1
|
Lin CY, Xu WB, Li BZ, Shu MA, Zhang YM. Identification and functional analysis of cytosolic phospholipase A2 (cPLA2) from the red swamp crayfish Procambarus clarkii: The first evidence of cPLA2 involved in immunity in invertebrates. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108944. [PMID: 37451527 DOI: 10.1016/j.fsi.2023.108944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cytosolic phospholipase A2 (cPLA2) specifically liberates the arachidonic acids from the phospholipid substrates. In mammals, cPLA2 serves as a key control point in inflammatory responses due to its diverse downstream products. However, the role of cPLA2 in animals lower than mammals largely remains unknown. In the current research, a homolog of cPLA2 was first identified and characterized in the red swamp crayfish Procambarus clarkii. The full-length cDNA of PccPLA2 was 4432 bp in length with a 3036 bp-long open reading frame, encoding a putative protein of 1011 amino acids that contained a protein kinase C conserved region 2 and a catalytic subunit of cPLA2. PccPLA2 was ubiquitously expressed in all examined tissues with the highest expression in the hepatopancreas, and the expression in hemocytes as well as hepatopancreas was induced upon the immune challenges of WSSV and Aeromonas hydrophila. After the co-treatment of RNA interference and bacterial infection, the decline of bacteria clearance capability was observed in the hemolymph, and the expression of some antimicrobial peptides (AMPs) was significantly suppressed. Additionally, the phagocytosis of A. hydrophila by primary hemocytes decreased when treated with the specific inhibitor CAY10650 of cPLA2. These results indicated the participation of PccPLA2 in both cellular and humoral immune responses in the crayfish, which provided an insight into the role that cPLA2 played in the innate immunity of crustaceans, and even in invertebrates.
Collapse
Affiliation(s)
- Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Differential Mobilization of the Phospholipid and Triacylglycerol Pools of Arachidonic Acid in Murine Macrophages. Biomolecules 2022; 12:biom12121851. [PMID: 36551279 PMCID: PMC9775050 DOI: 10.3390/biom12121851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Innate immune cells such as monocytes and macrophages contain high levels of arachidonic acid (AA), part of which can be mobilized during cellular activation for the formation of a vast array of bioactive oxygenated metabolites. Monocytes and macrophages present in inflammatory foci typically incorporate large amounts of AA, not only in membrane phospholipids, but also in neutral lipids such as triacylglycerol. Thus, it was of interest to investigate the metabolic fate of these two AA pools in macrophages. Utilizing a variety of radiolabeling techniques to distinguish the phospholipid and triacylglycerol pools, we show in this paper that during an acute stimulation of the macrophages with yeast-derived zymosan, the membrane phospholipid AA pool acts as the major, if not the only, source of releasable AA. On the contrary, the AA pool in triacylglycerol appears to be used at a later stage, when the zymosan-stimulated response has declined, as a source to replenish the phospholipid pools that were consumed during the activation process. Thus, phospholipids and triacylglycerol play different in roles AA metabolism and dynamics during macrophage activation.
Collapse
|
3
|
Abstract
Neutrophils form cellular clusters or swarms in response to injury or pathogen intrusion. Yet, intracellular signaling events favoring this coordinated response remain to be fully characterized. Here, we show that calcium signals play a critical role during mouse neutrophil clustering around particles of zymosan, a structural fungal component. Pioneer neutrophils recognizing zymosan or live Candida albicans displayed elevated calcium levels. Subsequently, a transient wave of calcium signals in neighboring cells was observed followed by the attraction of neutrophils that exhibited more persistent calcium signals as they reached zymosan particles. Calcium signals promoted LTB4 production while the blocking of extracellular calcium entry or LTB4 signaling abrogated cluster formation. Finally, using optogenetics to manipulate calcium influx in primary neutrophils, we show that calcium signals could initiate recruitment of neighboring neutrophils in an LTB4-dependent manner. Thus, sustained calcium responses at the center of the cluster are necessary and sufficient for the generation of chemoattractive gradients that attract neutrophils in a self-reinforcing process.
Collapse
|
4
|
Characterization of the binding of cytosolic phospholipase A 2 alpha and NOX2 NADPH oxidase in mouse macrophages. Mol Biol Rep 2022; 49:3511-3518. [PMID: 35092565 DOI: 10.1007/s11033-022-07191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Previous studies have demonstrated that cytosolic phospholipase A2α (cPLA2α) is required for NOX2 NADPH oxidase activation in human and mouse phagocytes. Moreover, upon stimulation, cPLA2α translocates to the plasma membranes by binding to the assembled oxidase, forming a complex between its C2 domain and the PX domain of the cytosolic oxidase factor, p47phox in human phagocytes. Intravenous administration of antisense against cPLA2α that significantly inhibited its expression in mouse peritoneal neutrophils and macrophages also inhibited superoxide production, in contrast to cPLA2α knockout mice that showed normal superoxide production. The present study aimed to determine whether there is a binding between cPLA2α-C2 domain and p47phox-PX in mouse macrophages, to further support the role of cPLA2α in oxidase regulation also in mouse phagocytes. METHODS AND RESULTS A significant binding of mouse GST-p47phox-PX domain fusion protein and cPLA2α in stimulated mouse phagocyte membranes was demonstrated by pull-down experiments, although lower than that detected by the human p47phox-PX domain. Substituting the amino acids Phe98, Asn99, and Gly100 to Cys98, Ser99, and Thr100 in the mouse p47phox-PX domain (present in the human p47phox-PX domain) caused strong binding that was similar to that detected by the human p47phox-PX domain CONCLUSIONS: The binding between cPLA2α-C2 and p47phox-PX domains exists in mouse macrophages and is not unique to human phagocytes. The binding between the two proteins is lower in the mice, probably due to the absence of amino acids Cys98, Ser 99, and Thr100in the p47phox-PX domain that facilitate the binding to cPLA2α.
Collapse
|
5
|
Shi XQ, Zhu ZH, Yue SJ, Tang YP, Chen YY, Pu ZJ, Tao HJ, Zhou GS, Yang Y, Guo MJ, Ting-Xia Dong T, Tsim KWK, Duan JA. Integration of organ metabolomics and proteomics in exploring the blood enriching mechanism of Danggui Buxue Decoction in hemorrhagic anemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113000. [PMID: 32663590 DOI: 10.1016/j.jep.2020.113000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBD), as a classical Chinese medicine prescription, is composed of Danggui (DG) and Huangqi (HQ) at a ratio of 1:5, and it has been used clinically in treating anemia for hundreds of years. AIM OF THE STUDY The aim of this study was to explore the treatment mechanisms of DBD in anemia rats from the perspective of thymus and spleen. MATERIALS AND METHODS In this study, a successful hemorrhagic anemia model was established, and metabolomics (UPLC-QTOF-MS/MS) and proteomics (label-free approach) together with bioinformatics (Gene Ontology analysis and Reactome pathway enrichment), correlation analysis (pearson correlation matrix) and joint pathway analysis (MetaboAnalyst) were employed to discover the underlying mechanisms of DBD. RESULTS DBD had a significant blood enrichment effect on hemorrhagic anemia rats. Metabolomics and proteomics results showed that DBD regulated a total of 10 metabolites (lysophosphatidylcholines, etc.) and 41 proteins (myeloperoxidase, etc.) in thymus, and 9 metabolites (L-methionine, etc.) and 24 proteins (transferrin, etc.) in spleen. With GO analysis and Reactome pathway enrichment, DBD mainly improved anti-oxidative stress ability of thymocyte and accelerated oxidative phosphorylation to provide ATP for splenocyte. Phenotype key indexes were strongly and positively associated with most of the differential proteins and metabolites, especially nucleosides, amino acids, Fabp4, Decr1 and Ndufs3. 14 pathways in thymus and 9 pathways in spleen were obtained through joint pathway analysis, in addition, the most influential pathway in thymus was arachidonic acid metabolism, while in spleen was the biosynthesis of phenylalanine, tyrosine and tryptophan. Furthermore, DBD was validated to up-regulate Mpo, Hbb and Cp levels and down-regulate Ca2+ level in thymus, as well as up-regulate Fabp4, Ndufs3, Tf, Decr1 and ATP levels in spleen. CONCLUSION DBD might enhance thymus function mainly by reducing excessive lipid metabolism and intracellular Ca2+ level, and promote ATP production in spleen to provide energy.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Zong-Jin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China.
