1
|
Knopf P, Pacheco-Torres J, Zizmare L, Mori N, Wildes F, Zhou B, Krishnamachary B, Mironchik Y, Kneilling M, Trautwein C, Pichler BJ, Bhujwalla ZM. Metabolic fingerprinting by nuclear magnetic resonance of hepatocellular carcinoma cells during p53 reactivation-induced senescence. NMR IN BIOMEDICINE 2024; 37:e5157. [PMID: 38589764 DOI: 10.1002/nbm.5157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Cellular senescence is characterized by stable cell cycle arrest. Senescent cells exhibit a senescence-associated secretory phenotype that can promote tumor progression. The aim of our study was to identify specific nuclear magnetic resonance (NMR) spectroscopy-based markers of cancer cell senescence. For metabolic studies, we employed murine liver carcinoma Harvey Rat Sarcoma Virus (H-Ras) cells, in which reactivation of p53 expression induces senescence. Senescent and nonsenescent cell extracts were subjected to high-resolution proton (1H)-NMR spectroscopy-based metabolomics, and dynamic metabolic changes during senescence were analyzed using a magnetic resonance spectroscopy (MRS)-compatible cell perfusion system. Additionally, the ability of intact senescent cells to degrade the extracellular matrix (ECM) was quantified in the cell perfusion system. Analysis of senescent H-Ras cell extracts revealed elevated sn-glycero-3-phosphocholine, myoinositol, taurine, and creatine levels, with decreases in glycine, o-phosphocholine, threonine, and valine. These metabolic findings were accompanied by a greater degradation index of the ECM in senescent H-Ras cells than in control H-Ras cells. MRS studies with the cell perfusion system revealed elevated creatine levels in senescent cells on Day 4, confirming the 1H-NMR results. These senescence-associated changes in metabolism and ECM degradation strongly impact growth and redox metabolism and reveal potential MRS signals for detecting senescent cancer cells in vivo.
Collapse
Affiliation(s)
- Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Noriko Mori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Benyuan Zhou
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Song J, Austin JD, Yang H. Comparative Transcriptomics of the Northern Quahog Mercenaria mercenaria and Southern Quahog Mercenaria campechiensis in Response to Chronic Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:276-292. [PMID: 35357634 DOI: 10.1007/s10126-022-10101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The northern quahog (Mercenaria mercenaria) supports lucrative aquaculture industries in the USA. In the southeastern USA, aquacultured M. mercenaria faces increasing risks of summer die-offs from prolonged heat waves. We used a comparative transcriptomic approach to investigate the molecular responses of M. mercenaria and its southern congener, Mercenaria campechiensis, to controlled incremental heat stress over a 4-week period. Mercenaria were exposed to temperatures from 24 to 34 °C with 2.5 °C/week, after which, gill transcriptomes were de novo assembled and annotated. During the 4 weeks of chronic heat exposure, both species had the same survival rate (96%); M. mercenaria experienced body weight gain/loss depending on the originated hatcheries while M. campechiensis experienced an average net weight loss. The upregulated genes in both species included those in chaperone-mediated protein folding and regulation of cell death pathways, while the downregulated genes in both species involved in mRNA processing and splicing pathways. Compared to M. mercenaria, M. campechiensis appears to be more sensitive to prolonged heat stress as indicated by upregulating significantly more genes in coping with oxidative stress and in the protein degradation pathways, while downregulating some inhibitors of apoptosis. We discussed this finding within their ecological and evolutionary context. Our findings highlighted the potential vulnerability of the two quahogs, especially the southern quahog, to continued ocean warming.
Collapse
Affiliation(s)
- Jingwei Song
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA
| | - James D Austin
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, 110 Newins Ziegler Hall, Gainesville, FL, 32611, USA
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA.
| |
Collapse
|
3
|
Salsaa M, Aziz K, Lazcano P, Schmidtke MW, Tarsio M, Hüttemann M, Reynolds CA, Kane PM, Greenberg ML. Valproate activates the Snf1 kinase in Saccharomyces cerevisiae by decreasing the cytosolic pH. J Biol Chem 2021; 297:101110. [PMID: 34428448 PMCID: PMC8449051 DOI: 10.1016/j.jbc.2021.101110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022] Open
Abstract
Valproate (VPA) is a widely used mood stabilizer, but its therapeutic mechanism of action is not understood. This knowledge gap hinders the development of more effective drugs with fewer side effects. Using the yeast model to elucidate the effects of VPA on cellular metabolism, we determined that the drug upregulated expression of genes normally repressed during logarithmic growth on glucose medium and increased levels of activated (phosphorylated) Snf1 kinase, the major metabolic regulator of these genes. VPA also decreased the cytosolic pH (pHc) and reduced glycolytic production of 2/3-phosphoglycerate. ATP levels and mitochondrial membrane potential were increased, and glucose-mediated extracellular acidification decreased in the presence of the drug, as indicated by a smaller glucose-induced shift in pH, suggesting that the major P-type proton pump Pma1 was inhibited. Interestingly, decreasing the pHc by omeprazole-mediated inhibition of Pma1 led to Snf1 activation. We propose a model whereby VPA lowers the pHc causing a decrease in glycolytic flux. In response, Pma1 is inhibited and Snf1 is activated, resulting in increased expression of normally repressed metabolic genes. These findings suggest a central role for pHc in regulating the metabolic program of yeast cells.
Collapse
Affiliation(s)
- Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kerestin Aziz
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Christian A Reynolds
- Department of Emergency Medicine, School of Medicine, Wayne State University, Detroit, Michigan, USA; Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
4
|
Qiu D, Wilson MS, Eisenbeis VB, Harmel RK, Riemer E, Haas TM, Wittwer C, Jork N, Gu C, Shears SB, Schaaf G, Kammerer B, Fiedler D, Saiardi A, Jessen HJ. Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry. Nat Commun 2020; 11:6035. [PMID: 33247133 PMCID: PMC7695695 DOI: 10.1038/s41467-020-19928-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
The analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we provide evidence for the existence of unknown inositol synthesis pathways in mammals, highlighting the potential of this method to dissect inositol phosphate metabolism and signalling. Myo-Inositol phosphates (InsPs) and pyrophosphates (PP-InsPs) are important second messengers but their analysis remains challenging. Here, the authors develop a capillary electrophoresis-mass spectrometry method for the identification and quantitation of InsP and PP-InsP isomers in cells and tissues.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| | - Miranda S Wilson
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Verena B Eisenbeis
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Esther Riemer
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Christopher Wittwer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Bernd Kammerer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
5
|
Mouton SN, Thaller DJ, Crane MM, Rempel IL, Terpstra OT, Steen A, Kaeberlein M, Lusk CP, Boersma AJ, Veenhoff LM. A physicochemical perspective of aging from single-cell analysis of pH, macromolecular and organellar crowding in yeast. eLife 2020; 9:e54707. [PMID: 32990592 PMCID: PMC7556870 DOI: 10.7554/elife.54707] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/28/2020] [Indexed: 01/03/2023] Open
Abstract
Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here, we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells, we observe drastic changes in organellar volume, leading to crowding on the micrometer scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| | - David J Thaller
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Matthew M Crane
- Department of Pathology, School of Medicine, University of WashingtonSeattleUnited States
| | - Irina L Rempel
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| | - Owen T Terpstra
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of WashingtonSeattleUnited States
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | | | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| |
Collapse
|
6
|
Omoruyi FO, Stennett D, Foster S, Dilworth L. New Frontiers for the Use of IP6 and Inositol Combination in Treating Diabetes Mellitus: A Review. Molecules 2020; 25:E1720. [PMID: 32290029 PMCID: PMC7212753 DOI: 10.3390/molecules25071720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inositol, or myo-inositol, and associated analog molecules, including myo-inositol hexakisphosphate, are known to possess beneficial biomedical properties and are now being widely studied. The impact of these compounds in improving diabetic indices is significant, especially in light of the high cost of treating diabetes mellitus and associated disorders globally. It is theorized that, within ten years, the global population of people with the disease will reach 578 million individuals, with the cost of care projected to be approximately 2.5 trillion dollars. Natural alternatives to pharmaceuticals are being sought, and this has led to studies involving inositol, and myo-inositol-hexakisphosphate, also referred to as IP6. It has been reported that IP6 can improve diabetic indices and regulate the activities of some metabolic enzymes involved in lipid and carbohydrate metabolism. Current research activities have been focusing on the mechanisms of action of inositol and IP6 in the amelioration of the indices of diabetes mellitus. We demonstrated that an IP6 and inositol combination supplement may regulate insulin secretion, modulate serum leptin concentrations, food intake, and associated weight gain, which may be beneficial in both prediabetic and diabetic states. The supplement attenuates vascular damage by reducing red cell distribution width. Serum HDL is increased while serum triglycerides tend to decrease with consumption of the combination supplement, perhaps due to the modulation of lipogenesis involving reduced serum lipase activity. We also noted increased fecal lipid output following combination supplement consumption. Importantly, liver function was found to be preserved. Concurrently, serum reactive oxygen species production was reduced, indicating that inositol and IP6 supplement consumption may reduce free radical damage to tissues and organs as well as serum lipids and blood glucose by preserving liver function. This review provides an overview of the findings associated with inositol and IP6 supplementation in the effective treatment of diabetes with a view to proposing the potential mechanisms of action.
