1
|
Chiang SK, Sin MY, Lin JW, Siregar M, Valdez G, Chen YH, Chung TK, Walzem RL, Chang LC, Chen SE. 25-Hydroxycholecalciferol Improves Cardiac Metabolic Adaption, Mitochondrial Biogenetics, and Redox Status to Ameliorate Pathological Remodeling and Functional Failure in Obese Chickens. Antioxidants (Basel) 2024; 13:1426. [PMID: 39594567 PMCID: PMC11590958 DOI: 10.3390/antiox13111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Broiler breeder hens allowed ad libitum (Ad) feed intake developed obesity and cardiac pathogenesis and thereby were susceptible to sudden death. A supplement of 69 µg 25-hydroxycholecalciferol (25-OH-D3)/kg feed rescued the livability of feed-restricted (R) and Ad-hens (mortality; 6.7% vs. 8.9% and 31.1% vs. 48.9%). Necropsy with the surviving counterparts along the time course confirmed alleviation of myocardial remodeling and functional failure by 25-OH-D3, as shown by BNP and MHC-β expressions, pathological hypertrophy, and cardiorespiratory responses (p < 0.05). 25-OH-D3 mitigated cardiac deficient bioenergetics in Ad-hens by rescuing PGC-1α activation, mitochondrial biogenesis, dynamics, and electron transport chain complex activities, and metabolic adaptions in glucose oxidation, pyruvate/lactate interconversion, TCA cycle, and β-oxidation, as well as in TG and ceramide accumulation to limit lipotoxic development (p < 0.05). Supplemental 25-OH-D3 also sustained Nrf2 activation and relieved MDA accumulation, protein carbonylation, and GSH depletion to potentiate cell survival in the failing heart (p < 0.05). Parts of the redox amendments were mediated via lessened blood hematocrit and heme metabolism, and improved iron status and related gene regulations (p < 0.05). In conclusion, 25-OH-D3 ameliorates cardiac pathological remodeling and functional compromise to rescue the livability of obese hens through metabolic flexibility and mitochondrial bioenergetics, and by operating at antioxidant defense, and heme and iron metabolism, to maintain redox homeostasis and sustain cell viability.
Collapse
Affiliation(s)
- Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Mei-Ying Sin
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Jun-Wen Lin
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Maraddin Siregar
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Gilmour Valdez
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Yu-Hui Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
| | - Thau Kiong Chung
- DSM Nutritional Products Asia Pacific, Mapletree Business City, Singapore 117440, Singapore;
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA;
| | - Lin-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan;
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 41354, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (S.-K.C.); (J.-W.L.); (M.S.); (G.V.); (Y.-H.C.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
2
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
3
|
Garcia CK, Gambino BJ, Robinson GP, Rua MT, Alzahrani JM, Clanton TL. Delayed metabolic disturbances in the myocardium after exertional heat stroke: contrasting effects of exertion and thermal load. J Appl Physiol (1985) 2023; 135:1186-1198. [PMID: 37795530 PMCID: PMC10979828 DOI: 10.1152/japplphysiol.00372.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies report higher risks of cardiovascular disease in humans exposed to heat stroke earlier in life. Previously, we explored mechanistic links between heat stroke and developing cardiac abnormalities using a preclinical mouse model of exertional heat stroke (EHS). Profound metabolic abnormalities developed in the ventricles of females but not males after 2 wk of recovery. Here we tested whether this lack of response in males could be attributed to the lower exercise performances or reduced thermal loads they experienced with the same running protocol. We systematically altered environmental temperature (Te) during EHS to manipulate heat exposure and exercise performance in the males. Three groups of adult C57BL/6 male mice were studied: "EHS-34" (Te = 34°C), "EHS-41" (Te = 41°C), and "EHS-39.5" (Te = 39.5°C). Mice ran until symptom limitation (unconsciousness), reaching max core temperature (Tc,max). After a 2-wk recovery, the mice were euthanized, and the ventricles were removed for untargeted metabolomics. Results were compared against age-matched nonexercise controls. The EHS-34 mice greatly elevated their exercise performance but reached lower Tc,max and lower thermal loads. The EHS-41 mice exhibited equivalent thermal loads, exercise times, and Tc,max compared with EHS-39.5. The ventricles from EHS-34 mice exhibited the greatest metabolic disturbances in the heart, characterized by shifts toward glucose metabolism, reductions in acylcarnitines, increased amino acid metabolites, elevations in antioxidants, altered TCA cycle flux, and increased xenobiotics. In conclusion, delayed metabolic disturbances following EHS in male myocardium appear to be greatly amplified by higher levels of exertion in the heat, even with lower thermal loads and max core temperatures.NEW & NOTEWORTHY Epidemiological data demonstrate greater cardiovascular risk in patients with previous heat stroke exposure. Using a preclinical mouse model of exertional heat stroke, male mice were exposed to one of three environmental temperatures (Te) during exercise. Paradoxically, after 2 wk, the mice in the lowest Te, exhibiting the largest exercise response and lowest heat load, had the greatest ventricular metabolic disturbances. Metabolic outcomes resemble developing left ventricular hypertrophy or stress-induced heart disease.
Collapse
Affiliation(s)
- Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Bryce J Gambino
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Gerard P Robinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Michael T Rua
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Jamal M Alzahrani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
4
|
Ottappilakkil H, Babu S, Balasubramanian S, Manoharan S, Perumal E. Fluoride Induced Neurobehavioral Impairments in Experimental Animals: a Brief Review. Biol Trace Elem Res 2023; 201:1214-1236. [PMID: 35488996 DOI: 10.1007/s12011-022-03242-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
Fluoride is one of the major toxicants in the environment and is often found in drinking water at higher concentrations. Living organisms including humans exposed to high fluoride levels are found to develop mild-to-severe detrimental pathological conditions called fluorosis. Fluoride can cross the hematoencephalic barrier and settle in various brain regions. This accumulation affects the structure and function of both the central and peripheral nervous systems. The neural ultrastructure damages are reflected in metabolic and cognitive activities. Hindrances in synaptic plasticity and signal transmission, early neuronal apoptosis, functional alterations of the intercellular signaling pathway components, improper protein synthesis, dyshomeostasis of the transcriptional and neurotrophic factors, oxidative stress, and inflammatory responses are accounted for the fluoride neurotoxicity. Fluoride causes a decline in brain functions that directly influence the overall quality of life in both humans and animals. Animal studies are widely used to explore the etiology of fluoride-induced neurotoxicity. A good number of these studies support a positive correlation between fluoride intake and toxicity phenotypes closely associated with neurotoxicity. However, the experimental dosages highly surpass the normal environmental concentrations and are difficult to compare with human exposures. The treatment procedures are highly dependent on the dosage, duration of exposure, sex, and age of specimens among other factors which make it difficult to arrive at general conclusions. Our review aims to explore fluoride-induced neuronal damage along with associated histopathological, behavioral, and cognitive effects in experimental models. Furthermore, the correlation of various molecular mechanisms upon fluoride intoxication and associated neurobehavioral deficits has been discussed. Since there is no well-established mechanism to prevent fluorosis, phytochemical-based alleviation of its characteristic indications has been proposed as a possible remedial measure.
Collapse
Affiliation(s)
| | - Srija Babu
- Bharathiar University, Coimbatore, Tamilnadu, India
| | | | | | | |
Collapse
|
5
|
Murray KO, Brant JO, Kladde MP, Clanton TL. Long-term epigenetic and metabolomic changes in the mouse ventricular myocardium after exertional heat stroke. Physiol Genomics 2022; 54:486-500. [PMID: 36215393 PMCID: PMC9705024 DOI: 10.1152/physiolgenomics.00147.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence from human epidemiological studies suggests that exertional heat stroke (EHS) results in an elevated risk of long-term cardiovascular and systemic disease. Previous results using a preclinical mouse model of EHS demonstrated severe metabolic imbalances in ventricular myocardium developing at 9-14 days of recovery. Whether this resolves over time is unknown. We hypothesized that the long-term effects of EHS on the heart reflect retained maladaptive epigenetic responses. In this study, we evaluated genome-wide DNA methylation, RNA-Seq, and metabolomic profiles of the left ventricular myocardium in female C57BL/6 mice, 30 days after EHS (exercise in 37.5°C; n = 7-8), compared with exercise controls. EHS mice ran to loss of consciousness, reaching core temperatures of 42.4 ± 0.2°C. All mice recovered quickly. After 30 days, the left ventricles were rapidly frozen for DNA methyl sequencing, RNA-Seq, and untargeted metabolomics. Ventricular DNA from EHS mice revealed >13,000 differentially methylated cytosines (DMCs) and >900 differentially methylated regions (DMRs; ≥5 DMCs with ≤300 bp between each CpG). Pathway analysis using DMRs revealed alterations in genes regulating basic cell functions, DNA binding, transcription, and metabolism. Metabolomics and mRNA expression revealed modest changes that are consistent with a return to homeostasis. Methylation status did not predict RNA expression or metabolic state at 30 days. We conclude that EHS induces a sustained DNA methylation memory lasting over 30 days of recovery, but ventricular gene expression and metabolism return to a relative homeostasis at rest. Such long-lasting alterations to the DNA methylation landscape could alter responsiveness to environmental or clinical challenges later in life.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Jason O Brant
- Department of Biostatistics, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Ferroptosis: The Potential Target in Heart Failure with Preserved Ejection Fraction. Cells 2022; 11:cells11182842. [PMID: 36139417 PMCID: PMC9496758 DOI: 10.3390/cells11182842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Ferroptosis is a recently identified cell death characterized by an excessive accumulation of iron-dependent reactive oxygen species (ROS) and lipid peroxides. Intracellular iron overload can not only cause damage to macrophages, endothelial cells, and cardiomyocytes through responses such as lipid peroxidation, oxidative stress, and inflammation, but can also affect cardiomyocyte Ca2+ handling, impair excitation–contraction coupling, and play an important role in the pathological process of heart failure with preserved ejection fraction (HFpEF). However, the mechanisms through which ferroptosis initiates the development and progression of HFpEF have not been established. This review explains the possible correlations between HFpEF and ferroptosis and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
7
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
8
|
An L, Chopp M, Zacharek A, Shen Y, Chen Z, Qian Y, Li W, Landschoot-Ward J, Liu Z, Venkat P. Cardiac Dysfunction in a Mouse Vascular Dementia Model of Bilateral Common Carotid Artery Stenosis. Front Cardiovasc Med 2021; 8:681572. [PMID: 34179145 PMCID: PMC8225957 DOI: 10.3389/fcvm.2021.681572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Cardiac function is associated with cognitive function. Previously, we found that stroke and traumatic brain injury evoke cardiac dysfunction in mice. In this study, we investigate whether bilateral common carotid artery stenosis (BCAS), a model that induces vascular dementia (VaD) in mice, induces cardiac dysfunction. Methods: Late-adult (6-8 months) C57BL/6J mice were subjected to sham surgery (n = 6) or BCAS (n = 8). BCAS was performed by applying microcoils (0.16 mm internal diameter) around both common carotid arteries. Cerebral blood flow and cognitive function tests were performed 21-28 days post-BCAS. Echocardiography was conducted in conscious mice 29 days after BCAS. Mice were sacrificed 30 days after BCAS. Heart tissues were isolated for immunohistochemical evaluation and real-time PCR assay. Results: Compared to sham mice, BCAS in mice significantly induced cerebral hypoperfusion and cognitive dysfunction, increased cardiac hypertrophy, as indicated by the increased heart weight and the ratio of heart weight/body weight, and induced cardiac dysfunction and left ventricular (LV) enlargement, indicated by a decreased LV ejection fraction (LVEF) and LV fractional shortening (LVFS), increased LV dimension (LVD), and increased LV mass. Cognitive deficits significantly correlated with cardiac deficits. BCAS mice also exhibited significantly increased cardiac fibrosis, increased oxidative stress, as indicated by 4-hydroxynonenal and NADPH oxidase-2, increased leukocyte and macrophage infiltration into the heart, and increased cardiac interleukin-6 and thrombin gene expression. Conclusions: BCAS in mice without primary cardiac disease provokes cardiac dysfunction, which, in part, may be mediated by increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Lulu An
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yi Shen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yu Qian
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Wei Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
9
|
Elevated levels of urine isocitrate, hydroxymethylglutarate, and formiminoglutamate are associated with arterial stiffness in Korean adults. Sci Rep 2021; 11:10180. [PMID: 33986342 PMCID: PMC8119418 DOI: 10.1038/s41598-021-89639-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Recent evidence suggests that cellular perturbations play an important role in the pathogenesis of cardiovascular diseases. Therefore, we analyzed the association between the levels of urinary metabolites and arterial stiffness. Our cross-sectional study included 330 Korean men and women. The brachial-ankle pulse wave velocity was measured as a marker of arterial stiffness. Urinary metabolites were evaluated using a high-performance liquid chromatograph-mass spectrometer. The brachial-ankle pulse wave velocity was found to be positively correlated with l-lactate, citrate, isocitrate, succinate, malate, hydroxymethylglutarate, α-ketoisovalerate, α-keto-β-methylvalerate, methylmalonate, and formiminoglutamate among men. Whereas, among women, the brachial-ankle pulse wave velocity was positively correlated with cis-aconitate, isocitrate, hydroxymethylglutarate, and formiminoglutamate. In the multivariable regression models adjusted for conventional cardiovascular risk factors, three metabolite concentrations (urine isocitrate, hydroxymethylglutarate, and formiminoglutamate) were independently and positively associated with brachial-ankle pulse wave velocity. Increased urine isocitrate, hydroxymethylglutarate, and formiminoglutamate concentrations were associated with brachial-ankle pulse wave velocity and independent of conventional cardiovascular risk factors. Our findings suggest that metabolic disturbances in cells may be related to arterial stiffness.