| | - Meng-Jie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China
| | - Tina Ting-Xia Dong
- Division of Life Science and Centre for Chinese Medicine, The Hongkong University of Science and Technology, Hongkong, 999077, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Centre for Chinese Medicine, The Hongkong University of Science and Technology, Hongkong, 999077, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
6
|
Tripathi A, Jain M, Chandra M, Parveen S, Yadav R, Collins BM, Maiti S, Datta S. EhC2B, a C2 domain-containing protein, promotes erythrophagocytosis in Entamoeba histolytica via actin nucleation. PLoS Pathog 2020; 16:e1008489. [PMID: 32365140 PMCID: PMC7197785 DOI: 10.1371/journal.ppat.1008489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Remodelling of the actin cytoskeleton in response to external stimuli is obligatory for many cellular processes in the amoebic cell. A rapid and local rearrangement of the actin cytoskeleton is required for the development of the cellular protrusions during phagocytosis, trogocytosis, migration, and invasion. Here, we demonstrated that EhC2B, a C2 domain-containing protein, is an actin modulator. EhC2B was first identified as an effector of EhRab21 from E. histolytica. In vitro interaction studies including GST pull-down, fluorescence-based assay and ITC also corroborated with our observation. In the amoebic trophozoites, EhC2B accumulates at the pseudopods and the tips of phagocytic cups. FRAP based studies confirmed the recruitment and dynamics of EhC2B at the phagocytic cup. Moreover, we have shown the role of EhC2B in erythrophagocytosis. It is well known that calcium-dependent signal transduction is essential for the cytoskeletal dynamics during phagocytosis in the amoebic parasite. Using liposome pelleting assay, we demonstrated that EhC2B preferentially binds to the phosphatidylserine in the presence of calcium. The EhC2B mutants defective in calcium or lipid-binding failed to localise beneath the plasma membrane. The cells overexpressing these mutants have also shown a significant reduction in erythrophagocytosis. The role of EhC2B in erythrophagocytosis and pseudopod formation was also validated by siRNA-based gene knockdown approach. Finally, with the help of in vitro nucleation assay using fluorescence spectroscopy and total internal reflection fluorescence microscopy, we have established that EhC2B is an actin nucleator. Collectively, based on the results from the study, we propose that EhC2B acts like a molecular bridge which promotes membrane deformation via its actin nucleation activity during the progression of the phagocytic cup in a calcium-dependent manner.
Collapse
Affiliation(s)
- Aashutosh Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Megha Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Mintu Chandra
- Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Rupali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Brett M. Collins
- Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- * E-mail:
| |
Collapse
|
7
|
Study on the immunomodulatory activity of a novel polysaccharide from the lichen Umbilicaria Esculenta. Int J Biol Macromol 2019; 121:846-851. [DOI: 10.1016/j.ijbiomac.2018.10.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 11/21/2022]
|
8
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
9
|
Zuliani JP, Gutiérrez JM, Teixeira C. Signaling pathways involved in zymosan phagocytosis induced by two secreted phospholipases A2 isolated from Bothrops asper snake venom in macrophages. Int J Biol Macromol 2018; 113:575-582. [DOI: 10.1016/j.ijbiomac.2018.02.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/12/2023]
|
10
|
Yun B, Leslie CC. Cellular Assays for Evaluating Calcium-Dependent Translocation of cPLA 2α to Membrane. Methods Enzymol 2016; 583:71-99. [PMID: 28063500 DOI: 10.1016/bs.mie.2016.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The group IVA phospholipase A2, commonly called cytosolic phospholipase A2α (cPLA2α), is a widely expressed enzyme that hydrolyzes membrane phospholipid to produce arachidonic acid and lysophospholipids, which are precursors for a number of bioactive lipid mediators. Arachidonic acid is metabolized through the cyclooxygenase and lipoxygenase pathways for production of prostaglandins and leukotrienes that regulate normal physiological processes and contribute to disease pathogenesis. cPLA2α is composed of an N-terminal C2 domain and a C-terminal catalytic domain that contains the Ser-Asp catalytic dyad. The catalytic domain contains phosphorylation sites and basic residues that regulate the catalytic activity of cPLA2α. In response to cell stimulation, cPLA2α is rapidly activated by posttranslational mechanisms including increases in intracellular calcium and phosphorylation by mitogen-activated protein kinases. In resting cells, cPLA2α is localized in the cytosol but translocates to membrane including the Golgi, endoplasmic reticulum, and the peri-nuclear membrane in response to increases in intracellular calcium. Calcium binds to the C2 domain, which promotes the interaction of cPLA2α with membrane through hydrophobic interactions. In this chapter, we describe assays used to study the calcium-dependent translocation of cPLA2α to membrane, a regulatory step necessary for access to phospholipid and release of arachidonic acid.
Collapse
Affiliation(s)
- B Yun
- National Jewish Health, Denver, CO, United States
| | - C C Leslie
- National Jewish Health, Denver, CO, United States; University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
11
|
Urso K, Charles JF, Shull GE, Aliprantis AO, Balestrieri B. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans. PLoS One 2016; 11:e0158893. [PMID: 27391897 PMCID: PMC4938408 DOI: 10.1371/journal.pone.0158893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated.
Collapse
Affiliation(s)
- Katia Urso
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Julia F. Charles
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary E. Shull
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Antonios O. Aliprantis
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara Balestrieri
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yun B, Lee H, Jayaraja S, Suram S, Murphy RC, Leslie CC. Prostaglandins from Cytosolic Phospholipase A2α/Cyclooxygenase-1 Pathway and Mitogen-activated Protein Kinases Regulate Gene Expression in Candida albicans-infected Macrophages. J Biol Chem 2016; 291:7070-86. [PMID: 26841868 PMCID: PMC4807289 DOI: 10.1074/jbc.m116.714873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
In Candida albicans-infected resident peritoneal macrophages, activation of group IVA cytosolic phospholipase A2(cPLA2α) by calcium- and mitogen-activated protein kinases triggers the rapid production of prostaglandins I2 and E2 through cyclooxygenase (COX)-1 and regulates gene expression by increasing cAMP. InC. albicans-infected cPLA2α(-/-)or COX-1(-/-)macrophages, expression ofI l10,Nr4a2, and Ptgs2 was lower, and expression ofTnfα was higher, than in wild type macrophages. Expression was reconstituted with 8-bromo-cAMP, the PKA activator 6-benzoyl-cAMP, and agonists for prostaglandin receptors IP, EP2, and EP4 in infected but not uninfected cPLA2α(-/-)or COX-1(-/-)macrophages. InC. albicans-infected cPLA2α(+/+)macrophages, COX-2 expression was blocked by IP, EP2, and EP4 receptor antagonists, indicating a role for both prostaglandin I2 and E2 Activation of ERKs and p38, but not JNKs, by C. albicansacted synergistically with prostaglandins to induce expression of Il10,Nr4a2, and Ptgs2. Tnfα expression required activation of ERKs and p38 but was suppressed by cAMP. Results using cAMP analogues that activate PKA or Epacs suggested that cAMP regulates gene expression through PKA. However, phosphorylation of cAMP-response element-binding protein (CREB), the cAMP-regulated transcription factor involved inIl10,Nr4a2,Ptgs2, andTnfα expression, was not mediated by cAMP/PKA because it was similar inC. albicans-infected wild type and cPLA2α(-/-)or COX-1(-/-)macrophages. CREB phosphorylation was blocked by p38 inhibitors and induced by the p38 activator anisomycin but not by the PKA activator 6-benzoyl-cAMP. Therefore, MAPK activation inC. albicans-infected macrophages plays a dual role by promoting the cPLA2α/prostaglandin/cAMP/PKA pathway and CREB phosphorylation that coordinately regulate immediate early gene expression.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Candida albicans/physiology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/immunology
- Cyclooxygenase 1/deficiency
- Cyclooxygenase 1/genetics
- Cyclooxygenase 1/immunology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/immunology
- Dinoprostone/biosynthesis
- Epoprostenol/biosynthesis
- Gene Expression Regulation
- Group IV Phospholipases A2/deficiency
- Group IV Phospholipases A2/genetics
- Group IV Phospholipases A2/immunology
- Host-Pathogen Interactions
- Interleukin-10/genetics
- Interleukin-10/immunology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/microbiology
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/immunology
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Signal Transduction
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/immunology
Collapse
Affiliation(s)
- Bogeon Yun
