(phox). Addition of 0.1 mmol/l palmitic acid or 5 ng/ml IL-1beta plus 5.6 mmol/l glucose also resulted in a significant increase in islet ROS production after 1 h, which was partially attenuated by diphenylene iodonium or the protein kinase C inhibitor GF109203X. However, ROS production was reduced after 24 h incubation. CONCLUSIONS/INTERPRETATION NADPH oxidase may play a key role in normal beta cell physiology, but under specific conditions may also contribute to beta cell demise.
Collapse
Affiliation(s)
- D Morgan
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508.900, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chintapalli J, Yang S, Opawumi D, Goyal SR, Shamsuddin N, Malhotra A, Reiss K, Meggs LG. Inhibition of wild-type p66ShcA in mesangial cells prevents glycooxidant-dependent FOXO3a regulation and promotes the survival phenotype. Am J Physiol Renal Physiol 2006; 292:F523-30. [PMID: 17077388 DOI: 10.1152/ajprenal.00215.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hyperglycemia triggers an exponential increase in reactive oxygen species (ROS) at the cellular level. Here, we demonstrate induction of the oxidant-resistant phenotype in mesangial cells by silencing the wild-type (WT) p66ShcA gene. Two approaches were employed to inhibit WTp66ShcA in SV40 murine mesangial cells and normal human mesangial cells: transient transfection with isoform-specific p66ShcA short-intervening RNA and stable transfection with mutant 36 p66ShcA expression vector. At high ambient glucose (HG), p66ShcA-deficient cells exhibit resistance to HG-induced ROS generation and attenuation in the amplitude of the kinetic curves for intracellular ROS metabolism, indicative of the pivotal role of WTp66ShcA in the generation of HG oxidant stress. We next examined phosphorylation and subcellular distribution of FKHRL1 (FOXO3a), a potent stress response regulator and downstream target of WTp66ShcA redox function. At HG, cell extracts of p66ShcA-deficient cells analyzed by immunoblotting show attenuation of FOXO3a phosphorylation at Thr-32, and indirect immunofluorescence of p66ShcA-deficient cells, cotransfected with HA-FOXO3a, show predominant HA-FOXO3a nuclear localization. Conversely, parental cells at HG show upregulation of phos-Thr-32 and nuclear export of HA-FOXO3a. To determine whether inhibition of cross talk between WTp66ShcA and FOXO3a confers protection against oxidant-induced DNA damage, DNA strand breaks (DSB) and apoptosis were examined. At HG, p66ShcA-deficient cells exhibit increased resistance to DSB and apoptosis, while parental cells show a striking increase in both parameters. We conclude that knockdown of WTp66ShcA redox function prevents HG-dependent FOXO3a regulation and promotes the survival phenotype.
Collapse
Affiliation(s)
- Janaki Chintapalli
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Silva GB, Ortiz PA, Hong NJ, Garvin JL. Superoxide stimulates NaCl absorption in the thick ascending limb via activation of protein kinase C. Hypertension 2006; 48:467-72. [PMID: 16894053 DOI: 10.1161/01.hyp.0000236646.83354.51] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abnormal production of superoxide (O(2)(-)) contributes to hypertension, in part because of its effects on the kidney. The thick ascending limb absorbs 20% to 30% of the filtered load of NaCl. O(2)(-) stimulates NaCl absorption by the thick ascending limb by enhancing Na(+)/K(+)/2Cl(-) cotransporter activity; however, the signaling mechanism is unknown. We hypothesized that O(2)(-) stimulates NaCl absorption by activating protein kinase C (PKC). To test this, we measured the effect of O(2)(-) on: (1) Cl(-) absorption in the presence and absence of PKC inhibitors, (2) total PKC activity, and (3) activation of specific PKC isoforms. Isolated perfused medullary thick ascending limbs were exposed to O(2)(-) generated by xanthine oxidase (1 mU/mL) and hypoxanthine (0.5 mmol/L). O(2)(-) increased Cl(-) absorption by 42% (from 76.2+/-3.6 to 108.2+/-11.9 pmol/min per millimeter; n=5; P<0.05). After treatment with the general PKC inhibitor staurosporine (10 nmol/L), O(2)(-) did not stimulate Cl(-) absorption (Delta-5.7+/-8.6%; n=6). In thick ascending limb suspensions, O(2)(-) increased total PKC activity by 33% (from 66+/-11 to 88+/-12 mU/mg protein; n=5; P<0.05) and increased PKC-alpha and PKC-delta activity by 1.75- and 0.37-fold, respectively. The PKC-alpha/beta-selective inhibitor Gö976 (100 nmol/L) blocked the ability of O(2)(-) to stimulate Cl(-) absorption by isolated perfused medullary thick ascending limbs (Delta4.5+/-15.0%; n=5). The role of PKC-delta could not be studied because of cell necrosis caused by the selective inhibitor rottlerin. We conclude that PKC-alpha is required for O(2)(-)-stimulated NaCl absorption in the thick ascending limb.