Collapse
|
10
|
Stamenkovic A, O'Hara KA, Nelson DC, Maddaford TG, Edel AL, Maddaford G, Dibrov E, Aghanoori M, Kirshenbaum LA, Fernyhough P, Aliani M, Pierce GN, Ravandi A. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2021; 320:H1170-H1184. [PMID: 33513080 DOI: 10.1152/ajpheart.00237.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury increases the generation of oxidized phosphatidylcholines (OxPCs), which results in cell death. However, the mechanism by which OxPCs mediate cell death and cardiac dysfunction is largely unknown. The aim of this study was to determine the mechanisms by which OxPC triggers cardiomyocyte cell death during reperfusion injury. Adult rat ventricular cardiomyocytes were treated with increasing concentrations of various purified fragmented OxPCs. Cardiomyocyte viability, bioenergetic response, and calcium transients were determined in the presence of OxPCs. Five different fragmented OxPCs resulted in a decrease in cell viability, with 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC) having the most potent cardiotoxic effect in both a concentration and time dependent manner (P < 0.05). POVPC and PONPC also caused a significant decrease in Ca2+ transients and net contraction in isolated cardiomyocytes compared to vehicle treated control cells (P < 0.05). PONPC depressed maximal respiration rate (P < 0.01; 54%) and spare respiratory capacity (P < 0.01; 54.5%). Notably, neither caspase 3 activation or TUNEL staining was observed in cells treated with either POVPC or PONPC. Further, cardiac myocytes treated with OxPCs were indistinguishable from vehicle-treated control cells with respect to nuclear high-mobility group box protein 1 (HMGBP1) activity. However, glutathione peroxidase 4 activity was markedly suppressed in cardiomyocytes treated with POVPC and PONPC coincident with increased ferroptosis. Importantly, cell death induced by OxPCs could be suppressed by E06 Ab, directed against OxPCs or by ferrostatin-1, which bound the sn-2 aldehyde of POVPC during I/R. The findings of the present study demonstrate that oxidation of phosphatidylcholines during I/R generate bioactive phospholipid intermediates that disrupt mitochondrial bioenergetics and calcium transients and provoke wide spread cell death through ferroptosis. Neutralization of OxPC with E06 or with ferrostatin-1 prevents cell death during reperfusion. Our study demonstrates a novel signaling pathway that operationally links generation of OxPC during cardiac I/R to ferroptosis. Interventions designed to target OxPCs may prove beneficial in mitigating ferroptosis during I/R injury in individuals with ischemic heart disease.NEW & NOTEWORTHY Oxidized phosphatidylcholines (OxPC) generated during reperfusion injury are potent inducers of cardiomyocyte death. Our studies have shown that OxPCs exert this effect through a ferroptotic process that can be attenuated. A better understanding of the OxPC cell death pathway can prove a novel strategy for prevention of cell death during myocardial reperfusion injury.
Collapse
Affiliation(s)
- Aleksandra Stamenkovic
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kimberley A O'Hara
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - David C Nelson
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Thane G Maddaford
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Andrea L Edel
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Graham Maddaford
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - MohamadReza Aghanoori
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Laitano O, Garcia CK, Mattingly AJ, Robinson GP, Murray KO, King MA, Ingram B, Ramamoorthy S, Leon LR, Clanton TL. Delayed metabolic dysfunction in myocardium following exertional heat stroke in mice. J Physiol 2020; 598:967-985. [PMID: 32026469 DOI: 10.1113/jp279310] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Exposure to exertional heat stroke (EHS) is associated with increased risk of long-term cardiovascular disorders in humans. We demonstrate that in female mice, severe EHS results in metabolic changes in the myocardium, emerging only after 9-14 days. This was not observed in males that were symptom-limited at much lower exercise levels and heat loads compared to females. At 14 days of recovery in females, there were marked elevations in myocardial free fatty acids, ceramides and diacylglycerols, consistent with development of underlying cardiac abnormalities. Glycolysis shifted towards the pentose phosphate and glycerol-3-phosphate dehydrogenase pathways. There was evidence for oxidative stress, tissue injury and microscopic interstitial inflammation. The tricarboxylic acid cycle and nucleic acid metabolism pathways were also negatively affected. We conclude that exposure to EHS in female mice has the capacity to cause delayed metabolic disorders in the heart that could influence long-term health. ABSTRACT Exposure to exertional heat stroke (EHS) is associated with a higher risk of long-term cardiovascular disease in humans. Whether this is a cause-and-effect relationship remains unknown. We studied the potential of EHS to contribute to the development of a 'silent' form of cardiovascular disease using a preclinical mouse model of EHS. Plasma and ventricular myocardial samples were collected over 14 days of recovery. Male and female C57bl/6J mice underwent forced wheel running for 1.5-3 h in a 37.5°C/40% relative humidity until symptom limitation, characterized by CNS dysfunction. They reached peak core temperatures of 42.2 ± 0.3°C. Females ran ∼40% longer, reaching ∼51% greater heat load. Myocardial and plasma samples (n = 8 per group) were obtained between 30 min and 14 days of recovery, analysed using metabolomics/lipidomics platforms and compared to exercise controls. The immediate recovery period revealed an acute energy substrate crisis from which both sexes recovered within 24 h. However, at 9-14 days, the myocardium of female mice developed marked elevations in free fatty acids, ceramides and diacylglycerols. Glycolytic and tricarboxylic acid cycle metabolites revealed bottlenecks in substrate flow, with build-up of intermediate metabolites consistent with oxidative stress and damage. Males exhibited only late stage reductions in acylcarnitines and elevations in acetylcarnitine. Histopathology at 14 days showed interstitial inflammation in the female hearts only. The results demonstrate that the myocardium of female mice is vulnerable to a slowly emerging metabolic disorder following EHS that may harbinger long-term cardiovascular complications. Lack of similar findings in males may reflect their lower heat exposure.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Alex J Mattingly
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Gerard P Robinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Kevin O Murray
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Michelle A King
- US Army Research Institute for Environmental Medicine, Natick, MA, USA
| | | | | | - Lisa R Leon
- US Army Research Institute for Environmental Medicine, Natick, MA, USA
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology. Int J Mol Sci 2019; 20:ijms20164068. [PMID: 31434333 PMCID: PMC6720185 DOI: 10.3390/ijms20164068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the ‘backward’ conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3′,5′-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.
Collapse
|
13
|
Bai Z, Wang Z. Genistein protects against doxorubicin-induced cardiotoxicity through Nrf-2/HO-1 signaling in mice model. ENVIRONMENTAL TOXICOLOGY 2019; 34:645-651. [PMID: 30734460 DOI: 10.1002/tox.22730] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 05/07/2023]
Abstract
Doxorubicin (DOX)-induced cardiomyopathy is a lethal disease. DOX-induced cardiotoxic effects are attributed towards increased redox status and apoptotic signaling. In this study, we show that genistein offers protection against DOX-induced cardio toxicity in the mice model. DOX-mediated increase in serum cardiac troponin and redox markers (ROS, LPO, 4-hydroxynonenal-protein adducts [HNE] levels) was significantly reduced by genistein treatment. Significantly increased TNF-α, IL-6, IL-8 expressions during DOX-induced inflammatory responses were down regulated by genistein treatment. Further, we found that genistein regulated antioxidant response through increased Nrf-2, HO-1, NQO1 protein expressions. In addition, DOX downregulated survival proteins (p-Akt, Bcl-2) with concomitant upregulation in Erk (1/2), Bax and cleaved caspase-3 expressions. The apoptotic activation was significantly downregulated by genistein treatment through suppression of apoptosis. Altogether, these findings show that genistein protects against DOX-induced cardiotoxic effects through activation of Nrf-2/HO-1 signaling.
Collapse
Affiliation(s)
- Zhifeng Bai
- Department of Cardiology, Shangqiu No 1 People's Hospital, Shangqiu, Henan, China
| | - Zhijian Wang
- Department of Cardiology, Shangqiu No 1 People's Hospital, Shangqiu, Henan, China
| |
Collapse
|
14
|
McBride S, Wei-LaPierre L, McMurray F, MacFarlane M, Qiu X, Patten DA, Dirksen RT, Harper ME. Skeletal muscle mitoflashes, pH, and the role of uncoupling protein-3. Arch Biochem Biophys 2019; 663:239-248. [PMID: 30659802 DOI: 10.1016/j.abb.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) are important cellular signaling molecules, but can cause oxidative damage if not kept within tolerable limits. An important proximal form of ROS in mitochondria is superoxide. Its production is thought to occur in regulated stochastic bursts, but current methods using mitochondrial targeted cpYFP to assess superoxide flashes are confounded by changes in pH. Accordingly, these flashes are generally referred to as 'mitoflashes'. Here we provide regulatory insights into mitoflashes and pH fluctuations in skeletal muscle, and the role of uncoupling protein-3 (UCP3). Using quantitative confocal microscopy of mitoflashes in intact muscle fibers, we show that the mitoflash magnitude significantly correlates with the degree of mitochondrial inner membrane depolarization and ablation of UCP3 did not affect this correlation. We assessed the effects of the absence of UCP3 on mitoflash activity in intact skeletal muscle fibers, and found no effects on mitoflash frequency, amplitude or duration, with a slight reduction in the average size of mitoflashes. We further investigated the regulation of pH flashes (pHlashes, presumably a component of mitoflash) by UCP3 using mitochondrial targeted SypHer (mt-SypHer) in skeletal muscle fibers. The frequency of pHlashes was significantly reduced in the absence of UCP3, without changes in other flash properties. ROS scavenger, tiron, did not alter pHlash frequency in either WT or UCP3KO mice. High resolution respirometry revealed that in the absence of UCP3 there is impaired proton leak and Complex I-driven respiration and maximal coupled respiration. Total cellular production of hydrogen peroxide (H2O2) as detected by Amplex-UltraRed was unaffected. Altogether, we demonstrate a correlation between mitochondrial membrane potential and mitoflash magnitude in skeletal muscle fibers that is independent of UCP3, and a role for UCP3 in the control of pHlash frequency and of proton leak- and Complex I coupled-respiration in skeletal muscle fibers. The differential regulation of mitoflashes and pHlashes by UCP3 and tiron also indicate that the two events, though may be related, are not identical events.
