1
|
Mammadova N, Özler S, Özdemir BG, Avcı F, Koçak N, Çintesun E, Örgül G, Çelik Ç. The role of the Chitinase 3-Like 1 (CHI3L1) genes in the preeclampsia pathophysiology. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231574. [PMID: 39045955 PMCID: PMC11288277 DOI: 10.1590/1806-9282.20231574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/10/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between Chitinase 3-Like 1 gene polymorphisms and the occurrence of preeclampsia in a selected cohort of pregnant women. METHODS A total of 75 pregnant women participated in the study, 35 of whom were diagnosed with preeclampsia, while 40 served as healthy controls. The preeclamptic group was subdivided based on severity. Real-time polymerase chain reaction was employed to analyze the serum samples for variations in Chitinase 3-Like 1 gene polymorphisms. RESULTS The rs880633 polymorphism was found to be significantly more frequent in the control group (80%) compared with the overall preeclamptic group (60%) (p<0.05). In the severity-based subgroups, rs880633 appeared in 57.1% of non-severe and 61.9% of severe preeclamptics. Contrarily, the heterozygous form of rs7515776 polymorphism showed a significantly higher prevalence in the preeclamptic cohort (p<0.05), without distinctions in severity subgroups. CONCLUSION The study suggests that the rs880633 polymorphism may serve a protective role against the development of preeclampsia, whereas the rs7515776 polymorphism may be associated with an elevated risk. Further research is warranted to elucidate the clinical implications of these findings.
Collapse
Affiliation(s)
- Nigar Mammadova
- Afiyet Hospital, Private Clinic of Obstetrics and Gynecology – İstanbul, Turkey
| | - Sibel Özler
- Selcuk University, Faculty of Medicine, Department of Obstetrics and Gynecology – Konya, Turkey
| | - Belma Gözde Özdemir
- Selcuk University, Faculty of Medicine, Department of Obstetrics and Gynecology – Konya, Turkey
| | - Fazıl Avcı
- Selcuk University, Faculty of Medicine, Department of Obstetrics and Gynecology – Konya, Turkey
| | - Nadir Koçak
- Selcuk University, Faculty of Medicine, Department of Medical Genetics – Konya, Turkey
| | - Ersin Çintesun
- Selcuk University, Faculty of Medicine, Department of Obstetrics and Gynecology – Konya, Turkey
| | - Gökçen Örgül
- Selcuk University, Faculty of Medicine, Department of Obstetrics and Gynecology – Konya, Turkey
| | - Çetin Çelik
- Selcuk University, Faculty of Medicine, Department of Obstetrics and Gynecology – Konya, Turkey
| |
Collapse
|
2
|
Bonanni R, Cariati I, Cifelli P, Frank C, Annino G, Tancredi V, D'Arcangelo G. Exercise to Counteract Alzheimer's Disease: What Do Fluid Biomarkers Say? Int J Mol Sci 2024; 25:6951. [PMID: 39000060 PMCID: PMC11241657 DOI: 10.3390/ijms25136951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases (NDs) represent an unsolved problem to date with an ever-increasing population incidence. Particularly, Alzheimer's disease (AD) is the most widespread ND characterized by an accumulation of amyloid aggregates of beta-amyloid (Aβ) and Tau proteins that lead to neuronal death and subsequent cognitive decline. Although neuroimaging techniques are needed to diagnose AD, the investigation of biomarkers within body fluids could provide important information on neurodegeneration. Indeed, as there is no definitive solution for AD, the monitoring of these biomarkers is of strategic importance as they are useful for both diagnosing AD and assessing the progression of the neurodegenerative state. In this context, exercise is known to be an effective non-pharmacological management strategy for AD that can counteract cognitive decline and neurodegeneration. However, investigation of the concentration of fluid biomarkers in AD patients undergoing exercise protocols has led to unclear and often conflicting results, suggesting the need to clarify the role of exercise in modulating fluid biomarkers in AD. Therefore, this critical literature review aims to gather evidence on the main fluid biomarkers of AD and the modulatory effects of exercise to clarify the efficacy and usefulness of this non-pharmacological strategy in counteracting neurodegeneration in AD.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Sports Engineering Laboratory, Department of Industrial Engineering, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| |
Collapse
|
3
|
Krix S, Wilczynski E, Falgàs N, Sánchez-Valle R, Yoles E, Nevo U, Baruch K, Fröhlich H. Towards early diagnosis of Alzheimer's disease: advances in immune-related blood biomarkers and computational approaches. Front Immunol 2024; 15:1343900. [PMID: 38720902 PMCID: PMC11078023 DOI: 10.3389/fimmu.2024.1343900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease has an increasing prevalence in the population world-wide, yet current diagnostic methods based on recommended biomarkers are only available in specialized clinics. Due to these circumstances, Alzheimer's disease is usually diagnosed late, which contrasts with the currently available treatment options that are only effective for patients at an early stage. Blood-based biomarkers could fill in the gap of easily accessible and low-cost methods for early diagnosis of the disease. In particular, immune-based blood-biomarkers might be a promising option, given the recently discovered cross-talk of immune cells of the central nervous system with those in the peripheral immune system. Here, we give a background on recent advances in research on brain-immune system cross-talk in Alzheimer's disease and review machine learning approaches, which can combine multiple biomarkers with further information (e.g. age, sex, APOE genotype) into predictive models supporting an earlier diagnosis. In addition, mechanistic modeling approaches, such as agent-based modeling open the possibility to model and analyze cell dynamics over time. This review aims to provide an overview of the current state of immune-system related blood-based biomarkers and their potential for the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sophia Krix
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| | - Ella Wilczynski
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Neus Falgàs
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eti Yoles
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Zhou Y, Liu Z, Liu Y. The potential roles and mechanisms of Chitinase-3-like-1 in the pathogenesis of type 2-biased airway diseases. Clin Immunol 2023; 257:109856. [PMID: 38036279 DOI: 10.1016/j.clim.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The immune modulation in the epithelium is a protective feature of the epithelial function in the mucosal airways. Dysfunction of the epithelium can lead to chronic allergic airway inflammatory diseases, such as chronic rhinosinusitis with nasal polyps (CRSwNP), allergic rhinitis (AR), and allergic asthma. Chitinase-3-like-1 (CHI3L1) is a key modulator in the epithelium against irritants, pathogens, and allergens and is involved in cancers, autoimmune diseases, neurological disorders, and other chronic diseases. Induction of epithelial cell-derived CHI3L1 is also confirmed to be implicated in the pathogenesis of Th2-related airway diseases like CRSwNP, AR, and allergic asthma, triggering a cascade of subsequent inflammatory reactions leading to the disease development. The techniques that block the biological function of CHI3L1 include small interfering RNA, neutralizing antibodies, and microRNAs and these methods proved to be successful in preclinical and clinical investigation in cancers, autoimmune diseases, asthma, and chronic obstructive pulmonary disease. Therefore, treatment with CHI3L1-blocking methods could open up therapeutic options for allergic airway diseases. This review article discusses the role of epithelial cell-derived CHI3L1 in the development of CRSwNP, AR, and allergic asthma and examines the use of CHI3L1 as a potential therapeutic agent for allergic airway diseases.
Collapse
Affiliation(s)
- Yian Zhou
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China.
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China.
| |
Collapse
|
5
|
Wen Y, Lin C, Ho K, Lin Y, Hsiao C, Wang S, Chang L, Yang S, Chien M. Functional variants of the chitinase 3-like 1 gene are associated with clinicopathologic outcomes and progression of prostate cancer. J Cell Mol Med 2023; 27:4202-4214. [PMID: 37902124 PMCID: PMC10746933 DOI: 10.1111/jcmm.18012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023] Open
Abstract
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in advanced stages of several cancer types, including prostate cancer (PCa). Impacts of genetic variants of CHI3L1 on PCa development have not yet been investigated. The most common well-studied genetic variations are single-nucleotide polymorphisms (SNPs). Therefore, the objective of this study was to explore associations of CHI3L1 SNPs with both the susceptibility to PCa and its clinicopathological development. Three promoter SNPs, rs6691378 (-1371, G>A), rs10399805 (-247, G>A) and rs4950928 (-131, C>G), and one non-synonymous SNP, rs880633 (+2950, T>C), were analysed using a TaqMan allelic discrimination assay for genotyping in a cohort of 701 PCa patients and 701 healthy controls. Results indicated that there were no significant associations of PCa susceptibility with these four CHI3L1 SNPs. However, among elderly PCa patients (aged >65 years), it was observed that polymorphic variants (GA + AA) of CHI3L1 rs6691378 and 10399805 were significantly linked to reduced risks of several clinicopathological characteristics, including a high Gleason grade, advanced pathologic T stage and tumour cell invasion. Moreover, analyses of The Cancer Genome Atlas database revealed that CHI3L1 expression levels were elevated in PCa tissues compared with normal tissues. Interestingly, higher CHI3L1 expression levels were found to be associated with longer progression-free survival rates in PCa patients. Our findings indicated that levels of CHI3L1 may influence the progression of PCa, and the rs6691378 and 10399805 SNP genetic variants of CHI3L1 are linked to the clinicopathological development of PCa within a Taiwanese population.
Collapse
Affiliation(s)
- Yu‐Ching Wen
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU‐RCUK)Taipei Medical UniversityTaipeiTaiwan
- Department of Urology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Chia‐Yen Lin
- Division of Urology, Department of SurgeryTaichung Veterans General HospitalTaichungTaiwan
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Kuo‐Hao Ho
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yung‐Wei Lin
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU‐RCUK)Taipei Medical UniversityTaipeiTaiwan
- Department of Urology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- International Master/PhD Program in Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chi‐Hao Hsiao
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU‐RCUK)Taipei Medical UniversityTaipeiTaiwan
- Department of Urology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Shian‐Shiang Wang
- Division of Urology, Department of SurgeryTaichung Veterans General HospitalTaichungTaiwan
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Applied ChemistryNational Chi Nan UniversityNantouTaiwan
| | - Lun‐Ching Chang
- Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonFloridaUSA
| | - Shun‐Fa Yang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Ming‐Hsien Chien
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Pulmonary Research Center, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Traditional Herbal Medicine Research CenterTaipei Medical University HospitalTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
6
|
Yu R, Liu X, Deng X, Li S, Wang Y, Zhang Y, Ke D, Yan R, Wang Q, Tian X, Li M, Zeng X, Hu C. Serum CHI3L1 as a biomarker of interstitial lung disease in rheumatoid arthritis. Front Immunol 2023; 14:1211790. [PMID: 37662936 PMCID: PMC10469784 DOI: 10.3389/fimmu.2023.1211790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Interstitial lung disease (ILD) is a relatively prevalent extra-articular manifestation of rheumatoid arthritis (RA) and contributes to significant morbidity and mortality. This study aimed to analyze the association between chitinase-3 like-protein-1(CHI3L1) and the presence of RA-ILD. Methods A total of 239 RA patients fulfilling the American Rheumatism Association (ACR) 1987 revised criteria were enrolled and subclassified as RA-ILD and RA-nILD based on the results of high-resolution computed tomography scans (HRCT) of the chest. The disease activity of RA was assessed by Disease Activity Score for 28 joints (DAS28) and categorized as high, moderate, low, and remission. Chemiluminescence immunoassays were applied to determine the serum levels of CHI3L1. Univariate analysis was performed and the receiver operating characteristics (ROC) curves were plotted to evaluate the correlation between RA-ILD and CHI3L1. Results Among the eligible RA patients studied, 60 (25.1%) patients were diagnosed with RA-ILD. Compared with RA-nILD, RA patients with ILD had significantly higher median age (median [IQR], 68.00 [62.00-71.75] vs 53.00 [40.00-63.00], p<0.001) and a higher proportion of males (21 (35.0%) vs 30 (16.8%), p=0.003). Notably, differences in DAS28 scores between the two groups were not observed. The serum level of CHI3L1 was significantly higher in RA-ILD patients (median [IQR], 69.69 [44.51-128.66] ng/ml vs 32.19 [21.63-56.99] ng/ml, p<0.001). Furthermore, the areas under the curve (AUC) of CHI3L1 attained 0.74 (95% confidence interval [CI], 0.68-0.81, p<0.001) in terms of identifying patients with RA-ILD from those without ILD. Similar trends were seen across the spectrum of disease activity based on DAS28-ESR. Conclusion Our findings of elevated serum CHI3L1 levels in RA-ILD patients suggest its possible role as a biomarker to detect RA-ILD noninvasively.