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and
| | - HeeJung Lee
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and
| | - Sabarirajan Jayaraja
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and
| | - Saritha Suram
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and
| | | | - Christina C Leslie
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and the Departments of Pharmacology and Pathology, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
13
|
Kawanabe A, Okamura Y. Effects of unsaturated fatty acids on the kinetics of voltage-gated proton channels heterologously expressed in cultured cells. J Physiol 2016; 594:595-610. [PMID: 26563684 DOI: 10.1113/jp271274] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/28/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Arachidonic acid (AA) greatly enhances the activity of the voltage-gated proton (Hv) channel, although its mechanism of action and physiological function remain unclear. In the present study, we analysed the effects of AA on proton currents through Hv channels heterologously expressed in HEK293T cells. The dramatic increase in proton current amplitude elicited by AA was accompanied by accelerated activation kinetics and a leftward shift in the voltage-dependence of activation. Mutagenesis studies suggest the two aforementioned effects of AA reflect two distinct structural mechanisms. Application of phospholipase A2 , which liberates AA from phospholipids in the membrane, also enhances Hv channel activity, supporting the idea that AA modulates Hv channel activity within physiological contexts. Unsaturated fatty acids are key components of the biological membranes of all cells, and precursors of mediators for cell signalling. Arachidonic acid (AA) is an unsaturated fatty acid known to modulate the activities of various ion channels, including the voltage-gated proton (Hv) channel, which supports the rapid production of reactive oxygen species (ROS) in phagocytes through regulation of pH and membrane potential. However, the molecular mechanisms and physiological functions of the effects of AA on Hv channels remain unclear. In the present study, we report an electrophysiological analysis of the effects of AA on the mouse Hv channel (mHv1) heterologously expressed in HEK293T cells. Application of AA to excised inside-out patch membranes rapidly induced a robust increase in the amplitude of the proton current through mHv1. The current increase was accompanied by accelerated activation kinetics and a small leftward shift of the current-voltage relationship. In monomeric channels lacking the coiled-coil region of the channel protein, the shift in the current-voltage relationship was diminished but activation and deactivation remained accelerated. Studies with several AA derivatives showed that double bonds and hydrophilic head groups are essential for the effect of AA, although charge was not important. The application of phospholipase A2 (PLA2), which generates AA from cell membrane phospholipids, stimulated mHv1 activity to a similar extent as direct application of ∼ 20 μM AA, suggesting that endogenous AA may regulate Hv channel activity.
Collapse
Affiliation(s)
- Akira Kawanabe
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yasushi Okamura
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
14
|
Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs. Chem Biol Interact 2015; 238:74-81. [DOI: 10.1016/j.cbi.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 12/16/2022]
|
15
|
Monoacylglycerol lipase promotes Fcγ receptor-mediated phagocytosis in microglia but does not regulate LPS-induced upregulation of inflammatory cytokines. Biochem Biophys Res Commun 2015; 464:603-10. [PMID: 26166819 DOI: 10.1016/j.bbrc.2015.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022]
Abstract
Monoacylglycerol lipase (MAGL) is important for neuroinflammation. However, the regulatory mechanisms underlying its expression and function remain unknown. Lipopolysaccharide (LPS) treatment post-translationally upregulated MAGL expression, whereas it downregulated MAGL transcription through a Stat6-mediated mechanism in microglia. Neither MAGL knockdown nor JZL-184, a selective MAGL inhibitor, suppressed LPS-induced upregulation of inflammatory cytokines in microglia. Moreover, exogenous expression of MAGL in BV-2 microglial cell line, which lacks endogenous MAGL, did not promote the induction of inflammatory cytokines by LPS treatment. Interestingly, MAGL knockdown reduced Fcγ receptor-mediated phagocytosis in primary microglia, and introduction of MAGL into the BV-2 cells increased Fcγ receptor-mediated phagocytosis. Collectively, these results suggest that MAGL regulates phagocytosis, but not LPS-mediated cytokine induction in microglia.
Collapse
|
16
|
Rubio JM, Rodríguez JP, Gil-de-Gómez L, Guijas C, Balboa MA, Balsinde J. Group V secreted phospholipase A2 is upregulated by IL-4 in human macrophages and mediates phagocytosis via hydrolysis of ethanolamine phospholipids. THE JOURNAL OF IMMUNOLOGY 2015; 194:3327-39. [PMID: 25725101 DOI: 10.4049/jimmunol.1401026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies on the heterogeneity and plasticity of macrophage populations led to the identification of two major polarization states: classically activated macrophages or M1, induced by IFN-γ plus LPS, and alternatively activated macrophages, induced by IL-4. We studied the expression of multiple phospholipase A2 enzymes in human macrophages and the effect that polarization of the cells has on their levels. At least 11 phospholipase A2 genes were found at significant levels in human macrophages, as detected by quantitative PCR. None of these exhibited marked changes after treating the cells with IFN-γ plus LPS. However, macrophage treatment with IL-4 led to strong upregulation of the secreted group V phospholipase A2 (sPLA2-V), both at the mRNA and protein levels. In parallel with increasing sPLA2-V expression levels, IL-4-treated macrophages exhibited increased phagocytosis of yeast-derived zymosan and bacteria, and we show that both events are causally related, because cells deficient in sPLA2-V exhibited decreased phagocytosis, and cells overexpressing the enzyme manifested higher rates of phagocytosis. Mass spectrometry analyses of lipid changes in the IL-4-treated macrophages suggest that ethanolamine lysophospholipid (LPE) is an sPLA2-V-derived product that may be involved in regulating phagocytosis. Cellular levels of LPE are selectively maintained by sPLA2-V. By supplementing sPLA2-V-deficient cells with LPE, phagocytosis of zymosan or bacteria was fully restored in IL-4-treated cells. Collectively, our results show that sPLA2-V is required for efficient phagocytosis by IL-4-treated human macrophages and provide evidence that sPLA2-V-derived LPE is involved in the process.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - Juan P Rodríguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Laboratorio de Investigación en Proteínas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain; and
| |
Collapse
|
17
|
Abood WN, Fahmi I, Abdulla MA, Ismail S. Immunomodulatory effect of an isolated fraction from Tinospora crispa on intracellular expression of INF-γ, IL-6 and IL-8. Altern Ther Health Med 2014; 14:205. [PMID: 24969238 PMCID: PMC4227069 DOI: 10.1186/1472-6882-14-205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
Abstract
Background Immunomodulators are substances that modify immune system response to a threat. Immunomodulators modulate and potentiate the immune system, keeping it highly prepared for any threat. The immunomodulatory effect of the traditional medicine Tinospora crispa is investigated in this work. Methods T. crispa ethanol extract was fractionated by using different solvents. The ethanol extract and effective isolated fraction were used to investigate the potential immunomodulatory effect of different T. crispa doses ranging from 25 μg/mL to 1000 μg/mL on RAW 246.7 cells by detecting intracellular INF-γ, IL-6, and IL-8 expressions. The antioxidant activity of T. crispa was evaluated through FRAP and DPPH. The total phenolic and total flavonoid contents were also quantified. Results Results show that T. crispa extract has higher antioxidant potential than ascorbic acid. The FRAP value of T. crispa extract is 11011.11 ± 1145.42 μmol Fe+2/g, and its DPPH inhibition percentage is 55.79 ± 7.9, with 22 μg/mL IC50. The results also reveal that the total phenolic content of T. crispa extract is 213.16- ± 1.31 mg GAE/g dry stem weight, and the total flavonoid content is 62.07- ± 39.76 mg QE/g dry stem weight. T. crispa crude extract and its isolated fraction significantly stimulate RAW264.7 cell viability (P ≤ 0.05) and intracellular INF-γ, IL-6, and IL-8 expressions. The results of LC-MS show that four of the active compounds detected in the T. crispa isolated fraction are cordioside, quercetin, eicosenoic acid (paullinic acid), and boldine. Conclusions The results of this study obviously indicate that T. crispa has immunomodulatory effects through the stimulation of INF-γ, IL-6, and IL-8 expressions. LC-MS phytochemical analysis showed that the T. crispa fraction has cordioside, quercetin, eicosenoic acid (paullinic acid), and boldine, which may be responsible for the immunostimulator effect of T. crispa.