Collapse
Affiliation(s)
- S McBride
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - L Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - F McMurray
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - M MacFarlane
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - X Qiu
- Department of Biostatistics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - D A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - R T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - M-E Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
15
|
Carnosine protects cardiac myocytes against lipid peroxidation products. Amino Acids 2018; 51:123-138. [PMID: 30449006 DOI: 10.1007/s00726-018-2676-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
Endogenous histidyl dipeptides such as carnosine (β-alanine-L-histidine) form conjugates with lipid peroxidation products such as 4-hydroxy-trans-2-nonenal (HNE and acrolein), chelate metals, and protect against myocardial ischemic injury. Nevertheless, it is unclear whether these peptides protect against cardiac injury by directly reacting with lipid peroxidation products. Hence, to examine whether changes in the structure of carnosine could affect its aldehyde reactivity and metal chelating ability, we synthesized methylated analogs of carnosine, balenine (β-alanine-Nτ-methylhistidine) and dimethyl balenine (DMB), and measured their aldehyde reactivity and metal chelating properties. We found that methylation of Nτ residue of imidazole ring (balenine) or trimethylation of carnosine backbone at Nτ residue of imidazole ring and terminal amine group dimethyl balenine (DMB) abolishes the ability of these peptides to react with HNE. Incubation of balenine with acrolein resulted in the formation of single product (m/z 297), whereas DMB did not react with acrolein. In comparison with carnosine, balenine exhibited moderate acrolein quenching capacity. The Fe2+ chelating ability of balenine was higher than that of carnosine, whereas DMB lacked chelating capacity. Pretreatment of cardiac myocytes with carnosine increased the mean lifetime of myocytes superfused with HNE or acrolein compared with balenine or DMB. Collectively, these results suggest that carnosine protects cardiac myocytes against HNE and acrolein toxicity by directly reacting with these aldehydes. This reaction involves both the amino group of β-alanyl residue and the imidazole residue of L-histidine. Methylation of these sites prevents or abolishes the aldehyde reactivity of carnosine, alters its metal-chelating property, and diminishes its ability to prevent electrophilic injury.
Collapse
|
16
|
McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 2018; 125:15-24. [PMID: 29601945 DOI: 10.1016/j.freeradbiomed.2018.03.042] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory Arthritis is characterized by synovial proliferation, neovascularization and leukocyte extravasation leading to joint destruction and functional disability. Efficiency of oxygen supply to the synovium is poor due to the highly dysregulated synovial microvasculature. This along with the increased energy demands of activated infiltrating immune cells and inflamed resident cells leads to an hypoxic microenvironment and mitochondrial dysfunction. This favors an increase of reactive oxygen species, leading to oxidative damage which further promotes inflammation. In this adverse microenvironment synovial cells adapt to generate energy and switch their cell metabolism from a resting regulatory state to a highly metabolically active state which allows them to produce essential building blocks to support their proliferation. This metabolic shift results in the accumulation of metabolic intermediates which act as signaling molecules that further dictate the inflammatory response. Understanding the complex interplay between hypoxia-induced signaling pathways, oxidative stress and mitochondrial function will provide better insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Trudy McGarry
- The Department of Molecular Rheumatology, Trinity College Dublin, Ireland
| | - Monika Biniecka
- The Centre for Arthritis and Rheumatic Disease, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Douglas J Veale
- The Centre for Arthritis and Rheumatic Disease, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Ursula Fearon
- The Department of Molecular Rheumatology, Trinity College Dublin, Ireland.
| |
Collapse
|
17
|
NADP +-dependent cytosolic isocitrate dehydrogenase provides NADPH in the presence of cadmium due to the moderate chelating effect of glutathione. J Biol Inorg Chem 2018; 23:849-860. [PMID: 29923039 PMCID: PMC6060952 DOI: 10.1007/s00775-018-1581-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Cadmium (Cd2+) is toxic to living organisms because it causes the malfunction of essential proteins and induces oxidative stress. NADP+-dependent cytosolic isocitrate dehydrogenase (IDH) provides reducing energy to counteract oxidative stress via oxidative decarboxylation of isocitrate. Intriguingly, the effects of Cd2+ on the activity of IDH are both positive and negative, and to understand the molecular basis, we determined the crystal structure of NADP+-dependent cytosolic IDH in the presence of Cd2+. The structure includes two Cd2+ ions, one coordinated by active site residues and another near a cysteine residue. Cd2+ presumably inactivates IDH due to its high affinity for thiols, leading to a covalent enzyme modification. However, Cd2+ also activates IDH by providing a divalent cation required for catalytic activity. Inactivation of IDH by Cd2+ is less effective when the enzyme is activated with Cd2+ than Mg2+. Although reducing agents cannot restore activity following inactivation by Cd2+, they can maintain IDH activity by chelating Cd2+. Glutathione, a cellular sulphydryl reductant, has a moderate affinity for Cd2+, allowing IDH to be activated with residual Cd2+, unlike dithiothreitol, which has a much higher affinity. In the presence of Cd2+-consuming cellular antioxidants, cells must continually supply reductants to protect against oxidative stress. The ability of IDH to utilise Cd2+ to generate NADPH could allow cells to protect themselves against Cd2+.
Collapse
|
18
|
Balogh E, Veale DJ, McGarry T, Orr C, Szekanecz Z, Ng CT, Fearon U, Biniecka M. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Res Ther 2018; 20:95. [PMID: 29843785 PMCID: PMC5972404 DOI: 10.1186/s13075-018-1592-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/12/2018] [Indexed: 03/18/2023] Open
Abstract
Background In this study, we examined the effect of oxidative stress on cellular energy metabolism and pro-angiogenic/pro-inflammatory mechanisms of primary rheumatoid arthritis synovial fibroblast cells (RASFC) and human umbilical vein endothelial cells (HUVEC). Methods Primary RASFC and HUVEC were cultured with the oxidative stress inducer 4-hydroxy-2-nonenal (4-HNE), and extracellular acidification rate, oxygen consumption rate, mitochondrial function and pro-angiogenic/pro-inflammatory mechanisms were assessed using the Seahorse analyser, complex I–V activity assays, random mutation mitochondrial capture assays, enzyme-linked immunosorbent assays and functional assays, including angiogenic tube formation, migration and invasion. Expression of angiogenic growth factors in synovial tissue (ST) was assessed by IHC in patients with rheumatoid arthritis (RA) undergoing arthroscopy before and after administration of tumour necrosis factor inhibitors (TNFi). Results In RASFC and HUVEC, 4-HNE-induced oxidative stress reprogrammed energy metabolism by inhibiting mitochondrial basal, maximal and adenosine triphosphate-linked respiration and reserve capacity, coupled with the reduced enzymatic activity of oxidative phosphorylation complexes III and IV. In contrast, 4-HNE elevated basal glycolysis, glycolytic capacity and glycolytic reserve, paralleled by an increase in mitochondrial DNA mutations and reactive oxygen species. 4-HNE activated pro-angiogenic responses of RASFC, which subsequently altered HUVEC invasion and migration, angiogenic tube formation and the release of pro-angiogenic mediators. In vivo markers of angiogenesis (vascular endothelial growth factor, angiopoietin 2 [Ang2], tyrosine kinase receptor [Tie2]) were significantly associated with oxidative damage and oxygen metabolism in the inflamed synovium. Significant reduction in ST vascularity and Ang2/Tie2 expression was demonstrated in patients with RA before and after administration of TNFi. Conclusions Oxidative stress promotes metabolism in favour of glycolysis, an effect that may contribute to acceleration of inflammatory mechanisms and subsequent dysfunctional angiogenesis in RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1592-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emese Balogh
- Department of Rheumatology, University of Debrecen Medical and Health Science Centre, 98. Nagyerdei krt, Debrecen, Hungary
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Trudy McGarry
- Molecular Rheumatology, Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Carl Orr
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Zoltan Szekanecz
- Department of Rheumatology, University of Debrecen Medical and Health Science Centre, 98. Nagyerdei krt, Debrecen, Hungary
| | - Chin-Teck Ng
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Monika Biniecka
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
19
|
Baba SP, Zhang D, Singh M, Dassanayaka S, Xie Z, Jagatheesan G, Zhao J, Schmidtke VK, Brittian KR, Merchant ML, Conklin DJ, Jones SP, Bhatnagar A. Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice. J Mol Cell Cardiol 2018; 118:183-192. [PMID: 29627295 PMCID: PMC6205513 DOI: 10.1016/j.yjmcc.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Pathological cardiac hypertrophy is associated with the accumulation of lipid peroxidation-derived aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) and acrolein in the heart. These aldehydes are metabolized via several pathways, of which aldose reductase (AR) represents a broad-specificity route for their elimination. We tested the hypothesis that by preventing aldehyde removal, AR deficiency accentuates the pathological effects of transverse aortic constriction (TAC). We found that the levels of AR in the heart were increased in mice subjected to TAC for 2 weeks. In comparison with wild-type (WT), AR-null mice showed lower ejection fraction, which was exacerbated 2 weeks after TAC. Levels of atrial natriuretic peptide and myosin heavy chain were higher in AR-null than in WT TAC hearts. Deficiency of AR decreased urinary levels of the acrolein metabolite, 3-hydroxypropylmercapturic acid. Deletion of AR did not affect the levels of the other aldehyde-metabolizing enzyme - aldehyde dehydrogenase 2 in the heart, or its urinary product - (N-Acetyl-S-(2-carboxyethyl)-l-cystiene). AR-null hearts subjected to TAC showed increased accumulation of HNE- and acrolein-modified proteins, as well as increased AMPK phosphorylation and autophagy. Superfusion with HNE led to a greater increase in p62, LC3II formation, and GFP-LC3-II punctae formation in AR-null than WT cardiac myocytes. Pharmacological inactivation of JNK decreased HNE-induced autophagy in AR-null cardiac myocytes. Collectively, these results suggest that during hypertrophy the accumulation of lipid peroxidation derived aldehydes promotes pathological remodeling via excessive autophagy, and that metabolic detoxification of these aldehydes by AR may be essential for maintaining cardiac function during early stages of pressure overload.
