1
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha A, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. eLife 2025; 13:RP98661. [PMID: 39773461 PMCID: PMC11709433 DOI: 10.7554/elife.98661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell-type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Aravind R Gade
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Isabella DiStefano
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Anjali Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell MedicineNew York CityUnited States
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| |
Collapse
|
2
|
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, Cañestro C. Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles. Mol Biol Evol 2025; 42:msae260. [PMID: 39686543 PMCID: PMC11733497 DOI: 10.1093/molbev/msae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. An exhaustive analysis of developmental Fgf expression in Oikopleura dioica allows us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians.
Collapse
Affiliation(s)
- Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Johannes N Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
3
|
Zhi Y, Duan Y, Zhang Y, Hu H, Hu F, Wang P, Liu B, Wang C, Liu D, Gu G. miR-421-mediated suppression of FGF13 as a novel mechanism ameliorates cardiac hypertrophy by inhibiting endoplasmic reticulum stress. Eur J Pharmacol 2024; 985:177085. [PMID: 39486770 DOI: 10.1016/j.ejphar.2024.177085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure. Currently, clinical treatments offer limited effectiveness, and both mortality and morbidity from cardiac hypertrophy and heart failure continue to be significant. Therefore, it is extremely urgent to find new intervention targets to prevent and alleviate pathological cardiac hypertrophy. In this study, we explored FGF13 expression and its upstream regulators in hypertrophic hearts. Firstly, we observed an increase in FGF13 expression levels in human hypertrophic myocardium tissues, as well as in mouse models of TAC-induced hypertrophy and in neonatal rat cardiomyocyte (NRCM) models induced by isoproterenol (ISO). Moreover, these elevated levels of FGF13 were shown to positively correlate with hypertrophic markers, including ANP and BNP. By using both gain-of-function and loss-of-function approaches in an in vitro hypertrophy model, we demonstrated that FGF13 knockdown could inhibit endoplasmic reticulum stress (ERS), thereby ameliorating cardiomyocyte hypertrophy. Meanwhile, we investigated the upstream regulators of FGF13 in hypertrophic hearts, and a dual-luciferase reporter assay confirmed that FGF13 is a direct target of miR-421. Overexpression of miR-421 decreased the protein level of FGF13 and ameliorated ISO-induced cardiomyocyte hypertrophy via modulating ER stress. In contrast, overexpression of FGF13 attenuated the ameliorative effect of miR-421 on ISO-induced cardiomyocyte hypertrophy. Taken together, the present results suggested that miR-421 ameliorated ISO-induced cardiomyocyte hypertrophy by negatively regulating FGF13 expression. This finding may offer a novel approach for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yaxin Zhi
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanru Duan
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Haijuan Hu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fengli Hu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Pengfei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Bin Liu
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050000, China.
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
4
|
Rivas LJ, Uribe RA. Fibroblast Growth Factor (FGF) 13. Differentiation 2024; 140:100814. [PMID: 39332965 DOI: 10.1016/j.diff.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Fibroblast Growth Factor (FGF) 13, also referred to as FGF homologous factor (FHF) 2, is a member of the FGF11 subfamily that is characterized as having sequence similarities to classical FGF receptor (FGFR)-binding FGFs, but functionally do not bind FGFRs. In this primer mini-review, we summarize current knowledge regarding FGF13 expression, mutant analyses, and gene and protein structure. Similar to other FHFs, FGF13 has been considered a non-secreted protein that lacks an amino signal and is prominently expressed in developing and mature neurons of the central and peripheral nervous systems, as well as the heart. The expression of FGF13 is not limited to early embryonic stages and has been shown to persist in adult tissues. As well, FGF13 is known to localize subcellularly, both within the cytoplasm and the nucleus. FGF13 is extremely adaptable, as it interacts with MAPK scaffolding protein islet brain 2 (IB2), stabilizes microtubules, or binds to voltage-gated sodium channels. Fgf13 mutant mouse lines display various neurological pathologies. Through sequence mapping, FGF13 is considered a candidate causative gene that is mutated in multiple human X-linked neurological diseases.
Collapse
Affiliation(s)
- Lucia J Rivas
- Department of Biosciences, Rice University, Houston, TX, United States; Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States
| | - Rosa A Uribe
- Department of Biosciences, Rice University, Houston, TX, United States; Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States.
| |
Collapse
|
5
|
Ransdell JL, Brown SP, Xiao M, Ornitz DM, Nerbonne JM. In Vivo Expression of an SCA27A-linked FGF14 Mutation Results in Haploinsufficiency and Impaired Firing of Cerebellar Purkinje Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620253. [PMID: 39484407 PMCID: PMC11527103 DOI: 10.1101/2024.10.25.620253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autosomal dominant mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), underlie spinocerebellar ataxia type 27A (SCA27A), a devastating multisystem disorder resulting in progressive deficits in motor coordination and cognitive function. Mice lacking iFGF14 ( Fgf14 -/- ) exhibit similar phenotypes, which have been linked to iFGF14-mediated modulation of the voltage-gated sodium (Nav) channels that control the high frequency repetitive firing of Purkinje neurons, the main output neurons of the cerebellar cortex. To investigate the pathophysiological mechanisms underlying SCA27A, we developed a targeted knock-in strategy to introduce the first point mutation identified in FGF14 into the mouse Fgf14 locus ( Fgf14 F145S ), we determined the impact of in vivo expression of the mutant Fgf14 F145S allele on the motor performance of adult animals and on the firing properties of mature Purkinje neurons in acute cerebellar slices. Electrophysiological experiments revealed that repetitive firing rates are attenuated in adult Fgf14 F145S/+ cerebellar Purkinje neurons, attributed to a hyperpolarizing shift in the voltage-dependence of steady-state inactivation of Nav channels. More severe effects on firing properties and Nav channel inactivation were observed in homozygous Fgf14 F145S/F145S Purkinje neurons. Interestingly, the electrophysiological phenotypes identified in adult Fgf14 F145S/+ and Fgf14 F145S/F145S cerebellar Purkinje neurons mirror those observed in heterozygous Fgf14 +/- and homozygous Fgf14 -/- Purkinje neurons, respectively, suggesting that the mutation results in the loss of the iFGF14 protein. Western blot analysis of lysates from adult heterozygous Fgf14 F145S/+ and homozygous Fgf14 F145S/F145S animals revealed reduced or undetectable, respectively, iFGF14 expression, supporting the hypothesis that the mutant allele results in loss of the iFGF14 protein and that haploinsufficiency underlies SCA27A neurological phenotypes.
Collapse
|
6
|
Huang J, Sun C, Zhu Q, Wu G, Cao Y, Shi J, He S, Jiang L, Liao J, Li L, Zhong C, Lu Y. Phenotyping of FGF12A V52H mutation in mouse implies a complex FGF12 network. Neurobiol Dis 2024; 200:106637. [PMID: 39142611 DOI: 10.1016/j.nbd.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Pathogenic missense mutation of the FGF12 gene is responsible for a variable disease phenotypic spectrum. Disease-specific therapies require precise dissection of the relationship between different mutations and phenotypes. The lack of a proper animal model hinders the investigation of related diseases, such as early-onset epileptic encephalopathy. Here, an FGF12AV52H mouse model was generated using CRISPR/Cas9 technology, which altered the A isoform without affecting the B isoform. The FGF12AV52H mice exhibited seizure susceptibility, while no spontaneous seizures were observed. The increased excitability in dorsal hippocampal CA3 neurons was confirmed by patch-clamp recordings. Furthermore, immunostaining showed that the balance of excitatory/inhibitory neurons in the hippocampus of the FGF12AV52H mice was perturbed. The increases in inhibitory SOM+ neurons and excitatory CaMKII+ neurons were heterogeneous. Moreover, the locomotion, anxiety levels, risk assessment behavior, social behavior, and cognition of the FGF12AV52H mice were investigated by elevated plus maze, open field, three-chamber sociability, and novel object tests, respectively. Cognition deficit, impaired risk assessment, and social behavior with normal social indexes were observed, implying complex consequences of V52H FGF12A in mice. Together, these data suggest that the function of FGF12A in neurons can be immediate or long-term and involves modulation of ion channels and the differentiation and maturation of neurons. The FGF12AV52H mouse model increases the understanding of the function of FGF12A, and it is of great importance for revealing the complex network of the FGF12 gene in physiological and pathological processes.