Collapse
Affiliation(s)
- Felix O. Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA;
| | - Dewayne Stennett
- Department of Basic Medical Sciences, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica; (D.S.); (S.F.)
| | - Shadae Foster
- Department of Basic Medical Sciences, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica; (D.S.); (S.F.)
| | - Lowell Dilworth
- Department of Pathology, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica
| |
Collapse
|
7
|
Ni Y, Li G, Ji X, Yang Y, Guo X, Sun Q. Identification of an inositol-3-phosphate synthase 1-B gene (AccIPS1-B) from Apis cerana cerana and its role in abiotic stress. Cell Stress Chaperones 2019; 24:1101-1113. [PMID: 31512154 PMCID: PMC6882988 DOI: 10.1007/s12192-019-01032-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 02/03/2023] Open
Abstract
Inositol phosphate synthase (IPS) is a rate-limiting enzyme in myo-inositol biosynthesis, which can regulate stress responses in plants and animals. However, there are few studies on the function of IPS in insects, especially in Apis cerana cerana. In this study, the inositol-3-phosphate synthase 1-B gene (AccIPS1-B) was isolated from Apis cerana cerana, and its connection to antioxidant defence was investigated. The open reading frame of AccIPS1-B was 1542 bp, encoding a 513 amino acid polypeptide. Quantitative real-time PCR analysis revealed that the expression level of AccIPS1-B was highest in pupae of Apis cerana cerana, and it was expressed at higher levels in the thorax than in other tissues tested. Moreover, the expression of AccIPS1-B was significantly upregulated by abiotic stresses. The recombinant AccIPS1-B also displayed significant tolerance to cumene hydroperoxide and HgCl2. In addition, knockdown of AccIPS1-B significantly suppressed the expression of most of the antioxidant genes and decreased the antioxidant enzymatic activities of SOD, POD, and GST. Taken together, these findings indicate that AccIPS1-B may be involved in the response to antioxidant defence and development in Apis cerana cerana.
Collapse
Affiliation(s)
- Yong Ni
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xiaomin Ji
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yaqian Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Guo X, Li HH, Hu J, Duan YX, Ren WG, Guo Q, Liu PH, Cui Y, Liu LF, Chen MF, Chen JB, Zu XB. ISYNA1 is overexpressed in bladder carcinoma and regulates cell proliferation and apoptosis. Biochem Biophys Res Commun 2019; 519:246-252. [PMID: 31495492 DOI: 10.1016/j.bbrc.2019.08.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is one of the most common urological malignancies. While Inositol-3-phosphate synthase 1 (ISYNA1) expression and function were largely unknown in BCa. We aimed to study the expression and role of ISYNA1 in bladder cancer and investigate its potential mechanisms via ingenuity pathway analysis (IPA). METHODS ISYNA1 expression was quantified by qRT-PCR in bladder cancer cell lines as well as normal urothelial cell line. Knocking down ISYNA1 gene in BCa T24 cells was achieved by shRNA lentivirus transfection. MTT and Celigo assay were used to assess cell proliferation. Flow cytometry was applied to test cell cycle and apoptosis. In addition, IPA was performed using PrimeView™ Human Gene Expression Array. Imunohistochemistry (IHC) was performed in BCa patient tissue microarray to verify the association between ISYNA1 expression and patients' clinicopathological features. RESULTS ISYNA1 was significantly upregulated in BCa samples vs. para-tumor tissues. Higher expression were significantly associated with tumor T stage and lymph node metastasis of bladder cancer patients. Similarly, it was elevated in BCa cell lines (5637 and T24) compared with SVHUC cells. Knocking down ISYNA1 significantly decreased proliferation, induced apoptosis and cell cycle arrest in T24 cells. Furthermore, IPA indicated that ISYNA1 was an important regulatory factors and related networks were involved in multiple functional processes. CONCLUSION Taken together, current study suggest ISYNA1 promotes proliferation and inhibit apoptosis in bladder cancer cells, and its expression correlated with BCa patients' clinicopathological features. Thus, ISYNA1 may serve as a potential biomarker and therapeutic target for BCa patients.
Collapse
Affiliation(s)
- Xi Guo
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China; Department of Urology, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Hui-Huang Li
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Yi-Xing Duan
- Department of Urology, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Wei-Gang Ren
- Department of Urology, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Qiong Guo
- Department of Urology, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Pei-Hua Liu
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Long-Fei Liu
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Min-Feng Chen
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Jin-Bo Chen
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China.
| | - Xiong-Bing Zu
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
9
|
Yu W, Daniel J, Mehta D, Maddipati KR, Greenberg ML. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate. PLoS One 2017; 12:e0182534. [PMID: 28817575 PMCID: PMC5560674 DOI: 10.1371/journal.pone.0182534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/19/2017] [Indexed: 12/28/2022] Open
Abstract
Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS), which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA), which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA—inositol depletion and GSK3 inhibition.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Joshua Daniel
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Dhara Mehta
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State University, Detroit, Michigan, United States of America
| | - Miriam L. Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. Eur J Cell Biol 2017; 96:154-163. [PMID: 28153412 DOI: 10.1016/j.ejcb.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022] Open
Abstract
Inositol and inositol-containing compounds have signalling and regulatory roles in many cellular processes, suggesting that inositol imbalance may lead to wide-ranging changes in cellular functions. Indeed, changes in inositol-dependent signalling have been implicated in various diseases and cellular functions such as autophagy, and these changes have often been proposed as therapeutic targets. However, few studies have highlighted the links between inositol depletion and the downstream effects on inositol phosphates and phosphoinositides in disease states. For this research, many advances have employed simple model systems that include the social amoeba D. discoideum and the yeast S. cerevisiae, since these models enable a range of experimental approaches that are not possible in mammalian models. In this review, we discuss recent findings initiated in simple model systems and translated to higher model organisms where the effect of altered inositol, inositol phosphate and phosphoinositide levels impact on bipolar disorder, Alzheimer disease, epilepsy and autophagy.