Collapse
Affiliation(s)
- Rui Yu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaomin Liu
- Department of Rheumatology, Shunyi District Hospital, Beijing, China
| | - Xiaoyue Deng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Yifei Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Rheumatology, Shunyi District Hospital, Beijing, China
| | - Dan Ke
- Department of Rheumatology, Shunyi District Hospital, Beijing, China
| | - Rui Yan
- Department of Rheumatology, Shunyi District Hospital, Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Li J, Wang Y, Xia R, Zhao X, Li L, Wang S. Elevated cerebrospinal fluid YKL-40 levels in patients with anti-gamma-aminobutyric- acid-B receptor encephalitis. J Neuroimmunol 2023; 381:578119. [PMID: 37301084 DOI: 10.1016/j.jneuroim.2023.578119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Anti-gamma-aminobutyric-acid-B receptor (GABAbR) encephalitis is a rare form of autoimmune encephalitis. Until now, there are few biomarkers that can indicate the severity and prognosis of patients with anti-GABAbR encephalitis. The objective of this study was to exam the changes of chitinase-3-like protein 1 (YKL-40) in patients with anti-GABAbR encephalitis. In addition, whether YKL-40 could indicate the disease severity was also evaluated. METHODS The clinical features of 14 patients with anti-GABAbR encephalitis and 21 patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis were retrospectively studied. YKL-40 levels in serum and cerebral fluid (CSF) of patients were detected by enzyme-linked immunosorbent assay. The correlation of modified Rankin Scale (mRS) score of encephalitis patients and YKL40 levels were analyzed. RESULTS YKL-40 levels in CSF were significantly higher in patients with anti-GABAbR encephalitis or anti-NMDAR encephalitis than those in controls. YKL-40 levels between these two encephalitis groups were not different. Moreover, YKL-40 levels in CSF from patients with anti-GABAbR encephalitis were positively correlated with the mRS score at admission and at 6-month follow-up. CONCLUSION YKL-40 level is elevated in CSF from patients with anti-GABAbR encephalitis at early disease stage. YKL-40 may be a potential biomarker indicating the prognosis of patients with anti-GABAbR encephalitis.
Collapse
Affiliation(s)
- Jinyi Li
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Road, Jinan, Shandong Province, China
| | - Yunhuan Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Road, Jinan, Shandong Province, China
| | - Ruihong Xia
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Road, Jinan, Shandong Province, China
| | - Xiuhe Zhao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Road, Jinan, Shandong Province, China
| | - Ling Li
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong Province, China.
| | - Shengjun Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Road, Jinan, Shandong Province, China.
| |
Collapse
|
8
|
Doroszkiewicz J, Kulczyńska-Przybik A, Dulewicz M, Borawska R, Zajkowska M, Słowik A, Mroczko B. Potential Utility of Cerebrospinal Fluid Glycoprotein Nonmetastatic Melanoma Protein B as a Neuroinflammatory Diagnostic Biomarker in Mild Cognitive Impairment and Alzheimer's Disease. J Clin Med 2023; 12:4689. [PMID: 37510803 PMCID: PMC10380476 DOI: 10.3390/jcm12144689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder characterized by the gradual loss of neurons and extracellular amyloid-peptide buildup. There is compelling evidence that the disease process depends on neuroinflammatory alterations, such as the activation of astrocytes and microglia cells. A transmembrane glycoprotein known as glycoprotein nonmetastatic melanoma protein B (GPNMB) plays a neuroprotective role during the development of neurodegeneration. To the best of our knowledge, this is the first investigation discussing the potential clinical usefulness of this protein in the AD continuum, especially in the MCI (mild cognitive impairment) stage. A total of 71 patients with AD or MCI as well as controls were enrolled in this study. The concentrations of GPNMB, YKL-40, Aβ1-42 (amyloid beta 1-42), Tau, and pTau and the Aβ1-42/1-40 ratio in the CSF (cerebrospinal fluid) were tested using immunological methods. The concentrations of both GPNMB and YKL-40 in the cerebrospinal fluid were significantly higher in patients with AD and MCI compared to the controls. Moreover, both proteins were biochemically associated with classical biomarkers of AD and were especially associated with the Aβ1-42/1-40 ratio and Tau and pTau levels in the whole study group. Elevated concentrations of GPNMB were observed in the Aβ(+) group of AD patients compared to the Aβ(-) subjects. Additionally, the diagnostic performance (AUC value) of GPNMB was higher than that of amyloid β1-42 in MCI patients compared with controls. Our study indicates that GPNMB might be a promising neuroinflammatory biomarker for the early diagnosis and prognosis of the AD continuum, with potential utility as a therapeutic target.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Cracow, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
9
|
Fang C, Li J, Wang W, Wang Y, Chen Z, Zhang J. Establishment and validation of a clinical nomogram model based on serum YKL-40 to predict major adverse cardiovascular events during hospitalization in patients with acute ST-segment elevation myocardial infarction. Front Med (Lausanne) 2023; 10:1158005. [PMID: 37283624 PMCID: PMC10239942 DOI: 10.3389/fmed.2023.1158005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Objective This study aimed to investigate the predictive value of a clinical nomogram model based on serum YKL-40 for major adverse cardiovascular events (MACE) during hospitalization in patients with acute ST-segment elevation myocardial infarction (STEMI). Methods In this study, 295 STEMI patients from October 2020 to March 2023 in the Second People's Hospital of Hefei were randomly divided into a training group (n = 206) and a validation group (n = 89). Machine learning random forest model was used to select important variables and multivariate logistic regression was included to analyze the influencing factors of in-hospital MACE in STEMI patients; a nomogram model was constructed and the discrimination, calibration, and clinical effectiveness of the model were verified. Results According to the results of random forest and multivariate analysis, we identified serum YKL-40, albumin, blood glucose, hemoglobin, LVEF, and uric acid as independent predictors of in-hospital MACE in STEMI patients. Using the above parameters to establish a nomogram, the model C-index was 0.843 (95% CI: 0.79-0.897) in the training group; the model C-index was 0.863 (95% CI: 0.789-0.936) in the validation group, with good predictive power; the AUC (0.843) in the training group was greater than the TIMI risk score (0.648), p < 0.05; and the AUC (0.863) in the validation group was greater than the TIMI risk score (0.795). The calibration curve showed good predictive values and observed values of the nomogram; the DCA results showed that the graph had a high clinical application value. Conclusion In conclusion, we constructed and validated a nomogram based on serum YKL-40 to predict the risk of in-hospital MACE in STEMI patients. This model can provide a scientific reference for predicting the occurrence of in-hospital MACE and improving the prognosis of STEMI patients.
Collapse
Affiliation(s)
- Caoyang Fang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Jun Li
- Department of Cardiology, The Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, Anhui, China
- Department of Cardiology, The Lu’an People's Hospital, Lu’an, Anhui, China
| | - Wei Wang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yuqi Wang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Zhenfei Chen
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Yang F, Yang L, Fang X, Deng Y, Mao R, Yan A, Wei W. Increased Cerebrospinal Fluid Levels of Soluble Triggering Receptor Expressed on Myeloid Cells 2 and Chitinase-3-Like Protein 1 in Idiopathic Normal-Pressure Hydrocephalus. J Alzheimers Dis 2023:JAD221180. [PMID: 37182875 DOI: 10.3233/jad-221180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Neurodegenerative disease pathology is associated with neuroinflammation, but evidence on idiopathic normal pressure hydrocephalus (iNPH) remains limited and cerebrospinal fluid (CSF) biomarker profiles need to be elucidated. OBJECTIVE To investigate whether iNPH pathological mechanisms are associated with greater CSF markers of core Alzheimer's disease pathology (amyloid-β42 (Aβ 42), phosphorylated tau (P-tau)), neurodegeneration (total tau (T-tau)), and neuroinflammation (soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 (YKL-40)). METHODS The study analyzed lumbar CSF samples from 63 patients with iNPH and 20 age-matched orthopedic surgery patients who had no preoperative gait or cognitive impairment (control group). Aβ 42, T-tau, P-tau, sTREM2, and YKL-40 in different subgroups were investigated. RESULTS CSF sTREM2 levels were significantly higher in the iNPH group than in the control group, but no significant between-group difference was noted in YKL-40. Moreover, YKL-40 levels were significantly higher in the tap test non-responders than in the tap test responders (p = 0.021). At the 1-year follow-up after shunt surgery, the CSF P-tau levels were significantly lower (p = 0.020) in those with gait improvement and the CSF sTREM2 levels were significantly lower (p = 0.041) in those with cognitive improvement. In subgroup analysis, CSF sTREM2 levels were strongly correlated with CSF YKL-40 in the iNPH group (r = 0.443, p < 0.001), especially in the tap test non-responders (r = 0.653, p = 0.002). CONCLUSION YKL-40 and sTREM2 are disease-specific markers of neuroinflammation, showing higher CSF levels in iNPH. In addition, sTREM2 is positively associated with YKL-40, indicating that interactions of glial cells play an important role in iNPH pathogenesis.