Collapse
Affiliation(s)
- Jianyu Huang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chongyang Sun
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ge Wu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Cao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiarui Shi
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu He
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Luyao Jiang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianxiang Liao
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Lin Li
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Cheng Zhong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yi Lu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
7
|
Biadun M, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. FGF12: biology and function. Differentiation 2024; 139:100740. [PMID: 38042708 DOI: 10.1016/j.diff.2023.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Fibroblast growth factor 12 (FGF12) belongs to the fibroblast growth factor homologous factors (FHF) subfamily, which is also known as the FGF11 subfamily. The human FGF12 gene is located on chromosome 3 and consists of four introns and five coding exons. Their alternative splicing results in two FGF12 isoforms - the shorter 'b' isoform and the longer 'a' isoform. Structurally, the core domain of FGF12, is highly homologous to that of the other FGF proteins, providing the classical tertiary structure of β-trefoil. FGF12 is expressed in various tissues, most abundantly in excitable cells such as neurons and cardiomyocytes. For many years, FGF12 was thought to be exclusively an intracellular protein, but recent studies have shown that it can be secreted despite the absence of a canonical signal for secretion. The best-studied function of FGF12 relates to its interaction with sodium channels. In addition, FGF12 forms complexes with signaling proteins, regulates the cytoskeletal system, binds to the FGF receptors activating signaling cascades to prevent apoptosis and interacts with the ribosome biogenesis complex. Importantly, FGF12 has been linked to nervous system disorders, cancers and cardiac diseases such as epileptic encephalopathy, pulmonary hypertension and cardiac arrhythmias, making it a potential target for gene therapy as well as a therapeutic agent.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland; Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
8
|
Goldfarb M. Fibroblast growth factor homologous factors: canonical and non-canonical mechanisms of action. J Physiol 2024; 602:4097-4110. [PMID: 39083261 DOI: 10.1113/jp286313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Since their discovery nearly 30 years ago, fibroblast growth factor homologous factors (FHFs) are now known to control the functionality of excitable tissues through a range of mechanisms. Nervous and cardiac system dysfunctions are caused by loss- or gain-of-function mutations in FHF genes. The best understood 'canonical' targets for FHF action are voltage-gated sodium channels, and recent studies have expanded the repertoire of ways that FHFs modulate sodium channel gating. Additional 'non-canonical' functions of FHFs in excitable and non-excitable cells, including cancer cells, have been reported over the past dozen years. This review summarizes and evaluates reported canonical and non-canonical FHF functions.
Collapse
Affiliation(s)
- Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, New York, New York, USA
- Biology Program, The Graduate Center City University, New York, New York, USA
| |
Collapse
|
9
|
Phan P, Ternier G, Edirisinghe O, Kumar TKS. Exploring endocrine FGFs - structures, functions and biomedical applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:68-99. [PMID: 39309613 PMCID: PMC11411148 DOI: 10.62347/palk2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Gaёtane Ternier
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of ArkansasFayetteville, AR 72701, USA
| | | |
Collapse
|
10
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha AM, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590019. [PMID: 38659789 PMCID: PMC11042350 DOI: 10.1101/2024.04.18.590019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - James E. Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | | | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Theodore H. Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Anjali M. Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
11
|
Biadun M, Sochacka M, Kalka M, Chorazewska A, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. Uncovering key steps in FGF12 cellular release reveals a common mechanism for unconventional FGF protein secretion. Cell Mol Life Sci 2024; 81:356. [PMID: 39158730 PMCID: PMC11335280 DOI: 10.1007/s00018-024-05396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
FGF12 belongs to a subfamily of FGF proteins called FGF homologous factors (FHFs), which until recently were thought to be non-signaling intracellular proteins. Our recent studies have shown that although they lack a conventional signal peptide for secretion, they can reach the extracellular space, especially under stress conditions. Here, we unraveled that the long "a" isoform of FGF12 is secreted in a pathway involving the A1 subunit of Na(+)/K(+) ATPase (ATP1A1), Tec kinase and lipids such as phosphatidylinositol and phosphatidylserine. Further, we showed that the short "b" isoform of FGF12, which binds ATP1A1 and phosphatidylserine less efficiently, is not secreted from cells. We also indicated regions in the FGF12a protein sequence that are crucial for its secretion, including N-terminal fragment and specific residues, and proposed that liquid-liquid phase separation may be important in this process. Our results strongly suggest that the mechanism of this process is very similar for all unconventionally secreted FGF proteins.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Martyna Sochacka
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorazewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
12
|
Zhao R, Yan Y, Dong Y, Wang X, Li X, Qiao R, Zhang H, Cui N, Han Y, Wang C, Han J, Ma Q, Liu D, Yang J, Gu G, Wang C. FGF13 deficiency ameliorates calcium signaling abnormality in heart failure by regulating microtubule stability. Biochem Pharmacol 2024; 225:116329. [PMID: 38821375 DOI: 10.1016/j.bcp.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Calcium signaling abnormality in cardiomyocytes, as a key mechanism, is closely associated with developing heart failure. Fibroblast growth factor 13 (FGF13) demonstrates important regulatory roles in the heart, but its association with cardiac calcium signaling in heart failure remains unknown. This study aimed to investigate the role and mechanism of FGF13 on calcium mishandling in heart failure. Mice underwent transaortic constriction to establish a heart failure model, which showed decreased ejection fraction, fractional shortening, and contractility. FGF13 deficiency alleviated cardiac dysfunction. Heart failure reduces calcium transients in cardiomyocytes, which were alleviated by FGF13 deficiency. Meanwhile, FGF13 deficiency restored decreased Cav1.2 and Serca2α expression and activity in heart failure. Furthermore, FGF13 interacted with microtubules in the heart, and FGF13 deficiency inhibited the increase of microtubule stability during heart failure. Finally, in isoproterenol-stimulated FGF13 knockdown neonatal rat ventricular myocytes (NRVMs), wildtype FGF13 overexpression, but not FGF13 mutant, which lost the binding site of microtubules, promoted calcium transient abnormality aggravation and Cav1.2 downregulation compared with FGF13 knockdown group. Generally, FGF13 deficiency improves abnormal calcium signaling by inhibiting the increased microtubule stability in heart failure, indicating the important role of FGF13 in cardiac calcium homeostasis and providing new avenues for heart failure prevention and treatment.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingke Yan
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiming Dong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangchong Wang
- Department of Pharmacology, Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Xuyan Li
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Ruoyang Qiao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Nanqi Cui
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yanxue Han
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Cong Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabing Han
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianli Ma
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Yang
- Department of Pathology and Pathophysiology, Hangzhou Normal University, Hangzhou 311121, China.
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Chuan Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
13
|
Shen L, Li Y, Zhao H. Fibroblast growth factor signaling in macrophage polarization: impact on health and diseases. Front Immunol 2024; 15:1390453. [PMID: 38962005 PMCID: PMC11219802 DOI: 10.3389/fimmu.2024.1390453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Fibroblast growth factors (FGFs) are a versatile family of peptide growth factors that are involved in various biological functions, including cell growth and differentiation, embryonic development, angiogenesis, and metabolism. Abnormal FGF/FGF receptor (FGFR) signaling has been implicated in the pathogenesis of multiple diseases such as cancer, metabolic diseases, and inflammatory diseases. It is worth noting that macrophage polarization, which involves distinct functional phenotypes, plays a crucial role in tissue repair, homeostasis maintenance, and immune responses. Recent evidence suggests that FGF/FGFR signaling closely participates in the polarization of macrophages, indicating that they could be potential targets for therapeutic manipulation of diseases associated with dysfunctional macrophages. In this article, we provide an overview of the structure, function, and downstream regulatory pathways of FGFs, as well as crosstalk between FGF signaling and macrophage polarization. Additionally, we summarize the potential application of harnessing FGF signaling to modulate macrophage polarization.