Collapse
|
11
|
Sayer LH, Florence GJ, Smith TK. A biocatalytic approach towards the stereoselective synthesis of protected inositols. REACT CHEM ENG 2017. [DOI: 10.1039/c6re00175k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immobilized TbINO1 produces >400 mg of chiral inositol 1-phosphate in a biocatalytic flow process.
Collapse
Affiliation(s)
- L. H. Sayer
- Biomedical Science Research Complex
- Schools of Chemistry and Biology
- University of St Andrews
- St Andrews
- UK
| | - G. J. Florence
- Biomedical Science Research Complex
- Schools of Chemistry and Biology
- University of St Andrews
- St Andrews
- UK
| | - T. K. Smith
- Biomedical Science Research Complex
- Schools of Chemistry and Biology
- University of St Andrews
- St Andrews
- UK
| |
Collapse
|
12
|
Milewska EM, Czyzyk A, Meczekalski B, Genazzani AD. Inositol and human reproduction. From cellular metabolism to clinical use. Gynecol Endocrinol 2016; 32:690-695. [PMID: 27595157 DOI: 10.1080/09513590.2016.1188282] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Inositol is an organic compound of high biological importance that is widely distributed in nature. It belongs to the sugar family and is mainly represented by its two dominant stereoisomers: myo-inositol and D-chiro-inositol that are found in the organism in the physiological serum ratio 40:1. Inositol and its derivatives are important components of the structural phospholipids of the cell membranes and are precursors of the second messengers of many metabolic pathways. A high concentration of myoinositol is found in the follicular fluid and in semen. Inositol deficiency and the impairment of the inositol-dependent pathways may play an important role in the pathogenesis of insulin resistance and hypothyroidism. The results of the research also point out the potential beneficial role of inositol supplementation in polycystic ovarian syndrome and in the context of assisted reproduction technologies and in vitro fertilization. The main aim of the article is to overview the major inositol-dependent metabolic pathways and to discuss its importance for reproduction.
Collapse
Affiliation(s)
- Ewa M Milewska
- a Department of Gynecological Endocrinology , Poznan University of Medical Science , Poznan , Poland and
| | - Adam Czyzyk
- a Department of Gynecological Endocrinology , Poznan University of Medical Science , Poznan , Poland and
| | - Blazej Meczekalski
- a Department of Gynecological Endocrinology , Poznan University of Medical Science , Poznan , Poland and
| | - Alessandro D Genazzani
- b Department of Obstetrics and Gynecology , Gynecological Endocrinology Center, University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
13
|
Jadhav S, Russo S, Cottier S, Schneiter R, Cowart A, Greenberg ML. Valproate Induces the Unfolded Protein Response by Increasing Ceramide Levels. J Biol Chem 2016; 291:22253-22261. [PMID: 27590340 DOI: 10.1074/jbc.m116.752634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
Bipolar disorder (BD), which is characterized by depression and mania, affects 1-2% of the world population. Current treatments are effective in only 40-60% of cases and cause severe side effects. Valproate (VPA) is one of the most widely used drugs for the treatment of BD, but the therapeutic mechanism of action of this drug is not understood. This knowledge gap has hampered the development of effective treatments. To identify candidate pathways affected by VPA, we performed a genome-wide expression analysis in yeast cells grown in the presence or absence of the drug. VPA caused up-regulation of FEN1 and SUR4, encoding fatty acid elongases that catalyze the synthesis of very long chain fatty acids (C24 to C26) required for ceramide synthesis. Interestingly, fen1Δ and sur4Δ mutants exhibited VPA sensitivity. In agreement with increased fatty acid elongase gene expression, VPA increased levels of phytoceramide, especially those containing C24-C26 fatty acids. Consistent with an increase in ceramide, VPA decreased the expression of amino acid transporters, increased the expression of ER chaperones, and activated the unfolded protein response element (UPRE), suggesting that VPA induces the UPR pathway. These effects were rescued by supplementation of inositol and similarly observed in inositol-starved ino1Δ cells. Starvation of ino1Δ cells increased expression of FEN1 and SUR4, increased ceramide levels, decreased expression of nutrient transporters, and induced the UPR. These findings suggest that VPA-mediated inositol depletion induces the UPR by increasing the de novo synthesis of ceramide.
Collapse
Affiliation(s)
- Shyamalagauri Jadhav
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Sarah Russo
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| | - Stéphanie Cottier
- the Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Roger Schneiter
- the Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Ashley Cowart
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| | - Miriam L Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202,
| |
Collapse
|
14
|
Kalujnaia S, Hazon N, Cramb G. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R287-98. [PMID: 27252471 PMCID: PMC5008666 DOI: 10.1152/ajpregu.00056.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells.
Collapse
Affiliation(s)
- Svetlana Kalujnaia
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom; and
| | - Neil Hazon
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Gordon Cramb
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom; and
| |
Collapse
|
15
|
Yu W, Greenberg ML. Inositol depletion, GSK3 inhibition and bipolar disorder. FUTURE NEUROLOGY 2016; 11:135-148. [PMID: 29339929 DOI: 10.2217/fnl-2016-0003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/04/2016] [Indexed: 12/31/2022]
Abstract
Valproic acid and lithium are widely used to treat bipolar disorder, a severe illness characterized by cycles of mania and depression. However, their efficacy is limited, and treatment is often accompanied by serious side effects. The therapeutic mechanisms of these drugs are not understood, hampering the development of more effective treatments. Among the plethora of biochemical effects of the drugs, those that are common to both may be more related to therapeutic efficacy. Two common outcomes include inositol depletion and GSK3 inhibition, which have been proposed to explain the efficacy of both valproic acid and lithium. Here, we discuss the inositol depletion and GSK3 inhibition hypotheses, and introduce a unified model suggesting that inositol depletion and GSK3 inhibition are inter-related.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
16
|
KOGUCHI TOMOYUKI, TANIKAWA CHIZU, MORI JINICHI, KOJIMA YOSHIYUKI, MATSUDA KOICHI. Regulation of myo-inositol biosynthesis by p53-ISYNA1 pathway. Int J Oncol 2016; 48:2415-24. [DOI: 10.3892/ijo.2016.3456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 11/05/2022] Open
|
17
|
Villarreal FD, Kültz D. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia. PLoS One 2015; 10:e0123212. [PMID: 26066044 PMCID: PMC4466255 DOI: 10.1371/journal.pone.0123212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/28/2015] [Indexed: 11/27/2022] Open
Abstract
Myo-inositol (Ins) is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus). Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS) and inositol monophosphatase (IMPase), by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1) were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P), mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P) is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.