Collapse
Affiliation(s)
- Guillermo B Silva
- Division of Hypertension and Vascular Research, Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
40
|
Zhang H, Xiao D, Longo LD, Zhang L. Regulation of alpha1-adrenoceptor-mediated contractions of uterine arteries by PKC: effect of pregnancy. Am J Physiol Heart Circ Physiol 2006; 291:H2282-9. [PMID: 16699075 DOI: 10.1152/ajpheart.00321.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.
Collapse
Affiliation(s)
- Hongying Zhang
- Center for Perinatal Biology, Dept. of Physiology and Pharmacology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
41
|
Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8:691-728. [PMID: 16771662 DOI: 10.1089/ars.2006.8.691] [Citation(s) in RCA: 469] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increased oxidative stress plays an important role in the pathophysiology of cardiovascular diseases such as hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, and ischemia-reperfusion. Although several sources of reactive oxygen species (ROS) may be involved, a family of NADPH oxidases appears to be especially important for redox signaling and may be amenable to specific therapeutic targeting. These include the prototypic Nox2 isoform-based NADPH oxidase, which was first characterized in neutrophils, as well as other NADPH oxidases such as Nox1 and Nox4. These Nox isoforms are expressed in a cell- and tissue-specific fashion, are subject to independent activation and regulation, and may subserve distinct functions. This article reviews the potential roles of NADPH oxidases in both cardiovascular physiological processes (such as the regulation of vascular tone and oxygen sensing) and pathophysiological processes such as endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, angiogenesis, and vascular and cardiac remodeling. The complexity of regulation of NADPH oxidases in these conditions may provide the possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the disease process.
Collapse
Affiliation(s)
- Alison C Cave
- King's College London, Department of Cardiology, Cardiovascular Division, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Feliers D, Gorin Y, Ghosh-Choudhury G, Abboud HE, Kasinath BS. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. Am J Physiol Renal Physiol 2006; 290:F927-36. [PMID: 16249273 DOI: 10.1152/ajprenal.00331.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II, a mediator of renal injury in diabetic renal disease, promotes vascular endothelial growth factor (VEGF) mRNA translation in proximal tubular epithelial (MCT) cells (Feliers D, Duraisamy S, Barnes JL, Ghosh-Choudhury G, and Kasimath BS. Am J Physiol Renal Physiol 288: F521–F529, 2005). The mechanism by which ANG II elicits this effect is not known. ANG II is known to induce oxidative stress and the rapidity of the effect suggested a role for reactive oxygen species (ROS). The aim of this study is to test the hypothesis that ANG II regulates VEGF mRNA translation in MCT cells through ROS production. In MCT cells exposed to 1 nM ANG II, ROS production was increased in a time-dependent manner. Inhibition of ROS production by N-acetylcysteine (NAC), a precursor of glutathione, and diphenyleneiodonium (DPI), an inhibitor of flavoproteins that include NAD(P)H oxidase, prevented ANG II-stimulated VEGF protein expression. NAC and DPI also inhibited phosphorylation of 4E-BP1 on Thr46 and association of eIF4E with eIF4G, steps that are important in the initiation phase of mRNA translation. NAC and DPI also blocked Akt activation which is required for 4E-BP1 phosphorylation. LY-294002, a selective phosphatidylinositol (PI 3-kinase) inhibitor, did not prevent ROS accumulation in response to ANG II, whereas DPI blocked ANG II activation of PI 3-kinase, demonstrating that ROS production is upstream of the PI 3-kinase signaling pathway. Preincubation with catalase abolished ANG II stimulation of VEGF expression and mRNA translation, suggesting involvement of hydrogen peroxide (H2O2). H2O2reproduced the effects of ANG II on VEGF expression and aforementioned parameters of mRNA translation. Finally, neither preincubation of MCT cells with specific inhibitors of the mitochondrial respiratory chain nor inactivation of the mitochondrial respiratory chain in MCT cells prevented ANG II stimulation of VEGF expression. Inhibition of nitric oxide synthase by l-NAME had no effect on ANG II stimulation of VEGF expression. These data show that ROS, generated probably through activation of an NAD(P)H oxidase, mediate ANG II stimulation of VEGF mRNA translation.