Collapse
Affiliation(s)
- Luyao Shen
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
14
|
Wang C, Wang X, Zhang Y, Mi Y, Han Y, Zhi Y, Zhao R, Cui N, Ma Q, Zhang H, Xue D, Qiao R, Han J, Yu Y, Li J, Shaiea M, Liu D, Gu G, Wang C. Inducible Fgf13 ablation alleviates cardiac fibrosis via regulation of microtubule stability. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1802-1812. [PMID: 38818580 PMCID: PMC11659771 DOI: 10.3724/abbs.2024075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Fibroblast growth factor (FGF) isoform 13, a distinct type of FGF, boasts significant potential for therapeutic intervention in cardiovascular dysfunctions. However, its impact on regulating fibrosis remains unexplored. This study aims to elucidate the role and mechanism of FGF13 on cardiac fibrosis. Here, we show that following transverse aortic constriction (TAC) surgery, interstitial fibrosis and collagen content increase in mice, along with reduced ejection fraction and fractional shortening, augmented heart mass. However, following Fgf13 deletion, interstitial fibrosis is decreased, ejection fraction and fractional shortening are increased, and heart mass is decreased, compared with those in the TAC group. Mechanistically, incubation of cardiac fibroblasts with transforming growth factor β (TGFβ) increases the expressions of types I and III collagen proteins, as well as α-smooth muscle actin (α-SMA) proteins, and enhances fibroblast proliferation and migration. In the absence of Fgf13, the expressions of these proteins are decreased, and fibroblast proliferation and migration are suppressed, compared with those in the TGFβ-stimulated group. Overexpression of FGF13, but not FGF13 mutants defective in microtubule binding and stabilization, rescues the decrease in collagen and α-SMA protein and weakens the proliferation and migration function of the Fgf13 knockdown group. Furthermore, Fgf13 knockdown decreases ROCK protein expression via microtubule disruption. Collectively, cardiac Fgf13 knockdown protects the heart from fibrosis in response to haemodynamic stress by modulating microtubule stabilization and ROCK signaling pathway.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Xiangchong Wang
- Department of PharmacologyHebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese MedicineHebei Higher Education Institute Applied Technology Research Center on TCM Formula PreparationHebei University of Chinese MedicineShijiazhuang050091China
| | - Yiyi Zhang
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Yuan Mi
- Department of Emergencythe Fourth Hospital of Hebei Medical UniversityShijiazhuang050011China
| | - Yanxue Han
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Yaxin Zhi
- Department of Cardiologythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Ran Zhao
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Nanqi Cui
- Department of Vascular Surgerythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Qianli Ma
- of Cardiac Surgerythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Huaxing Zhang
- Core Facilities and CentersHebei Medical UniversityShijiazhuang050017China
| | - Dazhong Xue
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Ruoyang Qiao
- College of Basic MedicineHebei Medical UniversityShijiazhuang050017China
| | - Jiabing Han
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Yulou Yu
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Jiaxuan Li
- SchoolHebei Medical UniversityShijiazhuang050017China
| | - Mohammed Shaiea
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| | - Demin Liu
- Department of Cardiologythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Guoqiang Gu
- Department of Cardiologythe Second Hospital of Hebei Medical UniversityShijiazhuang050000China
| | - Chuan Wang
- Department of Pharmacologythe Key Laboratory of Neural and Vascular BiologyMinistry of Educationthe Key Laboratory of New Drug Pharmacology and Toxicologythe Hebei Collaboration Innovation Center for MechanismDiagnosis and Treatment of Neurological and Psychiatric DiseaseHebei Medical UniversityShijiazhuang050017China
| |
Collapse
|
15
|
Ransdell JL, Carrasquillo Y, Bosch MK, Mellor RL, Ornitz DM, Nerbonne JM. Loss of Intracellular Fibroblast Growth Factor 14 (iFGF14) Increases the Excitability of Mature Hippocampal and Cortical Pyramidal Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592532. [PMID: 38746081 PMCID: PMC11092765 DOI: 10.1101/2024.05.04.592532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia type 27 (SCA27), a multisystem disorder associated with progressive deficits in motor coordination and cognitive function. Mice ( Fgf14 -/- ) lacking iFGF14 display similar phenotypes, and we have previously shown that the deficits in motor coordination reflect reduced excitability of cerebellar Purkinje neurons, owing to the loss of iFGF14-mediated regulation of the voltage-dependence of inactivation of the fast transient component of the voltage-gated Na + (Nav) current, I NaT . Here, we present the results of experiments designed to test the hypothesis that loss of iFGF14 also attenuates the intrinsic excitability of mature hippocampal and cortical pyramidal neurons. Current-clamp recordings from adult mouse hippocampal CA1 pyramidal neurons in acute in vitro slices, however, revealed that repetitive firing rates were higher in Fgf14 -/- , than in wild type (WT), cells. In addition, the waveforms of individual action potentials were altered in Fgf14 -/- hippocampal CA1 pyramidal neurons, and the loss of iFGF14 reduced the time delay between the initiation of axonal and somal action potentials. Voltage-clamp recordings revealed that the loss of iFGF14 altered the voltage-dependence of activation, but not inactivation, of I NaT in CA1 pyramidal neurons. Similar effects of the loss of iFGF14 on firing properties were evident in current-clamp recordings from layer 5 visual cortical pyramidal neurons. Additional experiments demonstrated that the loss of iFGF14 does not alter the distribution of anti-Nav1.6 or anti-ankyrin G immunofluorescence labeling intensity along the axon initial segments (AIS) of mature hippocampal CA1 or layer 5 visual cortical pyramidal neurons in situ . Taken together, the results demonstrate that, in contrast with results reported for neonatal (rat) hippocampal pyramidal neurons in dissociated cell culture, the loss of iFGF14 does not disrupt AIS architecture or Nav1.6 localization/distribution along the AIS of mature hippocampal (or cortical) pyramidal neurons in situ .
Collapse
|
16
|
Perez-Favila A, Garza-Veloz I, Hernandez-Marquez LDS, Gutierrez-Vela EF, Flores-Morales V, Martinez-Fierro ML. Antifibrotic Drugs against Idiopathic Pulmonary Fibrosis and Pulmonary Fibrosis Induced by COVID-19: Therapeutic Approaches and Potential Diagnostic Biomarkers. Int J Mol Sci 2024; 25:1562. [PMID: 38338840 PMCID: PMC10855955 DOI: 10.3390/ijms25031562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on the health and economy of the global population. Even after recovery from the disease, post-COVID-19 symptoms, such as pulmonary fibrosis, continue to be a concern. This narrative review aims to address pulmonary fibrosis (PF) from various perspectives, including the fibrotic mechanisms involved in idiopathic and COVID-19-induced pulmonary fibrosis. On the other hand, we also discuss the current therapeutic drugs in use, as well as those undergoing clinical or preclinical evaluation. Additionally, this article will address various biomarkers with usefulness for PF prediction, diagnosis, treatment, prognosis, and severity assessment in order to provide better treatment strategies for patients with this disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Margarita L. Martinez-Fierro
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y CS, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (I.G.-V.); (L.d.S.H.-M.); (E.F.G.-V.); (V.F.-M.)
| |
Collapse
|
17
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
18
|
Rejali L, Nazemalhosseini-Mojarad E, Valle L, Maghsoudloo M, Asadzadeh Aghdaei H, Mohammadpoor H, Zali MR, Khanabadi B, Entezari M, Hushmandi K, Taheriazam A, Hashemi M. Identification of antisense and sense RNAs of intracrine fibroblast growth factor components as novel biomarkers in colorectal cancer and in silico studies for drug and nanodrug repurposing. ENVIRONMENTAL RESEARCH 2023; 239:117117. [PMID: 37805185 DOI: 10.1016/j.envres.2023.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most malignant tumors and in which various efforts for screening is inconclusive.The intracrine FGF panel, the non-tyrosine kinase receptors (NTKR) FGFs and affiliated antisenses play a pivotal role in FGF signaling.The expression levels of coding and non-coding intracrine FGFs were assessed in CRC donors.Also, substantial costs and slow pace of drug discovery give high attraction to repurpose of previously discovered drugs to new opportunities. OBJECTIVES The aim of present study was to evaluate the potential role of the coding and non-coding intracrine FGFs as a new biomarkers for CRC cases and defining drug repurposing to alleviate FGF down regulation. METHODS RNA-seq data of colon adenocarcinomas (COAD) was downloaded using TCGA biolinks package in R.The DrugBank database (https://go.drugbank.com/) was used to extract interactions between drugs and candidate genes. A total of 200 CRC patients with detailed criteria were enrolled.RNAs were extracted with TRIzol-based protocol and amplified via LightCycler® instrument.FGF11 and FGF13 proteins validation was performed by used of immunohistochemistry technique in tumor and non-tumoral samples.Pearson's correlation analysis and ROC curve plotted by Prism 8.0 software. RESULTS RNA-seq data from TCGA was analyzed by normalizing with edgeR.Differentially expressed gene (DEG) analysis was generated. WCC algorithm extracted the most significant genes with a total of 47 genes. Expression elevation of iFGF antisenses (12AS,13As,14AS) compared with the normal colon tissue were observed (P = 0.0003,P = 0.042,P = 0.026, respectively). Moreover,a significant decrease in expression of the corresponding sense iFGF genes was detected (P < 0.0001).Plotted receiver operating characteristic (ROC) curves for iFGF components' expression showed an area of over 0.70 (FGF11-13: 0.71% and FGF12-14: 0.78%, P < 0.001) for sense mRNA expression, with the highest sensitivity for FGF12 (92.8%) and lowest for FGF11 (61.41%).The artificial intelligence (AI) revealed the valproic acid as a repurposing drug to relief the down regulation of FGF12 and 13 in CRC patients. CONCLUSION Intracrine FGFs panel was down regulated versus up regulation of dependent antisenses. Thus, developing novel biomarkers based on iFGF can be considered as a promising strategy for CRC screening.In advanced, valporic acid detected by AI as a repurposing drug which may be applied in clinical trials for CRC treatment.