Collapse
Affiliation(s)
- Fernando D. Villarreal
- EcoPhysiological Proteomics Laboratory, Department of Animal Science, University of California Davis, One Shields Avenue, Davis, California 95616, United States of America
| | - Dietmar Kültz
- EcoPhysiological Proteomics Laboratory, Department of Animal Science, University of California Davis, One Shields Avenue, Davis, California 95616, United States of America
| |
Collapse
|
18
|
Comparative modeling and virtual screening for the identification of novel inhibitors for myo-inositol-1-phosphate synthase. Mol Biol Rep 2014; 41:5039-52. [PMID: 24752405 DOI: 10.1007/s11033-014-3370-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 04/05/2014] [Indexed: 12/20/2022]
Abstract
Myo-inositol-1-phosphate (MIP) synthase is a key enzyme in the myo-inositol biosynthesis pathway. Disruption of the inositol signaling pathway is associated with bipolar disorders. Previous work suggested that MIP synthase could be an attractive target for the development of anti-bipolar drugs. Inhibition of this enzyme could possibly help in reducing the risk of a disease in patients. With this objective, three dimensional structure of the protein was modeled followed by the active site prediction. For the first time, computational studies were carried out to obtain structural insights into the interactive behavior of this enzyme with ligands. Virtual screening was carried out using FILTER, ROCS and EON modules of the OpenEye scientific software. Natural products from the ZINC database were used for the screening process. Resulting compounds were docked into active site of the target protein using FRED (Fast Rigid Exhaustive Docking) and GOLD (Genetic Optimization for Ligand Docking) docking programs. The analysis indicated extensive hydrogen bonding network and hydrophobic interactions which play a significant role in ligand binding. Four compounds are shortlisted and their binding assay analysis is underway.
Collapse
|
19
|
The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. Chem Phys Lipids 2014; 180:23-43. [PMID: 24418527 DOI: 10.1016/j.chemphyslip.2013.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 12/13/2022]
Abstract
This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.
Collapse
|
20
|
Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants. PLoS One 2013; 8:e84300. [PMID: 24391933 PMCID: PMC3877268 DOI: 10.1371/journal.pone.0084300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/19/2013] [Indexed: 01/06/2023] Open
Abstract
The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.
Collapse
|
21
|
Deranieh RM, He Q, Caruso JA, Greenberg ML. Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis. J Biol Chem 2013; 288:26822-33. [PMID: 23902760 DOI: 10.1074/jbc.m113.479121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using (32)Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS.
Collapse
|
22
|
Deranieh RM, Greenberg ML, Le Calvez PB, Mooney MC, Migaud ME. Probing myo-inositol 1-phosphate synthase with multisubstrate adducts. Org Biomol Chem 2012; 10:9601-19. [PMID: 23132282 DOI: 10.1039/c2ob26577j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a series of carbohydrate-nucleotide hybrids, designed to be multisubstrate adducts mimicking myo-inositol 1-phosphate synthase first oxidative transition state, is reported. Their ability to inhibit the synthase has been assessed and results have been rationalised computationally to estimate their likely binding mode.
Collapse
Affiliation(s)
- Rania M Deranieh
- College of Liberal Arts and Sciences, Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
23
|
Gil FN, Gonçalves AC, Jacinto MJ, Becker JD, Viegas CA. Transcriptional profiling in Saccharomyces cerevisiae relevant for predicting alachlor mechanisms of toxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2506-2518. [PMID: 21842488 DOI: 10.1002/etc.640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/18/2011] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
Alachlor has been a commonly applied herbicide and is a substance of ecotoxicological concern. The present study aims to identify molecular biomarkers in the eukaryotic model Saccharomyces cerevisiae that can be used to predict potential cytotoxic effects of alachlor, while providing new mechanistic clues with possible relevance for experimentally less accessible eukaryotes. It focuses on genome-wide expression profiling in a yeast population in response to two exposure scenarios exerting effects from slight to moderate magnitude at phenotypic level. In particular, 100 and 264 genes, respectively, were found as differentially expressed on a 2-h exposure of yeast cells to the lowest observed effect concentration (110 mg/L) and the 20% inhibitory concentration (200 mg/L) of alachlor, in comparison with cells not exposed to the herbicide. The datasets of alachlor-responsive genes showed functional enrichment in diverse metabolic, transmembrane transport, cell defense, and detoxification categories. In general, the modifications in transcript levels of selected candidate biomarkers, assessed by quantitative reverse transcriptase polymerase chain reaction, confirmed the microarray data and varied consistently with the growth inhibitory effects of alachlor. Approximately 16% of the proteins encoded by alachlor-differentially expressed genes were found to share significant homology with proteins from ecologically relevant eukaryotic species. The biological relevance of these results is discussed in relation to new insights into the potential adverse effects of alachlor in health of organisms from ecosystems, particularly in worst-case situations such as accidental spills or careless storage, usage, and disposal.
Collapse
Affiliation(s)
- Fátima N Gil
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, IST, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
24
|
Kage-Nakadai E, Uehara T, Mitani S. H+/myo-inositol transporter genes, hmit-1.1 and hmit-1.2, have roles in the osmoprotective response in Caenorhabditis elegans. Biochem Biophys Res Commun 2011; 410:471-7. [DOI: 10.1016/j.bbrc.2011.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/01/2011] [Indexed: 11/28/2022]
|
25
|
A limitation of the continuous spectrophotometric assay for the measurement of myo-inositol-1-phosphate synthase activity. Anal Biochem 2011; 417:228-32. [PMID: 21729692 DOI: 10.1016/j.ab.2011.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/21/2022]
Abstract
Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay-the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg(2+) and is not enhanced by other divalent metal ions (Zn(2+) and Mn(2+)), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors.
Collapse
|
26
|
Ding D, Shi Y, Shaltiel G, Azab AN, Pullumbi E, Campbell A, Mehta DV, Agam G, Greenberg ML. Yeast bioassay for identification of inositol depleting compounds. World J Biol Psychiatry 2010; 10:893-9. [PMID: 18979283 DOI: 10.1080/15622970802485276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bipolar affective disorder is a chronic, severe, debilitating illness affecting 1-2% of the population. Valproate, along with lithium and carbamazepine, are the only drugs for which long-term efficacy has been established. However, these drugs are ineffective for, and not well tolerated by, a large number of patients and are also associated with teratogenicity and reproductive defects. Therefore, there is a substantial need to develop more effective anti-bipolar drugs. We have previously shown that valproate, like lithium, decreases intracellular inositol, which supports the inositol depletion hypothesis. We employed inositol depletion in yeast as a screening tool to identify potential new anti-bipolar medications. We show here that hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, ethylhexanoate, and methyloctanoate decrease intracellular inositol levels and increase the expression of INO1, the gene encoding myo-inositol-3-phosphate synthase (MIPS). Similar to valproate, these inositol-depleting carboxylic acids inhibited MIPS indirectly. A correlation was shown between cell growth inhibition and the increase in INO1 expression by the carboxylic acids, factors that were reversed in the presence of inositol. Inositol depletion in yeast may be exploited as an easy and inexpensive screening test for potential new inositol depleting anti-bipolar drugs.