Collapse
Affiliation(s)
- Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States.
| | - Deqing Zhang
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Mahavir Singh
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Sujith Dassanayaka
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Zhengzhi Xie
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Ganapathy Jagatheesan
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Jingjing Zhao
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Virginia K Schmidtke
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Kenneth R Brittian
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Michael L Merchant
- Divisions of Nephrology and Hypertension and the Institute of Molecular Cardiology, University of Louisville, Louisville, KY, United States
| | - Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Steven P Jones
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
20
|
Abstract
A well-regulated redox state is essential for normal physiological function and cellular metabolism. In most eukaryotic cells, protein cysteine thiols are most sensitive to fluctuations in the cellular redox state. Under normal physiological conditions, the cytosol has a highly reducing environment, which is due to high levels of reduced glutathione and complex system of redox enzymes that maintain glutathione in the reduced state. The reducing environment of the cytosol maintains most protein thiols in the reduced state; although some non-exposed cysteine could be present as disulfides. Upon physiological increase in cellular oxidants, such as due to growth factors, cytokines and thiol-disulfide exchange reactions, specific proteins could act as redox switches that regulate the conformation and activity of different proteins. This reversible post translational modification enables redox-sensitive dynamic changes in cell signaling and function. Physiological oxidative stress could lead to the formation of sulfenic acids, which are usually intermediate states of thiol oxidation that are converted to higher order oxidation states, intramolecular disulfides or mixed disulfides with glutathione. Such glutathiolation reactions have been found to regulate the function of several proteins involved in intracellular metabolism, signal transduction and cell structure. Excessive oxidative stress results in indiscriminate and irreversible oxidation of protein thiols, depletion of glutathione and cell death. Further elucidation of the relationship between changes in cell redox and thiol reactivity could provide a better understanding of how redox changes regulate cell function and how disruption of these relationships lead to tissue injury and dysfunction and the development of chronic diseases such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville KY, 40202.,Institute of Molecular Cardiology, University of Louisville, Louisville KY, 40202
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville KY, 40202.,Institute of Molecular Cardiology, University of Louisville, Louisville KY, 40202
| |
Collapse
|
21
|
Abstract
The heart failure accounts for the highest mortality rate all over the world. The development of preventive therapeutic approaches is still in their infancy. Owing to the extremely high energy demand of the heart, the bioenergetics pathways need to respond efficiently based on substrate availability. The metabolic regulation of such heart bioenergetics is mediated by various rate limiting enzymes involved in energy metabolism. Although all the pertinent mechanisms are not clearly understood, the progressive decline in the activity of metabolic enzymes leading to diminished ATP production is known to cause progression of the heart failure. Therefore, metabolic therapy that can maintain the appropriate activities of metabolic enzymes can be a promising approach for the prevention and treatment of the heart failure. The flavonoids that constitute various human dietary ingredients also effectively offer a variety of health benefits. The flavonoids target a variety of metabolic enzymes and facilitate effective management of the equilibrium between production and utilization of energy in the heart. This review discusses the broad impact of metabolic enzymes in the heart functions and explains how the dysregulated enzyme activity causes the heart failure. In addition, the prospects of targeting dysregulated metabolic enzymes by developing flavonoid-based metabolic approaches are discussed.
Collapse
|
22
|
Sasson S. Nutrient overload, lipid peroxidation and pancreatic beta cell function. Free Radic Biol Med 2017; 111:102-109. [PMID: 27600453 DOI: 10.1016/j.freeradbiomed.2016.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022]
Abstract
Since the landmark discovery of α,β-unsaturated 4-hydroxyalkenals by Esterbauer and colleagues most studies have addressed the consequences of the tendency of these lipid peroxidation products to form covalent adducts with macromolecules and modify cellular functions. Many studies describe detrimental and cytotoxic effects of 4-hydroxy-2E-nonenal (4-HNE) in myriad tissues and organs and many pathologies. Other studies similarly assigned unfavorable effects to 4-hydroxy-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE). Nutrient overload (e.g., hyperglycemia, hyperlipidemia) modifies lipid metabolism in cells and promotes lipid peroxidation and the generation of α,β-unsaturated 4-hydroxyalkenals. Advances glycation- and lipoxidation end products (AGEs and ALEs) have been associated with the development of insulin resistance and pancreatic beta cell dysfunction and the etiology of type 2 diabetes and its peripheral complications. Less acknowledged are genuine signaling properties of 4-hydroxyalkenals in hormetic processes that provide defense against the consequences of nutrient overload. This review addresses recent findings on such lipohormetic mechanisms that are associated with lipid peroxidation in pancreatic beta cells. This article is part of a Special Issue entitled SI: LIPID OXIDATION PRODUCTS, edited by Giuseppe Poli.
Collapse
Affiliation(s)
- Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Hebrew University Faculty of Medicine, Jerusalem 9112001, Israel.
| |
Collapse
|
23
|
Sheeran FL, Pepe S. Mitochondrial Bioenergetics and Dysfunction in Failing Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:65-80. [PMID: 28551782 DOI: 10.1007/978-3-319-55330-6_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.
Collapse
Affiliation(s)
- Freya L Sheeran
- Heart Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Melbourne, Australia. .,Department of Paediatrics, University of Melbourne, Melbourne, Australia. .,Royal Children's Hospital, Melbourne, Australia. .,Department of Cardiology, Royal Children's Hospital, 50 Flemington Road, VIC, 3052, Melbourne, Australia.
| |
Collapse
|
24
|
Dec K, Łukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wąsik A, Gutowska I. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. Biol Trace Elem Res 2017; 177:224-234. [PMID: 27787813 PMCID: PMC5418325 DOI: 10.1007/s12011-016-0871-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by the excessive intake of fluorine. Recent studies showed that fluorine is toxic to the central nervous system (CNS). There are several known mechanisms which lead to structural brain damage caused by the excessive intake of fluorine. This element is able to cross the blood-brain barrier, and it accumulates in neurons affecting cytological changes, cell activity and ion transport (e.g. chlorine transport). Additionally, fluorine changes the concentration of non-enzymatic advanced glycation end products (AGEs), the metabolism of neurotransmitters (influencing mainly glutamatergic neurotransmission) and the energy metabolism of neurons by the impaired glucose transporter-GLUT1. It can also change activity and lead to dysfunction of important proteins which are part of the respiratory chain. Fluorine also affects oxidative stress, glial activation and inflammation in the CNS which leads to neurodegeneration. All of those changes lead to abnormal cell differentiation and the activation of apoptosis through the changes in the expression of neural cell adhesion molecules (NCAM), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and MAP kinases. Excessive exposure to this element can cause harmful effects such as permanent damage of all brain structures, impaired learning ability, memory dysfunction and behavioural problems. This paper provides an overview of the fluoride neurotoxicity in juveniles and adults.
Collapse
Affiliation(s)
- K Dec
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - A Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - D Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - K Jakubczyk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - I Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - A Wąsik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, Smętna street 12, 31-343, Kraków, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland.
| |
Collapse
|
25
|
Abusarah J, Bentz M, Benabdoune H, Rondon PE, Shi Q, Fernandes JC, Fahmi H, Benderdour M. An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis. Inflamm Res 2017; 66:637-651. [PMID: 28447122 DOI: 10.1007/s00011-017-1044-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Over the years, many theories have been proposed and examined to better explain the etiology and development of osteoarthritis (OA). The characteristics of joint destruction are one of the most important aspects in disease progression. Therefore, investigating different factors and signaling pathways involved in the alteration of extracellular matrix (ECM) turnover, and the subsequent catabolic damage to cartilage holds chief importance in understanding OA development. Among these factors, reactive oxygen species (ROS) have been at the forefront of the physiological and pathophysiological OA investigation. FINDINGS In the last decades, research studies provided an enormous volume of data supporting the involvement of ROS in OA. Most interestingly, published data regarding the effect of exogenous antioxidant therapy in OA lack conclusive results from clinical trials to back up in vitro data. Accordingly, it is rational to suggest that there are other reactive species in OA that are not taken into account. Thus, our present review is focused on our current understanding of the involvement of lipid peroxidation-derived 4-hydroxynonenal (HNE) in OA. CONCLUSION Our findings, like those in the literature, illustrate the central role played by HNE in the regulation of a number of factors involved in joint homeostasis. HNE could thus be considered as an attractive therapeutic target in OA.
Collapse
Affiliation(s)
- Jamilah Abusarah
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Mireille Bentz
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Houda Benabdoune
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Patricia Elsa Rondon
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Qin Shi
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Julio C Fernandes
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Hassan Fahmi
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Mohamed Benderdour
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada.
| |
Collapse
|
26
|
Tallman KA, Kim HYH, Korade Z, Genaro-Mattos TC, Wages PA, Liu W, Porter NA. Probes for protein adduction in cholesterol biosynthesis disorders: Alkynyl lanosterol as a viable sterol precursor. Redox Biol 2017; 12:182-190. [PMID: 28258022 PMCID: PMC5333532 DOI: 10.1016/j.redox.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Indexed: 01/13/2023] Open
Abstract
The formation of lipid electrophile-protein adducts is associated with many disorders that involve perturbations of cellular redox status. The identities of adducted proteins and the effects of adduction on protein function are mostly unknown and an increased understanding of these factors may help to define the pathogenesis of various human disorders involving oxidative stress. 7-Dehydrocholesterol (7-DHC), the immediate biosynthetic precursor to cholesterol, is highly oxidizable and gives electrophilic oxysterols that adduct proteins readily, a sequence of events proposed to occur in Smith-Lemli-Opitz syndrome (SLOS), a human disorder resulting from an error in cholesterol biosynthesis. Alkynyl lanosterol (a-Lan) was synthesized and studied in Neuro2a cells, Dhcr7-deficient Neuro2a cells and human fibroblasts. When incubated in control Neuro2a cells and control human fibroblasts, a-Lan completed the sequence of steps involved in cholesterol biosynthesis and alkynyl-cholesterol (a-Chol) was the major product formed. In Dhcr7-deficient Neuro2a cells or fibroblasts from SLOS patients, the biosynthetic transformation was interrupted at the penultimate step and alkynyl-7-DHC (a-7-DHC) was the major product formed. When a-Lan was incubated in Dhcr7-deficient Neuro2a cells and the alkynyl tag was used to ligate a biotin group to alkyne-containing products, protein-sterol adducts were isolated and identified. In parallel experiments with a-Lan and a-7-DHC in Dhcr7-deficient Neuro2a cells, a-7-DHC was found to adduct to a larger set of proteins (799) than a-Lan (457) with most of the a-Lan protein adducts (423) being common to the larger a-7-DHC set. Of the 423 proteins found common to both experiments, those formed from a-7-DHC were more highly enriched compared to a DMSO control than were those derived from a-Lan. The 423 common proteins were ranked according to the enrichment determined for each protein in the a-Lan and a-7-DHC experiments and there was a very strong correlation of protein ranks for the adducts formed in the parallel experiments.