Collapse
|
18
|
Rodríguez M, Domingo E, Municio C, Alvarez Y, Hugo E, Fernández N, Sánchez Crespo M. Polarization of the innate immune response by prostaglandin E2: a puzzle of receptors and signals. Mol Pharmacol 2013; 85:187-97. [PMID: 24170779 DOI: 10.1124/mol.113.089573] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eicosanoids tailor the innate immune response by supporting local inflammation and exhibiting immunomodulatory properties. Prostaglandin (PG) E2 is the most abundant eicosanoid in the inflammatory milieu due to the robust production elicited by pathogen-associated molecular patterns on cells of the innate immune system. The different functions and cell distribution of E prostanoid receptors explain the difficulty encountered thus far to delineate the actual role of PGE2 in the immune response. The biosynthesis of eicosanoids includes as the first step the Ca(2+)- and kinase-dependent activation of the cytosolic phospholipase A2, which releases arachidonic acid from membrane phospholipids, and later events depending on the transcriptional regulation of the enzymes of the cyclooxygenase routes, where PGE2 is the most relevant product. Acting in an autocrine/paracrine manner in macrophages, PGE2 induces a regulatory phenotype including the expression of interleukin (IL)-10, sphingosine kinase 1, and the tumor necrosis factor family molecule LIGHT. PGE2 also stabilizes the suppressive function of myeloid-derived suppressor cells, inhibits the release of IL-12 p70 by macrophages and dendritic cells, and may enhance the production of IL-23. PGE2 is a central component of the inflammasome-dependent induction of the eicosanoid storm that leads to massive loss of intravascular fluid, increases the mortality rate associated with coinfection by Candida ssp. and bacteria, and inhibits fungal phagocytosis. These effects have important consequences for the outcome of infections and the polarization of the immune response into the T helper cell types 2 and 17 and can be a clue to develop pharmacological tools to address infectious, autoimmune, and autoinflammatory diseases.
Collapse
Affiliation(s)
- Mario Rodríguez
- Department of Biochemistry and Molecular Biology, University of Valladolid, Valladolid, Spain (M.R., N.F.); and Institute of Biology and Molecular Genetics, Spanish National Research Council, Valladolid, Spain (E.D., C.M., Y.A., E.H., M.S.C.)
| | | | | | | | | | | | | |
Collapse
|
19
|
Gil-de-Gómez L, Astudillo AM, Meana C, Rubio JM, Guijas C, Balboa MA, Balsinde J. A phosphatidylinositol species acutely generated by activated macrophages regulates innate immune responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:5169-77. [PMID: 23567931 DOI: 10.4049/jimmunol.1203494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of macrophages with stimuli of the innate immune response results in the intense remodeling of arachidonate-containing phospholipids, leading to the mobilization of large quantities of this fatty acid for conversion into biologically active eicosanoids. As a consequence of this process, the arachidonate levels in membrane phospholipids markedly decrease. We have applied mass spectrometry-based lipid profiling to study the levels of arachidonate-containing phospholipids under inflammatory activation of macrophages. We identify an unusual inositol phospholipid molecule, PI(20:4/20:4), the levels of which do not decrease but actually increase by 300% after activation of the macrophages. PI(20:4/20:4) is formed and degraded rapidly, suggesting a role for this molecule in regulating cell signaling events. Using a metabolipidomic approach consisting in exposing the cells to deuterium-labeled arachidonate at the time they are exposed to stimuli, we show that PI(20:4/20:4) biosynthesis occurs via the sequential incorporation of arachidonate, first into the sn-2 position of a preformed phosphatidylinositol (PI) molecule, followed by the rapid introduction of a second arachidonate moiety into the sn-1 position. Generation requires the participation of cytosolic phospholipase A2α and CoA-dependent acyltransferases. PI(20:4/20:4) formation is also detected in vivo in murine peritonitis exudates. Elevating the intracellular concentration of PI(20:4/20:4) by introducing the lipid into the cells results in enhancement of the microbicidal capacity of macrophages, as measured by reactive oxygen metabolite production and lysozyme release. These findings suggest that PI(20:4/20:4) is a novel bioactive inositol phospholipid molecule that regulates innate immune responses in macrophages.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003 Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Bréchard S, Plançon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013; 18:661-76. [PMID: 22867131 PMCID: PMC3549206 DOI: 10.1089/ars.2012.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SIGNIFICANCE Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. RECENT ADVANCES Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca(2+) mobilization. CRITICAL ISSUES The potential involvement of Ca(2+)-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. FUTURE DIRECTIONS Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
21
|
Zizza P, Iurisci C, Bonazzi M, Cossart P, Leslie CC, Corda D, Mariggiò S. Phospholipase A2IVα regulates phagocytosis independent of its enzymatic activity. J Biol Chem 2012; 287:16849-59. [PMID: 22393044 DOI: 10.1074/jbc.m111.309419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Group IVα phospholipase A(2) (PLA(2)IVα) is a lipolytic enzyme that catalyzes the hydrolysis of membrane phospholipids to generate precursors of potent inflammatory lipid mediators. Here, the role of PLA(2)IVα in Fc receptor (FcR)-mediated phagocytosis was investigated, demonstrating that PLA(2)IVα is selectively activated upon FcR-mediated phagocytosis in macrophages and that it rapidly translocates to the site of the nascent phagosome. Moreover, pharmacological inhibition of PLA(2)IVα by pyrrophenone reduces particle internalization by up to 50%. In parallel, fibroblasts from PLA(2)IVα knock-out mice overexpressing FcγRIIA and able to internalize IgG-opsonized beads show 50% lower phagocytosis, compared with wild-type cells, and transfection of PLA(2)IVα fully recovers this impaired function. Interestingly, transfection of the catalytically inactive deleted PLA(2)IVα mutant (PLA(2)IVα(1-525)) and point mutant (PLA(2)IVα-S228C) also promotes recovery of this impaired function. Finally, transfection of the PLA(2)IVα C2 domain (which is directly involved in PLA(2)IVα membrane binding), but not of PLA(2)IVα-D43N (which cannot bind to membranes), rescues FcR-mediated phagocytosis. These data unveil a new mechanism of action for PLA(2)IVα, which demonstrates that the membrane binding, and not the enzymatic activity, is required for PLA(2)IVα modulation of FcR-mediated phagocytosis.
Collapse
Affiliation(s)
- Pasquale Zizza
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Lipid targeting domain with dual-membrane specificity that expands the diversity of intracellular targeting reactions. Proc Natl Acad Sci U S A 2012; 109:1816-7. [PMID: 22308463 DOI: 10.1073/pnas.1120856109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
A C2 domain protein kinase initiates phagocytosis in the protozoan parasite Entamoeba histolytica. Nat Commun 2011; 2:230. [PMID: 21407196 DOI: 10.1038/ncomms1199] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/19/2010] [Indexed: 11/08/2022] Open
Abstract
Phagocytosis is a process whereby particles are taken in by cells through mechanisms superficially similar to those for endocytosis. It serves a wide range of functions, from providing nutrition in unicellular organisms to initiation of both innate and adaptive immunity in vertebrates. In the protozoan parasite Entamoeba histolytica, it has an essential role in survival and pathogenesis. In this study, we show that EhC2PK, a C2-domain-containing protein kinase, and the Ca²(+) and actin-binding protein, EhCaBP1, are involved in the initiation of phagocytosis in E. histolytica. Conditional suppression of EhC2PK expression and overexpression of a mutant form reveals its role in the initiation of phagocytic cups. EhC2PK binds phosphatidylserine in the presence of Ca²(+) and thereby recruits EhCaBP1 and actin to the membrane. Identification of these proteins in phagocytosis is an important step in amoebic biology and these molecules could be the important targets for developing novel therapies against amoebiasis.