Collapse
Affiliation(s)
- Daobin Ding
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Donahue JL, Alford SR, Torabinejad J, Kerwin RE, Nourbakhsh A, Ray WK, Hernick M, Huang X, Lyons BM, Hein PP, Gillaspy GE. The Arabidopsis thaliana Myo-inositol 1-phosphate synthase1 gene is required for Myo-inositol synthesis and suppression of cell death. THE PLANT CELL 2010; 22:888-903. [PMID: 20215587 PMCID: PMC2861443 DOI: 10.1105/tpc.109.071779] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/28/2010] [Accepted: 02/18/2010] [Indexed: 05/19/2023]
Abstract
l-myo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the rate-limiting step in the synthesis of myo-inositol, a critical compound in the cell. Plants contain multiple MIPS genes, which encode highly similar enzymes. We characterized the expression patterns of the three MIPS genes in Arabidopsis thaliana and found that MIPS1 is expressed in most cell types and developmental stages, while MIPS2 and MIPS3 are mainly restricted to vascular or related tissues. MIPS1, but not MIPS2 or MIPS3, is required for seed development, for physiological responses to salt and abscisic acid, and to suppress cell death. Specifically, a loss in MIPS1 resulted in smaller plants with curly leaves and spontaneous production of lesions. The mips1 mutants have lower myo-inositol, ascorbic acid, and phosphatidylinositol levels, while basal levels of inositol (1,4,5)P(3) are not altered in mips1 mutants. Furthermore, mips1 mutants exhibited elevated levels of ceramides, sphingolipid precursors associated with cell death, and were complemented by a MIPS1-green fluorescent protein (GFP) fusion construct. MIPS1-, MIPS2-, and MIPS3-GFP each localized to the cytoplasm. Thus, MIPS1 has a significant impact on myo-inositol levels that is critical for maintaining levels of ascorbic acid, phosphatidylinositol, and ceramides that regulate growth, development, and cell death.
Collapse
Affiliation(s)
- Janet L. Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Shannon R. Alford
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Javad Torabinejad
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Rachel E. Kerwin
- Department of Plant Biology, University of California, Davis, California 95616
| | - Aida Nourbakhsh
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - W. Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Marcy Hernick
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Xinyi Huang
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Blair M. Lyons
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Pyae P. Hein
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Glenda E. Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
- Address correspondence to
| |
Collapse
|
28
|
Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae. Biochem Soc Trans 2009; 37:1115-20. [PMID: 19754463 DOI: 10.1042/bst0371115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prs [PRPP (phosphoribosyl pyrophosphate) synthetase] catalyses the transfer of pyrophosphate from ATP to ribose 5-phosphate, thereby activating the pentose sugar for incorporation into purine and pyrimidine nucleotides. The Saccharomyces cerevisiae genome contains five genes, PRS1-PRS5, whose products display characteristic PRPP and bivalent-cation-binding sites of Prs polypeptides. Deletion of one or more of the five PRS genes has far-reaching and unexpected consequences, e.g. impaired cell integrity, temperature-sensitivity and sensitivity to VPA (valproic acid) and LiCl. CTP pools in prs1Delta and prs3Delta are reduced to 12 and 31% of the wild-type respectively, resulting in an imbalance in phospholipid metabolism which may have an impact on the intracellular inositol pool which is affected by the administration of either VPA or LiCl. Overexpression of CTP synthetase in prs1Delta prs3Delta strains partially reverses the VPA-sensitive phenotype. Yeast two-hybrid screening revealed that Prs3 and the yeast orthologue of GSK3 (glycogen synthase kinase 3), Rim11, a serine/threonine kinase involved in several signalling pathways, interact with each other. Furthermore, Prs5, an essential partner of Prs3, which also interacts with GSK3 contains three neighbouring phosphorylation sites, typical of GSK3 activation. These studies on yeast PRPP synthetases bring together and expand the current theories for the mood-stabilizing effects of VPA and LiCl in bipolar disorder.
Collapse
|
29
|
Investigation of the H+–myo-inositol transporter (HMIT) as a neuronal regulator of phosphoinositide signalling. Biochem Soc Trans 2009; 37:1139-43. [DOI: 10.1042/bst0371139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositide signalling regulates a series of important neuronal processes that are thought to be altered in mood disorders. Furthermore, mood-stabilizing drugs inhibit key enzymes that regulate phosphoinositide production and alter neuronal growth cone morphology in an inositol-reversible manner. Inositol is taken up by neurons from the extracellular fluid, presumably via membrane transporters; it can also be synthesized by the enzyme MIP-synthase (myo-inositol-1-phosphate synthase) and, in addition, it is generated by inositol phospholipid hydrolysis. The neuronal-specific HMIT (H+–myo-inositol transporter) represents a potential regulator of inositol signalling in neurons that warrants further investigation.
Collapse
|
30
|
Abstract
The inositol-depletion hypothesis was suggested to explain the therapeutic mechanism of mood-stabilizing drugs. Focus was previously on the phosphatidylinositol signalling pathway and on the regulatory roles of Ins(3,4,5)P3 and DAG (diacylglycerol). Recent findings indicate that inositol and inositol-containing molecules, including phosphoinositides and inositol phosphates, have signalling and regulatory roles in many cellular processes. This suggests that depleting inositol may lead to perturbation of a wide range of cellular functions, at least some of which may be associated with bipolar disorder.
Collapse
|
31
|
Seelan RS, Lakshmanan J, Casanova MF, Parthasarathy RN. Identification of myo-inositol-3-phosphate synthase isoforms: characterization, expression, and putative role of a 16-kDa gamma(c) isoform. J Biol Chem 2009; 284:9443-57. [PMID: 19188364 PMCID: PMC2666597 DOI: 10.1074/jbc.m900206200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/02/2009] [Indexed: 11/06/2022] Open
Abstract
Myo-inositol is an important constituent of membrane phospholipids and is a precursor for the phosphoinositide signaling pathway. It is synthesized from glucose 6-phosphate by myo-inositol-3-phosphate synthase (IP synthase), a homotrimer composed of a 68-kDa polypeptide in most mammalian tissues. It is a putative target for mood-stabilizing drugs such as lithium and valproate. Here, we show that the rat gene (Isyna1) encoding this enzyme generates a number of alternatively spliced transcripts in addition to the fully spliced form that encodes the 68-kDa subunit (the alpha isoform). Specifically, we identify a small 16-kDa subunit (the gamma(c) isoform) derived by an intron retention mechanism and provide evidence for its existence in rat tissues. The gamma(c) isoform is highly conserved in mammals, but it lacks the catalytic domain while retaining the NAD(+) binding domain. Both alpha and gamma(c) isoforms are predominantly expressed in many rat tissues and display apparent stoichiometry in purified enzyme preparations. An IP synthase polyclonal antibody not only detects the alpha and gamma(c) isoforms but also several other isoforms in pancreas, intestine, and testis suggesting that the holoenzyme is composed of unique subunits in various tissues. Interestingly, the alpha isoform is not expressed in the intestine. IP synthase activity assays using purified alpha and gamma(c) isoforms indicate that the latter negatively modulates alpha isoform activity, possibly by competing for NAD(+) molecules. Our findings have important ramifications for understanding the mood stabilization process and suggest that inositol biosynthesis is a highly regulated and dynamic process.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Psychiatry, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | | | |
Collapse
|
32
|
Ethylbutyrate, a valproate-like compound, exhibits inositol-depleting effects — A potential mood-stabilizing drug. Life Sci 2009; 84:38-44. [DOI: 10.1016/j.lfs.2008.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/19/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
33
|