Collapse
Affiliation(s)
- Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadis Mohammadpoor
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Binazir Khanabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty Of Veterinary Medicine, University Of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Centre, Farhikhtegan Hospital, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
20
|
Mann JE, Smith JD, Kulkarni A, Foltin SK, Scheftz EB, Murray IR, Gensterblum-Miller E, Brummel CV, Bhangale A, Hoesli RC, Brenner JC. Genome-wide open reading frame profiling identifies fibroblast growth factor signaling as a driver of PD-L1 expression in head and neck squamous cell carcinoma. Oral Oncol 2023; 146:106562. [PMID: 37666053 PMCID: PMC11308298 DOI: 10.1016/j.oraloncology.2023.106562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) are associated with significant treatment-related morbidity and poor disease-free and disease-specific survival, especially in the recurrent and metastatic (R/M HNSCC) setting. Inhibition of the programmed death-1/ligand-1 (PD-1/PD-L1) immune checkpoint is accepted as a first-line treatment strategy for R/M HNSCC and has expanded into the neoadjuvant, definitive, and adjuvant settings. To understand cellular signals modulating the PD-L1 in HNSCC, we profiled a HNSCC cell-line with a genome-wide open reading frame (ORF) library of 17,000 individual constructs (14,000 unique genes). We identified 335 ORFs enriched in PD-L1high cells and independently validated five of these ORFs (FGF6, IL17A, CD300C, KLR1C and NFKBIA) as drivers of PD-L1 upregulation. We showed that exogenous FGF ligand is sufficient to induce PD-L1 expression in multiple HNSCC cell lines and human immature dendritic cells. Accordingly, overexpression of FGFR1, FGFR3 or the FGFR3 S249C and D786N mutants common to HNSCC tumors also induced PD-L1 overexpression on tumor cells. Small molecule inhibition of FGF signaling abrogated PD-L1 upregulation in these models and also blocked "classical" IFNγ-regulated PD-L1 expression in a STAT1-independent manner. Finally, we found that FGF specifically upregulated a glycosylated form of PD-L1 in our study, and exogenous FGF led to concomitant upregulation of glycosyltransferases that may stabilize PD-L1 on the surface of HNSCC cells. Taken together, our study supports a potential role for FGF/FGFR pathway signaling as a mechanism driving immune escape and rationalizes further exploration of novel combination therapies to improve clinical responses to PD-1/PD-L1 axis inhibition in HNSCC.
Collapse
Affiliation(s)
- Jacqueline E Mann
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 41809, USA
| | - Joshua D Smith
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan K Foltin
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erin B Scheftz
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabel R Murray
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Gensterblum-Miller
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 41809, USA
| | - Collin V Brummel
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Apurva Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca C Hoesli
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 41809, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Biadun M, Sochacka M, Karelus R, Baran K, Czyrek A, Otlewski J, Krowarsch D, Opalinski L, Zakrzewska M. FGF homologous factors are secreted from cells to induce FGFR-mediated anti-apoptotic response. FASEB J 2023; 37:e23043. [PMID: 37342898 DOI: 10.1096/fj.202300324r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
22
|
Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol 2023; 11:1112890. [PMID: 37325554 PMCID: PMC10267317 DOI: 10.3389/fcell.2023.1112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Suture mesenchymal stem cells (SMSCs) are a heterogeneous stem cell population with the ability to self-renew and differentiate into multiple cell lineages. The cranial suture provides a niche for SMSCs to maintain suture patency, allowing for cranial bone repair and regeneration. In addition, the cranial suture functions as an intramembranous bone growth site during craniofacial bone development. Defects in suture development have been implicated in various congenital diseases, such as sutural agenesis and craniosynostosis. However, it remains largely unknown how intricate signaling pathways orchestrate suture and SMSC function in craniofacial bone development, homeostasis, repair and diseases. Studies in patients with syndromic craniosynostosis identified fibroblast growth factor (FGF) signaling as an important signaling pathway that regulates cranial vault development. A series of in vitro and in vivo studies have since revealed the critical roles of FGF signaling in SMSCs, cranial suture and cranial skeleton development, and the pathogenesis of related diseases. Here, we summarize the characteristics of cranial sutures and SMSCs, and the important functions of the FGF signaling pathway in SMSC and cranial suture development as well as diseases caused by suture dysfunction. We also discuss emerging current and future studies of signaling regulation in SMSCs.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Kihan Sung
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
23
|
Angsutararux P, Dutta AK, Marras M, Abella C, Mellor RL, Shi J, Nerbonne JM, Silva JR. Differential regulation of cardiac sodium channels by intracellular fibroblast growth factors. J Gen Physiol 2023; 155:e202213300. [PMID: 36944081 PMCID: PMC10038838 DOI: 10.1085/jgp.202213300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the initiation and propagation of action potentials. In the heart, the predominant NaV1.5 α subunit is composed of four homologous repeats (I-IV) and forms a macromolecular complex with multiple accessory proteins, including intracellular fibroblast growth factors (iFGF). In spite of high homology, each of the iFGFs, iFGF11-iFGF14, as well as the individual iFGF splice variants, differentially regulates NaV channel gating, and the mechanisms underlying these differential effects remain elusive. Much of the work exploring iFGF regulation of NaV1.5 has been performed in mouse and rat ventricular myocytes in which iFGF13VY is the predominant iFGF expressed, whereas investigation into NaV1.5 regulation by the human heart-dominant iFGF12B is lacking. In this study, we used a mouse model with cardiac-specific Fgf13 deletion to study the consequences of iFGF13VY and iFGF12B expression. We observed distinct effects on the voltage-dependences of activation and inactivation of the sodium currents (INa), as well as on the kinetics of peak INa decay. Results in native myocytes were recapitulated with human NaV1.5 heterologously expressed in Xenopus oocytes, and additional experiments using voltage-clamp fluorometry (VCF) revealed iFGF-specific effects on the activation of the NaV1.5 voltage sensor domain in repeat IV (VSD-IV). iFGF chimeras further unveiled roles for all three iFGF domains (i.e., the N-terminus, core, and C-terminus) on the regulation of VSD-IV, and a slower time domain of inactivation. We present here a novel mechanism of iFGF regulation that is specific to individual iFGF isoforms and that leads to distinct functional effects on NaV channel/current kinetics.
Collapse
Affiliation(s)
- Paweorn Angsutararux
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Amal K. Dutta
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Martina Marras
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlota Abella
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca L. Mellor
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeanne M. Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan R. Silva
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
24
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
25
|
The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. Int J Mol Sci 2023; 24:ijms24032963. [PMID: 36769282 PMCID: PMC9917655 DOI: 10.3390/ijms24032963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder that affects the connective tissues and has the highest mortality rate among the rheumatic diseases. One of the hallmarks of SSc is fibrosis, which may develop systemically, affecting the skin and virtually any visceral organ in the body. Fibrosis of the lungs leads to interstitial lung disease (ILD), which is currently the leading cause of death in SSc. The identification of effective treatments to stop or reverse lung fibrosis has been the main challenge in reducing SSc mortality and improving patient outcomes and quality of life. Thus, understanding the molecular mechanisms, altered pathways, and their potential interactions in SSc lung fibrosis is key to developing potential therapies. In this review, we discuss the diverse molecular mechanisms involved in SSc-related lung fibrosis to provide insights into the altered homeostasis state inherent to this fatal disease complication.