Collapse
Affiliation(s)
- Fuxia Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lu Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yao Deng
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
11
|
Mulorz J, Spin JM, Mulorz P, Wagenhäuser MU, Deng A, Mattern K, Rhee YH, Toyama K, Adam M, Schelzig H, Maegdefessel L, Tsao PS. E-cigarette exposure augments murine abdominal aortic aneurysm development: role of Chil1. Cardiovasc Res 2023; 119:867-878. [PMID: 36413508 PMCID: PMC10409905 DOI: 10.1093/cvr/cvac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a common cardiovascular disease with a strong correlation to smoking, although underlying mechanisms have been minimally explored. Electronic cigarettes (e-cigs) have gained recent broad popularity and can deliver nicotine at comparable levels to tobacco cigarettes, but effects on AAA development are unknown. METHODS AND RESULTS We evaluated the impact of daily e-cig vaping with nicotine on AAA using two complementary murine models and found that exposure enhanced aneurysm development in both models and genders. E-cigs induced changes in key mediators of AAA development including cytokine chitinase-3-like protein 1 (CHI3L1/Chil1) and its targeting microRNA-24 (miR-24). We show that nicotine triggers inflammatory signalling and reactive oxygen species while modulating miR-24 and CHI3L1/Chil1 in vitro and that Chil1 is crucial to e-cig-augmented aneurysm formation using a knockout model. CONCLUSIONS In conclusion our work shows increased aneurysm formation along with augmented vascular inflammation in response to e-cig exposure with nicotine. Further, we identify Chil1 as a key mediator in this context. Our data raise concerns regarding the potentially harmful long-term effects of e-cig nicotine vaping.
Collapse
Affiliation(s)
- Joscha Mulorz
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Joshua M Spin
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Pireyatharsheny Mulorz
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Markus Udo Wagenhäuser
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alicia Deng
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Karin Mattern
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Medical University of Göttingen, Göttingen, Germany
| | - Yae H Rhee
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Matti Adam
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
| | - Hubert Schelzig
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- German Center for Cardiovascular Research (DZHK), Berlin, Germany (partner site: Munich)
| | - Philip S Tsao
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| |
Collapse
|
12
|
Wang Z, Wang S, Jia Z, Hu Y, Cao D, Yang M, Liu L, Gao L, Qiu S, Yan W, Li Y, Luo J, Geng Y, Zhang J, Li Z, Wang X, Li M, Shao R, Liu Y. YKL-40 derived from infiltrating macrophages cooperates with GDF15 to establish an immune suppressive microenvironment in gallbladder cancer. Cancer Lett 2023; 563:216184. [PMID: 37088328 DOI: 10.1016/j.canlet.2023.216184] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Despite of the high lethality of gallbladder cancer (GBC), little is known regarding molecular regulation of the tumor immunosuppressive microenvironment. Here, we determined tumor expression levels of YKL-40 and the molecular mechanisms by which YKL-40 regulates escape of anti-tumor immune surveillance. We found that elevated expression levels of YKL-40 in plasma and tissue were correlated with tumor size, stage IV and lymph node metastasis. Single cell transcriptome analysis revealed that YKL-40 was predominantly derived from M2-like subtype of infiltrating macrophages. Blockade of M2-like macrophage differentiation of THP-1 cells with YKL-40 shRNA resulted in reprogramming to M1-like macrophages and restricting tumor development. YKL-40 induced tumor cell expression and secretion of growth differentiation factor 15 (GDF15), thus coordinating to promote PD-L1 expression mediated by PI3K, AKT and/or Erk activation. Interestingly, extracellular GDF15 inhibited intracellular expression of GDF15 that suppressed PD-L1 expression. Thus, YKL-40 disrupted the balance of pro- and anti-PD-L1 regulation to enhance expression of PD-L1 and inhibition of T cell cytotoxicity, leading to tumor immune evasion. The data suggest that YKL-40 and GDF15 could serve as diagnostic biomarkers and immunotherapeutic targets for GBC.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Ziheng Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongyan Cao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Mingjie Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Li Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shimei Qiu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Weikang Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yiming Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jing Luo
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jingyun Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Zhizhen Li
- Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Shao
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China; Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| |
Collapse
|
13
|
Declercq J, Hammad H, Lambrecht BN, Smole U. Chitinases and chitinase-like proteins in asthma. Semin Immunol 2023; 67:101759. [PMID: 37031560 DOI: 10.1016/j.smim.2023.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.
Collapse
Affiliation(s)
- Jozefien Declercq
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands.
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
14
|
Russo C, Valle MS, Casabona A, Malaguarnera L. Chitinase Signature in the Plasticity of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24076301. [PMID: 37047273 PMCID: PMC10094409 DOI: 10.3390/ijms24076301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have pointed out that Chitinases are expressed and secreted by various cell types of central nervous system (CNS), including activated microglia and astrocytes. These cells play a key role in neuroinflammation and in the pathogenesis of many neurodegenerative disorders. Increased levels of Chitinases, in particular Chitotriosidase (CHIT-1) and chitinase-3-like protein 1 (CHI3L1), have been found increased in several neurodegenerative disorders. Although having important biological roles in inflammation, to date, the molecular mechanisms of Chitinase involvement in the pathogenesis of neurodegenerative disorders is not well-elucidated. Several studies showed that some Chitinases could be assumed as markers for diagnosis, prognosis, activity, and severity of a disease and therefore can be helpful in the choice of treatment. However, some studies showed controversial results. This review will discuss the potential of Chitinases in the pathogenesis of some neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, to understand their role as distinctive biomarkers of neuronal cell activity during neuroinflammatory processes. Knowledge of the role of Chitinases in neuronal cell activation could allow for the development of new methodologies for downregulating neuroinflammation and consequently for diminishing negative neurological disease outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
15
|
Zhang W, Zhou X, Yin J, Zhao W, Huang C, Zhang C, Wan K, Li M, Zhu X, Sun Z. YKL-40 as a novel biomarker related to white matter damage and cognitive impairment in patients with cerebral small vessel disease. Brain Res 2023; 1807:148318. [PMID: 36898474 DOI: 10.1016/j.brainres.2023.148318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
YKL-40 is a novel neuroinflammatory marker associated with white matter damage and cognitive dysfunction. 110 CSVD patients, including 54 with mild cognitive impairment (CSVD-MCI), 56 with no cognitive impairment (CSVD-NCI), and 40 healthy controls (HCs) underwent multimodal magnetic resonance examination, serum YKL-40 level detection and cognitive function assessment to investigate the association between YKL-40 and white matter damage and cognitive impairment in cerebral small vessel disease (CSVD) patients. White matter hyperintensities volume was calculated using the Wisconsin White Matter Hyperintensity Segmentation Toolbox (W2MHS) for white matter macrostructural damage evaluation. For white matter microstructural damage evaluation, fractional anisotropy (FA) and mean diffusivity (MD) indices of the region of interest were analyzed based on diffusion tensor imaging (DTI) images using the Tract-Based Spatial Statistics (TBSS) pipeline. The serum YKL-40 level of CSVD was significantly higher than those of HCs, and the CSVD-MCI was higher than in HCs and CSVD-NCI. Furthermore, serum YKL-40 provided high diagnostic accuracy for CSVD and CSVD-MCI. The macroscopic and microstructure of white matter in CSVD-NCI and CSVD-MCI patients indicated different degrees of damage. Disruption of white matter macroscopic and microstructure was significantly associated with YKL-40 levels and cognition deficits. Moreover, the white matter damage mediated the associations between the increased serum YKL-40 levels and cognitive impairment. Our findings demonstrated that YKL-40 might be a potential biomarker of white matter damage in CSVD, whereas white matter damage was associated with cognitive impairment. Serum YKL-40 measurement provides complementary information regarding the neural mechanism of CSVD and its associated cognitive impairment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jiabin Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
| | - Chaojuan Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
| | - Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Mingxu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Connolly K, Lehoux M, O’Rourke R, Assetta B, Erdemir GA, Elias JA, Lee CG, Huang YWA. Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer's disease. Alzheimers Dement 2023; 19:9-24. [PMID: 35234337 PMCID: PMC9437141 DOI: 10.1002/alz.12612] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1/YKL-40) has long been known as a biomarker for early detection of neuroinflammation and disease diagnosis of Alzheimer's disease (AD). In the brain, CHI3L1 is primarily provided by astrocytes and heralds the reactive, neurotoxic state triggered by inflammation and other stress signals. However, how CHI3L1 acts in neuroinflammation or how it contributes to AD and relevant neurodegenerative conditions remains unknown. In peripheral tissues, our group and others have uncovered that CHI3L1 is a master regulator for a wide range of injury and repair events, including the innate immunity pathway that resembles the neuroinflammation process governed by microglia and astrocytes. Based on assessment of current knowledge regarding CHI3L1 biology, we hypothesize that CHI3L1 functions as a signaling molecule mediating distinct neuroinflammatory responses in brain cells and misfunctions to precipitate neurodegeneration. We also recommend future research directions to validate such assertions for better understanding of disease mechanisms.
Collapse
Affiliation(s)
- Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University
| | - Mikael Lehoux
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Ryan O’Rourke
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Pathobiology, Brown University
| | - Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Guzide Ayse Erdemir
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Jack A Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Molecular Microbiology and Immunology, Brown University
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Neurology, Warren Alpert Medical School of Brown University,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University
| |
Collapse
|
17
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Musumeci G, Vecchio M, Li Volti G, Tibullo D, Broggi G, Caltabiano R, Ulivieri M, Kazakova M, Parenti R, Vicario N, Fazio F, Di Rosa M. Sex-dependent neuro-deconvolution analysis of Alzheimer's disease brain transcriptomes according to CHI3L1 expression levels. J Neuroimmunol 2022; 373:577977. [PMID: 36228382 DOI: 10.1016/j.jneuroim.2022.577977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Glial activation and related neuroinflammatory processes play a key role in the aging and progression of Alzheimer's disease (AD). CHI3L1/ YKL40 is a widely investigated chitinase in neurodegenerative diseases and recent studies have shown its involvement in aging and AD. Nevertheless, the biological function of CHI3L1 in AD is still unknown. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of not demented healthy controls (NDHC) who died from causes not attributable to neurodegenerative disorders (n = 460), and of deceased patients suffering from Alzheimer's disease (AD) (n = 697). The NDHC and AD patients were stratified according to CHI3L1 expression levels as a cut-off. We identified two groups both males and females, subsequently used for our statistical comparisons: the high CHI3L1 expression group (HCEG) and the low CHI3L1 expression group (LCEG). Comparing HCEG to LCEG, we attained four signatures according to the sex of patients, in order to identify the healthy and AD brain cellular architecture, performing a genomic deconvolution analysis. We used neurological signatures (NS) belonging to six neurological cells populations and nine signatures that included the main physiological neurological processes. We discovered that, in the brains of NDHC the high expression levels of CHI3L1 were associated with astrocyte activation profile, while in AD males and females we showed an inflammatory profile microglia-mediated. The low CHI3L1 brain expression levels in NDHC and AD patients highlighted a neuronal activation profile. Furthermore, using drugs opposing CHI3L1 transcriptomic signatures, we found a specific drug profile for AD males and females characterized by high levels of CHI3L1 composed of fostamatinib, rucaparib, cephaeline, prednisolone, and dinoprostone. Brain levels of CHI3L1 in AD patients represent a biological signature that allows distinguishing between males and females and their likely cellular brain architecture.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, 95100 Catania, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele", Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Martina Ulivieri
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Maria Kazakova
- Department of Medical Biology, Medical University, Plovdiv, 4002 Plovdiv, Bulgaria; Research Institute, Medical University-, Plovdiv, 4002 Plovdiv, Bulgaria
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesco Fazio
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
18
|
Çeliktürk E, Salt Ö, Sayhan MB, Dıbırdık İ. A novel biomarker in acute cholecystitis: YKL-40. Asian J Surg 2022; 46:1564-1570. [PMID: 36241524 DOI: 10.1016/j.asjsur.2022.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND The lack of a specific biomarker that can be used in the diagnosis of acute cholecystitis, a common cause of admission to the emergency department, delays physician efforts to diagnose and treat these patients. Therefore, the aim of this study was to measure plasma YKL-40 levels and investigate their diagnostic value in patients with acute cholecystitis (AC). METHODS This study was carried out between February 2020 and September 2020 in the adult emergency department of a tertiary university hospital. Permission was obtained from the Ethics Committee of Scientific Research on 03/02/2020 with Decision No. 03/16. The study included 80 patients who were diagnosed with acute cholecystitis and 80 healthy volunteers without known chronic diseases. RESULTS The median YKL-40 protein level was 798.66 pq/mL in the patient group and 392.45 pq/mL in the control group. A statistically significant difference in YKL-40 protein levels was found between the two groups. YKL-40 protein levels were significantly higher in patients diagnosed with acute cholecystitis than in healthy individuals (p < 0.001). A positive correlation was found between YKL-40 protein levels and ALT, AST, LDH, and GGT levels (r = 0.272, p = 0.015; r = 0.397, p < 0.001; r = 0.386, p < 0.001; and r = 0.264, p = 0.018; respectively). CONCLUSION When evaluated together with physical examination, radiological imaging and other laboratory parameters, we think that plasma YKL-40 levels can be used effectively in the diagnosis of acute cholecystitis.