Collapse
Affiliation(s)
- Denis Feliers
- Department of Medicine/Nephrology, The University of Texas Health Science Center, South Texas Veterans Health Care System, San Antonio 78229-3900, USA.
| | | | | | | | | |
Collapse
|
43
|
Xia L, Wang H, Goldberg HJ, Munk S, Fantus IG, Whiteside CI. Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am J Physiol Renal Physiol 2006; 290:F345-56. [PMID: 16131649 DOI: 10.1152/ajprenal.00119.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excess collagen IV expression by mesangial cells contributes to diabetic glomerulosclerosis. We hypothesized that in high glucose reactive oxygen species (ROS) generation by NADPH oxidase is PKC dependent and required for collagen IV expression by mesangial cells. In rat mesangial cells cultured in 5 mM (NG) or 25 mM d-glucose (HG), RT-PCR and Western immunoblotting detected p22phoxand p47phoxmRNA and protein, respectively. Quantitative real-time RT-PCR analyzed collagen IV mRNA. With the use of confocal microscopy, ROS were detected with dichlorofluorescein and intracellular collagen IV by immunofluorescence. In HG, ROS were generated within 1 h, sustained up to 48 h, and prevented by a NADPH oxidase inhibitor, diphenylenechloride iodonium (DPI), or a conventional PKC isozyme inhibitor, Gö6976. In NG, phorbol myristate acetate stimulated ROS generation that was inhibited with DPI. In HG, expression of p22phoxand p47phoxwas increased within 3 to 6 h and inhibited by Gö6976. In HG, Gö6976 or transfection with antisense against p22phoxreversed the 1.8-fold increase in collagen IV mRNA. In HG, the antioxidants Tempol or Tiron, or transfection with antisense against p22phoxor p47phox, prevented ROS generation and the 2.3-fold increase in collagen IV protein. Increased mitochondrial redox potential in HG was unaffected by transfection with antisense against p22phox. We conclude that in HG, mesangial cell ROS generation by upregulated NADPH oxidase is dependent on conventional PKC isozymes and also required for collagen IV expression.
Collapse
Affiliation(s)
- L Xia
- Medical Sciences Building, Rm. 7302, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Kwan J, Wang H, Munk S, Xia L, Goldberg HJ, Whiteside CI. In high glucose protein kinase C-zeta activation is required for mesangial cell generation of reactive oxygen species. Kidney Int 2006; 68:2526-41. [PMID: 16316329 DOI: 10.1111/j.1523-1755.2005.00660.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND We postulated that in mesangial cells exposed to high glucose, protein kinase C-zeta (PKC-zeta) is necessary for the generation of reactive oxygen species (ROS) by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and that the requirement of PKC-zeta for filamentous (F)-actin disassembly may involve ROS. To identify signaling mechanisms relevant to PKC-zeta activation and ROS generation, including phosphoinositide 3 kinase (PI3 kinase), we examined mesangial cell stimulation with platelet-derived growth factor (PDGF). METHODS In primary rat mesangial cells cultured in 5.6 mmol/L or 30 mmol/L d-glucose, PKC-zeta expression was identified with immunoblotting and activity was analyzed in cell membrane immunoprecipitates and by confocal immunofluorescence imaging. ROS generation was measured by dichlorofluorescein fluorescence using confocal microscopy and was inhibited by transfection of antisense against NADPH subunits p22(phox) or p47(phox) or with Tempol. F-actin disassembly was observed by dual-channel confocal fluorescence imaging. PI3 kinase activity was detected by immunoblotting of phosphorylated Akt. RESULTS In high glucose, generation of NADPH oxidase-dependent ROS was dependent on PKC-zeta. Conversely, sustained PKC-zeta activity was dependent on ROS generation, suggesting a positive feedback. PKC-zeta-dependent F-actin disassembly in high glucose required ROS generation. PDGF stimulated NADPH oxidase generation of ROS through a PKC-zeta mechanism that was independent of Akt phosphorylation and remained unchanged in high glucose. CONCLUSION In high glucose, mesangial cell PKC-zeta is required for ROS generation from NADPH oxidase similar to PDGF stimulation of PKC-zeta-dependent ROS generation through a pathway independent of PI3 kinase. F-actin disassembly in high glucose also requires ROS. A positive feedback loop occurs between ROS and the activation of PKC-zeta in high glucose.