Collapse
Affiliation(s)
- Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Hye-Young H Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Zeljka Korade
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, United States; Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, United States
| | - Thiago C Genaro-Mattos
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Phillip A Wages
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
27
|
Abusarah J, Benabdoune H, Shi Q, Lussier B, Martel-Pelletier J, Malo M, Fernandes JC, de Souza FP, Fahmi H, Benderdour M. Elucidating the Role of Protandim and 6-Gingerol in Protection Against Osteoarthritis. J Cell Biochem 2017; 118:1003-1013. [PMID: 27463229 DOI: 10.1002/jcb.25659] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/26/2016] [Indexed: 12/24/2022]
Abstract
Protandim and 6-gingerol, two potent nutraceuticals, have been shown to decrease free radicals production through enhancing endogenous antioxidant enzymes. In this study, we evaluated the effects of these products on the expression of different factors involved in osteoarthritis (OA) process. Human OA chondrocytes were treated with 1 ng/ml IL-1β in the presence or absence of protandim (0-10 μg/ml) or 6-gingerol (0-10 μM). OA was induced surgically in mice by destabilization of the medial meniscus (DMM). The animals were treated weekly with an intraarticular injection of 10 μl of vehicle or protandim (10 μg/ml) for 8 weeks. Sham-operated mice served as controls. In vitro, we demonstrated that protandim and 6-gingerol preserve cell viability and mitochondrial metabolism and prevented 4-hydroxynonenal (HNE)-induced cell mortality. They activated Nrf2 transcription factor, abolished IL-1β-induced NO, PGE2 , MMP-13, and HNE production as well as IL-β-induced GSTA4-4 down-regulation. Nrf2 overexpression reduced IL-1β-induced HNE and MMP-13 as well as IL-1β-induced GSTA4-4 down-regulation. Nrf2 knockdown following siRNA transfection abolished protandim protection against oxidative stress and catabolism. The activation of MAPK and NF-κB by IL-1β was not affected by 6-gingerol. In vivo, we observed that Nrf2 and GSTA4-4 expression was significantly lower in OA cartilage from humans and mice compared to normal controls. Interestingly, protandim administration reduced OA score in DMM mice. Altogether, our data indicate that protandim and 6-gingerol are essential in preserving cartilage and abolishing a number of factors known to be involved in OA pathogenesis. J. Cell. Biochem. 118: 1003-1013, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jamilah Abusarah
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Houda Benabdoune
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Qin Shi
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Bertrand Lussier
- Osteoarthritis Research Unit and Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada H2L 4M1
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit and Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada H2L 4M1
| | - Michel Malo
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Julio C Fernandes
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Fátima Pereira de Souza
- Universidade Estadual Paulista "Júlio de Mesquita Filho", (UNESP), Departamento de Física, Laboratório de Biologia Molecular, Centro Multiusuário de Inovação Biomolecular (CMIB), 15054-000, São José Do Rio Preto, SP, Brazil
| | - Hassan Fahmi
- Osteoarthritis Research Unit and Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada H2L 4M1
| | - Mohamed Benderdour
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| |
Collapse
|
28
|
Liu M, Verma N, Peng X, Srodulski S, Morris A, Chow M, Hersh LB, Chen J, Zhu H, Netea MG, Margulies KB, Despa S, Despa F. Hyperamylinemia Increases IL-1β Synthesis in the Heart via Peroxidative Sarcolemmal Injury. Diabetes 2016; 65:2772-83. [PMID: 27335231 PMCID: PMC5001184 DOI: 10.2337/db16-0044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 06/09/2016] [Indexed: 12/29/2022]
Abstract
Hypersecretion of amylin is common in individuals with prediabetes, causes amylin deposition and proteotoxicity in pancreatic islets, and contributes to the development of type 2 diabetes. Recent studies also identified amylin deposits in failing hearts from patients with obesity or type 2 diabetes and demonstrated that hyperamylinemia accelerates the development of heart dysfunction in rats expressing human amylin in pancreatic β-cells (HIP rats). To further determine the impact of hyperamylinemia on cardiac myocytes, we investigated human myocardium, compared diabetic HIP rats with diabetic rats expressing endogenous (nonamyloidogenic) rat amylin, studied normal mice injected with aggregated human amylin, and developed in vitro cell models. We found that amylin deposition negatively affects cardiac myocytes by inducing sarcolemmal injury, generating reactive aldehydes, forming amylin-based adducts with reactive aldehydes, and increasing synthesis of the proinflammatory cytokine interleukin-1β (IL-1β) independently of hyperglycemia. These results are consistent with the pathological role of amylin deposition in the pancreas, uncover a novel contributing mechanism to cardiac myocyte injury in type 2 diabetes, and suggest a potentially treatable link of type 2 diabetes with diabetic heart disease. Although further studies are necessary, these data also suggest that IL-1β might function as a sensor of myocyte amylin uptake and a potential mediator of myocyte injury.
Collapse
Affiliation(s)
- Miao Liu
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Xiaoli Peng
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Sarah Srodulski
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Andrew Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY
| | - Martin Chow
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Louis B Hersh
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Kenneth B Margulies
- Cardiovascular Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
29
|
Sheeran FL, Pepe S. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure. Am J Physiol Endocrinol Metab 2016; 311:E449-60. [PMID: 27406740 DOI: 10.1152/ajpendo.00127.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022]
Abstract
Deficiency of energy supply is a major complication contributing to the syndrome of heart failure (HF). Because the concurrent activity profile of mitochondrial bioenergetic enzymes has not been studied collectively in human HF, our aim was to examine the mitochondrial enzyme defects in left ventricular myocardium obtained from explanted end-stage failing hearts. Compared with nonfailing donor hearts, activity rates of complexes I and IV and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase, and aconitase were lower in HF, as determined spectrophotometrically. However, activity rates of complexes II and III and citrate synthase did not differ significantly between the two groups. Protein expression, determined by Western blotting, did not differ between the groups, implying posttranslational perturbation. In the face of diminished total glutathione and coenzyme Q10 levels, oxidative modification was explored as an underlying cause of enzyme dysfunction. Of the three oxidative modifications measured, protein carbonylation was increased significantly by 31% in HF (P < 0.01; n = 18), whereas levels of 4-hydroxynonenal and protein nitration, although elevated, did not differ. Isolation of complexes I and IV and F1FoATP synthase by immunocapture revealed that proteins containing iron-sulphur or heme redox centers were targets of oxidative modification. Energy deficiency in end-stage failing human left ventricle involves impaired activity of key electron transport chain and Krebs cycle enzymes without altered expression of protein levels. Augmented oxidative modification of crucial enzyme subunit structures implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, thus contributing further to reduced bioenergetics in human HF.
Collapse
Affiliation(s)
- Freya L Sheeran
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia; and Department of Surgery at Alfred Hospital, Monash University, Melbourne, Australia
| | - Salvatore Pepe
- Heart Research, Clinical Sciences, Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia; and Department of Surgery at Alfred Hospital, Monash University, Melbourne, Australia
| |
Collapse
|
30
|
Chaiswing L, Cole MP, St Clair DK, Ittarat W, Szweda LI, Oberley TD. Oxidative Damage Precedes Nitrative Damage in Adriamycin-Induced Cardiac Mitochondrial Injury. Toxicol Pathol 2016; 32:536-47. [PMID: 15605432 DOI: 10.1080/01926230490502601] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of the present study was to determine if elevated reactive oxygen (ROS)/nitrogen species (RNS) reported to be present in adriamycin (ADR)-induced cardiotoxicity actually resulted in cardiomyocyte oxidative/nitrative damage, and to quantitatively determine the time course and subcellular localization of these postulated damage products using an in vivo approach. B6C3 mice were treated with a single dose of 20 mg/kg ADR. Ultrastructural damage and levels of 4-hydroxy-2-nonenal (4HNE)-protein adducts and 3-nitrotyrosine (3NT) were analyzed. Quantitative ultrastructural damage using computerized image techniques showed cardiomyocyte injury as early as 3 hours, with mitochondria being the most extensively and progressively injured subcellular organelle. Analysis of 4HNE protein adducts by immunogold electron microscopy showed appearance of 4HNE protein adducts in mitochondria as early as 3 hours, with a peak at 6 hours and subsequent decline at 24 hours. 3NT levels were significantly increased in all subcellular compartments at 6 hours and subsequently declined at 24 hours. Our data showed ADR induced 4HNE-protein adducts in mitochondria at the same time point as when mitochondrial injury initially appeared. These results document for the first time in vivo that mitochondrial oxidative damage precedes nitrative damage. The progressive nature of mitochondrial injury suggests that mitochondria, not other subcellular organelles, are the major site of intracellular injury.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Pathology and Laboratory Medicine, William S. Middleton Memorial Veterans Administration Hospital and University of Wisconsin Medical School, Madison WI 53705, USA
| | | | | | | | | | | |
Collapse
|
31
|
Park JB, Nagar H, Choi S, Jung SB, Kim HW, Kang SK, Lee JW, Lee JH, Park JW, Irani K, Jeon BH, Song HJ, Kim CS. IDH2 deficiency impairs mitochondrial function in endothelial cells and endothelium-dependent vasomotor function. Free Radic Biol Med 2016; 94:36-46. [PMID: 26898144 DOI: 10.1016/j.freeradbiomed.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 02/05/2023]
Abstract
Mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) plays an essential role protecting cells against oxidative stress-induced damage. A deficiency in IDH2 leads to mitochondrial dysfunction and the production of reactive oxygen species (ROS) in cardiomyocytes and cancer cells. However, the function of IDH2 in vascular endothelial cells is mostly unknown. In this study the effects of IDH2 deficiency on mitochondrial and vascular function were investigated in endothelial cells. IDH2 knockdown decreased the expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, II and III, which lead to increased mitochondrial superoxide. In addition, the levels of fission and fusion proteins (Mfn-1, OPA-1, and Drp-1) were significantly altered and MnSOD expression also was decreased by IDH2 knockdown. Furthermore, knockdown of IDH2 decreased eNOS phosphorylation and nitric oxide (NO) concentration in endothelial cells. Interestingly, treatment with Mito-TEMPO, a mitochondrial-specific superoxide scavenger, recovered mitochondrial fission-fusion imbalance and blunted mitochondrial superoxide production, and reduced the IDH2 knockdown-induced decrease in MnSOD expression, eNOS phosphorylation and NO production in endothelial cells. Endothelium-dependent vasorelaxation was impaired, and the concentration of bioavailable NO decreased in the aortic ring in IDH2 knockout mice. These findings suggest that IDH2 deficiency induces endothelial dysfunction through the induction of dynamic mitochondrial changes and impairment in vascular function.
Collapse
Affiliation(s)
- Jung-Bum Park
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Harsha Nagar
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Sujeong Choi
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Saet-Byel Jung
- Department of Endocrinology, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Hyun-Woo Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Jun Wan Lee
- Emergency ICU, Regional Emergency Center, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences, College of Natural Science, Kyungpook National University, Taegu 702-701, Republic of Korea
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, School of Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea.
| | - Cuk-Seong Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea.
| |
Collapse
|
32
|
Ravi S, Johnson MS, Chacko BK, Kramer PA, Sawada H, Locy ML, Wilson LS, Barnes S, Marques MB, Darley-Usmar VM. Modification of platelet proteins by 4-hydroxynonenal: Potential Mechanisms for inhibition of aggregation and metabolism. Free Radic Biol Med 2016; 91:143-53. [PMID: 26475426 PMCID: PMC4761519 DOI: 10.1016/j.freeradbiomed.2015.10.408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 01/23/2023]
Abstract
Platelet aggregation is an essential response to tissue injury and is associated with activation of pro-oxidant enzymes, such as cyclooxygenase, and is also a highly energetic process. The two central energetic pathways in the cell, glycolysis and mitochondrial oxidative phosphorylation, are susceptible to damage by reactive lipid species. Interestingly, how platelet metabolism is affected by the oxidative stress associated with aggregation is largely unexplored. To address this issue, we examined the response of human platelets to 4-hydroxynonenal (4-HNE), a reactive lipid species which is generated during thrombus formation and during oxidative stress. Elevated plasma 4-HNE has been associated with renal failure, septic shock and cardiopulmonary bypass surgery. In this study, we found that 4-HNE decreased thrombin stimulated platelet aggregation by approximately 60%. The metabolomics analysis demonstrated that underlying our previous observation of a stimulation of platelet energetics by thrombin glycolysis and TCA (Tricarboxylic acid) metabolites were increased. Next, we assessed the effect of both 4-HNE and alkyne HNE (A-HNE) on bioenergetics and targeted metabolomics, and found a stimulatory effect on glycolysis, associated with inhibition of bioenergetic parameters. In the presence of HNE and thrombin glycolysis was further stimulated but the levels of the TCA metabolites were markedly suppressed. Identification of proteins modified by A-HNE followed by click chemistry and mass spectrometry revealed essential targets in platelet activation including proteins involved in metabolism, adhesion, cytoskeletal reorganization, aggregation, vesicular transport, protein folding, antioxidant proteins, and small GTPases. In summary, the biological effects of 4-HNE can be more effectively explained in platelets by the integrated effects of the modification of an electrophile responsive proteome rather than the isolated effects of candidate proteins.