Collapse
|
24
|
Hau CS, Tada Y, Shibata S, Uratsuji H, Asano Y, Sugaya M, Kadono T, Kanda N, Watanabe S, Tamaki K, Sato S. High calcium, ATP, and poly(I:C) augment the immune response to β-glucan in normal human epidermal keratinocytes. J Invest Dermatol 2011; 131:2255-62. [PMID: 21796149 DOI: 10.1038/jid.2011.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
β-Glucans are pathogen-associated molecular patterns of fungi such as Candida albicans. Here, we studied their effects on normal human epidermal keratinocytes (NHEKs) from neonatal foreskin, and with high calcium to induce keratinocyte differentiation, danger signals, and pathogen-associated compounds such as adenosine 5'-triphosphate (ATP), poly(I:C), and lipopolysaccharide (LPS). β-Glucan stimulation significantly increased IL-8, IL-6, and IL-1α production by NHEKs. Well-differentiated NHEKs produced elevated IL-8 levels, whereas ATP, a danger signal, significantly increased IL-8 and IL-6 production, and the pathogen-associated compound, poly(I:C), augmented IL-1α production by β-glucan-stimulated NHEKs. No response to LPS from Escherichia coli was seen. Dectin-1 is known as the major receptor for β-glucans on phagocytes and dendritic cells. Dectin-1 mRNA was detected in NHEKs by reverse transcription-PCR. Flow-cytometric analyses confirmed the NHEK cell surface expression of dectin-1. Immunoblotting showed that β-glucan induced dual phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase (ERK)1/2), and p38 MAPK in NHEKs; these signaling pathways are known to be associated with dectin-1. Treatment with the ERK inhibitor PD98059 and with the p38 kinase inhibitor SB203580 effectively suppressed β-glucan-induced IL-8 production by NHEKs. Thus, high calcium, ATP, and poly(I:C) augment the cytokine and chemokine production by β-glucan-stimulated NHEKs. Dectin-1 is present on NHEKs and may have an important role in cell response to β-glucan.
Collapse
Affiliation(s)
- Carren Sy Hau
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Suram S, Gangelhoff TA, Taylor PR, Rosas M, Brown GD, Bonventre JV, Akira S, Uematsu S, Williams DL, Murphy RC, Leslie CC. Pathways regulating cytosolic phospholipase A2 activation and eicosanoid production in macrophages by Candida albicans. J Biol Chem 2010; 285:30676-85. [PMID: 20643646 PMCID: PMC2945562 DOI: 10.1074/jbc.m110.143800] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/13/2010] [Indexed: 12/13/2022] Open
Abstract
Resident tissue macrophages are activated by the fungal pathogen Candida albicans to release eicosanoids, which are important modulators of inflammation and immune responses. Our objective was to identify the macrophage receptors engaged by C. albicans that mediate activation of group IVA cytosolic phospholipase A(2) (cPLA(2)α), a regulatory enzyme that releases arachidonic acid (AA) for production of prostaglandins and leukotrienes. A comparison of peritoneal macrophages from wild type and knock-out mice demonstrates that the β-glucan receptor Dectin-1 and MyD88 regulate early release of AA and eicosanoids in response to C. albicans. However, cyclooxygenase 2 (COX2) expression and later phase eicosanoid production are defective in MyD88(-/-) but not Dectin-1(-/-) macrophages. Furthermore, C. albicans-stimulated activation of MAPK and phosphorylation of cPLA(2)α on Ser-505 are regulated by MyD88 and not Dectin-1. In contrast, Dectin-1 mediates MAPK activation, cPLA(2)α phosphorylation, and COX2 expression in response to particulate β-glucan suggesting that other receptors engaged by C. albicans preferentially mediate these responses. Results also implicate the mannan-binding receptor Dectin-2 in regulating cPLA(2)α. C. albicans-stimulated MAPK activation and AA release are blocked by d-mannose and Dectin-2-specific antibody, and overexpression of Dectin-2 in RAW264.7 macrophages enhances C. albicans-stimulated MAPK activation, AA release, and COX2 expression. In addition, calcium mobilization is enhanced in RAW264.7 macrophages overexpressing Dectin-1 or -2. The results demonstrate that C. albicans engages both β-glucan and mannan-binding receptors on macrophages that act with MyD88 to regulate the activation of cPLA(2)α and eicosanoid production.
Collapse
Affiliation(s)
- Saritha Suram
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206
| | - Todd A. Gangelhoff
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206
| | - Philip R. Taylor
- the Department of Infection, Immunity, and Biochemistry, School of Medicine, Cardiff University, CF14 4XN Cardiff, United Kingdom
| | - Marcela Rosas
- the Department of Infection, Immunity, and Biochemistry, School of Medicine, Cardiff University, CF14 4XN Cardiff, United Kingdom
| | - Gordon D. Brown
- the Institute of Medical Sciences, University of Aberdeen, AB25 22D Aberdeen, Scotland, United Kingdom
| | - Joseph V. Bonventre
- the Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Shizuo Akira
- the Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 565-0871 Osaka, Japan
| | - Satoshi Uematsu
- the Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 565-0871 Osaka, Japan
| | - David L. Williams
- the Department of Surgery, James H. Quillen College of Medicine, Johnson City, Tennessee 37614, and
| | | | - Christina C. Leslie
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206
- the Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
27
|
Giannattasio G, Fujioka D, Xing W, Katz HR, Boyce JA, Balestrieri B. Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2010; 185:4430-8. [PMID: 20817863 DOI: 10.4049/jimmunol.1001384] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously shown that group V secretory phospholipase A(2) (sPLA(2)) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. In this study, we report that group V sPLA(2) (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae had markedly reduced pulmonary inflammation and goblet cell metaplasia compared with wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to D. farinae compared with WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by D. farinae had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of D. farinae-challenged mice. Adoptively transferred D. farinae-loaded Pla2g5-null BMDCs were less able than D. farinae-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null D. farinae-loaded BMDCs exhibited significantly reduced local inflammatory responses to D. farinae, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA(2) in APCs regulates Ag processing and maturation of DCs and contributes to pulmonary inflammation and immune response against D. farinae. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA(2) is upregulated by D. farinae, and whose function is also regulated by group V sPLA(2).
Collapse
|
28
|
Eicosanoids in the innate immune response: TLR and non-TLR routes. Mediators Inflamm 2010; 2010. [PMID: 20689730 PMCID: PMC2905620 DOI: 10.1155/2010/201929] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/09/2010] [Indexed: 12/14/2022] Open
Abstract
The variable array of pattern receptor expression in different cells of the innate immune system explains the induction of distinct patterns of arachidonic acid (AA) metabolism. Peptidoglycan and mannan were strong stimuli in neutrophils, whereas the fungal extract zymosan was the most potent stimulus in monocyte-derived dendritic cells since it induced the production of PGE2, PGD2, and several cytokines including a robust IL-10 response. Zymosan activated κB-binding activity, but inhibition of NF-κB was associated with enhanced IL-10 production. In contrast, treatments acting on CREB (CRE binding protein), including PGE2, showed a direct correlation between CREB activation and IL-10 production. Therefore, in dendritic cells zymosan induces il10 transcription by a CRE-dependent mechanism that involves autocrine secretion of PGE2, thus unraveling a functional cooperation between eicosanoid production and cytokine production.