Collapse
|
26
|
Parthasarathy G, Pattison MB, Midkiff CC. The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: likely intersectionality with other neurological conditions. J Neuroinflammation 2023; 20:10. [PMID: 36650549 PMCID: PMC9847051 DOI: 10.1186/s12974-022-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lyme neuroborreliosis, caused by the bacterium Borrelia burgdorferi affects both the central and peripheral nervous systems (CNS, PNS). The CNS manifestations, especially at later stages, can mimic/cause many other neurological conditions including psychiatric disorders, dementia, and others, with a likely neuroinflammatory basis. The pathogenic mechanisms associated with Lyme neuroborreliosis, however, are not fully understood. METHODS In this study, using cultures of primary rhesus microglia, we explored the roles of several fibroblast growth factor receptors (FGFRs) and fibroblast growth factors (FGFs) in neuroinflammation associated with live B. burgdorferi exposure. FGFR specific siRNA and inhibitors, custom antibody arrays, ELISAs, immunofluorescence and microscopy were used to comprehensively analyze the roles of these molecules in microglial neuroinflammation due to B. burgdorferi. RESULTS FGFR1-3 expressions were upregulated in microglia in response to B. burgdorferi. Inhibition of FGFR 1, 2 and 3 signaling using siRNA and three different inhibitors showed that FGFR signaling is proinflammatory in response to the Lyme disease bacterium. FGFR1 activation also contributed to non-viable B. burgdorferi mediated neuroinflammation. Analysis of the B. burgdorferi conditioned microglial medium by a custom antibody array showed that several FGFs are induced by the live bacterium including FGF6, FGF10 and FGF12, which in turn induce IL-6 and/or CXCL8, indicating a proinflammatory nature. To our knowledge, this is also the first-ever described role for FGF6 and FGF12 in CNS neuroinflammation. FGF23 upregulation, in addition, was observed in response to the Lyme disease bacterium. B. burgdorferi exposure also downregulated many FGFs including FGF 5, 7, 9, 11, 13, 16, 20 and 21. Some of the upregulated FGFs have been implicated in major depressive disorder (MDD) or dementia development, while the downregulated ones have been demonstrated to have protective roles in epilepsy, Parkinson's disease, Alzheimer's disease, spinal cord injury, blood-brain barrier stability, and others. CONCLUSIONS In this study we show that FGFRs and FGFs are novel inducers of inflammatory mediators in Lyme neuroborreliosis. It is likely that an unresolved, long-term (neuro)-Lyme infection can contribute to the development of other neurologic conditions in susceptible individuals either by augmenting pathogenic FGFs or by suppressing ameliorative FGFs or both.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Melissa B Pattison
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
27
|
One-step metal affinity purification of recombinant hFGF19 without using tags. Protein Expr Purif 2023; 201:106186. [DOI: 10.1016/j.pep.2022.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
28
|
Li R, Xue K, Li J. FGF13 suppresses acute myeloid leukemia by regulating bone marrow niches. Front Med 2022; 16:896-908. [PMID: 36053411 DOI: 10.1007/s11684-022-0944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 01/19/2023]
Abstract
Fibroblast growth factor 13 (FGF13) is aberrantly expressed in multiple cancer types, suggesting its essential role in tumorigenesis. Hence, we aimed to explore its definite role in the development of acute myeloid leukemia (AML) and emphasize its associations with bone marrow niches. Results showed that FGF13 was lowly expressed in patients with AML and that its elevated expression was related to prolonged overall survival (OS). Univariate and multivariate Cox regression analyses identified FGF13 as an independent prognostic factor. A prognostic nomogram integrating FGF13 and clinicopathologic variables was constructed to predict 1-, 3-, and 5-year OS. Gene mutation and functional analyses indicated that FGF13 was not associated with AML driver mutations but was related to bone marrow niches. As for immunity, FGF13 was remarkably associated with T cell count, immune checkpoint genes, and cytokines. In addition, FGF13 overexpression substantially inhibited the growth and significantly induced the early apoptosis of AML cells. The xenograft study indicated that FGF13 overexpression prolonged the survival of recipient mice. Overall, FGF13 could serve as an independent prognostic factor for AML, and it was closely related to the bone marrow microenvironment.
Collapse
Affiliation(s)
- Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
29
|
Sochacka M, Karelus R, Opalinski L, Krowarsch D, Biadun M, Otlewski J, Zakrzewska M. FGF12 is a novel component of the nucleolar NOLC1/TCOF1 ribosome biogenesis complex. Cell Commun Signal 2022; 20:182. [PMID: 36411431 PMCID: PMC9677703 DOI: 10.1186/s12964-022-01000-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Among the FGF proteins, the least characterized superfamily is the group of fibroblast growth factor homologous factors (FHFs). To date, the main role of FHFs has been primarily seen in the modulation of voltage-gated ion channels, but a full picture of the function of FHFs inside the cell is far from complete. In the present study, we focused on identifying novel FGF12 binding partners to indicate its intracellular functions. Among the identified proteins, a significant number were nuclear proteins, especially RNA-binding proteins involved in translational processes, such as ribosomal processing and modification. We have demonstrated that FGF12 is localized to the nucleolus, where it interacts with NOLC1 and TCOF1, proteins involved in the assembly of functional ribosomes. Interactions with both NOLC1 and TCOF1 are unique to FGF12, as other FHF proteins only bind to TCOF1. The formation of nucleolar FGF12 complexes with NOLC1 and TCOF1 is phosphorylation-dependent and requires the C-terminal region of FGF12. Surprisingly, NOLC1 and TCOF1 are unable to interact with each other in the absence of FGF12. Taken together, our data link FHF proteins to nucleoli for the first time and suggest a novel and unexpected role for FGF12 in ribosome biogenesis. Video Abstract.
Collapse
Affiliation(s)
- Martyna Sochacka
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Radoslaw Karelus
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lukasz Opalinski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Daniel Krowarsch
- grid.8505.80000 0001 1010 5103Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Martyna Biadun
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jacek Otlewski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Malgorzata Zakrzewska
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
30
|
Shen KF, Yue J, Wu ZF, Wu KF, Zhu G, Yang XL, Wang ZK, Wang J, Liu SY, Yang H, Zhang CQ. Fibroblast growth factor 13 is involved in the pathogenesis of temporal lobe epilepsy. Cereb Cortex 2022; 32:5259-5272. [PMID: 35195262 DOI: 10.1093/cercor/bhac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults, with pathological mechanisms remaining to be fully elucidated. Fibroblast Growth Factor 13 (FGF13) encodes an intracellular protein involved in microtubule stabilization and regulation of voltage-gated sodium channels (VGSCs) function. FGF13 mutation has been identified in patients with inherent seizure, suggesting a potential association between FGF13 and the etiology of TLE. Here, we set to explore the pathological role of FGF13 in the etiology of TLE. RESULTS We found that the expression of FGF13 was increased in the cortical lesions and CA1 region of sclerotic hippocampus and correlated with the seizure frequency in TLE patients. Also, Fgf13 expression was increased in the hippocampus of chronic TLE mice generated by kainic acid (KA) injection. Furthermore, Fgf13 knockdown or overexpression was respectively found to attenuate or potentiate the effects of KA on axonal length, somatic area and the VGSCs-mediated current in the hippocampal neurons. CONCLUSIONS Taken together, these findings suggest that FGF13 is involved in the pathogenesis of TLE by modulating microtubule activity and neuronal excitability.
Collapse
Affiliation(s)
- Kai-Feng Shen
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Jiong Yue
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Zhi-Feng Wu
- Department of Pedatrics, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Ke-Fu Wu
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Gang Zhu
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Xiao-Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Zhong-Ke Wang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Jing Wang
- Department of Pain Management, Henan Provincial People's hospital, 7 Weiwu Road, Jinshui District, Zhengzhou 450008, China.,Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, Guangzhou 510080, China
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| |
Collapse
|
31
|
Lee KW, An YJ, Lee J, Jung YE, Ko IY, Jin J, Park JH, Lee WK, Cha K, Ko SSC, Lee JH, Yim HS. Expression and purification of intracrine human FGF 11 and study of its FGFR-dependent biological activity. J Microbiol 2022; 60:1086-1094. [PMID: 36318359 DOI: 10.1007/s12275-022-2406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Fibroblast growth factor 11 (FGF11) is one of intracrine FGFs (iFGFs), which function within cells. Unlike canonical FGFs, FGF11 remains intracellularly and plays biological roles in FGF receptor (FGFR)-independent manner. Here, we established an expression system of recombinant FGF11 proteins in E. coli and investigated whether the extracellular administration of FGF11 can activate cellular signaling. Human FGF11 has two isoforms, FGF11a and FGF11b, depending on the presence of nuclear localization sequences (NLSs) in the N-terminus. Because these two isoforms are unstable, we prepared an FGF11a-Mut by substituting three cysteine residues in the NLS with serine and FGF11b-ΔC with C-terminal truncation. The introduction of mutation in the NLS improved the solubility of FGF11 prepared from E. coli. Exogenous addition of FGF11b and FGF11b-ΔC to BALB3T3 increased cell proliferation, while FGF11a-Mut exerted no effect. FGF11b-ΔC showed higher cell proliferation activity and FGFR signaling than FGF11b. The cell-proliferating activities of FGF11b and FGF11b-ΔC were blocked by an FGFR1 inhibitor or a recombinant FGFR1, confirming the FGFR1-dependent extracellular activity of FGF11b. The analysis of circular dichroism suggested that the C-terminus of FGF11 has an α-helical structure, which may affect its interaction with FGFR1. These results suggest that the N-and C-terminus of recombinant FGF11 are involved in the activation of FGFR1. The above results provide novel insights into the function and mechanism of FGF11 that may aid the development of useful ligands for FGFR regulation.