Collapse
|
19
|
Sanfilippo C, Castrogiovanni P, Vinciguerra M, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. A sex-stratified analysis of neuroimmune gene expression signatures in Alzheimer's disease brains. GeroScience 2022; 45:523-541. [PMID: 36136224 PMCID: PMC9886773 DOI: 10.1007/s11357-022-00664-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697). The AD patients were stratified according to sex. Comparing the high CHI3L1 and CHI3L2 expression group (75th percentile), and low CHI3L1 and CHI3L2 expression group (25th percentile), we obtained eight signatures according to the sex of patients and performed a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to twelve cell populations. Expression analysis revealed significantly higher CHI3L1 and CHI3L2 expression in AD compared with NDC, and positive correlations of these genes with GFAP and TMEM119. Furthermore, deconvolution analysis revealed that CHI3L1 and CHI3L2 high expression was associated with inflammatory signatures in both sexes. Neuronal activation profiles were significantly activated in AD patients with low CHI3L1 and CHI3L2 expression levels. Furthermore, gene ontology analysis of common genes regulated by the two chitinases unveiled immune response as a main biological process. Finally, microglia NIS significantly correlated with CHI3L2 expression levels and were more than 98% similar to microglia NIS determined by CHI3L1. According to our results, high levels of CHI3L1 and CHI3L2 in the brains of AD patients are associated with inflammatory transcriptomic signatures. The high correlation between CHI3L1 and CHI3L2 suggests strong co-regulation.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU “Policlinico-San Marco”, Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Catania, Sicily Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic ,Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Francesco Fazio
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,UK Dementia Research Institute at UCL, London, UK ,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
20
|
Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2120680119. [PMID: 35998224 PMCID: PMC9457492 DOI: 10.1073/pnas.2120680119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SARS-CoV-2–infected patients often display characteristic changes in the production of immune mediators that trigger life-threatening courses of COVID-19. The underlying molecular mechanisms are not yet fully understood. Here, we used single-cell RNA sequencing to investigate the involvement of the emerging class of long regulatory RNA in COVID-19. Our data reveal that a previously unknown regulatory RNA in the nucleus of immune cells is altered after SARS-CoV-2 infection. The degradation of this RNA removes a natural brake on the production of critical immune mediators that can promote the development of severe COVID-19. We believe that therapeutic intervention in this nuclear RNA circuit could counteract the overproduction of disease-causing immune mediators and protect against severe COVID-19. The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB–dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB–dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.
Collapse
|
21
|
The Value of Serum YKL-40 and TNF-α in the Diagnosis of Acute ST-Segment Elevation Myocardial Infarction. Cardiol Res Pract 2022; 2022:4905954. [PMID: 36051575 PMCID: PMC9427287 DOI: 10.1155/2022/4905954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Acute ST-segment elevation myocardial infarction (STEMI) is a serious cardiovascular disease that poses a great threat to the life and health of patients. Therefore, early diagnosis is important for STEMI patient treatment and prognosis. The purpose of this study was to investigate the value of serum YKL-40 and TNF-α in the diagnosis of STEMI. Methods From October 2020 to February 2022, 120 patients with STEMI were admitted to the Chest Pain Center of the Second People's Hospital of Hefei, and 81 patients with negative coronary angiography were selected as the control group. Serum YKL-40 and TNF-α concentrations were measured by sandwich ELISA. Pearson correlation was used to analyze the correlation between serum YKL-40, TNF-α, and serum troponin I (cTnI) in STEMI patients; multivariate logistic regression analysis was used to screen independent risk factors for STEMI. Three diagnostic models were constructed: cTnI univariate model (model A), combined serum YKL-40 and TNF-α model other than cTnI (model B), and combined cTnI and serum YKL-40 and TNF-α model (model C). We assessed the clinical usefulness of the diagnostic model by comparing AUC with decision curve analysis (DCA). Results Serum YKL-40 and TNF-α in the STEMI group were significantly higher than those in the control group (P < 0.001). On Pearson correlation analysis, there was a significant positive correlation between serum YKL-40, TNF-α, and cTnI levels in STEMI patients. Multivariate logistic regression analysis showed that serum YKL-40 and TNF-α were independent risk factors for the development of STEMI. The results of ROC analysis showed that the area under the curve (AUC) of serum YKL-40 for predicting the occurrence of STEMI was 0.704. The AUC of serum TNF-α for predicting the occurrence of STEMI was 0.852. The AUC of cTnI as a traditional model, model A, for predicting the occurrence of STEMI was 0.875. Model B predicted STEMI with an AUC of 0.851. The addition of serum YKL-40 and serum TNF-α to the traditional diagnostic model composed of cTnI constituted a new diagnostic model; that is, the AUC of model C for predicting the occurrence of STEMI was 0.930. Model C had a better net benefit between a threshold probability of 70–95% for DCA. Conclusion In this study, we demonstrate the utility of serum YKL-40 and TNF-α as diagnostic markers for STEMI and the clinical utility of diagnostic models by combining serum YKL-40 and TNF-α with cTnI.
Collapse
|
22
|
Hok-A-Hin YS, Hoozemans JJM, Hu WT, Wouters D, Howell JC, Rábano A, van der Flier WM, Pijnenburg YAL, Teunissen CE, Del Campo M. YKL-40 changes are not detected in post-mortem brain of patients with Alzheimer's disease and frontotemporal lobar degeneration. Alzheimers Res Ther 2022; 14:100. [PMID: 35879733 PMCID: PMC9310415 DOI: 10.1186/s13195-022-01039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022]
Abstract
Background YKL-40 (Chitinase 3-like I) is increased in CSF of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) patients and is therefore considered a potential neuroinflammatory biomarker. Whether changed YKL-40 levels in the CSF reflect dysregulation of YKL-40 in the brain is not completely understood yet. We aimed to extensively analyze YKL-40 levels in the brain of AD and different FTLD pathological subtypes. The direct relationship between YKL-40 levels in post-mortem brain and ante-mortem CSF was examined in a small set of paired brain-CSF samples. Method YKL-40 was analyzed in post-mortem temporal and frontal cortex of non-demented controls and patients with AD and FTLD (including FTLD-Tau and FTLD-TDP) pathology by immunohistochemistry (temporal cortex: 51 controls and 56 AD and frontal cortex: 7 controls and 24 FTLD patients), western blot (frontal cortex: 14 controls, 5 AD and 67 FTLD patients), or ELISA (temporal cortex: 11 controls and 7 AD and frontal cortex: 14 controls, 5 AD and 67 FTLD patients). YKL-40 levels were also measured in paired post-mortem brain and ante-mortem CSF samples from dementia patients (n = 9, time-interval collection: 1.4 years) by ELISA. Results We observed that YKL-40 post-mortem brain levels were similar between AD, FTLD, and controls as shown by immunohistochemistry, western blot, and ELISA. Interestingly, strong YKL-40 immunoreactivity was observed in AD cases with cerebral amyloid angiopathy (CAA; n = 6). In paired CSF-brain samples, YKL-40 concentration was 8-times higher in CSF compared to brain. Conclusion Our data suggest that CSF YKL-40 changes may not reflect YKL-40 changes within AD and FTLD pathological brain areas. The YKL-40 reactivity associated with classical CAA hallmarks indicates a possible relationship between YKL-40, neuroinflammation, and vascular pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01039-y.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - William T Hu
- Department of Neurology, Center for Neurodegenerative Diseases Research, Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, USA
| | - Dorine Wouters
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jennifer C Howell
- Department of Neurology, Center for Neurodegenerative Diseases Research, Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, USA
| | - Alberto Rábano
- CIEN Tissue Bank, Alzheimer's Centre Reina Sofía-CIEN Foundation, Madrid, Spain
| | - Wiesje M van der Flier
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Medical Centers, Amsterdam, The Netherlands.,Department of Epidemiology and Data Science, VU University Medical Centers, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Medical Centers, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
23
|
Murase T, Shinba Y, Mitsuma M, Abe Y, Yamashita H, Ikematsu K. Wound age estimation based on chronological changes in chitinase 3-like protein 1 expression. Leg Med (Tokyo) 2022; 59:102128. [DOI: 10.1016/j.legalmed.2022.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
|
24
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
25
|
Vasunilashorn SM, Dillon ST, Chan NY, Fong TG, Joseph M, Tripp B, Xie Z, Ngo LH, Lee CG, Elias JA, Otu HH, Inouye SK, Marcantonio ER, Libermann TA. Proteome-Wide Analysis Using SOMAscan Identifies and Validates Chitinase-3-Like Protein 1 as a Risk and Disease Marker of Delirium Among Older Adults Undergoing Major Elective Surgery. J Gerontol A Biol Sci Med Sci 2022; 77:484-493. [PMID: 35239952 PMCID: PMC8893174 DOI: 10.1093/gerona/glaa326] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Delirium (an acute change in cognition) is a common, morbid, and costly syndrome seen primarily in aging adults. Despite increasing knowledge of its epidemiology, delirium remains a clinical diagnosis with no established biomarkers to guide diagnosis or management. Advances in proteomics now provide opportunities to identify novel markers of risk and disease progression for postoperative delirium and its associated long-term consequences (eg, long-term cognitive decline and Alzheimer's disease [AD]). METHODS In a nested matched case-control study (18 delirium/no-delirium pairs) within the Successful Aging after Elective Surgery study (N = 556), we evaluated the association of 1305 plasma proteins preoperatively [PREOP] and on postoperative day 2 [POD2]) with delirium using SOMAscan. Generalized linear models were applied to enzyme-linked immunosorbant assay (ELISA) validation data of one protein across the full cohort. Multi-protein modeling included delirium biomarkers identified in prior work (C-reactive protein, interleukin-6 [IL6]). RESULTS We identified chitinase-3-like-protein-1 (CHI3L1/YKL-40) as the sole delirium-associated protein in both a PREOP and a POD2 predictor model, a finding confirmed by ELISA. Multi-protein modeling found high PREOP CHI3L1/YKL-40 and POD2 IL6 increased the risk of delirium (relative risk [95% confidence interval] Quartile [Q]4 vs Q1: 2.4[1.2-5.0] and 2.1[1.1-4.1], respectively). CONCLUSIONS Our identification of CHI3L1/YKL-40 in postoperative delirium parallels reports of CHI3L1/YKL-40 and its association with aging, mortality, and age-related conditions including AD onset and progression. This highlights the type 2 innate immune response, involving CHI3L1/YKL-40, as an underlying mechanism of postoperative delirium, a common, morbid, and costly syndrome that threatens the independence of older adults.