Collapse
|
29
|
Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 2010; 234:335-52. [PMID: 20193029 DOI: 10.1111/j.0105-2896.2009.00882.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Different dendritic cell (DC) subsets have distinct specialized functions contributed in part by their differential expression of pattern recognition receptors (PRRs). C-type lectin receptors (CLRs) are a group of PRRs expressed by DCs and other myeloid cells that can recognize endogenous ligands as well as a wide range of exogenous structures present on pathogens. Dual roles in homeostasis and immunity have been demonstrated for some members of this receptor family. Largely due to their endocytic ability and subset specific expression, DC-expressed CLRs have been the focus of significant antigen-targeting studies. A number of CLRs function on the basis of signaling via association with immunoreceptor tyrosine-based activation motif (ITAM)-containing adapter proteins. Others contain ITAM-related motifs or immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tails. Here we review CLRs that induce intracellular signaling via a single tyrosine-based ITAM-like motif and highlight their relevance in terms of DC function.
Collapse
Affiliation(s)
- Ann M Kerrigan
- Section of Infection and Immunity, Institute of Molecular Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
30
|
Szaingurten-Solodkin I, Hadad N, Levy R. Regulatory role of cytosolic phospholipase A2alpha in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Abeta1-42 in microglia. Glia 2010; 57:1727-40. [PMID: 19455582 DOI: 10.1002/glia.20886] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Alzheimer's disease, extracellular deposits of amyloid beta(1-42) (Abeta(1-42)) may induce activation of microglial cells by releasing proinflammatory factors that contribute to the neurodegeneration process. Since the activation of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) has been reported in inflammatory conditions, its role in primary rat microglial cell activated by aggregated Abeta(1-42) was elucidated. The results of the present study show that activation of microglia by 5 microM aggregated Abeta(1-42) (as evident by the amoeboid morphology and increased CD68 immunofluorescence reactivity) caused an immediate activation of cPLA(2)alpha, measured by its phosphorylated form and its specific activity, followed by a gradual elevation of its expression and activity during 24 h. Inhibition of cPLA(2)alpha expression and activity by the presence of 1 microM specific antisense resulted in a significant decrease in NADPH oxidase activity that releases superoxides, PGE(2) formation, iNOS expression, and NO production, indicating a major role for cPLA(2)alpha in the regulation of these inflammatory processes. NADPH oxidase activity, which is under cPLA(2)alpha regulation, was found to upregulate cPLA(2)alpha and COX-2 protein expression through the redox-sensitive NFkappaB activation as evident by its phosphorylation on Ser-536, resulting in increased PGE(2) formation. The secreted PGE(2) induced the synthesis of iNOS and the production of NO through the PKA-CREB pathway. Taken together, our results suggest that the response of cPLA(2)alpha to aggregated Abeta(1-42) is probably a key player in the oxidative stress present in AD, regulating potent oxidative agents: the production of superoxides by NADPH oxidase and NO formation by iNOS.
Collapse
Affiliation(s)
- I Szaingurten-Solodkin
- Infectious Diseases and Immunology Laboratory, Department of Clinical Biochemistry, Faculty of Health Sciences, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
31
|
Qin Z, Konaniah ES, Neltner B, Nemenoff RA, Hui DY, Weintraub NL. Participation of ATP7A in macrophage mediated oxidation of LDL. J Lipid Res 2009; 51:1471-7. [PMID: 19965596 DOI: 10.1194/jlr.m003426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ATP7A primarily functions to egress copper from cells, thereby supplying this cofactor to secreted copper-accepting enzymes. This ATPase has attracted significant attention since the discovery of its mutation leading to human Menkes disease and the demonstration of its distribution in various tissues. Recently, we reported that ATP7A is expressed in the human vasculature. In the present study, we investigated the cellular expression of ATP7A in atherosclerotic lesions of LDL receptor (-/-) mice. Subsequently, we examined the role of ATP7A in regulating the oxidation of LDL in a macrophage cell model. We observed that ATP7A is expressed in atherosclerotic murine aorta and colocalizes with macrophages. To investigate the function of ATP7A, we downregulated ATP7A expression in THP-1 derived macrophages using small interfering RNA (siRNA). ATP7A downregulation attenuated cell-mediated oxidation of LDL. Moreover, downregulation of ATP7A resulted in decreased expression and enzymatic activity of cytosolic phospholipase A(2) alpha (cPLA(2)alpha), a key intracellular enzyme involved in cell-mediated LDL oxidation. In addition, cPLA(2)alpha promoter activity was decreased after downregulation of ATP7A, suggesting that ATP7A transcriptionally regulates cPLA(2)alpha expression. Finally, cPLA(2)alpha overexpression increased LDL oxidation, which was blocked by coadministration of ATP7A siRNA oligonucleotides. These findings suggest a novel mechanism linking ATP7A to cPLA(2)alpha and LDL oxidation, suggesting that this copper transporter could play a previously unrecognized role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Cardiovascular Diseases, Genome Research Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Beta-glucans are recognized by the innate immune system. This recognition plays important roles in host defense and presents specific opportunities for clinical modulation of the host immune response. Neutrophils, macrophages, and dendritic cells among others express several receptors capable of recognizing beta-glucan in its various forms. This review explores what is currently known about beta-glucan recognition and how this recognition stimulates immune responses. Special emphasis is placed on Dectin-1, as we know the most about how this key beta-glucan receptor translates recognition into intracellular signaling, stimulates cellular responses, and participates in orchestrating the adaptive immune response.
Collapse
Affiliation(s)
- Helen S Goodridge
- Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
33
|
Casas J, Valdearcos M, Pindado J, Balsinde J, Balboa MA. The cationic cluster of group IVA phospholipase A2 (Lys488/Lys541/Lys543/Lys544) is involved in translocation of the enzyme to phagosomes in human macrophages. J Lipid Res 2009; 51:388-99. [PMID: 19717620 DOI: 10.1194/jlr.m001461] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2)alpha (cPLA(2)alpha) plays a role in the microbicidal machinery of immune cells by translocating to phagosomes to initiate the production of antimicrobial eicosanoids. In this work, we have studied the involvement of the cationic cluster of cPLA(2)alpha (Lys(488)/Lys(541)/Lys(543)/Lys(544)) in the translocation of the enzyme to the phagosomal cup in human macrophages responding to opsonized zymosan. Phagocytosis was accompanied by an increased mobilization of free arachidonic acid, which was strongly inhibited by pyrrophenone. In transfected cells, a catalytically active enhanced green fluorescent protein-cPLA(2)alpha translocated to the phagocytic cup, which was corroborated by frustrated phagocytosis experiments using immunoglobulin G-coated plates. However, a cPLA(2)alpha mutant in the polybasic cluster that cannot bind the anionic phospholipid phosphatidylinositol 4, 5-bisphosphate (PIP(2)) did not translocate to the phagocytic cup. Moreover, an enhanced yellow fluorescent protein (EYFP)-cPLA(2)alpha and an enhanced cyan fluorescent protein-pleckstrin homology (PH) domain of the phospholipase Cdelta1 (PLCdelta(1)) construct that specifically recognizes endogenous PIP(2) in the cells both localized at the same sites on the phagosome. High cellular expression of the PH domain inhibited EYFP-cPLA(2)alpha translocation. On the other hand, group V-secreted phospholipase A(2) and group VIA calcium-independent phospholipase A(2) were also studied, but the results indicated that neither of these translocated to the phagosome. Collectively, these data indicate that the polybasic cluster of cPLA(2)alpha (Lys(488)/Lys(541)/Lys(543)/Lys(544)) regulates the subcellular localization of the enzyme in intact cells under physiologically relevant conditions.