Collapse
Affiliation(s)
- Kyeong Won Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Janet Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Ye-Eun Jung
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - In Young Ko
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, 28160, Republic of Korea
| | - Jonghwa Jin
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, 28160, Republic of Korea
| | - Ji Hoon Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, 28160, Republic of Korea
| | - Won Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, 28160, Republic of Korea
| | - Kiweon Cha
- EHLBio, Uiwang, 16006, Republic of Korea
| | - Sun-Shin Cha Ko
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea.
- Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea.
| |
Collapse
|
32
|
Woo J, Suh W, Sung JH. Hair Growth Regulation by Fibroblast Growth Factor 12 (FGF12). Int J Mol Sci 2022; 23:ijms23169467. [PMID: 36012732 PMCID: PMC9409131 DOI: 10.3390/ijms23169467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while FGF5 has the opposite effect. In this study, the regulation of the hair growth cycle by FGF12 was investigated. To observe its effect, the expression of FGF12 was downregulated in mice and outer root sheath (ORS) by siRNA transfection, while FGF12 overexpression was carried out using FGF12 adenovirus. For the results, FGF12 was primarily expressed in ORS cells with a high expression during the anagen phase of hair follicles. Knockdown of FGF12 delayed telogen-to-anagen transition in mice and decreased the hair length in vibrissae hair follicles. It also inhibited the proliferation and migration of ORS cells. On the contrary, FGF12 overexpression increased the migration of ORS cells. FGF12-overexpressed ORS cells induced the telogen-to-anagen transition in the animal model. In addition, FGF12 overexpression regulated the expression of PDGF-CC, MDK, and HB-EGF, and treatment of these factors exhibited hair growth promotion. Altogether, FGF12 promoted hair growth by inducing the anagen phase of hair follicles, suggesting the potential for hair loss therapy.
Collapse
Affiliation(s)
- Jiwon Woo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Wonhee Suh
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.S.); (J.-H.S.)
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- Epi Biotech Co., Ltd., Incheon 21983, Korea
- Correspondence: (W.S.); (J.-H.S.)
| |
Collapse
|
33
|
Nandakumar M, Moin ASM, Ramanjaneya M, Qaissi AA, Sathyapalan T, Atkin SL, Butler AE. Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes Obes Metab 2022; 24:1483-1497. [PMID: 35415885 DOI: 10.1111/dom.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION There is evidence that fibroblast growth factor (FGF) levels may be implicated in hypoglycaemia, with FGF19 being a potential contributor to insulin-independent pathways driving postprandial hypoglycaemia following bariatric surgery and basic FGF (FGF2) being elevated following mild hypoglycaemia occurring after the glucose tolerance test. However, their response following severe iatrogenic hypoglycaemia is unknown and therefore this pilot exploratory study was undertaken. METHODS A case-control study of aged-matched type 2 diabetes (T2D; n = 23) and control (n = 23) subjects who underwent a hyperinsulinaemic clamp, initially to euglycaemia in T2D (5 mmol/L; 90 mg/dl), and then to hypoglycaemia (<2 mmol/L; <36 mg/dl) with subsequent follow-up time course to 24 h. FGF and FGF receptor proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. RESULTS At baseline, FGF12 (p = .006) was higher and FGF20 (p = .004) was lower in T2D versus controls. At hypoglycaemia, FGF7 was lower in T2D. Post-hypoglycaemic levels of FGF18, FGF19, FGF20 and FGF23 were lower while FGF12 and FGF16 were higher in T2D versus control at different time points. No differences between T2D and controls were seen for FGF1, FGF2, FGF4, FGF6, FGF8, FGF9, FGF10, FGF21 or any of the FGF receptors. At 24 h post-hypoglycaemia, FGF20 (p = .01) differed between controls and T2D, while the levels for the other proteins measured returned to baseline. None of the FGF proteins altered from baseline to euglycaemia when clamped in T2D subjects. FGF23 negatively correlated with fasting blood glucose, but no FGFs correlated with body mass index in T2D. CONCLUSION Severe transient hypoglycaemia modulated FGF7, 16, 19, 20 and 23 (known to be associated with diabetes), together with FGF18 and 12, not previously reported to be associated with diabetes but that may be important in the pathophysiology of hypoglycaemia; FGF20 remained low at 24 h. Taken together, these data suggest that recurrent hypoglycaemia may contribute to the development of complications through changes in FGF proteins.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Al Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
34
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
35
|
Guthrie G, Vonderohe C, Burrin D. Fibroblast growth factor 15/19 expression, regulation, and function: An overview. Mol Cell Endocrinol 2022; 548:111617. [PMID: 35301051 PMCID: PMC9038700 DOI: 10.1016/j.mce.2022.111617] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Since the discovery of fibroblast growth factor (FGF)-19 over 20 years ago, our understanding of the peptide and its role in human biology has moved forward significantly. A member of a superfamily of paracrine growth factors regulating embryonic development, FGF19 is unique in that it is a dietary-responsive endocrine hormone linked with bile acid homeostasis, glucose and lipid metabolism, energy expenditure, and protein synthesis during the fed to fasted state. FGF19 achieves this through targeting multiple tissues and signaling pathways within those tissues. The diverse functional capabilities of FGF19 is due to the unique structural characteristics of the protein and its receptor binding in various cell types. This review will cover the current literature on the protein FGF19, its target receptors, and the biological pathways they target through unique signaling cascades.
Collapse
Affiliation(s)
- Greg Guthrie
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Caitlin Vonderohe
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States.
| |
Collapse
|
36
|
Kang HR, Seong MS, Yim HS, Lee JH, Cha SH, Cheong J. Fibroblast growth factor 11 inhibits foot-and-mouth disease virus gene expression and replication in vitro. J Vet Med Sci 2022; 84:726-733. [PMID: 35387954 PMCID: PMC9177392 DOI: 10.1292/jvms.21-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes highly contagious disease of cloven-hoofed animals such as cattle, swine, and sheep. Although FMD vaccine is the traditional way to protect against the disease, the use of FMD vaccines to protect early infection is limited. The alternative strategy of applying antiviral agents is required to control the spread of FMDV in outbreak situations. Fibroblast growth factor 11 (FGF11) is a member of the intracellular FGF. Here, we identified the inhibitory effect of FGF11 on FMDV gene expression through the transcriptional and translational regulation. For the quantitative analysis of FMDV transcription/translation level, we firstly constructed a plasmid reporter system (FMDV five prime untranslated region (5′ UTR) -luci) conjugating luciferase encoding gene with FMDV 5′ UTR region, which is a non-coding region to control FMDV transcription/translation and includes cis-acting replication element (CRE) and internal ribosome entry site (IRES). FGF11 decreased the gene expression of FMDV 5′ UTR-luci reporter in a dose-dependent manner. We further confirmed the inhibitory function of FGF11 on FMDV gene expression a replication in the FMDV-infected pig cells. FGF11 expression inhibited RNA production of FMDV RNA polymerase 3D gene in the FMDV-infected cells. In addition, while FMDV cell infection induced cytopathic effect (CPE) within 24 hr, FGF11 expression dramatically repressed CPE at the basal level. These results indicate that FGF11 inhibits FMDV gene expression and replication in vitro, implicating to provide intervention strategy for FMDV pathogenesis and transmission.
Collapse
Affiliation(s)
- Hyo Rin Kang
- Department of Molecular Biology, Pusan National University
| | - Mi So Seong
- Department of Molecular Biology, Pusan National University
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology
| | - Sang Ho Cha
- Foot-and-Mouth Disease Research Division, Animal and Plant Quarantine Agency
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University
| |
Collapse
|
37
|
The IGSF1, Wnt5a, FGF14, and ITPR1 Gene Expression and Prognosis Hallmark of Prostate Cancer. Rep Biochem Mol Biol 2022; 11:44-53. [PMID: 35765527 PMCID: PMC9208564 DOI: 10.52547/rbmb.11.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/11/2023]
Abstract
Background Prostate cancer is considered as the second leading cause of cancer related death in men worldwide and the third frequent cancer among Iranian men. Despite the use of PSA as the only biomarker for early diagnosis of prostate cancer, its application in clinical settings is under debate. Therefore, the introduction of new molecular markers for early detection of prostate cancer is needed. Methods In the present study we intended to evaluate the expression of IGSF1, Wnt5a, FGF14, and ITPR1 in prostate cancer specimens by real time PCR. Biopsy samples of 40 prostate cancer cases and 41 healthy Iranian men were compared to determine the relative gene expression of IGSF1, Wnt5a, FGF14, and ITPR1 by real time PCR. Results Our results showed that Wnt5a, FGF14, and IGSF1 were significantly overexpressed in the prostate cancer patients while the mean relative expression of ITPR1 showed a significant decrease in PCa samples compared to healthy controls. Conclusion According to results of the present study, the combination panel of IGSF1, Wnt5a, FGF14, and ITPR1 genes could be considered as potential genetic markers for prostate cancer diagnosis. However further studies on larger populations and investigating the clinicopathological relevance of these genes is needed.