Collapse
Affiliation(s)
- Saranya Ravi
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Michelle S Johnson
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Balu K Chacko
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Philip A Kramer
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Hirotaka Sawada
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Morgan L Locy
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | | | - Stephen Barnes
- The Targeted Metabolomics and Proteomics Laboratory; Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Victor M Darley-Usmar
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology.
| |
Collapse
|
33
|
Johnston AS, Lehnart SE, Burgoyne JR. Ca(2+) signaling in the myocardium by (redox) regulation of PKA/CaMKII. Front Pharmacol 2015; 6:166. [PMID: 26321952 PMCID: PMC4530260 DOI: 10.3389/fphar.2015.00166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022] Open
Abstract
Homeostatic cardiac function is maintained by a complex network of interdependent signaling pathways which become compromised during disease progression. Excitation-contraction-coupling, the translation of an electrical signal to a contractile response is critically dependent on a tightly controlled sequence of events culminating in a rise in intracellular Ca(2+) and subsequent contraction of the myocardium. Dysregulation of this Ca(2+) handling system as well as increases in the production of reactive oxygen species (ROS) are two major contributing factors to myocardial disease progression. ROS, generated by cellular oxidases and by-products of cellular metabolism, are highly reactive oxygen derivatives that function as key secondary messengers within the heart and contribute to normal homeostatic function. However, excessive production of ROS, as in disease, can directly interact with kinases critical for Ca(2+) regulation. This post-translational oxidative modification therefore links changes in the redox status of the myocardium to phospho-regulated pathways essential for its function. This review aims to describe the oxidative regulation of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) and cAMP-dependent protein kinase A (PKA), and the subsequent impact this has on Ca(2+) handling within the myocardium. Elucidating the impact of alterations in intracellular ROS production on Ca(2+) dynamics through oxidative modification of key ROS sensing kinases, may provide novel therapeutic targets for preventing myocardial disease progression.
Collapse
Affiliation(s)
- Alex S Johnston
- Heart Research Center Goettingen, Clinic of Cardiology and Pulmonology, University Medical Center Goettingen Goettingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Goettingen, Clinic of Cardiology and Pulmonology, University Medical Center Goettingen Goettingen, Germany ; German Center for Cardiovascular Research (DZHK) site Göttingen Berlin, Germany
| | - Joseph R Burgoyne
- Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, King's College London, St. Thomas' Hospital London, UK
| |
Collapse
|
34
|
Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015; 6:183-197. [PMID: 26233704 PMCID: PMC4534574 DOI: 10.1016/j.redox.2015.07.008] [Citation(s) in RCA: 754] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023] Open
Abstract
Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Antioxidant responses are crucial for both redox signaling and redox damage. Glutathione-mediated reactions and Nrf2-Keap1 pathway are key antioxidant responses. Redox-related post-translational modifications activate specific signaling pathways. Redox-sensitive microRNAs contribute to redox-mediated gene expression regulation. ER stress and ischemia-reperfusion are antioxidant-related pathophysiological events.
Collapse
Affiliation(s)
- Cristina Espinosa-Diez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 7, University of Oulu, FI-90230 Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 7, University of Oulu, FI-90230 Oulu, Finland
| | - Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee EP, Ho JE, Jacques PF, Ghorbani A, Magnusson M, Souza AL, Deik AA, Pierce KA, Bullock K, O'Donnell CJ, Melander O, Clish CB, Vasan RS, Gerszten RE, Wang TJ. Distinct metabolomic signatures are associated with longevity in humans. Nat Commun 2015; 6:6791. [PMID: 25864806 PMCID: PMC4396657 DOI: 10.1038/ncomms7791] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/27/2015] [Indexed: 01/07/2023] Open
Abstract
Alterations in metabolism influence lifespan in experimental models, but data in humans are lacking. Here we use liquid chromatography/mass spectrometry to quantify 217 plasma metabolites and examine their relation to longevity in a large cohort of men and women followed for up to 20 years. We find that, higher concentrations of the citric acid cycle intermediate, isocitrate, and the bile acid, taurocholate, are associated with lower odds of longevity, defined as attaining 80 years of age. Higher concentrations of isocitrate, but not taurocholate, are also associated with worse cardiovascular health at baseline, as well as risk of future cardiovascular disease and death. None of the metabolites identified are associated with cancer risk. Our findings suggest that some, but not all, metabolic pathways related to human longevity are linked to the risk of common causes of death.
Collapse
Affiliation(s)
- Susan Cheng
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Martin G Larson
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Elizabeth L McCabe
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Joanne M Murabito
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Eugene P Rhee
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Jennifer E Ho
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Paul F Jacques
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Anahita Ghorbani
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Martin Magnusson
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Amanda L Souza
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Amy A Deik
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Kerry A Pierce
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Kevin Bullock
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Christopher J O'Donnell
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Olle Melander
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Clary B Clish
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Ramachandran S Vasan
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Robert E Gerszten
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| | - Thomas J Wang
- Framingham Heart Study of the National Heart, Lung and Blood Institute and Boston University School of Medicine, Framingham, MA (SC, MGL, JMM, JEH, CJO, RSV, TJW); Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (SC); Department of Mathematics and Statistics, Boston University, Boston, MA (MGL); Department of Biostatistics, Boston University School of Public Health, Boston, MA (ELM); Cardiology Division (JEH, AG, CJO, REG), Cardiovascular Research Center (REG), and Renal Division (EPR), Massachusetts General Hospital, Harvard Medical School, Boston, MA; General Internal Medicine (JMM), Cardiology (JEH, RSV), and Preventive Medicine (RSV), Department of Medicine, Boston University School of Medicine, Boston, MA; Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA (PFJ); Department of Clinical Sciences, Lund University, Malmö (MM, OM); Broad Institute of MIT and Harvard, Cambridge, MA (ALS, AAD, KAP, KB, CBC, REG); National Heart, Lung & Blood Institute Division of Intramural Research, Bethesda, MD (CJO); and, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN (TJW)
| |
Collapse
|
36
|
Alleman RJ, Katunga LA, Nelson MAM, Brown DA, Anderson EJ. The "Goldilocks Zone" from a redox perspective-Adaptive vs. deleterious responses to oxidative stress in striated muscle. Front Physiol 2014; 5:358. [PMID: 25278906 PMCID: PMC4166897 DOI: 10.3389/fphys.2014.00358] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system's position on the “hormetic curve” is governed by the source and temporality of reactive oxygen species (ROS) production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage) is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g., months to years) inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning) and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome).
Collapse
Affiliation(s)
- Rick J Alleman
- Departments of Physiology, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA
| | - Lalage A Katunga
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Margaret A M Nelson
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - David A Brown
- Departments of Physiology, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA
| | - Ethan J Anderson
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
37
|
Piekarski AL, Kong BW, Lassiter K, Hargis BM, Bottje WG. Cell bioenergetics in Leghorn male hepatoma cells and immortalized chicken liver cells in response to 4-hydroxy 2-nonenal-induced oxidative stress. Poult Sci 2014; 93:2870-7. [PMID: 25143593 DOI: 10.3382/ps.2014-04113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major objectives of this study were to compare cell bioenergetics in 2 avian liver cell lines under control conditions and in response to oxidative stress imposed by 4-hydroxy 2-nonenal (4-HNE). Cells in this study were from a chemically immortalized Leghorn male hepatoma (LMH) cell line and a spontaneously immortalized chicken liver (CELi) cell line. Oxygen consumption rate (OCR) was monitored in specialized microtiter plates using an XF24 Flux Analyzer (Seahorse Bioscience, Billerica, MA). Cell bioenergetics was assessed by sequential additions of oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and antimycin-A that enables the determination of a) OCR linked to adenosine triphosphate (ATP) synthase activity, b) mitochondrial oxygen reserve capacity, c) proton leak, and d) nonmitochondrial cytochrome c oxidase activity. Under control (unchallenged) conditions, LMH cells exhibited higher basal OCR and higher OCR attributed to each of the bioenergetic components listed above compared with CELi cells. When expressed as a percentage of maximal OCR (following uncoupling with FCCP), LMH cells exhibited higher OCR due to ATP synthase and proton leak activity, but lower mitochondrial oxygen reserve capacity compared with CELi cells; there were no differences in OCR associated with nonmitochondrial cytochrome c oxidase activity. Whereas the LMH cells exhibited robust ATP synthase activity up to 50 μM 4-HNE, CELi cells exhibited a progressive decline in ATP synthase activity with 10, 20, and 30 μM 4-HNE. The CELi cells exhibited higher mitochondrial oxygen reserve capacity compared with LMH cells with 0 and 20 μM 4-HNE but not with 30 μM 4-HNE. Both cell lines exhibited inducible proton leak in response to increasing levels of 4-HNE that was evident with 30 μM 4-HNE for CELi cells and with 40 and 50 μM 4-HNE in LMH cells. The results of these studies demonstrate fundamental differences in cell bioenergetics in 2 avian liver-derived cell lines under control conditions and in response to oxidative challenge due to 4-HNE.
Collapse
Affiliation(s)
- A L Piekarski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| | - B-W Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| | - K Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| | - B M Hargis
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| | - W G Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701
| |
Collapse
|
38
|
Zhao Y, Miriyala S, Miao L, Mitov M, Schnell D, Dhar SK, Cai J, Klein JB, Sultana R, Butterfield DA, Vore M, Batinic-Haberle I, Bondada S, St Clair DK. Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free Radic Biol Med 2014; 72:55-65. [PMID: 24632380 PMCID: PMC4053505 DOI: 10.1016/j.freeradbiomed.2014.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/17/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Doxorubicin (DOX), one of the most effective anticancer drugs, is known to generate progressive cardiac damage, which is due, in part, to DOX-induced reactive oxygen species (ROS). The elevated ROS often induce oxidative protein modifications that result in alteration of protein functions. This study demonstrates that the level of proteins adducted by 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product, is significantly increased in mouse heart mitochondria after DOX treatment. A redox proteomics method involving two-dimensional electrophoresis followed by mass spectrometry and investigation of protein databases identified several HNE-modified mitochondrial proteins, which were verified by HNE-specific immunoprecipitation in cardiac mitochondria from the DOX-treated mice. The majority of the identified proteins are related to mitochondrial energy metabolism. These include proteins in the citric acid cycle and electron transport chain. The enzymatic activities of the HNE-adducted proteins were significantly reduced in DOX-treated mice. Consistent with the decline in the function of the HNE-adducted proteins, the respiratory function of cardiac mitochondria as determined by oxygen consumption rate was also significantly reduced after DOX treatment. Treatment with Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, an SOD mimic, averted the doxorubicin-induced mitochondrial dysfunctions as well as the HNE-protein adductions. Together, the results demonstrate that free radical-mediated alteration of energy metabolism is an important mechanism mediating DOX-induced cardiac injury, suggesting that metabolic intervention may represent a novel approach to preventing cardiac injury after chemotherapy.