Collapse
Affiliation(s)
- Sarinnapha M Vasunilashorn
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Simon T Dillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Noel Y Chan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tamara G Fong
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Marie Joseph
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bridget Tripp
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Long H Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Boston, Massachusetts, USA
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Boston, Massachusetts, USA
| | - Hasan H Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sharon K Inouye
- Harvard Medical School, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Edward R Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Towia A Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
27
|
Mavroudis I, Chowdhury R, Petridis F, Karantali E, Chatzikonstantinou S, Balmus IM, Luca IS, Ciobica A, Kazis D. YKL-40 as a Potential Biomarker for the Differential Diagnosis of Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010060. [PMID: 35056368 PMCID: PMC8777884 DOI: 10.3390/medicina58010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, associated with extensive neuronal loss, dendritic and synaptic changes resulting in significant cognitive impairment. An increased number of studies have given rise to the neuroinflammatory hypothesis in AD. It is widely accepted that AD brains show chronic inflammation, probably triggered by the presence of insoluble amyloid beta deposits and neurofibrillary tangles (NFT) and is also related to the activation of neuronal death cascade. In the present study we aimed to investigate the role of YKL-40 levels in the cerebrospinal fluid (CSF) in the diagnosis of AD, and to discuss whether there are further potential roles of this protein in the management and treatment of AD. We conducted an online search on PubMed, Web of Science, and the Cochrane library databases from 1990 to 2021. The quantitative analysis showed that the levels of YKL-40 were significantly higher in Alzheimer’s disease compared to controls, to mild cognitive impairment (MCI) AD (MCI-AD) and to stable MCI. They were also increased in MCI-AD compared to stable MCI. The present study shows that the CSF levels of YKL-40 could be potentially used as a biomarker for the prognosis of mild cognitive impairment and the likelihood of progression to AD, as well as for the differential diagnosis between AD and MCI.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
| | - Rumana Chowdhury
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Symela Chatzikonstantinou
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Ioana Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, ”Alexandru Ioan Cuza” University of Iasi, Alexandru Lapsuneanu Street, No. 26, 700057 Iasi, Romania;
| | - Iuliana Simona Luca
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence: (I.S.L.); (A.C.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence: (I.S.L.); (A.C.)
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| |
Collapse
|
28
|
Ribitsch I, Bileck A, Egerbacher M, Gabner S, Mayer RL, Janker L, Gerner C, Jenner F. Fetal Immunomodulatory Environment Following Cartilage Injury-The Key to CARTILAGE Regeneration? Int J Mol Sci 2021; 22:ijms222312969. [PMID: 34884768 PMCID: PMC8657887 DOI: 10.3390/ijms222312969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/15/2023] Open
Abstract
Fetal cartilage fully regenerates following injury, while in adult mammals cartilage injury leads to osteoarthritis (OA). Thus, in this study, we compared the in vivo injury response of fetal and adult ovine articular cartilage histologically and proteomically to identify key factors of fetal regeneration. In addition, we compared the secretome of fetal ovine mesenchymal stem cells (MSCs) in vitro with injured fetal cartilage to identify potential MSC-derived therapeutic factors. Cartilage injury caused massive cellular changes in the synovial membrane, with macrophages dominating the fetal, and neutrophils the adult, synovial cellular infiltrate. Correspondingly, proteomics revealed differential regulation of pro- and anti-inflammatory mediators and growth-factors between adult and fetal joints. Neutrophil-related proteins and acute phase proteins were the two major upregulated protein groups in adult compared to fetal cartilage following injury. In contrast, several immunomodulating proteins and growth factors were expressed significantly higher in the fetus than the adult. Comparison of the in vitro MSCs proteome with the in vivo fetal regenerative signature revealed shared upregulation of 17 proteins, suggesting their therapeutic potential. Biomimicry of the fetal paracrine signature to reprogram macrophages and modulate inflammation could be an important future research direction for developing novel therapeutics.
Collapse
Affiliation(s)
- Iris Ribitsch
- VETERM, Equine Surgery Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Monika Egerbacher
- Administrative Unit Veterinary Medicine, UMIT—Private University for Health Sciences, Medical Informatics and Technology GmbH, 6060 Hall in Tirol, Austria;
| | - Simone Gabner
- Histology & Embryology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Rupert L. Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
- Correspondence: (C.G.); (F.J.)
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence: (C.G.); (F.J.)
| |
Collapse
|
29
|
Böckelmann LC, Felix T, Calabrò S, Schumacher U. YKL-40 protein expression in human tumor samples and human tumor cell line xenografts: implications for its use in tumor models. Cell Oncol (Dordr) 2021; 44:1183-1195. [PMID: 34432260 PMCID: PMC8516773 DOI: 10.1007/s13402-021-00630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND YKL-40, also known as non-enzymatic chitinase-3 like-protein-1 (CHI3L1), is a glycoprotein expressed and secreted mainly by inflammatory cells and tumor cells. Accordingly, several studies demonstrated elevated YKL-40 serum levels in cancer patients and found YKL-40 to be correlated with a poor prognosis and disease severity in some tumor entities. YKL-40 was suggested to be involved in angiogenesis and extracellular matrix remodeling. As yet, however, its precise biological function remains elusive. METHODS As YKL-40 protein expression has only been investigated in few malignancies, we employed immunohistochemical detection in a large multi-tumor tissue microarray consisting of 2,310 samples from 72 different tumor entities. In addition, YKL-40 protein expression was determined in primary mouse xenograft tumors derived from human cancer cell lines. RESULTS YKL-40 could be detected in almost all cancer entities and was differently expressed depending on tumor stage and subtype (e.g., thyroid cancer, colorectal cancer, gastric cancer and ovarian cancer). While YKL-40 was absent in in vitro grown human cancer cell lines, YKL-40 expression was upregulated in xenograft tumor tissues in vivo. CONCLUSIONS These data provide new insights into YKL-40 expression at the protein level in various tumor entities and its regulation in tumor models. Our data suggest that upregulation of YKL-40 expression is a common feature in vivo and is finely regulated by tumor cell-microenvironment interactions.
Collapse
Affiliation(s)
- Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Theresa Felix
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simona Calabrò
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Dichev V, Kazakova M, Sarafian V. YKL-40 and neuron-specific enolase in neurodegeneration and neuroinflammation. Rev Neurosci 2021; 31:539-553. [PMID: 32045356 DOI: 10.1515/revneuro-2019-0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/22/2019] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases comprise a large number of disorders with high impact on human health. Neurodegenerative processes are caused by various etiological factors and differ in their clinical presentation. Neuroinflammation is widely discussed as both a cause and a consequence in the manifestation of these disorders. The interplay between the two entities is considered as a major contributor to the ongoing disease progression. An attentive search and implementation of new and reliable markers specific for the processes of inflammation and degeneration is still needed. YKL-40 is a secreted glycoprotein produced by activated glial cells during neuroinflammation. Neuron-specific enolase (NSE), expressed mainly by neuronal cells, is a long-standing marker for neuronal damage. The aim of this review is to summarize, clarify, and evaluate the potential significance and relationship between YKL-40 and NSE as biomarkers in the monitoring and prognosis of a set of neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. YKL-40 appears to be a more reliable biomarker in neurological diseases than NSE. The more prominent expression pattern of YKL-40 could be explained with the more obvious involvement of glial cells in pathological processes accompanying each neurodegenerative disease, whereas reduced NSE levels are likely related to low metabolic activity and increased death of neurons.
Collapse
Affiliation(s)
- Valentin Dichev
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
31
|
Increased YKL-40 but Not C-Reactive Protein Levels in Patients with Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9091094. [PMID: 34572280 PMCID: PMC8467854 DOI: 10.3390/biomedicines9091094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation is a common feature in Alzheimer’s (AD) and Parkinson’s (PD) disease. In the last few decades, a testable hypothesis was proposed that protein-unfolding events might occur due to neuroinflammatory cascades involving alterations in the crosstalk between glial cells and neurons. Here, we tried to clarify the pattern of two of the most promising biomarkers of neuroinflammation in cerebrospinal fluid (CSF) in AD and PD. This study included cognitively unimpaired elderly patients, patients with mild cognitive impairment, patients with AD dementia, and patients with PD. CSF samples were analyzed for YKL-40 and C-reactive protein (CRP). We found that CSF YKL-40 levels were significantly increased only in dementia stages of AD. Additionally, increased YKL-40 levels were found in the cerebral orbitofrontal cortex from AD patients in agreement with augmented astrogliosis. Our study confirms that these biomarkers of neuroinflammation are differently detected in CSF from AD and PD patients.
Collapse
|
32
|
Cindy Yang SY, Lien SC, Wang BX, Clouthier DL, Hanna Y, Cirlan I, Zhu K, Bruce JP, El Ghamrasni S, Iafolla MAJ, Oliva M, Hansen AR, Spreafico A, Bedard PL, Lheureux S, Razak A, Speers V, Berman HK, Aleshin A, Haibe-Kains B, Brooks DG, McGaha TL, Butler MO, Bratman SV, Ohashi PS, Siu LL, Pugh TJ. Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nat Commun 2021; 12:5137. [PMID: 34446728 PMCID: PMC8390680 DOI: 10.1038/s41467-021-25432-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Serial circulating tumor DNA (ctDNA) monitoring is emerging as a non-invasive strategy to predict and monitor immune checkpoint blockade (ICB) therapeutic efficacy across cancer types. Yet, limited data exist to show the relationship between ctDNA dynamics and tumor genome and immune microenvironment in patients receiving ICB. Here, we present an in-depth analysis of clinical, whole-exome, transcriptome, and ctDNA profiles of 73 patients with advanced solid tumors, across 30 cancer types, from a phase II basket clinical trial of pembrolizumab (NCT02644369) and report changes in genomic and immune landscapes (primary outcomes). Patients stratified by ctDNA and tumor burden dynamics correspond with survival and clinical benefit. High mutation burden, high expression of immune signatures, and mutations in BRCA2 are associated with pembrolizumab molecular sensitivity, while abundant copy-number alterations and B2M loss-of-heterozygosity corresponded with resistance. Upon treatment, induction of genes expressed by T cell, B cell, and myeloid cell populations are consistent with sensitivity and resistance. We identified the upregulated expression of PLA2G2D, an immune-regulating phospholipase, as a potential biomarker of adaptive resistance to ICB. Together, these findings provide insights into the diversity of immunogenomic mechanisms that underpin pembrolizumab outcomes.