Collapse
Affiliation(s)
- Janice Kwan
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Chen CH, Cheng TH, Lin H, Shih NL, Chen YL, Chen YS, Cheng CF, Lian WS, Meng TC, Chiu WT, Chen JJ. Reactive Oxygen Species Generation Is Involved in Epidermal Growth Factor Receptor Transactivation through the Transient Oxidization of Src Homology 2-Containing Tyrosine Phosphatase in Endothelin-1 Signaling Pathway in Rat Cardiac Fibroblasts. Mol Pharmacol 2006; 69:1347-55. [PMID: 16391241 DOI: 10.1124/mol.105.017558] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endothelin-1 (ET-1) is implicated in fibroblast proliferation, which results in cardiac fibrosis. Both reactive oxygen species (ROS) generation and epidermal growth factor receptor (EGFR) transactivation play critical roles in ET-1 signal transduction. In this study, we used rat cardiac fibroblasts treated with ET-1 to investigate the connection between ROS generation and EGFR transactivation. ET-1 treatment was found to stimulate the phosphorylation of EGFR and ROS generation, which were abolished by ETA receptor antagonist N-(N-(N-((hexahydro-1H-azepin-1-yl)carbonyl)-L-leucyl)-D-tryptophyl)-D-tryptophan (BQ485). NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI), ROS scavenger N-acetyl cysteine (NAC), and p47phox small interfering RNA knockdown all inhibited the EGFR transactivation induced by ET-1. In contrast, EGFR inhibitor 4-(3'-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478) cannot inhibit intracellular ROS generation induced by ET-1. Src homology 2-containing tyrosine phosphatase (SHP-2) was shown to be associated with EGFR during ET-1 treatment by EGFR coimmunoprecipitation. ROS have been reported to transiently oxidize the catalytic cysteine of phosphotyrosine phosphatases to inhibit their activity. We examined the effect of ROS on SHP-2 in cardiac fibroblasts using a modified malachite green phosphatase assay. SHP-2 was transiently oxidized during ET-1 treatment, and this transient oxidization could be repressed by DPI or NAC treatment. In SHP-2 knockdown cells, ET-1-induced phosphorylation of EGFR was dramatically elevated and is not influenced by NAC and DPI. However, this elevation was suppressed by GM6001 [a matrix metalloproteinase (MMP) inhibitor] and heparin binding (HB)-epidermal growth factor (EGF) neutralizing antibody. Our data suggest that ET-1-ETA-mediated ROS generation can transiently inhibit SHP-2 activity to facilitate the MMP-dependent and HB-EGF-stimulated EGFR transactivation and mitogenic signal transduction in rat cardiac fibroblasts.
Collapse
Affiliation(s)
- Cheng-Hsien Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Frecker H, Munk S, Wang H, Whiteside C. Mesangial cell-reduced Ca2+signaling in high glucose is due to inactivation of phospholipase C-β3by protein kinase C. Am J Physiol Renal Physiol 2005; 289:F1078-87. [PMID: 15998840 DOI: 10.1152/ajprenal.00434.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In high glucose, glomerular mesangial cells (MCs) demonstrate impaired Ca2+signaling in response to seven-transmembrane receptor stimulation. To identify the mechanism, we first postulated decreased release from intracellular stores. Intracellular Ca2+was measured in fluo-3-loaded primary cultured rat MCs using confocal fluorescence microscopy. In high glucose (HG) 30 mM for 48 h, the 25 nM ionomycin-stimulated intracellular Ca2+response was reduced to 82% of that observed in normal glucose (NG). In NG 5.6 mM, Ca2+responses to endothelin (ET)-1 and platelet-derived growth factor (PDGF) were unchanged in cells cultured in 50 nM Ca2+vs. 1.8 mM Ca2+. Depletion of intracellular Ca2+stores with thapsigargin eliminated ET-1-stimulated Ca2+responses. Incubation in 30 mM glucose (HG) for 48 h or stimulation with phorbol myristate acetate (PMA) for 10 min eliminated the Ca2+response to ET-1 but had no effect on the PDGF response. Downregulation of protein kinase C (PKC) with 24-h PMA or inhibition with Gö6976 in HG normalized the Ca2+response to ET-1. Because ET-1 and PDGF stimulate Ca2+signaling through different phospholipase C pathways, we hypothesized that, in HG, PKC selectively phosphorylates and inhibits PLC-β3. Using confocal immunofluorescence imaging, in NG, a 1.6- to 1.7-fold increase in PLC-β3Ser1105phosphorylation was observed following PMA or ET-1 stimulation for 10 min. In HG, immunofluorescent imaging and immunoblotting showed increased PLC-β3phosphorylation, without change in total PLC-β3, which was reversed with 24-h PMA or Gö6976. We conclude that reduced Ca2+signaling in HG cannot be explained by reduced Ca2+stores but is due to conventional PKC-dependent phosphorylation and inactivation of PLC-β3.