Collapse
Affiliation(s)
- Y Zhao
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - S Miriyala
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71130, USA
| | - L Miao
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - M Mitov
- Free Radical Biology in Cancer Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - D Schnell
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - S K Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - J Cai
- Department of Nephrology and Proteomics Facility, University of Louisville, Louisville, KY 40292, USA
| | - J B Klein
- Department of Nephrology and Proteomics Facility, University of Louisville, Louisville, KY 40292, USA
| | - R Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - D A Butterfield
- Free Radical Biology in Cancer Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - M Vore
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - I Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Bondada
- Department of Immunology, University of Kentucky, Lexington, KY 40506, USA
| | - D K St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
39
|
Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 2014; 71:196-207. [PMID: 24681256 PMCID: PMC4042208 DOI: 10.1016/j.freeradbiomed.2014.03.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Redox networks in the cell integrate signaling pathways that control metabolism, energetics, cell survival, and death. The physiological second messengers that modulate these pathways include nitric oxide, hydrogen peroxide, and electrophiles. Electrophiles are produced in the cell via both enzymatic and nonenzymatic lipid peroxidation and are also relatively abundant constituents of the diet. These compounds bind covalently to families of cysteine-containing, redox-sensing proteins that constitute the electrophile-responsive proteome, the subproteomes of which are found in localized intracellular domains. These include those proteins controlling responses to oxidative stress in the cytosol-notably the Keap1-Nrf2 pathway, the autophagy-lysosomal pathway, and proteins in other compartments including mitochondria and endoplasmic reticulum. The signaling pathways through which electrophiles function have unique characteristics that could be exploited for novel therapeutic interventions; however, development of such therapeutic strategies has been challenging due to a lack of basic understanding of the mechanisms controlling this form of redox signaling. In this review, we discuss current knowledge of the basic mechanisms of thiol-electrophile signaling and its potential impact on the translation of this important field of redox biology to the clinic. Emerging understanding of thiol-electrophile interactions and redox signaling suggests replacement of the oxidative stress hypothesis with a new redox biology paradigm, which provides an exciting and influential framework for guiding translational research.
Collapse
Affiliation(s)
- Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Cole MP, Tangpong J, Oberley TD, Chaiswing L, Kiningham KK, St. Clair DK. Nuclear interaction between ADR-induced p65 and p53 mediates cardiac injury in iNOS (-/-) mice. PLoS One 2014; 9:e89251. [PMID: 24586632 PMCID: PMC3934890 DOI: 10.1371/journal.pone.0089251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 11/20/2022] Open
Abstract
Adriamycin (ADR) treatment causes an imbalance in the levels of nitric oxide (•NO) and superoxide (O2•−) production leading to cardiac injury. Previously we demonstrated that mice lacking inducible nitric oxide synthase (iNOS) have increased oxidative stress and mitochondrial injury. The molecular events leading to increased mitochondrial injury in iNOS deficient mice is unknown. ADR in the absence of iNOS preferentially activates a proapoptotic pathway without a concurrent increase in prosurvival pathways. Treatment with ADR leads to an increase in DNA binding activity of nuclear factor kappa B (NFκB) and p53 in wildtype mice. Following ADR treatment, p53, but not NFκB DNA binding activity, as well as the level of Bax, a p53 target gene, was increased in iNOS (−/−) mice. This apoptotic signaling effect in iNOS (−/−) is alleviated by overexpression of manganese superoxide dismutase (MnSOD). Increases in NFκB and p53 in ADR-treated wildtype mice did not lead to increases in target genes such as MnSOD, bcl-xL, or Bax. Moreover, co-immunoprecipitation analysis revealed that p65, a prominent member of the NFκB family, interacts with p53 in the nucleus. These results suggest that NFκB and p53 may counter act one another's actions in ADR-treated wildtype (WT) mice. Further, these results identify a novel mechanism by which oxidative stress may regulate transcription of proapoptotic genes.
Collapse
Affiliation(s)
- Marsha P. Cole
- Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Jitbanjong Tangpong
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Terry D. Oberley
- Department of Pathology, VA Hospital, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Luksana Chaiswing
- Department of Pathology, VA Hospital, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kinsley K. Kiningham
- Pharmaceutical, Social and Administrative Sciences, Belmont College of Pharmacy, Nashville, Tennessee, United States of America
| | - Daret K. St. Clair
- Graduate Centers for Toxicology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
41
|
Behring JB, Kumar V, Whelan SA, Chauhan P, Siwik DA, Costello CE, Colucci WS, Cohen RA, McComb ME, Bachschmid MM. Does reversible cysteine oxidation link the Western diet to cardiac dysfunction? FASEB J 2014; 28:1975-87. [PMID: 24469991 DOI: 10.1096/fj.13-233445] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using a novel cysteine thiol labeling strategy coupled with mass spectrometric analysis, we identified and quantified the changes in global reversible cysteine oxidation of proteins in the left ventricle of hearts from mice with metabolic syndrome-associated diastolic dysfunction. This phenotype was induced by feeding a high-fat, high-sucrose, type-2 diabetogenic diet to C57BL/6J mice for 8 mo. The extent of reversible thiol oxidation in relationship to the total available (free and reducible) level of each cysteine could be confidently determined for 173 proteins, of which 98 contained cysteines differentially modified ≥1.5-fold by the diet. Our findings suggest that the metabolic syndrome leads to potentially deleterious changes in the oxidative modification of metabolically active proteins. These alterations may adversely regulate energy substrate flux through glycolysis, β-oxidation, citric acid (TCA) cycle, and oxidative phosphorylation (oxphos), thereby contributing to maladaptive tissue remodeling that is associated with, and possibly contributing to, diastolic left ventricular dysfunction.
Collapse
Affiliation(s)
- Jessica B Behring
- 2M.M.B., Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
It has been demonstrated that redox homeostasis is important in the pathophysiology of several human diseases, including cardiovascular diseases. In this respect, genetic polymorphism, nutritional and environmental factors, age, lifestyle and physical activity may account for variable antioxidant defenses, which may be more or less effective at counteracting oxidative damage. Since accumulating oxidative damage may be associated with several pathologic conditions, including different cardiovascular diseases, prevention of oxidative stress appears to be a promising approach to improve such diseases. Exercise training, diets rich in antioxidants and a good control of blood glucose and lipid levels help to strengthen the physiologic antioxidant defense system, perhaps coupled to drugs capable of increasing the nitric oxide bioavailability and decreasing superoxide production. Within the next few years other therapeutic approaches will be available, such as gene therapy, which will prove to be even more effective but devoid of several important systemic side effects.
Collapse
Affiliation(s)
- Paolo Abrescia
- University of Naples Federico II, Department of General and Environmental Physiology, Via Mezzocannone 8, 80134 Naples, Italy.
| | | |
Collapse
|
43
|
Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2013; 48:251-63. [PMID: 24237196 DOI: 10.3109/10715762.2013.864761] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
4-Hydroxy-2-nonenal (4-HNE), a reactive aldehyde, is generated from polyunsaturated fatty acids (PUFAs) in biological membranes. Reactive oxygen species (ROS) generated during oxidative stress react with PUFAs to form aldehydes like 4-HNE, which inactivates proteins and DNA by forming hybrid covalent chemical addition compounds called adducts. The ensuing chain reaction results in cellular dysfunction and tissue damage. It includes a wide spectrum of events ranging from electron transport chain dysfunction to apoptosis. In addition, 4-HNE directly depresses contractile function, enhances ROS formation, modulates cell signaling pathways, and can contribute to many cardiovascular diseases, including atherosclerosis, myocardial ischemia-reperfusion injury, heart failure, and cardiomyopathy. Therefore, targeting 4-HNE could help reverse these pathologies. This review will focus on 4-HNE generation, the role of 4-HNE in cardiovascular diseases, cellular targets (especially mitochondria), processes and mechanisms for 4-HNE-induced toxicity, regulation of 4-HNE metabolism, and finally strategies for developing potential therapies for cardiovascular disease by attenuating 4-HNEinduced toxicity.
Collapse
Affiliation(s)
- V R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System , Detroit, MI , USA
| | | |
Collapse
|
44
|
Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu C, Ferreri C, Kaiser N, Sasson S. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic Biol Med 2013; 65:978-987. [PMID: 23973638 DOI: 10.1016/j.freeradbiomed.2013.08.163] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Peroxidation of polyunsaturated fatty acids is intensified in cells subjected to oxidative stress and results in the generation of various bioactive compounds, of which 4-hydroxyalkenals are prominent. During the progression of type 2 diabetes mellitus, the ensuing hyperglycemia promotes the generation of reactive oxygen species (ROS) that contribute to the development of diabetic complications. It has been suggested that ROS-induced lipid peroxidation and the resulting 4-hydroxyalkenals markedly contribute to the development and progression of these pathologies. Recent findings, however, also suggest that noncytotoxic levels of 4-hydroxyalkenals play important signaling functions in the early phase of diabetes and act as hormetic factors to induce adaptive and protective responses in cells, enabling them to function in the hyperglycemic milieu. Our studies and others' have proposed such regulatory functions for 4-hydroxynonenal and 4-hydroxydodecadienal in insulin secreting β-cells and vascular endothelial cells, respectively. This review presents and discusses the mechanisms regulating the generation of 4-hydroxyalkenals under high glucose conditions and the molecular interactions underlying the reciprocal transition from hormetic to cytotoxic agents.
Collapse
Affiliation(s)
- Guy Cohen
- Department of Pharmacology, Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem Israel
| | - Yael Riahi
- Department of Pharmacology, Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem Israel
| | - Valentina Sunda
- Lipinutragen srl, Lipidomic Laboratory, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Simone Deplano
- Lipinutragen srl, Lipidomic Laboratory, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | | | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Nurit Kaiser
- Endocrinology & Metabolism Service, The Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
| | - Shlomo Sasson
- Department of Pharmacology, Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem Israel.
| |
Collapse
|
45
|
Detection of electrophile-sensitive proteins. Biochim Biophys Acta Gen Subj 2013; 1840:913-22. [PMID: 24021887 DOI: 10.1016/j.bbagen.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/22/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Redox signaling is an important emerging mechanism of cellular function. Dysfunctional redox signaling is increasingly implicated in numerous pathologies, including atherosclerosis, diabetes, and cancer. The molecular messengers in this type of signaling are reactive species which can mediate the post-translational modification of specific groups of proteins, thereby effecting functional changes in the modified proteins. Electrophilic compounds comprise one class of reactive species which can participate in redox signaling. Electrophiles modulate cell function via formation of covalent adducts with proteins, particularly cysteine residues. SCOPE OF REVIEW This review will discuss the commonly used methods of detection for electrophile-sensitive proteins, and will highlight the importance of identifying these proteins for studying redox signaling and developing novel therapeutics. MAJOR CONCLUSIONS There are several methods which can be used to detect electrophile-sensitive proteins. These include the use of tagged model electrophiles, as well as derivatization of endogenous electrophile-protein adducts. GENERAL SIGNIFICANCE In order to understand the mechanisms by which electrophiles mediate redox signaling, it is necessary to identify electrophile-sensitive proteins and quantitatively assess adduct formation. Strengths and limitations of these methods will be discussed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
|
46
|
Asselin C, Shi Y, Clément R, Tardif JC, Des Rosiers C. Higher circulating 4-hydroxynonenal–protein thioether adducts correlate with more severe diastolic dysfunction in spontaneously hypertensive rats. Redox Rep 2013; 12:68-72. [PMID: 17263913 DOI: 10.1179/135100007x162202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE Accumulating evidence supports a role of 4-hydroxynonenal (4HNE) in oxidative-stress related diseases, but its specific contribution to disease development remains to be clarified. Further to our finding of high circulating 4HNE-protein thioether adducts (4HNE-P) in spontaneously hypertensive rats (SHRs), we aimed at correlating 4HNE-P with cardiac function and testing the impact of antioxidant therapy. MATERIALS AND METHODS The lipoperoxidation inhibitor probucol (10 mg/kg/day) or vehicle (corn oil) were administered daily (i.p.) for 4 weeks in 18-week-old SHRs (9 rats/group). Cardiac functions were assessed by echocardiography and 4HNE-P by gas chromatography/mass spectrometry. RESULTS Diastolic dysfunction worsened in SHRs receiving vehicle as reflected by changes (P < 0.05) in indexes of left ventricular relaxation (increased isovolumic relaxation time) and compliance (increased E-wave deceleration rate; EDR). Higher circulating 4HNE-P correlated with diastolic dysfunction (EDR: R(2) = 0.518; P < 0.001) and heart rate (R(2) = 0.225; P < 0.05). Probucol prevented the deterioration of diastolic function, while lowering the mean and median of circulating 4HNE-P by 21% and 35%, respectively. CONCLUSION Collectively, these results support a role for 4HNE in the pathophysiological events linked to disease progression in SHRs.