Collapse
|
38
|
The canonical FGF-FGFR signaling system at the molecular level. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Extracellular signaling molecules, among them the fibroblast growth factors (FGFs), enable cells to communicate with neighboring cells. Such signaling molecules that receive and transmit a signal require specific tyrosine kinase receptors located at the cell surface (fibroblast growth factor receptors, FGFRs). The binding of a signaling molecule to its specific receptor results in receptor dimerization and conformational changes in the cytoplasmic part of the receptor. The conformational changes lead to trans-autophosphorylation of the tyrosine kinase domains of the receptors and subsequently to induction of several downstream signaling pathways and expression of appropriate genes. The signaling pathways activated by FGFs control and coordinate cell behaviors such as cell division, migration, differentiation, and cell death. FGFs and their transmembrane receptors are widely distributed in different tissues and participate in fundamental processes during embryonic, fetal, and adult human life. The human FGF/FGFR family comprises 22 ligands and 4 high affinity receptors. In addition, FGFs bind to low affinity receptors, heparan sulfate proteoglycans at the cell surface. The availability of appropriate ligand/receptor pair, combined with the co-receptor, initiates signaling. Inappropriate FGF/FGFR signaling can cause skeletal disorders, primarily dwarfism, craniofacial malformation syndromes, mood disorders, metabolic disorders, and Kallman syndrome. In addition, aberrations in FGF/FGFR signaling have already been reported in several types of malignant diseases. Knowledge about the molecular mechanisms of FGF/FGFR activation and signaling is necessary to understand the basis of these diseases.
Collapse
|
39
|
Bao Y, Gabrielpillai J, Dietrich J, Zarbl R, Strieth S, Schröck F, Dietrich D. Fibroblast growth factor (FGF), FGF receptor (FGFR), and cyclin D1 (CCND1) DNA methylation in head and neck squamous cell carcinomas is associated with transcriptional activity, gene amplification, human papillomavirus (HPV) status, and sensitivity to tyrosine kinase inhibitors. Clin Epigenetics 2021; 13:228. [PMID: 34933671 PMCID: PMC8693503 DOI: 10.1186/s13148-021-01212-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Dysregulation of fibroblast growth factor receptor (FGFR) signaling pathway has been observed in head and neck squamous cell carcinoma (HNSCC) and is a promising therapeutic target for selective tyrosine kinase inhibitors (TKIs). Potential predictive biomarkers for response to FGFR-targeted therapies are urgently needed. Understanding the epigenetic regulation of FGF pathway related genes, i.e. FGFRs, FGFs, and CCND1, could enlighten the way towards biomarker-selected FGFR-targeted therapies. Methods We performed DNA methylation analysis of the encoding genes FGFR1, FGFR2, FGFR3, FGFR4, FGF1-14, FGF16-23, and CCND1 at single CpG site resolution (840 CpG sites) employing The Cancer Genome Research Atlas (TCGA) HNSCC cohort comprising N = 530 tumor tissue and N = 50 normal adjacent tissue samples. We correlated DNA methylation to mRNA expression with regard to human papilloma virus (HPV) and gene amplification status. Moreover, we investigated the correlation of methylation with sensitivity to the selective FGFR inhibitors PD 173074 and AZD4547 in N = 40 HPV(−) HNSCC cell lines. Results We found sequence-contextually nuanced CpG methylation patterns in concordance with epigenetically regulated genes. High methylation levels were predominantly found in the promoter flank and gene body region, while low methylation levels were present in the central promoter region for most of the analyzed CpG sites. FGFRs, FGFs, and CCND1 methylation differed significantly between tumor and normal adjacent tissue and was associated with HPV and gene amplification status. CCND1 promoter methylation correlated with CCND1 amplification. For most of the analyzed CpG sites, methylation levels correlated to mRNA expression in tumor tissue. Furthermore, we found significant correlations of DNA methylation of specific CpG sites with response to the FGFR1/3–selective inhibitors PD 173074 and AZD4547, predominantly within the transcription start site of CCND1. Conclusions Our results suggest an epigenetic regulation of CCND1, FGFRs, and FGFs via DNA methylation in HNSCC and warrants further investigation of DNA methylation as a potential predictive biomarker for response to selective FGFR inhibitors in clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01212-4.
Collapse
Affiliation(s)
- Yilin Bao
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany.,Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jennis Gabrielpillai
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Romina Zarbl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Friederike Schröck
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
40
|
Chioni AM, Grose RP. Biological Significance and Targeting of the FGFR Axis in Cancer. Cancers (Basel) 2021; 13:5681. [PMID: 34830836 PMCID: PMC8616401 DOI: 10.3390/cancers13225681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| |
Collapse
|
41
|
Yu H, Wang H, Qie A, Wang J, Liu Y, Gu G, Yang J, Zhang H, Pan W, Tian Z, Wang C. FGF13 enhances resistance to platinum drugs by regulating hCTR1 and ATP7A via a microtubule-stabilizing effect. Cancer Sci 2021; 112:4655-4668. [PMID: 34533854 PMCID: PMC8586689 DOI: 10.1111/cas.15137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Platinum‐based regimens are the most widely used chemotherapy regimens, but cancer cells often develop resistance, which impedes therapy outcome for patients. Previous studies have shown that fibroblast growth factor 13 (FGF13) is associated with resistance to platinum drugs in HeLa cells. However, the mechanism and universality of this effect have not been clarified. Here, we found that FGF13 was associated with poor platinum‐based chemotherapy outcomes in a variety of cancers, such as lung, endometrial, and cervical cancers, through bioinformatics analysis. We then found that FGF13 simultaneously regulates the expression and distribution of hCTR1 and ATP7A in cancer cells, causes reduced platinum influx, and promotes platinum sequestration and efflux upon cisplatin exposure. We subsequently observed that FGF13‐mediated platinum resistance requires the microtubule‐stabilizing effect of FGF13. Only overexpression of FGF13 with the ‐SMIYRQQQ‐ tubulin‐binding domain could induce the platinum resistance effect. This phenomenon was also observed in SK‐MES‐1 cells, KLE cells, and 5637 cells. Our research reveals the mechanism of FGF13‐induced platinum drug resistance and suggests that FGF13 can be a sensibilization target and prognostic biomarker for chemotherapy.
Collapse
Affiliation(s)
- Hang Yu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Handong Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Anran Qie
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaqi Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hanqiu Zhang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wensen Pan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
42
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
43
|
Zhou M, Chen J, Meng K, Zhang Y, Zhang M, Lu P, Feng Y, Huang M, Dong Q, Li X, Tian H. Production of bioactive recombinant human fibroblast growth factor 12 using a new transient expression vector in E. coli and its neuroprotective effects. Appl Microbiol Biotechnol 2021; 105:5419-5431. [PMID: 34244814 DOI: 10.1007/s00253-021-11430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
In recent years, an increasing number of studies have shown that fibroblast growth factor 12 (FGF12) plays important roles in regulating neural development and function. Importantly, changes of FGF12 expression are thought to be related to the pathophysiology of many neurological diseases. However, little research has been performed to explore the protective effect of FGF12 on nerve damage. This study aims to explore its neuroprotective effects using our recombinant humanized FGF12 (rhFGF12). The hFGF12 gene was cloned and ligated into an expression vector to construct a recombinant plasmid pET-3a-hFGF12. Single colonies were screened to obtain high expression engineering strains, and fermentation and purification protocols for rhFGF12 were designed and optimized. The biological activities and related mechanisms of rhFGF12 were investigated by MTT assay using NIH3T3 and PC12 cell lines. The in vitro neurotoxicity model of H2O2-induced oxidative injury in PC12 cells was established to explore the protective effects of rhFGF12. The results indicate that the beneficial effects of rhFGF12 were most likely achieved by promoting cell proliferation and reducing apoptosis. Moreover, a transgenic zebrafish (islet) with strong GFP fluorescence in the motor neurons of the hindbrain was used to establish a central injury model caused by mycophenolate mofetil (MMF). The results suggested that rhFGF12 could ameliorate central injury induced by MMF in zebrafish. In conclusion, we have established an efficient method to express and purify active rhFGF12 using an Escherichia coli expression system. Besides, rhFGF12 plays a protective effect of on nerve damage, and it provides a promising therapeutic approach for nerve injury. KEY POINTS: • Effective expression and purification of bioactive rhFGF12 protein in E. coli. • ERK/MAPK pathway is involved in rhFGF12-stimulated proliferation on PC12 cells. • The rhFGF12 has the neuroprotective effects by inhibiting apoptosis.