Azab AN, Ishak JF, Kaplanski J, Delbar V, Greenberg ML. Mechanisms of action of the mood stabilizer valproate: a focus on GSK-3 inhibition. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.4.433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Valproate is the most widely prescribed antiepileptic drug worldwide, and it is also used in the treatment of bipolar affective disorder, migraine headache and cancer. However, the therapeutic mechanism of action of valproate in these illness states is not understood. This article reviews the pharmacological effects of valproate that may explain its therapeutic efficacy. It focuses on the hypothesis that inhibition of glycogen synthase kinase-3 by valproate is a crucial therapeutic mechanism of this drug in the treatment of bipolar affective disorder. Other cellular pathways and signaling molecules that are targets of valproate (such as inositol de novo biosynthesis, histone deacetylase, protein kinase C, γ-aminobutyric acid, the extracellular signal-regulated kinase pathway and others) are also discussed.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Julia F Ishak
- Ben-Gurion University of the Negev, Medical School for International Health, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
34
|
Azab AN, Agam G, Kaplanski J, Delbar V, Greenberg ML. Inositol depletion: a good or bad outcome of valproate treatment? FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar affective disorder is a severe and chronic disabling illness affecting 1.5% of the general population. Lithium, valproate and other mood stabilizers are used to treat bipolar disorder; however, these are ineffective for, and not tolerated by, a significant percentage of patients, underscoring the urgent need for better medications. Although not universally accepted, the inositol-depletion hypothesis is one of the main hypotheses suggested to explain the therapeutic mechanism of mood-stabilizing drugs. This paper reviews the relevance of the inositol-depletion hypothesis, paying special attention to the inhibition of inositol de novo synthesis by valproate. It also discusses inositol supplementation as a treatment strategy for multiple neurological disorders, including prophylactic use against valproate-induced neural tube defects.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Galila Agam
- Ben-Gurion University of the Negev, Psychiatry Research Unit & Department of Clinical Biochemistry, Faculty of Health Sciences, PO Box 4600, Beer-Sheva 84170, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
35
|
Shamir A, Shaltiel G, Mark S, Bersudsky Y, Belmaker RH, Agam G. Human MIP synthase splice variants in bipolar disorder. Bipolar Disord 2007; 9:766-71. [PMID: 17988368 DOI: 10.1111/j.1399-5618.2007.00440.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Alternative splicing allows the production of multiple gene products with different functions from a given sequence, affecting cellular function control. Tissue-specific splicing is most prevalent in the brain. We therefore investigate whether splice variants contribute to complex psychiatric disorders. A database search suggested that the myo-inositol-1-phosphate (MIP) synthase gene, possibly involved in pathophysiology of bipolar disorder, has splice variants. METHODS Human RNA was purified from lymphocytes and postmortem brain. MIP synthase alternative splice variants were amplified using reverse transcription-polymerase chain reaction. RESULTS The bioinformatics finding was confirmed in both tissues. No difference in lymphocyte MIP synthase mRNA splice-variant levels was found between bipolar patients and controls. However, patients with family history of a major psychiatric disorder had significantly higher levels of the variant lacking exons 3 and 4 versus patients with no family history and controls. CONCLUSIONS As alternative splicing may be a mechanism by which the approximately 30,000 genes are amplified in mammalian brain, further studies with other candidate genes for psychiatric disorders are needed.
Collapse
Affiliation(s)
- Alon Shamir
- Faculty of Health Sciences, Ben Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Alcázar-Román AR, Wente SR. Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma 2007; 117:1-13. [DOI: 10.1007/s00412-007-0126-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
|
37
|
Amigues E, Greenberg M, Ju S, Chen Y, Migaud M. Synthesis of cyclophospho-glucoses and glucitols. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Azab AN, Greenberg ML. Anticonvulsant efficacy of valproate-like carboxylic acids: a potential target for anti-bipolar therapy. Bipolar Disord 2007; 9:197-205. [PMID: 17430293 DOI: 10.1111/j.1399-5618.2007.00351.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bipolar disorder (BPD) is a severe and chronic illness, with a lifetime prevalence of approximately 1.5%. Despite the availability of some mood stabilizing drugs including lithium, valproate (valproic acid), lamotrigine and carbamazepine, BPD is characterized by high rates of recurrence, as treatment with these and other drugs is ineffective for and not well-tolerated by a significant percentage of patients. Most drugs currently used for the maintenance treatment of BPD are anticonvulsants (e.g., valproate, carbamazepine and lamotrigine). OBJECTIVES The aim of this paper is to review the studies characterizing the anticonvulsant efficacy of valproate-like carboxylic acids and related compounds, some of which may have potential for the treatment of manic-depressive illness. RESULTS The data reviewed herein demonstrate clearly that some dietary fatty acids and other valproate-like carboxylic acids exhibit potent anticonvulsant activity, and may thus be candidates for mood stabilizing treatment options for BPD.
Collapse
Affiliation(s)
- Abed N Azab
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
39
|
Azab AN, He Q, Ju S, Li G, Greenberg ML. Glycogen synthase kinase‐3 is required for optimalde novosynthesis of inositol. Mol Microbiol 2007; 63:1248-58. [PMID: 17257308 DOI: 10.1111/j.1365-2958.2007.05591.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Studies have shown that the inositol biosynthetic pathway and the enzyme glycogen synthase kinase-3 (GSK-3) are targets of the mood-stabilizing drugs lithium and valproate. However, a relationship between these targets has not been previously described. We hypothesized that GSK-3 may play a role in inositol synthesis, and that loss of GSK-3 may lead to inositol depletion, thus providing a mechanistic link between the two drug targets. Utilizing a yeast Saccharomyces cerevisiae gsk-3Delta quadruple-null mutant, in which all four genes encoding homologues of mammalian GSK-3 are disrupted, we tested the hypothesis that GSK-3 is required for de novo inositol biosynthesis. The gsk-3Delta mutant exhibited multiple features of inositol depletion, including defective growth in inositol-lacking medium, decreased intracellular inositol, increased INO1 and ITR1 expression, and decreased levels of phosphatidylinositol. Treatment of wild-type cells with a highly specific GSK-3 inhibitor led to a significant increase in INO1 expression. Supplementation with inositol alleviated the temperature sensitivity of gsk-3Delta. Activity of myo-inositol-3 phosphate synthase, the rate-limiting enzyme in inositol de novo biosynthesis, was decreased in gsk-3Delta. These results demonstrate for the first time that GSK-3 is required for optimal myo-inositol-3 phosphate synthase activity and de novo inositol biosynthesis, and that loss of GSK-3 activity causes inositol depletion.
Collapse
Affiliation(s)
- Abed N Azab
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
40
|
Parthasarathy LK, Seelan RS, Tobias C, Casanova MF, Parthasarathy RN. Mammalian inositol 3-phosphate synthase: its role in the biosynthesis of brain inositol and its clinical use as a psychoactive agent. Subcell Biochem 2006; 39:293-314. [PMID: 17121280 DOI: 10.1007/0-387-27600-9_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Latha K Parthasarathy
- Molecular Neuroscience Laboratory, Autism Research Unit, Mental Health, Behavioral Science and Research Services, VA Medical Center (151), Louisville, Kentucky 40206, USA
| | | | | | | | | |
Collapse
|
41
|
Azab AN, Greenberg ML. Lipid connection to bipolar disorder. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.4.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar disorder is a severe and chronic illness affecting approximately 1.5% of the American population. Despite the availability of mood bipolarstabilizers such as lithium, valproate, carbamazepine and lamotrigine, bipolar disorder is characterized by high rates of recurrence, as treatment with these and other drugs is ineffective for and not tolerated by a significant percentage of patients. Several hypotheses have been postulated to explain the mechanism(s) of action of mood stabilizers. However, the biological and molecular bases of the disease are not fully understood, hampering the development of more effective and safer drugs. A large body of evidence associates lipids (cholesterol, phospholipids and fatty acids) with the mechanism and pathology of bipolar disorder. The purpose of this paper is to review the lipid connection to bipolar disorder.