Collapse
Affiliation(s)
- Helena Frecker
- Institute of Medical Science, University Health Network, University of Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
47
|
Cheng-Hsien C, Yung-Ho H, Yuh-Mou S, Chun-Cheng H, Horng-Mo L, Huei-Mei H, Tso-Hsiao C. Src homology 2-containing phosphotyrosine phosphatase regulates endothelin-1-induced epidermal growth factor receptor transactivation in rat renal tubular cell NRK-52E. Pflugers Arch 2005; 452:16-24. [PMID: 16261333 DOI: 10.1007/s00424-005-0006-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/05/2005] [Accepted: 10/03/2005] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor (EGF) and endothelin-1 (ET-1) have been shown to be involved in proliferation and autoregeneration of renal tubular cells. This study aims to investigate the regulatory mechanism of ET-1-mediated EGF receptor (EGFR) transactivation in rat renal tubular cells (NRK-52E). Exposure of NRK-52E cells to ET-1 was found to stimulate the phosphorylation of EGFR and induce reactive oxygen species (ROS) generation. Both NAD(P)H oxidase inhibitor, diphenyliodonium (DPI) and ROS scavenger N-acetylcysteine (NAC), inhibited EGFR transactivation and extracellular signal-regulated kinase (ERK) phosphorylation caused by ET-1. In contrast, blockade of EGFR by AG1478 inhibited the phosphorylation of ERK but not ROS generation following ET-1 exposure. We found that the catalytic cysteine of Src homology 2-containing phosphotyrosine phosphatase (SHP-2) was transiently oxidized by ET-1 treatment in a modified malachite green phosphatase assay. In EGFR co-immunoprecipitation, SHP-2 was also found to interact with EGFR following ET-1 treatment. In SHP-2 knockdown NRK-52E cells, ET-1-induced EGFR transactivation was dramatically elevated and not influenced by NAC. However, GM6001 (an MMP inhibitor) and heparin binding (HB)-EGF neutralizing antibody suppressed this elevation. Our data suggest that ROS-mediated oxidation of SHP-2 is essential for HB-EGF-mediated EGFR transactivation in ET-1 signaling pathway in NRK-52E cells.
Collapse
Affiliation(s)
- Chen Cheng-Hsien
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, No 111, Sing-Lung Road, Sec. 3, Wen-Shan District, Taipei City, 117, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Kim NH, Rincon-Choles H, Bhandari B, Choudhury GG, Abboud HE, Gorin Y. Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. Am J Physiol Renal Physiol 2005; 290:F741-51. [PMID: 16234311 DOI: 10.1152/ajprenal.00313.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Podocytes or glomerular epithelial cells (GECs) are important targets of the diabetic microenvironment. Podocyte foot process effacement and widening, loss of GECs and hypertrophy are pathological features of this disease. ANG II and oxidative stress are key mediators of renal hypertrophy in diabetes. The cellular mechanisms responsible for GEC hypertrophy in diabetes are incompletely characterized. We investigated the effect of high glucose on protein synthesis and GEC hypertrophy. Exposure of GECs to high glucose dose dependently stimulated [(3)H]leucine incorporation, but not [(3)H]thymidine incorporation. High glucose resulted in the activation of ERK1/2 and Akt/PKB. ERK1/2 pathway inhibitor or the dominant negative mutant of Akt/PKB inhibited high glucose-induced protein synthesis. High glucose elicited a rapid generation of reactive oxygen species (ROS). The stimulatory effect of high glucose on ROS production, ERK1/2, and Akt/PKB activation was prevented by the antioxidants catalase, diphenylene iodonium, and N-acetylcysteine. Exposure of the cells to hydrogen peroxide mimicked the effects of high glucose. In addition, ANG II resulted in the activation of ERK1/2 and Akt/PKB and GEC hypertrophy. Moreover, high glucose and ANG II exhibited additive effects on ERK1/2 and Akt/PKB activation as well as protein synthesis. These additive responses were abolished by treatment of the cells with the antioxidants. These data demonstrate that high glucose stimulates GEC hypertrophy through a ROS-dependent activation of ERK1/2 and Akt/PKB. Enhanced ROS generation accounts for the additive effects of high glucose and ANG II, suggesting that this signaling cascade contributes to GEC injury in diabetes.