Collapse
Affiliation(s)
- S Y Cindy Yang
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Scott C Lien
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Derek L Clouthier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Youstina Hanna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Iulia Cirlan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kelsey Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marco A J Iafolla
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marc Oliva
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aaron R Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Philippe L Bedard
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephanie Lheureux
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Albiruni Razak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Speers
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Benjamin Haibe-Kains
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcus O Butler
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
33
|
Blood-Based Biomarkers of Neuroinflammation in Alzheimer's Disease: A Central Role for Periphery? Diagnostics (Basel) 2021; 11:diagnostics11091525. [PMID: 34573867 PMCID: PMC8464786 DOI: 10.3390/diagnostics11091525] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a central feature in the development of Alzheimer’s disease (AD). The resident innate immune cells of the brain are the principal players in neuroinflammation, and their activation leads to a defensive response aimed at promoting β-amyloid (Aβ) clearance. However, it is now widely accepted that the peripheral immune system—by virtue of a dysfunctional blood–brain barrier (BBB)—is involved in the pathogenesis and progression of AD; microglial and astrocytic activation leads to the release of chemokines able to recruit peripheral immune cells into the central nervous system (CNS); at the same time, cytokines released by peripheral cells are able to cross the BBB and act upon glial cells, modifying their phenotype. To successfully fight this neurodegenerative disorder, accurate and sensitive biomarkers are required to be used for implementing an early diagnosis, monitoring the disease progression and treatment effectiveness. Interestingly, as a result of the bidirectional communication between the brain and the periphery, the blood compartment ends up reflecting several pathological changes occurring in the AD brain and can represent an accessible source for such biomarkers. In this review, we provide an overview on some of the most promising peripheral biomarkers of neuroinflammation, discussing their pathogenic role in AD.
Collapse
|
34
|
Emre C, Do KV, Jun B, Hjorth E, Alcalde SG, Kautzmann MAI, Gordon WC, Nilsson P, Bazan NG, Schultzberg M. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:116. [PMID: 34187579 PMCID: PMC8244172 DOI: 10.1186/s40478-021-01216-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Sustained brain chronic inflammation in Alzheimer’s disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates β-amyloid (Aβ) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aβ pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.
Collapse
|
35
|
Edén A, Simrén J, Price RW, Zetterberg H, Gisslén M. Neurochemical biomarkers to study CNS effects of COVID-19: a narrative review and synthesis. J Neurochem 2021; 159:61-77. [PMID: 34170549 PMCID: PMC8420435 DOI: 10.1111/jnc.15459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 12/01/2022]
Abstract
Neurological symptoms are frequently reported in patients suffering from COVID‐19. Common CNS‐related symptoms include anosmia, caused by viral interaction with either neurons or supporting cells in nasal olfactory tissues. Diffuse encephalopathy is the most common sign of CNS dysfunction, which likely results from the CNS consequences of the systemic inflammatory syndrome associated with severe COVID‐19. Additionally, microvascular injuries and thromboembolic events likely contribute to the neurologic impact of acute COVID‐19. These observations are supported by evidence of CNS immune activation in cerebrospinal fluid (CSF) and in autopsy tissue, along with the detection of microvascular injuries in both pathological and neuroimaging studies. The frequent occurrence of thromboembolic events in patients with COVID‐19 has generated different hypotheses, among which viral interaction with perivascular cells is particularly attractive, yet unproven. A distinguishing feature of CSF findings in SARS‐CoV‐2 infection is that clinical signs characteristic of neurotropic viral infections (CSF pleocytosis and blood–brain barrier injury) are mild or absent. Moreover, virus detection in CSF is rare and often of uncertain significance. In this review, we provide an overview of the neurological impact that occurs in the acute phase of COVID‐19, and the role of CSF biomarkers in the clinical management and research to better treat and understand the disease. In addition to aiding as diagnostic and prognostic tools during acute infection, the use of comprehensive and well‐characterized CSF and blood biomarkers will be vital in understanding the potential impact on the CNS in the rapidly increasing number of individuals recovering from COVID‐19.
Collapse
Affiliation(s)
- Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Richard W Price
- Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,Dementia Research Institute at UCL, London, United Kingdom
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| |
Collapse
|
36
|
Thordardottir S, Almkvist O, Johansson C, Zetterberg H, Blennow K, Graff C. Cerebrospinal Fluid YKL-40 and Neurogranin in Familial Alzheimer's Disease: A Pilot Study. J Alzheimers Dis 2021; 76:941-953. [PMID: 32568193 PMCID: PMC7505010 DOI: 10.3233/jad-191261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND YKL-40 and neurogranin are promising additional cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) which reflect different underlying disease mechanisms. OBJECTIVE To compare the levels of CSF YKL-40 and neurogranin between asymptomatic carriers of familial AD (FAD) mutations (MC) and non-carriers (NC) from the same families. Another objective was to assess changes in YKL-40 and neurogranin, from the presymptomatic to clinical phase of FAD. METHODS YKL-40 and neurogranin, as well as Aβ42, total tau-protein, and phospho-tau, were measured in the CSF of 14 individuals carrying one of three FAD mutations, APPswe (p.KM670/671NL), APParc (p.E693G), and PSEN1 (p.H163Y), as well as in 17 NC from the same families. Five of the MC developed mild cognitive impairment (MCI) during follow-up. RESULTS In this pilot study, there was no difference in either CSF YKL-40 or neurogranin when comparing the presymptomatic MC to the NC. YKL-40 correlated positively with expected years to symptom onset and to age in both the MC and the NC, while neurogranin had no correlation to either variable in either of the groups. A subgroup of the participants underwent more than one CSF sampling in which half of the MC developed MCI during follow-up. The longitudinal data showed an increase in YKL-40 levels in the MC as the expected symptom onset approached. Neurogranin remained stable over time in both the MC and the NC. CONCLUSION These findings support a positive correlation between progression from presymptomatic to symptomatic AD and levels of CSF YKL-40, but not neurogranin.
Collapse
Affiliation(s)
- Steinunn Thordardottir
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| | - Ove Almkvist
- Department of NVS, Karolinska Institutet, Center for Alzheimer Research, Division of Clinical Geriatrics, Huddinge, Sweden
| | - Charlotte Johansson
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UCL Insitute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Caroline Graff
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| |
Collapse
|
37
|
Cubas-Núñez L, Gil-Perotín S, Castillo-Villalba J, López V, Solís Tarazona L, Gasqué-Rubio R, Carratalá-Boscá S, Alcalá-Vicente C, Pérez-Miralles F, Lassmann H, Casanova B. Potential Role of CHI3L1+ Astrocytes in Progression in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e972. [PMID: 33658322 PMCID: PMC7931642 DOI: 10.1212/nxi.0000000000000972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 11/15/2022]
Abstract
Objective Neurofilament light protein (NfL) and chitinase 3–like 1 (CHI3L1) are biomarkers for acute neuroaxonal damage and local inflammation, respectively. Thus, we set out to evaluate how these biomarkers were associated with clinical features of demyelinating diseases in parallel with the expression in brain autopsies from patients with similar disease stages, assuming their comparability. Methods NfL and CHI3L1 in CSF and serum CHI3L1 were assessed retrospectively in a cross-sectional cohort of controls (n = 17) and patients diagnosed with MS (n = 224), relapsing (n = 163) or progressive (n = 61); neuromyelitis optica (NMO, n = 7); and acute disseminated encephalomyelitis (ADEM, n = 15). Inflammatory activity was evaluated at the time of sampling, and CSF biomarker levels were related to the degree of inflammation in 22 brain autopsy tissues. Results During a clinical attack, the CSF NfL increased in MS, NMO, and ADEM, whereas CHI3L1 was only elevated in patients with NMO and ADEM and in outlier MS patients with extensive radiologic activity. Outside relapses, CHI3L1 levels only remained elevated in patients with progressive MS. CHI3L1 was detected in macrophages and astrocytes, predominantly in areas of active demyelination, and its expression by astrocytes in chronic lesions was independent of lymphocyte infiltrates and associated with active neurodegeneration. Conclusions Both CSF NfL and CHI3L1 augment during acute inflammation in demyelinating diseases. In MS, CHI3L1 may be associated with low-grade nonlymphocytic inflammation and active neurodegeneration and therefore linked to progressive disease. Classification of Evidence This study provides Class III evidence that CSF NfL and CHI3L1 levels increase in inflammatory brain diseases during acute inflammation.
Collapse
Affiliation(s)
- Laura Cubas-Núñez
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Sara Gil-Perotín
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria.