Collapse
Affiliation(s)
- Abed N Azab
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
42
|
Martin KL, Smith TK. The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Mol Microbiol 2006; 61:89-105. [PMID: 16824097 PMCID: PMC3793301 DOI: 10.1111/j.1365-2958.2006.05216.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In bloodstream-form Trypanosoma brucei (the causative agent of African sleeping sickness) the glycosylphosphatidylinositol (GPI) anchor biosynthetic pathway has been validated genetically and chemically as a drug target. The conundrum that GPI anchors could not be in vivo labelled with [3H]-inositol led us to hypothesize that de novo synthesis was responsible for supplying myo-inositol for phosphatidylinositol (PI) destined for GPI synthesis. The rate-limiting step of the de novo synthesis is the isomerization of glucose 6-phosphate to 1-D-myo-inositol-3-phosphate, catalysed by a 1-D-myo-inositol-3-phosphate synthase (INO1). When grown under non-permissive conditions, a conditional double knockout demonstrated that INO1 is an essential gene in bloodstream-form T. brucei. It also showed that the de novo synthesized myo-inositol is utilized to form PI, which is preferentially used in GPI biosynthesis. We also show for the first time that extracellular myo-inositol can in fact be used in GPI formation although to a limited extent. Despite this, extracellular inositol cannot compensate for the deletion of INO1. Supporting these results, there was no change in PI levels in the conditional double knockout cells grown under non-permissive conditions, showing that perturbation of growth is due to a specific lack of de novo synthesized myo-inositol and not a general inositol-less death. These results suggest that there is a distinction between de novo synthesized myo-inositol and that from the extracellular environment.
Collapse
Affiliation(s)
- Kirstee L. Martin
- Division of Biological Chemistry and Molecular Microbiology, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Terry K. Smith
- Division of Biological Chemistry and Molecular Microbiology, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
43
|
Chhetri DR, Mukherjee AK, Adhikari J. Myo-inositol content in pteridophytes and the isolation and characterization of L-myo-inositol-1-phosphate synthase from Diplopterygium glaucum. ACTA ACUST UNITED AC 2006. [DOI: 10.1590/s1677-04202006000200005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myo-inositol is involved in normal growth and development of all living organisms and L-myo-inositol-1-phosphate synthase (MIPS; EC: 5.5.1.4) is responsible for its de novo synthesis. This enzyme has been reported for a number of life forms including plants, animals and bacteria. In the present study free myo-inositol has been detected in the common pteridophytes found in the Darjeeling Himalayas and the enzyme, L-myo-inositol-1-phosphate synthase has been partially purified from Diplopterygium glaucum (Thunb.) Nakai. A crude homogenate from the reproductive pinnules of D. glaucum was subjected to streptomycin sulphate precipitation and 0-70% ammonium sulphate fractionation followed by successive chromatography through DEAE-cellulose, Hexylagarose and BioGel A-0.5m columns. This resulted in a partial purification of the enzyme of about 81-fold with 13.5% recovery. The pteridophytic MIPS specifically utilized D-glucose-6-phosphte and NAD+ as its substrate and co-factor, respectively. It shows a pH optimum between 7.0 and 7.5 while the temperature maximum was 30 °C. The enzyme activity was stimulated by NH4+, slightly inhibited by Na+, Ba2+ and Cd2+, and strongly inhibited by Li+, Zn2+ and Hg2+. EDTA, pCMB and some substrate isomers like glucose-1-phosphate, fructose-6-phosphte and galactose-6-phosphate were inhibitory to the enzyme. The apparent molecular weight of the native D. glaucum MIPS was determined to be approximately 171 kDa.
Collapse
Affiliation(s)
| | - A. K. Mukherjee
- Bengal College of Engineering and Technology Bidhan Nagar, India
| | | |
Collapse
|
44
|
Di Daniel E, Cheng L, Maycox PR, Mudge AW. The common inositol-reversible effect of mood stabilizers on neurons does not involve GSK3 inhibition, myo-inositol-1-phosphate synthase or the sodium-dependent myo-inositol transporters. Mol Cell Neurosci 2006; 32:27-36. [PMID: 16531065 DOI: 10.1016/j.mcn.2006.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 01/13/2006] [Accepted: 01/30/2006] [Indexed: 01/07/2023] Open
Abstract
We previously showed that the mood stabilizers lithium, valproate (VPA), and carbamazepine (CBZ) have a common, inositol-reversible effect on the dynamic behavior of sensory neurons, suggesting that they all inhibit phosphoinositide (PIns) synthesis. We now report similar effects of the drugs in cortical neurons and show by mRNA analysis that these neurons do not express myo-inositol-1-phosphate synthase (MIP-synthase) or the sodium-dependent myo-inositol transporters (SMIT1 and SMIT2), but they do express the H+/myo-inositol transporter (HMIT) mRNA and protein. We used glycogen synthase kinase-3 (GSK3) inhibitors and Western blotting of GSK3 targets to confirm that the common effects of the drugs on both sensory and cortical neuron growth cones are inositol-dependent and GSK3-independent. Moreover, the anti-convulsant drugs gabapentin and phenytoin do not mimic the mood stabilizers. These results confirm that the common inositol-reversible effect of mood stabilizers on neurons does not involve GSK3 and further show that the effects are independent of MIP-synthase and SMIT transporters.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antimanic Agents/pharmacology
- Carbamazepine/pharmacology
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/drug effects
- Cerebral Cortex/growth & development
- Enzyme Inhibitors/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Glucose Transport Proteins, Facilitative/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glycogen Synthase Kinase 3/drug effects
- Glycogen Synthase Kinase 3/metabolism
- Growth Cones/drug effects
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Lithium/pharmacology
- Myo-Inositol-1-Phosphate Synthase/genetics
- Neurons/drug effects
- Neurons/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Symporters/genetics
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Elena Di Daniel
- Schizophrenia and Bipolar Neurophysiology and Pharmacology Research Department, Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, Third Avenue, Harlow, Essex, CM19 5AW, UK.
| | | | | | | |
Collapse
|
45
|
Shi Y, Azab AN, Thompson MN, Greenberg ML. Inositol phosphates and phosphoinositides in health and disease. Subcell Biochem 2006; 39:265-92. [PMID: 17121279 DOI: 10.1007/0-387-27600-9_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the past two decades, considerable progress has been made toward understanding inositol phosphates and PI metabolism. However, there is still much to learn. The present challenge is to understand how inositol phosphates and PIs are compartmentalized, identify new targets of inositol phosphates and PIs, and elucidate the mechanisms underlying spatial and temporal regulation of the enzymes that metabolize inositol phosphates and PIs. Answers to these questions will help clarify the mechanisms of the diseases associated with these molecules and identify new possibilities for drug design.