Collapse
Affiliation(s)
- Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | | | | | | | | |
Collapse
|
34
|
Casas J, Meana C, Esquinas E, Valdearcos M, Pindado J, Balsinde J, Balboa MA. Requirement of JNK-Mediated Phosphorylation for Translocation of Group IVA Phospholipase A2 to Phagosomes in Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2009; 183:2767-74. [DOI: 10.4049/jimmunol.0901530] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Park HS, Kim S, Lee Y, Choi MS, Choi MU. Alteration of lipid composition of rat thymus during thymic atrophy by whole-body X-irradiation. Int J Radiat Biol 2009; 82:129-37. [PMID: 16546911 DOI: 10.1080/09553000600617189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Thymic atrophy induced by irradiation is well known, but in vivo lipid metabolism during the atrophy has not been studied in detail. We determined the lipid composition of rat thymus during the progress of thymic atrophy induced by whole-body X-irradiation. MATERIALS AND METHODS The lipid analysis of total lipid of rat thymus after 5 Gy whole-body X-irradiation was performed by high performance liquid chromatography and gas chromatography equipped with mass spectrometry. RESULTS Major changes observed were a 16.2-fold elevation of cholesterol ester (CE) during a 48-h post-irradiation period and a 6.1-fold increase of alkyldiacylglycerol (ADG) at 24 h. Other significant changes detected were an increase in lysophosphatidylcholine and a transient increase in ceramide and phosphatidic acid. Acyl chain analysis revealed a substantial elevation of arachidonate composition of CE and an unusually high content of polyunsaturated fatty acids (71.5%, mol/mol) in ADG. CONCLUSION Lipid analysis shows that the thymic atrophy by X-irradiation was accompanied by a significant change in thymic lipids. This in vivo result opens up new vistas of the role of lipids in apoptosis and phagocytosis during thymic atrophy.
Collapse
Affiliation(s)
- Heung Soon Park
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
36
|
Balestrieri B, Maekawa A, Xing W, Gelb MH, Katz HR, Arm JP. Group V secretory phospholipase A2 modulates phagosome maturation and regulates the innate immune response against Candida albicans. THE JOURNAL OF IMMUNOLOGY 2009; 182:4891-8. [PMID: 19342668 DOI: 10.4049/jimmunol.0803776] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phospholipase A(2) (PLA(2)) hydrolyzes the sn-2 position of cell membrane phospholipids to release fatty acids and lysophospholipids. We have previously reported that group V secretory PLA(2) (sPLA(2)) translocates from the Golgi and recycling endosomes of mouse peritoneal macrophages to newly formed phagosomes and regulates the phagocytosis of zymosan, suggesting a role in innate immunity. Here we report that in macrophages lacking group V sPLA(2), phagosome maturation was reduced 50-60% at early time points while the binding of zymosan was unimpaired. The ability of group V sPLA(2) to regulate phagocytosis extended to phagocytosis of IgG- and complement-opsonized sheep RBC. Moreover, macrophages lacking group V sPLA(2) had delays in phagocytosis, phagosome maturation, and killing of Candida albicans. Cytokine production and eicosanoid generation were not impaired by the lack of group V sPLA(2). Furthermore, in a model of systemic candidiasis, mice lacking group V sPLA(2) had an increased fungal burden in the kidney, liver, and spleen at day 7 postinfection and increased mortality. Thus, group V sPLA(2) regulates phagocytosis through major phagocytic receptors and contributes to the innate immune response against C. albicans by regulating phagocytosis and killing through a mechanism that is likely dependent on phagolysosome fusion.
Collapse
Affiliation(s)
- Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abdel-Aziz HA, Gamal-Eldeen AM, Hamdy NA, Fakhr IMI. Immunomodulatory and Anticancer Activities of Some Novel 2-Substituted-6-bromo-3-methylthiazolo[3,2-a]benzimidazole Derivatives. Arch Pharm (Weinheim) 2009; 342:230-7. [PMID: 19340836 DOI: 10.1002/ardp.200800189] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hatem A Abdel-Aziz
- Cancer Biology Laboratory, Center of Excellence for Advanced Sciences, Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt.
| | | | | | | |
Collapse
|
38
|
Shmelzer Z, Karter M, Eisenstein M, Leto TL, Hadad N, Ben-Menahem D, Gitler D, Banani S, Wolach B, Rotem M, Levy R. Cytosolic Phospholipase A2α Is Targeted to the p47 -PX Domain of the Assembled NADPH Oxidase via a Novel Binding Site in Its C2 Domain. J Biol Chem 2008; 283:31898-908. [DOI: 10.1074/jbc.m804674200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
39
|
Tian Y, Pate C, Andreolotti A, Wang L, Tuomanen E, Boyd K, Claro E, Jackowski S. Cytokine secretion requires phosphatidylcholine synthesis. ACTA ACUST UNITED AC 2008; 181:945-57. [PMID: 18559668 PMCID: PMC2426940 DOI: 10.1083/jcb.200706152] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Choline cytidylyltransferase (CCT) is the rate-limiting enzyme in the phosphatidylcholine biosynthetic pathway. Here, we demonstrate that CCTα-mediated phosphatidylcholine synthesis is required to maintain normal Golgi structure and function as well as cytokine secretion from the Golgi complex. CCTα is localized to the trans-Golgi region and its expression is increased in lipopolysaccharide (LPS)-stimulated wild-type macrophages. Although LPS triggers transient reorganization of Golgi morphology in wild-type macrophages, similar structural alterations persist in CCTα-deficient cells. Pro–tumor necrosis factor α and interleukin-6 remain lodged in the secretory compartment of CCTα-deficient macrophages after LPS stimulation. However, the lysosomal-mediated secretion pathways for interleukin-1β secretion and constitutive apolipoprotein E secretion are unaltered. Exogenous lysophosphatidylcholine restores LPS-stimulated secretion from CCTα-deficient cells, and elevated diacylglycerol levels alone do not impede secretion of pro–tumor necrosis factor α or interleukin-6. These results identify CCTα as a key component in membrane biogenesis during LPS-stimulated cytokine secretion from the Golgi complex.
Collapse
Affiliation(s)
- Yong Tian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tucker DE, Gijón MA, Spencer DM, Qiu ZH, Gelb MH, Leslie CC. Regulation of cytosolic phospholipase A2alpha by hsp90 and a p54 kinase in okadaic acid-stimulated macrophages. J Leukoc Biol 2008; 84:798-806. [PMID: 18550790 DOI: 10.1189/jlb.0308197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In resident mouse peritoneal macrophages, group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) mediates arachidonic acid (AA) release and eicosanoid production in response to diverse agonists such as A23187, phorbol myristate acetate, zymosan, and the enterotoxin, okadaic acid (OA). cPLA(2)alpha is regulated by phosphorylation and by calcium that binds to the C2 domain and induces translocation from the cytosol to membranes. In contrast, OA activates cPLA(2)alpha-induced AA release and translocation to the Golgi in macrophages without an apparent increase in calcium. Inhibitors of heat shock protein 90 (hsp90), geldanamycin, and herbimycin blocked AA release in response to OA but not to A23187, PMA, or zymosan. OA, but not the other agonists, induced activation of a cytosolic serine/threonine 54-kDa kinase (p54), which phosphorylated cPLA(2)alpha in in-gel kinase assays and was associated with cPLA(2)alpha in immunoprecipitates. Activation of the p54 kinase was inhibited by geldanamycin. The kinase coimmunoprecipitated with hsp90 in unstimulated macrophages, and OA induced its loss from hsp90, concomitant with its association with cPLA(2)alpha. The results demonstrate a role for hsp90 in regulating cPLA(2)alpha-mediated AA release that involves association of a p54 kinase with cPLA(2)alpha upon OA stimulation.
Collapse
Affiliation(s)
- Dawn E Tucker
- Program in Cell Biology, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hegazy MEF, Abdel-Lateff A, Gamal-Eldeen AM, Turky F, Hirata T, Paré PW, Karchesy J, Kamel MS, Ahmed AA. Anti-inflammatory Activity of New Guaiane Acid Derivatives from Achillea Coarctata. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chromatographic investigation of the methylene chloride/methanol extract of aerial parts of Achillea coarctata afforded two new guaiane acid derivatives, 1α,6α,8α-trihydroxy-5α,7βH-guaia-3,10(14),11(13)-trien-12-oic acid (1) and 1α,6α,8α-trihydroxy-5α,7βH-guaia-3,9,11(13)-trien-12-oic acid (2), in addition to three known compounds, ligustolide-A (3), arteludovicinolide-A (4) and austricin (5). Structures were elucidated by spectroscopic analyses including: 1H and 13C NMR, COSY, HMQC, HMBC and NOESY NMR spectroscopy, as well as MS analysis. Proliferation of beneficial macrophages was significantly enhanced by treatment with 1 and 2. Additionally, treatment with compounds 2 and 4 led to a potentially significant inhibition in nitric oxide generation from raw murine macrophage 264.7, which was stimulated by bacterial lipopolysaccharide. Compounds 2 and 4 exhibited anti-inflammatory properties, based on a nitric oxide assay.