| | - Jéssica Castillo-Villalba
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Verónica López
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Luis Solís Tarazona
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Raquel Gasqué-Rubio
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Sara Carratalá-Boscá
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Carmen Alcalá-Vicente
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Francisco Pérez-Miralles
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Hans Lassmann
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| | - Bonaventura Casanova
- From the Neuroimmunology Unit (L.C.-N., S.G.-P., J.C.-V., V.L., R.G., S.C., C.A., F.P.-M., B.C.), Polytechnic and University Hospital La Fe; Neurology Department (L.S.T.), University Hospital Dr Peset, Valencia, Spain; and Department of Neuroimmunology (H.L.), Center for Brain Research, Vienna, Austria
| |
Collapse
|
38
|
Teitsdottir UD, Halldorsson S, Rolfsson O, Lund SH, Jonsdottir MK, Snaedal J, Petersen PH. Cerebrospinal Fluid C18 Ceramide Associates with Markers of Alzheimer's Disease and Inflammation at the Pre- and Early Stages of Dementia. J Alzheimers Dis 2021; 81:231-244. [PMID: 33814423 PMCID: PMC8203241 DOI: 10.3233/jad-200964] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Understanding how dysregulation in lipid metabolism relates to the severity of Alzheimer‘s disease (AD) pathology might be critical in developing effective treatments. Objective: To identify lipid species in cerebrospinal fluid (CSF) associated with signature AD pathology and to explore their relationships with measures reflecting AD-related processes (neurodegeneration, inflammation, deficits in verbal episodic memory) among subjects at the pre- and early symptomatic stages of dementia. Methods: A total of 60 subjects that had been referred to an Icelandic memory clinic cohort were classified as having CSF AD (n = 34) or non-AD (n = 26) pathology profiles. Untargeted CSF lipidomic analysis was performed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) for the detection of mass-to-charge ratio (m/z) features. CSF proteins reflecting neurodegeneration (neurofilament light [NFL]) and inflammation (chitinase-3-like protein 1 [YKL-40], S100 calcium-binding protein B [S100B], glial fibrillary acidic protein [GFAP]) were also measured. Rey Auditory Verbal Learning (RAVLT) and Story tests were used for the assessment of verbal episodic memory. Results: Eight out of 1008 features were identified as best distinguishing between the CSF profile groups. Of those, only the annotation of the m/z feature assigned to lipid species C18 ceramide was confirmed with a high confidence. Multiple regression analyses, adjusted for age, gender, and education, demonstrated significant associations of CSF core AD markers (Aβ42: st.β= –0.36, p = 0.007; T-tau: st.β= 0.41, p = 0.005) and inflammatory marker S100B (st.β= 0.51, p = 0.001) with C18 ceramide levels. Conclusion: Higher levels of C18 ceramide associated with increased AD pathology and inflammation, suggesting its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Unnur D Teitsdottir
- Faculty of Medicine, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | | | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | | | - Maria K Jonsdottir
- Department of Psychology, Reykjavik University, Reykjavik, Iceland.,Department of Psychiatry, Landspitali -National University Hospital, Reykjavik, Iceland
| | - Jon Snaedal
- Memory Clinic, Department of Geriatric Medicine, Landspitali - National University Hospital, Reykjavik, Iceland
| | - Petur H Petersen
- Faculty of Medicine, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
39
|
Ko PW, Lee HW, Lee M, Youn YC, Kim S, Kim JH, Kang K, Suk K. Increased plasma levels of chitinase 3-like 1 (CHI3L1) protein in patients with idiopathic normal-pressure hydrocephalus. J Neurol Sci 2021; 423:117353. [PMID: 33652290 DOI: 10.1016/j.jns.2021.117353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Idiopathic normal-pressure hydrocephalus (iNPH) is an uncommon neurological disorder with no known pathological hallmarks. INPH may share common degenerative pathways with other neurological diseases, such as Alzheimer's disease (AD). However, the reversible properties of iNPH may share differing pathophysiological mechanisms with other diseases. This study aimed at assessing the diagnostic value of plasma chitinase 3-like 1 (CHI3L1) protein levels as a disease-specific biomarker for iNPH. We selected both iNPH and AD patients as well as normal and disease control subjects from an enrolled dementia registry. A total of 121 AD, 80 iNPH, 13 idiopathic Parkinson's disease, and 23 mild cognitive impairment patients with 83 healthy controls were included in the final analysis. The Aβ42, total tau, and phosphorylated tau levels within the cerebrospinal fluid, as well as plasma levels of CHI3L1, were measured using commercially available enzyme-linked immunosorbent assay kits. CHI3L1 levels for iNPH patients were higher than those of the other groups. Analysis of covariance adjusting for age showed significantly increased plasma CHI3L1 levels in iNPH patients than in the controls (p < 0.001). CHI3L1 plasma levels may be useful in differentiating iNPH patients from healthy individuals.
Collapse
Affiliation(s)
- Pan-Woo Ko
- Department of Neurology, Daegu Health College Hospital, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Myunghoon Lee
- Research Center, D&P Biotech Inc, Seoul, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyunghun Kang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
40
|
Liang L, Chen Q, Cao W, Tang L, Wei Y, Ding N, Kong X, Xu D. Chitinase-3-like protein 1 is an independent risk factor for the early failure of forearm autologous arteriovenous fistulas in uremic patients. Ther Apher Dial 2021; 25:939-946. [PMID: 33486888 DOI: 10.1111/1744-9987.13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
Chitinase-3-like protein 1 (CHI3L1) has been introduced as a marker of inflammation in different diseases, which can promote cell proliferation and differentiation. It has also been demonstrated that elevated serum CHI3L1 concentration can independently predict all-cause mortality in uremic patients. However, the impact of CHI3L1 on the early failure of autologous arteriovenous fistulas (AVFs) in uremic patients remains unknown. We conducted a prospective observational cohort study of 109 uremic patients (mean age 53.2 ± 14.7 years, 67.9% males), who received forearm AVF surgery, and were consecutively enrolled with a median follow-up time of 15 months. The early failure was defined as a fistula that never developed adequately for dialysis or that failed within the first 3 months of use. Serum CHI3L1 concentration was determined by the ELISA method. Among 109 uremic patients, 24 patients had AVF failure. The optimal cutoff value based on the receiver operating characteristics analysis of CHI3L1 was 122.6 ng/mL, with the area under the curve of 0.73 (P = 0.001). The Kaplan-Meier survival analysis demonstrated that patients with CHI3L1 < 122.6 ng/mL had better AVF patency than patients with CHI3L1 ≥ 122.6 ng/mL (Log-rank test, P = 0.001). Multivariable Cox proportional hazards regression analysis showed that baseline CHI3L1 level (≥ 122.6 ng/mL vs. < 122.6 ng/mL) was significantly associated with AVF failure after adjustment for confounders (adjusted hazard ratio [HR], 3.67; 95% CI, 1.44-9.36). The study demonstrated that Increased baseline serum level of CHI3L1 is independently associated with higher risk of the early failure of forearm AVFs.
Collapse
Affiliation(s)
- Liming Liang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qinlan Chen
- Cheeloo Medical College, Shandong University, Jinan, China
| | - Wei Cao
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lijun Tang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yong Wei
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Nannan Ding
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Shandong Institute of Nephropathy, Jinan, China
| |
Collapse
|
41
|
Luo W, Zhang L, Sheng L, Zhang Z, Yang Z. Increased levels of YKL-40 in patients with diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 2021; 13:6. [PMID: 33446257 PMCID: PMC7809835 DOI: 10.1186/s13098-021-00624-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) could be classified as type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), gestational diabetes mellitus (GDM) and others according to etiology and pathology. Diabetic nephropathy (DN) is one of the most serious complications of DM. YKL-40 is a marker of inflammation and some studies have indicated that DM was related with inflammation. The objective of our study is to perform a systematic review and meta-analysis to confirm the relationship between YKL-40 and DM as well as DN. METHODS Pubmed, Embase, CNKI and Chinese wanfang databases were searched for eligible studies by two independent authors. Studies were included in this meta-analysis if they fulfilled the following inclusion criteria: (1) a study involving the role of YKL-40 in DM (or DN) designed as a case-control study or cohort study; (2) the data of serum YKL-40 levels were available; (3) studies were published in English or Chinese. Finally, twenty-five studies were included in this meta-analysis. RESULTS Compared with healthy controls, DM patients had significantly higher levels of YKL-40 (DM: SMD = 1.62, 95% CI 1.08 to 2.25, P = 0.000; GDM: SMD = 2.85, 95% CI 1.01 to 4.70, P = 0.002). Additionally, DM patients with different degree of albuminuria had significantly higher levels of YKL-40 compared with healthy controls (normoalbuminuria: SMD = 1.58, 95% CI 0.59 to 2.56, P = 0.002; microalbuminuria: SMD = 2.57, 95% CI 0.92 to 4.22, P = 0.002; macroalbuminuria: SMD = 2.69, 95% CI 1.40 to 3.98, P = 0.000) and serum YKL-40 levels increased with increasing severity of albuminuria among DM patients (microalbuminuria vs normoalbuminuria: SMD = 1.49, 95% CI 0.28 to 2.71, P = 0.016; macroalbuminuria vs microalbuminuria: SMD = 0.93, 95% CI 0.34 to 1.52, P = 0.002). CONCLUSIONS Our current meta-analysis demonstrates that serum level of YKL-40 is increased in DM and positively associated with the severe degree of albuminuria. Therefore, we suggest that YKL-40 could be considered to be detected, along with other inflammatory markers, if DM, especially DN, is suspected.
Collapse
Affiliation(s)
- Wanwan Luo
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Lingmin Zhang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Lingling Sheng
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Zhencheng Zhang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Zaixing Yang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China.
| |
Collapse
|
42
|
Karwelat D, Schmeck B, Ringel M, Benedikter BJ, Hübner K, Beinborn I, Maisner A, Schulte LN, Vollmeister E. Influenza virus-mediated suppression of bronchial Chitinase-3-like 1 secretion promotes secondary pneumococcal infection. FASEB J 2020; 34:16432-16448. [PMID: 33095949 DOI: 10.1096/fj.201902988rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Infections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae. However, the molecular processes underlying the severe course of such co-infections are not fully understood. Previously, the absence of secreted glycoprotein Chitinase-3-like 1 (CHI3L1) was shown to increase pneumococcal replication in mice. We therefore hypothesized that an IAV preinfection decreases CHI3L1 levels to promote pneumococcal infection. Indeed, in an air-liquid interface model of primary human bronchial epithelial cells (hBECs), IAV preinfection interfered with apical but not basolateral CHI3L1 release. Confocal time-lapse microscopy revealed that the gradual loss of apical CHI3L1 localization during co-infection with influenza and S. pneumoniae coincided with the disappearance of goblet as well as ciliated cells and increased S. pneumoniae replication. Importantly, extracellular restoration of CHI3L1 levels using recombinant protein significantly reduced bacterial load in influenza preinfected bronchial models. Thus, recombinant CHI3L1 may provide a novel therapeutic means to lower morbidity and mortality associated with post-influenza pneumococcal infections.
Collapse
Affiliation(s)
- Diana Karwelat
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany.,Department of Pulmonary and Critical Care Medicine, University Medical Center Marburg, Universities of Giessen and Marburg Lung Center, Philipps University Marburg, Hesse, Germany.,German Center for Lung Research (DZL), Marburg, Hesse, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Hesse, Germany
| | - Marc Ringel
- Institute of Virology, Philipps University Marburg, Marburg, Hesse, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Kathleen Hübner
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Hesse, Germany
| | - Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany.,German Center for Lung Research (DZL), Marburg, Hesse, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| |
Collapse
|
43
|
Qi Y, Chou LS, Zhang LJ, Liu MQ, Yi M, Zhang QX, Wang J, Li T, Zhang DQ, Yang L. Increased cerebrospinal fluid YKL-40 levels are associated with disease severity of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2020; 45:102395. [DOI: 10.1016/j.msard.2020.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 11/25/2022]
|
44
|
Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther 2020; 5:201. [PMID: 32929074 PMCID: PMC7490424 DOI: 10.1038/s41392-020-00303-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Non-enzymatic chitinase-3 like-protein-1 (CHI3L1) belongs to glycoside hydrolase family 18. It binds to chitin, heparin, and hyaluronic acid, and is regulated by extracellular matrix changes, cytokines, growth factors, drugs, and stress. CHI3L1 is synthesized and secreted by a multitude of cells including macrophages, neutrophils, synoviocytes, chondrocytes, fibroblast-like cells, smooth muscle cells, and tumor cells. It plays a major role in tissue injury, inflammation, tissue repair, and remodeling responses. CHI3L1 has been strongly associated with diseases including asthma, arthritis, sepsis, diabetes, liver fibrosis, and coronary artery disease. Moreover, following its initial identification in the culture supernatant of the MG63 osteosarcoma cell line, CHI3L1 has been shown to be overexpressed in a wealth of both human cancers and animal tumor models. To date, interleukin-13 receptor subunit alpha-2, transmembrane protein 219, galectin-3, chemo-attractant receptor-homologous 2, and CD44 have been identified as CHI3L1 receptors. CHI3L1 signaling plays a critical role in cancer cell growth, proliferation, invasion, metastasis, angiogenesis, activation of tumor-associated macrophages, and Th2 polarization of CD4+ T cells. Interestingly, CHI3L1-based targeted therapy has been increasingly applied to the treatment of tumors including glioma and colon cancer as well as rheumatoid arthritis. This review summarizes the potential roles and mechanisms of CHI3L1 in oncogenesis and disease pathogenesis, then posits investigational strategies for targeted therapies.