Collapse
Affiliation(s)
- C Asselin
- Department of Biomedical Sciences, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
47
|
Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1:319-31. [PMID: 24024167 PMCID: PMC3757694 DOI: 10.1016/j.redox.2013.04.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 12/04/2022] Open
Abstract
4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies. HNE is a lipid peroxidation endproduct regulating vascular redox signaling. HNE detoxification is tightly regulated in vascular and other cell types. Elevated HNE levels are associated with various vascular diseases.
Collapse
Key Words
- 15d-PGJ2, 15-deoxy-Delta (12,14) prostaglandin-J2
- 4-hydroxynonenal
- AP-1, Activator protein-1
- AR, Aldose reductase
- ARE, Antioxidant response element
- ATF6, Activating transcription factor 6
- Akt, Protein kinase B
- BAEC, Bovine aortic endothelial cells
- BH4, Tetrahydrobiopterin
- BLMVEC, Bovine lung microvascular vein endothelial cells
- BPAEC, Bovine pulmonary arterial endothelial cells
- BTB, Broad complex Tramtrack and Bric–brac domain
- CHOP, C/EBP-homologous protein
- CREB, cAMP response element-binding protein
- EGFR, Epidermal growth factor receptor
- ER, Endoplasmic reticulum
- ERAD, Endoplasmic reticulum assisted degradation
- ERK1/2, Extracellular signal-regulated kinase 1/2
- Elk1, ETS domain-containing protein
- Endothelial cells
- EpRE, Electrophile response element
- FAK, Focal adhesion kinase
- FAP, Familial amyloidotic polyneuropathy
- GCLC, Glutamate cysteine ligase catalytic subunit
- GCLM, Glutamate cysteine ligase modifier subunit
- GS-DHN, Glutathionyl-1,4 dihydroxynonene
- GS-HNE, HNE-conjugates
- GSH, Glutathione
- GST, Glutathione-S-transferase
- GTPCH, Guanosine triphosphate cyclohydrolase I
- HASMC, Human aortic smooth muscle cells
- HCSMC, Human coronary smooth muscle cells
- HERP, Homocysteine inducible ER protein
- HMEC, Human microvascular endothelial cells
- HNE, 4-hydroxynonenal
- HO-1, Heme oxygenase-1
- HUVEC, Human umbilical vein endothelial cells
- Hsp-70/72/90, Heat shock proteins-70/ -72/ -90
- IRE1, Inositol requiring enzyme 1 IRE1
- IVR, Central intervening region
- JNK, c-jun N-terminal kinase
- Keap1, Kelch-like ECH-associated protein 1
- MASMC, Mouse aortic smooth muscle cells
- MEK1/2, Mitogen activated protein kinase kinase 1/2
- MMP-1/2, Matrix metalloproteinase-1/ -2
- MPEC, Mouse pancreatic islet endothelial cells
- NAC, N-acetylcysteine
- NFκB, Nuclear factor kappa B
- NO, Nitric oxide
- NQO1, NAD(P)H quinone oxidoreductase
- Nrf2
- Nrf2, Nuclear factor-E2-related factor 2
- PCEC, Porcine cerebral endothelial cells
- PDGF, Platelet-derived growth factor
- PDI, Protein disulfide isomerases
- PERK, Protein kinase-like endoplasmic reticulum kinase
- PKC, Protein kinase C
- PUFAs, Polyunsaturated fatty acids
- RASMC, Rat aortic smooth muscle cells
- ROS, Reactive oxygen species
- RVSMC, Rat vascular smooth muscle cells
- Redox signaling
- SMC, Smooth muscle cell
- TKR, Tyrosine kinase receptor
- UPR, Unfolded protein response
- Vascular biology
- Vascular smooth muscle cells
- eNOS, Endothelial nitric oxide synthase
- elF2α, Eukaryotic translation initiation factor 2α
- iNOS, Inducible nitric oxide synthase
- oxLDL, Oxidized low density lipoprotein
- tBHP, Tert-butylhydroperoxide
- xCT, cystine/glutamate amino acid transporter
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | | | | |
Collapse
|
48
|
Li Q, Sadhukhan S, Berthiaume JM, Ibarra RA, Tang H, Deng S, Hamilton E, Nagy LE, Tochtrop GP, Zhang GF. 4-Hydroxy-2(E)-nonenal (HNE) catabolism and formation of HNE adducts are modulated by β oxidation of fatty acids in the isolated rat heart. Free Radic Biol Med 2013; 58:35-44. [PMID: 23328733 PMCID: PMC3723455 DOI: 10.1016/j.freeradbiomed.2013.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/20/2012] [Accepted: 01/06/2013] [Indexed: 01/02/2023]
Abstract
We previously reported that a novel metabolic pathway functionally catabolizes 4-hydroxy-2(E)-nonenal (HNE) via two parallel pathways, which rely heavily on β-oxidation pathways. The hypothesis driving this report is that perturbations of β oxidation will alter the catabolic disposal of HNE, favoring an increase in the concentrations of HNE and HNE-modified proteins that may further exacerbate pathology. This study employed Langendorff perfused hearts to investigate the impact of cardiac injury modeled by ischemia/reperfusion and, in a separate set of perfusions, the effects of elevated lipid (typically observed in obesity and type II diabetes) by perfusing with increased fatty acid concentrations (1mM octanoate). During ischemia, HNE concentrations doubled and the glutathione-HNE adduct and 4-hydroxynonanoyl-CoA were increased by 7- and 10-fold, respectively. Under conditions of increased fatty acid, oxidation to 4-hydroxynonenoic acid was sustained; however, further catabolism through β oxidation was nearly abolished. The inhibition of HNE catabolism was not compensated for by other disposal pathways of HNE, rather an increase in HNE-modified proteins was observed. Taken together, this study presents a mechanistic rationale for the accumulation of HNE and HNE-modified proteins in pathological conditions that involve alterations to β oxidation, such as myocardial ischemia, obesity, and high-fat diet-induced diseases.
Collapse
Affiliation(s)
- Qingling Li
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sushabhan Sadhukhan
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Rafael A. Ibarra
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hui Tang
- Departments of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shuang Deng
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eric Hamilton
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Laura E. Nagy
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Departments of Pathobiology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gregory P. Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Guo-Fang Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Mahaboob Basha P, Saumya SM. Suppression of mitochondrial oxidative phosphorylation and TCA enzymes in discrete brain regions of mice exposed to high fluoride: amelioration by Panax ginseng (Ginseng) and Lagerstroemia speciosa (Banaba) extracts. Cell Mol Neurobiol 2013; 33:453-64. [PMID: 23392579 DOI: 10.1007/s10571-013-9912-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/19/2013] [Indexed: 01/10/2023]
Abstract
Chronic fluoride intoxication results in pathophysiological complications pertaining to soft tissues, called non-skeletal fluorosis. This study examined whether fluoride-induced alterations in selected parameters that are indicative of mitochondrial dysfunction accompany the toxic effects of fluoride in discrete brain regions in vivo and also explored the possibility of treatment with Ginseng (GE) and Banaba (BLE) either alone or with their co-exposure which is capable of reversing parameters indicative of fluoride-induced impairments in mitochondrial function. Swiss mice, Mus musculus, were given 270 ppm fluoride (600 ppm NaF) in their drinking water for 30 days, while continuing the fluoride exposure, toxicated animals were given differential doses (50-250 mg/kg body wt) of phytoextracts through oral gavage for 2 weeks. Discrete brain regions separated from dissected animals to perform biochemical assessments. Disturbances in mitochondrial enzyme complexes (I-IV) and decrements in TCA enzymes (ICDH, SDH, and aconitase) were noted in discrete brain regions upon F exposure, suggesting mitochondrial dysfunction. In addition, a significant reduction in oxidative stress indices with increased MDA content as well as decrease in reduced glutathione content and increases in catalase and SOD enzyme activity suggests the involvement of severe oxidative stress affecting the mitochondrial function(s). Treatment with either GE or BLE reversed F-induced alterations in augmenting the suppressed complex enzymes followed by TCA enzymes and oxidative stress indices in a dose independent manner. However, the co-exposure of GE and BLE at a dose of 150 mg/kgbw appeared to restore mitochondrial functioning. These results provide in vivo evidence supporting the hypothesis that fluoride induces impairments in mitochondrial function, which can be reversed by treatment with GE and BLE as well their co-exposure at 150 mg/kgbw.
Collapse
Affiliation(s)
- P Mahaboob Basha
- Department of Zoology, Bangalore University, Bangalore, 560 056, Karnataka, India.
| | | |
Collapse
|
50
|
Poly(ADP-ribose) polymerase inhibition prevents reactive oxygen species induced inhibition of aldehyde dehydrogenase2 activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:479-86. [PMID: 23159776 DOI: 10.1016/j.bbamcr.2012.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 01/12/2023]
Abstract
Lipid peroxidation plays a critical role in cardiovascular diseases. Aldehydes are the major end products of lipid peroxidation and can be metabolized into less reactive chemical species by aldehyde dehydrogenase 2 (ALDH2). However, ALDH2 dehydrogenase activity can be affected by many factors including reactive oxygen species. To elucidate how reactive oxygen species inhibit ALDH2 dehydrogenase activity, we stimulated human aortic endothelial cells (HAECs) with oxidized low-density lipoproteins (ox-LDL) and performed a myocardial ischemia-reperfusion model. Ox-LDL treatment and ischemia-reperfusion injury inhibited ALDH2 dehydrogenase activity. Poly(ADP-ribose) polymerase (PARP) was activated by ox-LDL stimulation and ischemia-reperfusion injury and PARP inhibition partly restored ALDH2 dehydrogenase activity in ox-LDL treated HAECs and ischemia-reperfusion rat hearts. SIRT3 was upregulated by ox-LDL stimulation and ischemia-reperfusion injury and downregulated by PARP inhibition. Using siRNA to knock down SIRT3, we demonstrated that SIRT3 mediated deacetylation decreased ALDH2 dehydrogenase activity and PARP inhibition partly restored ALDH2 dehydrogenase activity through preventing SIRT3 expression and subsequently preserving ALDH2 acetylation.
Collapse
|