Collapse
Affiliation(s)
- Yihui Shi
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
46
|
Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC. Lithium induces autophagy by inhibiting inositol monophosphatase. ACTA ACUST UNITED AC 2005; 170:1101-11. [PMID: 16186256 PMCID: PMC2171537 DOI: 10.1083/jcb.200504035] [Citation(s) in RCA: 745] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Macroautophagy is a key pathway for the clearance of aggregate-prone cytosolic proteins. Currently, the only suitable pharmacologic strategy for up-regulating autophagy in mammalian cells is to use rapamycin, which inhibits the mammalian target of rapamycin (mTOR), a negative regulator of autophagy. Here we describe a novel mTOR-independent pathway that regulates autophagy. We show that lithium induces autophagy, and thereby, enhances the clearance of autophagy substrates, like mutant huntingtin and α-synucleins. This effect is not mediated by glycogen synthase kinase 3β inhibition. The autophagy-enhancing properties of lithium were mediated by inhibition of inositol monophosphatase and led to free inositol depletion. This, in turn, decreased myo-inositol-1,4,5-triphosphate (IP3) levels. Our data suggest that the autophagy effect is mediated at the level of (or downstream of) lowered IP3, because it was abrogated by pharmacologic treatments that increased IP3. This novel pharmacologic strategy for autophagy induction is independent of mTOR, and may help treatment of neurodegenerative diseases, like Huntington's disease, where the toxic protein is an autophagy substrate.
Collapse
Affiliation(s)
- Sovan Sarkar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 2XY, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Martin KL, Smith TK. The myo-inositol-1-phosphate synthase gene is essential in Trypanosoma brucei. Biochem Soc Trans 2005; 33:983-5. [PMID: 16246027 DOI: 10.1042/bst0330983] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The de novo synthesis of myo-inositol occurs via a two-step process: first, glucose 6-phosphate is converted into inositol 1-phosphate by an INO1 (myo-inositol-1-phosphate synthase; EC 5.5.1.4); then, it is dephosphorylated by an inositol monophosphatase. The myo-inositol can then be incorporated into PI (phosphatidylinositol), which is utilized in a variety of cellular functions, including the biosynthesis of GPI (glycosylphosphatidylinositol) anchors. A putative INO1 was identified in the Trypanosoma brucei genome database and, by recombinant expression in Escherichia coli, was shown to be a catalytically active INO1. To investigate the importance of INO1, we created a conditional knockout, which, under non-permissive conditions, showed that INO1 is an essential gene in bloodstream form T. brucei and that the de novo synthesized myo-inositol is used for the formation of PI and GPI anchors.
Collapse
Affiliation(s)
- K L Martin
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|
48
|
Shi Y, Vaden DL, Ju S, Ding D, Geiger JH, Greenberg ML. Genetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesis. J Biol Chem 2005; 280:41805-10. [PMID: 16221686 DOI: 10.1074/jbc.m505181200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a genetic screen for Saccharomyces cerevisiae mutants hypersensitive to the inositol-depleting drugs lithium and valproate, a loss of function allele of TPI1 was identified. The TPI1 gene encodes triose phosphate isomerase, which catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate. A single mutation (N65K) in tpi1 completely abolished Tpi1p enzyme activity and led to a 30-fold increase in the intracellular DHAP concentration. The tpi1 mutant was unable to grow in the absence of inositol and exhibited the "inositol-less death" phenotype. Similarly, the pgk1 mutant, which accumulates DHAP as a result of defective conversion of 3-phosphoglyceroyl phosphate to 3-phosphoglycerate, exhibited inositol auxotrophy. DHAP as well as glyceraldehyde 3-phosphate and oxaloacetate inhibited activity of both yeast and human myo-inositol-3 phosphate synthase, the rate-limiting enzyme in de novo inositol biosynthesis. Implications for the pathology associated with TPI deficiency and responsiveness to inositol-depleting anti-bipolar drugs are discussed. This study is the first to establish a connection between perturbation of glycolysis and inhibition of de novo inositol biosynthesis.
Collapse
Affiliation(s)
- Yihui Shi
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
49
|
Williams R, Ryves WJ, Dalton EC, Eickholt B, Shaltiel G, Agam G, Harwood AJ. A molecular cell biology of lithium. Biochem Soc Trans 2005; 32:799-802. [PMID: 15494019 DOI: 10.1042/bst0320799] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lithium (Li(+)), a mood stabilizer, has profound effects on cultured neurons, offering an opportunity to investigate its cellular biological effects. Here we consider the effect of Li(+) and other psychotropic drugs on growth cone morphology and chemotaxis. Li(+) inhibits GSK-3 (glycogen synthase kinase-3) at a therapeutically relevant concentration. Treated cells show a number of features that arise due to GSK-3 inhibition, such as altered microtubule dynamics, axonal branching and loss of semaphorin 3A-mediated growth cone collapse. Li(+) also causes growth cones to spread; however, a similar effect is seen with two other mood stabilizers, valproic acid and carbamazepine, but without changes in microtubules or axon branching. This common effect of mood stabilizers is mediated by changes in inositol phosphate signalling, not GSK-3 activity. Given the presence of neurogenesis in the adult brain, we speculate that changes in growth cone behaviour could also occur during treatment of mental disorders.
Collapse
Affiliation(s)
- R Williams
- MRC Laboratory for Molecular Cell Biology and Department of Biology, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 2005; 24:6590-9. [PMID: 15269271 PMCID: PMC6729884 DOI: 10.1523/jneurosci.5747-03.2004] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Manic-depressive illness has been conceptualized as a neurochemical illness. However, brain imaging and postmortem studies reveal gray-matter reductions, as well as neuronal and glial atrophy and loss in discrete brain regions of manic-depressive patients. The roles of such cerebral morphological deficits in the neuropathophysiology and therapeutic mechanisms of manic-depressive illness are unknown. Valproate (2-propylpentanoate) is a commonly used mood stabilizer. The ERK (extracellular signal-regulated kinase) pathway is used by neurotrophic factors to regulate neurogenesis, neurite outgrowth, and neuronal survival. We found that chronic treatment of rats with valproate increased levels of activated phospho-ERK44/42 in neurons of the anterior cingulate, a region in which we found valproate-induced increases in expression of an ERK pathway-regulated gene, bcl-2. Valproate time and concentration dependently increased activated phospho-ERK44/42 and phospho-RSK1 (ribosomal S6 kinase 1) levels in cultured cortical cells. These increases were attenuated by Raf and MEK (mitogen-activated protein kinase/ERK kinase) inhibitors. Although valproate affects the functions of GSK-3 (glycogen synthase kinase-3) and histone deacetylase (HDAC), its effects on the ERK pathway were not fully mimicked by selective inhibitors of GSK-3 or HDAC. Similar to neurotrophic factors, valproate enhanced ERK pathway-dependent cortical neuronal growth. Valproate also promoted neural stem cell proliferation-maturation (neurogenesis), demonstrated by bromodeoxyuridine (BrdU) incorporation and double staining of BrdU with nestin, Tuj1, or the neuronal nuclei marker NeuN (neuronal-specific nuclear protein). Chronic treatment with valproate enhanced neurogenesis in the dentate gyrus of the hippocampus. Together, these data demonstrate that valproate activates the ERK pathway and induces ERK pathway-mediated neurotrophic actions. This cascade of events provides a potential mechanism whereby mood stabilizers alleviate cerebral morphometric deficits associated with manic-depressive illness.
Collapse
Affiliation(s)
- Yanlei Hao
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-4405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|