Collapse
|
45
|
Bézie S, Freuchet A, Sérazin C, Salama A, Vimond N, Anegon I, Guillonneau C. IL-34 Actions on FOXP3 + Tregs and CD14 + Monocytes Control Human Graft Rejection. Front Immunol 2020; 11:1496. [PMID: 32849510 PMCID: PMC7431608 DOI: 10.3389/fimmu.2020.01496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Cytokines are major players regulating immune responses toward inflammatory and tolerogenic results. In organ and bone marrow transplantation, new reagents are needed to inhibit tissue destructive mechanisms and eventually induce immune tolerance without overall immunosuppression. IL-34 is a cytokine with no significant homology with any other cytokine but that acts preferentially through CSF-1R, as CSF-1 does, and through PTPζ and CD138. Although IL-34 and CSF-1 share actions, a detailed analysis of their effects on immune cells needs further research. We previously showed that both CD4+ and CD8+ FOXP3+ Tregs suppress effector T cells through the production of IL-34, but not CSF-1, and that this action was mediated through antigen-presenting cells. We showed here by single-cell RNAseq and cytofluorimetry that different subsets of human monocytes expressed different levels of CSF-1R, CD138, and PTPζ and that both CD4+ and CD8+ FOXP3+ Tregs expressed higher levels of CSF-1R than conventional T cells. The effects of IL-34 differed in the survival of these different subpopulations of monocytes and RNAseq analysis showed several genes differentially expressed between IL-34, CSF-1, M0, M1, and also M2 macrophages. Acute graft-vs.-host disease (aGVHD) in immunodeficient NSG mice injected with human PBMCs was decreased when treated with IL-34 in combination with an anti-CD45RC mAb that depleted conventional T cells. When IL-34-differentiated monocytes were used to expand Tregs in vitro, both CD4+ and CD8+ FOXP3+ Tregs were highly enriched and this effect was superior to the one obtained with CSF-1. Human CD8+ Tregs expanded in vitro with IL-34-differentiated allogeneic monocytes suppressed human immune responses in an NSG mouse aGVHD model humanized with hPBMCs. Overall, we showed that IL-34 induced the differentiation of human monocytes with a particular transcriptional profile and these cells favored the development of potent suppressor FOXP3+ Tregs.
Collapse
Affiliation(s)
- Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Céline Sérazin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Nadège Vimond
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
46
|
Teitsdottir UD, Jonsdottir MK, Lund SH, Darreh-Shori T, Snaedal J, Petersen PH. Association of glial and neuronal degeneration markers with Alzheimer's disease cerebrospinal fluid profile and cognitive functions. ALZHEIMERS RESEARCH & THERAPY 2020; 12:92. [PMID: 32753068 PMCID: PMC7404927 DOI: 10.1186/s13195-020-00657-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/21/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neuroinflammation has gained increasing attention as a potential contributing factor in the onset and progression of Alzheimer's disease (AD). The objective of this study was to examine the association of selected cerebrospinal fluid (CSF) inflammatory and neuronal degeneration markers with signature CSF AD profile and cognitive functions among subjects at the symptomatic pre- and early dementia stages. METHODS In this cross-sectional study, 52 subjects were selected from an Icelandic memory clinic cohort. Subjects were classified as having AD (n = 28, age = 70, 39% female, Mini-Mental State Examination [MMSE] = 27) or non-AD (n = 24, age = 67, 33% female, MMSE = 28) profile based on the ratio between CSF total-tau (T-tau) and amyloid-β1-42 (Aβ42) values (cut-off point chosen as 0.52). Novel CSF biomarkers included neurofilament light (NFL), YKL-40, S100 calcium-binding protein B (S100B) and glial fibrillary acidic protein (GFAP), measured with enzyme-linked immunosorbent assays (ELISAs). Subjects underwent neuropsychological assessment for evaluation of different cognitive domains, including verbal episodic memory, non-verbal episodic memory, language, processing speed, and executive functions. RESULTS Accuracy coefficient for distinguishing between the two CSF profiles was calculated for each CSF marker and test. Novel CSF markers performed poorly (area under curve [AUC] coefficients ranging from 0.61 to 0.64) compared to tests reflecting verbal episodic memory, which all performed fair (AUC > 70). LASSO regression with a stability approach was applied for the selection of CSF markers and demographic variables predicting performance on each cognitive domain, both among all subjects and only those with a CSF AD profile. Relationships between CSF markers and cognitive domains, where the CSF marker reached stability selection criteria of > 75%, were visualized with scatter plots. Before calculations of corresponding Pearson's correlations coefficients, composite scores for cognitive domains were adjusted for age and education. GFAP correlated with executive functions (r = - 0.37, p = 0.01) overall, while GFAP correlated with processing speed (r = - 0.68, p < 0.001) and NFL with verbal episodic memory (r = - 0.43, p = 0.02) among subjects with a CSF AD profile. CONCLUSIONS The novel CSF markers NFL and GFAP show potential as markers for cognitive decline among individuals with core AD pathology at the symptomatic pre- and early stages of dementia.
Collapse
Affiliation(s)
- Unnur D Teitsdottir
- Faculty of Medicine, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Maria K Jonsdottir
- Department of Psychology, Reykjavik University, Reykjavik, Iceland.,Department of Psychiatry, Landspitali - National University Hospital, Reykjavik, Iceland
| | | | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS Department, Karolinska Institutet, Huddinge, Sweden
| | - Jon Snaedal
- Memory clinic, Department of Geriatric Medicine, Landspitali - National University Hospital, Reykjavik, Iceland
| | - Petur H Petersen
- Faculty of Medicine, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
47
|
Saleh AA, Alhanafy AM, Elbahr O, El-Hefnawy SM. Chitinase 3-like 1 gene (T/C) polymorphism and serum YKL-40 levels in patients with hepatocellular carcinoma. Meta Gene 2020; 24:100686. [DOI: https:/doi.org/10.1016/j.mgene.2020.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
48
|
Chitinase 3-like 1 gene (T/C) polymorphism and serum YKL-40 levels in patients with hepatocellular carcinoma. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
49
|
Zhou Y, Meng LJ, Wang J. [Changes in serum human cartilage glycoprotein-39 and high-mobility group box 1 in preterm infants with bronchopulmonary dysplasia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:334-338. [PMID: 32312371 PMCID: PMC7389695 DOI: 10.7499/j.issn.1008-8830.2001041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the association of the dynamic changes of peripheral blood human cartilage glycoprotein-39 (YKL-40) and high-mobility group box 1 (HMGB1) with bronchopulmonary dysplasia (BPD) in preterm infants. METHODS Preterm infants, with a gestational age of 28-32 weeks and a birth weight of <1 500 g, who were admitted to the neonatal intensive care unit from July 2017 to August 2019 were prospectively selected and divided into a BPD group with 35 infants and a non-BPD group with 51 infants. ELISA was used to measure the serum concentrations of YKL-40 and HMGB1 in preterm infants on days 3, 7, and 14 after birth. RESULTS The BPD group had a significantly lower serum YKL-40 concentration and a significantly higher serum HMGB1 concentration than the non-BPD group on days 3, 7, and 14 (P<0.001). The serum concentrations of YKL-40 and HMGB1 on days 7 and 14 were significantly higher than those on day 3 in both groups (P<0.017). In the BPD group, HMGB1 concentration on day 14 was significantly higher than that on day 7 (P<0.017), while there was no significant change in YKL-40 concentration from day 7 to day 14 (P>0.017). In the non-BPD group, YKL-40 concentration on day 14 was significantly higher than that on day 7 (P<0.017), while there was no significant change in HMGB1 concentration from day 7 to day 14 (P>0.017). CONCLUSIONS There are significant differences in the levels of YKL-40 and HMGB1 in peripheral blood between the preterm infants with BPD and those without BPD on days 3, 7, and 14 after birth, suggesting that YKL-40 and HMGB1 might be associated with the development of BPD.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neonatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | | | | |
Collapse
|
50
|
Wu Y, Zhang F, Lu R, Feng Y, Li X, Zhang S, Hou W, Tian J, Kong X, Sun L. Functional lncRNA-miRNA-mRNA networks in rabbit carotid atherosclerosis. Aging (Albany NY) 2020; 12:2798-2813. [PMID: 32045883 PMCID: PMC7041763 DOI: 10.18632/aging.102778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is one of the most common clinical cardiovascular disorders. Accumulating evidence indicates that lncRNAs exert critical functions in atherosclerosis; however, their functional roles and regulatory mechanisms remain unclear. In this study, we induced atherosclerotic plaques in three rabbit carotid arteries through an atherogenic diet and balloon injury; three age-matched rabbits were fed normal chow and served as controls. We thoroughly investigated the RNA (mRNA, lncRNA and miRNA) expression profiles in atherosclerotic rabbit carotid models with deep RNA sequencing. We identified several significantly differentially expressed RNAs. The corresponding lncRNA-miRNA-mRNA network was constructed, and the significantly dysregulated network was selected. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the mRNAs in the network were involved in leukocyte activation, cell proliferation, cell adhesion molecules and cytokine-cytokine receptor interaction. After rigorous screening, we obtained a differentially expressed lncRNA-miRNA-mRNA interaction network associated with atherosclerosis. In the network, XLOC_054118 and XLOC_030217 upregulate the CHI3L1, SOAT, CTSB and CAPG genes by competitively binding to the miRNA ocu-miR-96-5p. XLOC_062719 and XLOC_063297 upregulate CTSS, CTSB and EDNRA genes by competitively binding to the miRNA ocu-miR-185-5p.
Collapse
Affiliation(s)
- Yingnan Wu
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Feng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Rui Lu
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yanan Feng
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoying Li
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shuang Zhang
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Wenying Hou
- Department of Ultrasound, Xuanwu Hospital Capital University, Beijing 100053, China
| | - Jiawei Tian
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xianchao Kong
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Litao Sun
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
- Department of Ultrasound, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| |
Collapse
|