Collapse
Affiliation(s)
- Mi Zhou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kuikui Meng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meng Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Panyu Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongjun Feng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
44
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021; 12:675725. [PMID: 34234672 PMCID: PMC8255968 DOI: 10.3389/fphar.2021.675725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with severe disability and adverse effects on life quality. In PD, motor dysfunction can occur, such as quiescence, muscle stiffness, and postural instability. PD is also associated with autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The formation of the Lewy body is associated with the misfolding of α-synuclein, which becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD is mainly treated with drugs that increase dopamine concentration or directly stimulate dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins strongly associated with neurodegenerative diseases such as PD. FGF and its receptor (FGFR) play an essential role in the development and maintenance of the nervous system as well as in neuroinflammation and have been shown to improve the survival rate of dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in the pathological process of PD and related signaling pathways, involving the development and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow down or prevent the potential of PD.
Collapse
Affiliation(s)
- Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
46
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
47
|
Velíšková J, Marra C, Liu Y, Shekhar A, Park DS, Iatckova V, Xie Y, Fishman GI, Velíšek L, Goldfarb M. Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying the early infantile epileptic encephalopathy 47 gain-of-function FHF1(FGF12) missense mutation. Epilepsia 2021; 62:1546-1558. [PMID: 33982289 DOI: 10.1111/epi.16916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Fibroblast growth factor homologous factors (FHFs) are brain and cardiac sodium channel-binding proteins that modulate channel density and inactivation gating. A recurrent de novo gain-of-function missense mutation in the FHF1(FGF12) gene (p.Arg52His) is associated with early infantile epileptic encephalopathy 47 (EIEE47; Online Mendelian Inheritance in Man database 617166). To determine whether the FHF1 missense mutation is sufficient to cause EIEE and to establish an animal model for EIEE47, we sought to engineer this mutation into mice. METHODS The Arg52His mutation was introduced into fertilized eggs by CRISPR (clustered regularly interspaced short palindromic repeats) editing to generate Fhf1R52H /F+ mice. Spontaneous epileptiform events in Fhf1R52H /+ mice were assessed by cortical electroencephalography (EEG) and video monitoring. Basal heart rhythm and seizure-induced arrhythmia were recorded by electrocardiography. Modulation of cardiac sodium channel inactivation by FHF1BR52H protein was assayed by voltage-clamp recordings of FHF-deficient mouse cardiomyocytes infected with adenoviruses expressing wild-type FHF1B or FHF1BR52H protein. RESULTS All Fhf1R52H /+ mice experienced seizure or seizurelike episodes with lethal ending between 12 and 26 days of age. EEG recordings in 19-20-day-old mice confirmed sudden unexpected death in epilepsy (SUDEP) as severe tonic seizures immediately preceding loss of brain activity and death. Within 2-53 s after lethal seizure onset, heart rate abruptly declined from 572 ± 16 bpm to 108 ± 15 bpm, suggesting a parasympathetic surge accompanying seizures that may have contributed to SUDEP. Although ectopic overexpression of FHF1BR52H in cardiomyocytes induced a 15-mV depolarizing shift in voltage of steady-state sodium channel inactivation and slowed the rate of channel inactivation, heart rhythm was normal in Fhf1R52H /+ mice prior to seizure. SIGNIFICANCE The Fhf1 missense mutation p.Arg52His induces epileptic encephalopathy with full penetrance in mice. Both Fhf1 (p.Arg52His) and Scn8a (p.Asn1768Asp) missense mutations enhance sodium channel Nav 1.6 currents and induce SUDEP with bradycardia in mice, suggesting an FHF1/Nav 1.6 functional axis underlying altered brain sodium channel gating in epileptic encephalopathy.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Yue Liu
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Vasilisa Iatckova
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Ying Xie
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| |
Collapse
|
48
|
Yang QQ, Zhai YQ, Wang HF, Cai YC, Ma XY, Yin YQ, Li YD, Zhou GM, Zhang X, Hu G, Zhou JW. Nuclear isoform of FGF13 regulates post-natal neurogenesis in the hippocampus through an epigenomic mechanism. Cell Rep 2021; 35:109127. [PMID: 34010636 DOI: 10.1016/j.celrep.2021.109127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/13/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
The hippocampus is one of two niches in the mammalian brain with persistent neurogenesis into adulthood. The neurogenic capacity of hippocampal neural stem cells (NSCs) declines with age, but the molecular mechanisms of this process remain unknown. In this study, we find that fibroblast growth factor 13 (FGF13) is essential for the post-natal neurogenesis in mouse hippocampus, and FGF13 deficiency impairs learning and memory. In particular, we find that FGF13A, the nuclear isoform of FGF13, is involved in the maintenance of NSCs and the suppression of neuronal differentiation during post-natal hippocampal development. Furthermore, we find that FGF13A interacts with ARID1B, a unit of Brahma-associated factor chromatin remodeling complex, and suppresses the expression of neuron differentiation-associated genes through chromatin modification. Our results suggest that FGF13A is an important regulator for maintaining the self-renewal and neurogenic capacity of NSCs in post-natal hippocampus, revealing an epigenomic regulatory function of FGFs in neurogenesis.
Collapse
Affiliation(s)
- Qiao-Qiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ying-Qi Zhai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hai-Fang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Chen Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yue Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Dong Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Min Zhou
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Xu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China; Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
49
|
Shariati L, Esmaeili Y, Javanmard SH, Bidram E, Amini A. Organoid Technology: Current Standing and Future Perspectives. STEM CELLS (DAYTON, OHIO) 2021; 39:1625-1649. [PMID: 33786925 DOI: 10.1002/stem.3379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments. Likewise, emerging this technology has improved the chance of translatability of drugs for pre-clinical therapies and mimicking the complexity of organs, while it proposes numerous approaches for human disease modeling, tissue engineering, drug development, diagnosis, and regenerative medicine. In this review, we outline the past/present organoid technology and summarize its faithful applications, then, we discuss the challenges and limitations encountered by 3D organoids. In the end, we offer the human organoids as basic mechanistic infrastructure for "human modelling" systems to prescribe personalized medicines. © AlphaMed Press 2021 SIGNIFICANCE STATEMENT: This concise review concerns about organoids, available methods for in vitro organoid formation and different types of human organoid models. We, then, summarize biological approaches to improve 3D organoids complexity and therapeutic potentials of organoids. Despite the existing incomprehensive review articles in literature that examine partial aspects of the organoid technology, the present review article comprehensively and critically presents this technology from different aspects. It effectively provides a systematic overview on the past and current applications of organoids and discusses the future perspectives and suggestions to improve this technology and its applications.
Collapse
Affiliation(s)
- Laleh Shariati
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Amini
- Department of Mechanical Engineering, Australian College of Kuwait, Mishref, Safat, Kuwait.,Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
50
|
FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13061360. [PMID: 33802841 PMCID: PMC8002748 DOI: 10.3390/cancers13061360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary As the most common primary liver cancer, HCC is a tricky cancer resistant to systemic therapies. The fibroblast growth factor family and its receptors are gaining more and more attention in various cancers. Noticing an explosion in the number of studies about aberrant FGF/FGFR signaling in HCC being studied, we were encouraged to summarize them. This review discusses how FGF/FGFR signaling influences HCC development and its implications in HCC prediction and target treatment, and combination treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ranking third in cancer deaths worldwide. Over the last decade, several studies have emphasized the development of tyrosine kinase inhibitors (TKIs) to target the aberrant pathways in HCC. However, the outcomes are far from satisfactory due to the increasing resistance and adverse effects. The family of fibroblast growth factor (FGF) and its receptors (FGFR) are involved in various biological processes, including embryogenesis, morphogenesis, wound repair, and cell growth. The aberrant FGF/FGFR signaling is also observed in multiple cancers, including HCC. Anti-FGF/FGFR provides delightful benefits for cancer patients, especially those with FGF signaling alteration. More and more multi-kinase inhibitors targeting FGF signaling, pan-FGFR inhibitors, and selective FGFR inhibitors are now under preclinical and clinical investigation. This review summarizes the aberrant FGF/FGFR signaling in HCC initiating, development and treatment status, and provide new insights into the treatment of HCC.
Collapse
|