Collapse
Affiliation(s)
- Nam-Ho Kim
- University of Texas Health Science Center, Department of Medicine, Division of Nephrology, MC 7882, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
49
|
Li R, Chase M, Jung SK, Smith PJS, Loeken MR. Hypoxic stress in diabetic pregnancy contributes to impaired embryo gene expression and defective development by inducing oxidative stress. Am J Physiol Endocrinol Metab 2005; 289:E591-9. [PMID: 15928021 DOI: 10.1152/ajpendo.00441.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have shown that neural tube defects (NTD) in a mouse model of diabetic embryopathy are associated with deficient expression of Pax3, a gene required for neural tube closure. Hyperglycemia-induced oxidative stress is responsible. Before organogenesis, the avascular embryo is physiologically hypoxic (2-5% O(2)). Here we hypothesized that, because O(2) delivery is limited at this stage of development, excess glucose metabolism could accelerate the rate of O(2) consumption, thereby exacerbating the hypoxic state. Because hypoxia can increase mitochondrial superoxide production, excessive hypoxia may contribute to oxidative stress. To test this, we assayed O(2) flux, an indicator of O(2) availability, in embryos of glucose-injected hyperglycemic or saline-injected mice. O(2) flux was reduced by 30% in embryos of hyperglycemic mice. To test whether hypoxia replicates, and hyperoxia suppresses, the effects of maternal hyperglycemia, pregnant mice were housed in controlled O(2) chambers on embryonic day 7.5. Housing pregnant mice in 12% O(2), or induction of maternal hyperglycemia (>250 mg/dl), decreased Pax3 expression fivefold, and increased NTD eightfold. Conversely, housing pregnant diabetic mice in 30% O(2) significantly suppressed the effect of maternal diabetes to increase NTD. These effects of hypoxia appear to be the result of increased production of mitochondrial superoxide, as indicated by assay of lipid peroxidation, reduced glutathione, and H(2)O(2). Further support of this interpretation was the effect of antioxidants, which blocked the effects of maternal hypoxia, as well as hyperglycemia, on Pax3 expression and NTD. These observations suggest that maternal hyperglycemia depletes O(2) in the embryo and that this contributes to oxidative stress and the adverse effects of maternal hyperglycemia on embryo development.
Collapse
Affiliation(s)
- Rulin Li
- Section of Developmental and Stem Cell Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
50
|
Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, Abboud HE. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 2005; 280:39616-26. [PMID: 16135519 DOI: 10.1074/jbc.m502412200] [Citation(s) in RCA: 408] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. We investigated the role of the NAD(P)H oxidase Nox4 in generation of reactive oxygen species (ROS), hypertrophy, and fibronectin expression in a rat model of type 1 diabetes induced by streptozotocin. Phosphorothioated antisense (AS) or sense oligonucleotides for Nox4 were administered for 2 weeks with an osmotic minipump 72 h after streptozotocin treatment. Nox4 protein expression was increased in diabetic kidney cortex compared with non-diabetic controls and was down-regulated in AS-treated animals. AS oligonucleotides inhibited NADPH-dependent ROS generation in renal cortical and glomerular homogenates. ROS generation by intact isolated glomeruli from diabetic animals was increased compared with glomeruli isolated from AS-treated animals. AS treatment reduced whole kidney and glomerular hypertrophy. Moreover, the increased expression of fibronectin protein was markedly reduced in renal cortex including glomeruli of AS-treated diabetic rats. Akt/protein kinase B and ERK1/2, two protein kinases critical for cell growth and hypertrophy, were activated in diabetes, and AS treatment almost abolished their activation. In cultured mesangial cells, high glucose increased NADPH oxidase activity and fibronectin expression, effects that were prevented in cells transfected with AS oligonucleotides. These data establish a role for Nox4 as the major source of ROS in the kidneys during early stages of diabetes and establish that Nox4-derived ROS mediate renal hypertrophy and increased fibronectin expression.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | |
Collapse
|