Collapse
Affiliation(s)
| | - Ahmed Abdel-Lateff
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Fatma Turky
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Toshifumi Hirata
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739–8526, Japan
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409-1061, USA
| | - Joe Karchesy
- Department of Wood Science and Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Mohamed S. Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ahmed A. Ahmed
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
42
|
Noor S, Goldfine H, Tucker DE, Suram S, Lenz LL, Akira S, Uematsu S, Girotti M, Bonventre JV, Breuel K, Williams DL, Leslie CC. Activation of cytosolic phospholipase A2alpha in resident peritoneal macrophages by Listeria monocytogenes involves listeriolysin O and TLR2. J Biol Chem 2008; 283:4744-55. [PMID: 18083708 PMCID: PMC4741307 DOI: 10.1074/jbc.m709956200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Eicosanoid production by macrophages is an early response to microbial infection that promotes acute inflammation. The intracellular pathogen Listeria monocytogenes stimulates arachidonic acid release and eicosanoid production from resident mouse peritoneal macrophages through activation of group IVA cytosolic phospholipase A2 (cPLA2alpha). The ability of wild type L. monocytogenes (WTLM) to stimulate arachidonic acid release is partially dependent on the virulence factor listeriolysin O; however, WTLM and L. monocytogenes lacking listeriolysin O (DeltahlyLM) induce similar levels of cyclooxygenase 2. Arachidonic acid release requires activation of MAPKs by WTLM and DeltahlyLM. The attenuated release of arachidonic acid that is observed in TLR2-/- and MyD88-/- macrophages infected with WTLM and DeltahlyLM correlates with diminished MAPK activation. WTLM but not DeltahlyLM increases intracellular calcium, which is implicated in regulation of cPLA2alpha. Prostaglandin E2, prostaglandin I2, and leukotriene C4 are produced by cPLA2alpha+/+ but not cPLA2alpha-/- macrophages in response to WTLM and DeltahlyLM. Tumor necrosis factor (TNF)-alpha production is significantly lower in cPLA2alpha+/+ than in cPLA2alpha-/- macrophages infected with WTLM and DeltahlyLM. Treatment of infected cPLA2alpha+/+ macrophages with the cyclooxygenase inhibitor indomethacin increases TNFalpha production to the level produced by cPLA2alpha-/- macrophages implicating prostaglandins in TNFalpha down-regulation. Therefore activation of cPLA2alpha in macrophages may impact immune responses to L. monocytogenes.
Collapse
Affiliation(s)
- Shahid Noor
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Howard Goldfine
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dawn E. Tucker
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Saritha Suram
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Laurel L. Lenz
- Department of Immunology, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Uematsu
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Milena Girotti
- Department of Psychology, University of Colorado, Boulder, Colorado 80309
| | | | - Kevin Breuel
- ETSU Clinical Labs, ETSU Physicians and Associates, Johnson City, Tennessee 37604
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, Johnson City, Tennessee 37614
| | - Christina C. Leslie
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
- Departments of Pathology and Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
43
|
Yamashita M, Shinohara T, Tsuji S, Myrvik QN, Nishiyama A, Henriksen RA, Shibata Y. Catalytically inactive cyclooxygenase 2 and absence of prostaglandin E2 biosynthesis in murine peritoneal macrophages following in vivo phagocytosis of heat-killed Mycobacterium bovis bacillus Calmette-Guérin. THE JOURNAL OF IMMUNOLOGY 2007; 179:7072-8. [PMID: 17982098 DOI: 10.4049/jimmunol.179.10.7072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over 25 years ago, it was observed that peritoneal macrophages (Mphi) isolated from mice given heat-killed Mycobacterium bovis bacillus Calmette-Guérin (HK-BCG) i.p. did not release PGE(2). However, when peritoneal Mphi from untreated mice are treated with HK-BCG in vitro, cyclooxygenase 2 (COX-2), a rate-limiting enzyme for PGE(2) biosynthesis, is expressed and the release of PGE(2) is increased. The present study of peritoneal Mphi obtained from C57BL/6 mice and treated either in vitro or in vivo with HK-BCG was undertaken to further characterize the cellular responses that result in suppression of PGE(2) release. The results indicate that Mphi treated with HK-BCG in vivo express constitutive COX-1 and inducible COX-2 that are catalytically inactive, are localized subcellularly in the cytoplasm, and are not associated with the nuclear envelope (NE). In contrast, Mphi treated in vitro express catalytically active COX-1 and COX-2 that are localized in the NE and diffusely in the cytoplasm. Thus, for local Mphi activated in vivo by HK-BCG, the results indicate that COX-1 and COX-2 dissociated from the NE are catalytically inactive, which accounts for the lack of PGE(2) production by local Mphi activated in vivo with HK-BCG. Our studies further indicate that the formation of catalytically inactive COX-2 is associated with in vivo phagocytosis of HK-BCG, and is not dependent on extracellular mediators produced by in vivo HK-BCG treatment. This attenuation of PGE(2) production may enhance Mphi-mediated innate and Th1-acquired immune responses against intracellular infections which are suppressed by PGE(2).
Collapse
Affiliation(s)
- Makiko Yamashita
- College of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Phagocytosis is an important component of innate and adaptive immunity. The formation of phagosomes and the subsequent maturation that capacitates them for pathogen elimination and antigen presentation are complex processes that involve signal transduction, cytoskeletal reorganization, and membrane remodeling. Lipids are increasingly appreciated to play a crucial role in these events. Sphingolipids, cholesterol, and glycerophospholipids, notably the phosphoinositides, are required for the segregation of signaling microdomains and for the generation of second messengers. They are also instrumental in the remodeling of the actin cytoskeleton and in directing membrane traffic. They accomplish these feats by congregating into liquid-ordered domains, by generating active metabolites that activate receptors, and by recruiting and anchoring specific protein ligands to the membrane, often altering their conformation and catalytic activity. A less appreciated role of acidic phospholipids is their contribution to the negative surface charge of the inner leaflet of the plasmalemma. The unique negativity of the inner aspect of the plasma membrane serves to attract and anchor key signaling and effector molecules that are required to initiate phagosome formation. Conversely, the loss of charge that accompanies phospholipid metabolism as phagosomes seal facilitates the dissociation of proteins and the termination of signaling and cytoskeleton assembly. In this manner, lipids provide a binary electrostatic switch to control phagocytosis.
Collapse
Affiliation(s)
- Tony Yeung
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
45
|
Gamal-Eldeen AM, Amer H, Helmy WA, Talaat RM, Ragab H. Chemically-modified polysaccharide extract derived from Leucaena leucocephala alters Raw 264.7 murine macrophage functions. Int Immunopharmacol 2007; 7:871-8. [PMID: 17466921 DOI: 10.1016/j.intimp.2007.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
In this study, a chemical modification of the polysaccharides extract (E) derived from Leucaena leucocephala seeds was performed to prepare C-glycosidic 2-propanol derivative (PE), and its sulphated derivative (SPE). This study aimed to characterize immunomodulatory activities of the original extract and its derivatives by exploring their effects on Raw macrophage 264.7 functions and their antioxidant activity. Our results indicated that PE was an effective radical scavenger to hydroxyl, peroxyl, and superoxide anion radicals, and SPE was a peroxyl radical scavenger. PE and SPE were found to influence the macrophage functions. Both of PE and SPE enhanced the macrophage proliferation and phagocytosis of FITC-zymosan; PE inhibited nitric oxide (NO) generation and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide (LPS)-stimulated Raw macrophage 264.7. In contrast, SPE over-induced NO generation and TNF-alpha secretion. Moreover, PE strongly inhibited the binding affinity of FITC-LPS to Raw 264.7, as indicated by flow cytometry analysis. These findings revealed that PE may act as a potent anti-inflammatory agent; however SPE may act as an inducer of macrophage functions against pathogens.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Cancer Biology Laboratory, Nobel Project, Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
46
|
Ghosh M, Loper R, Ghomashchi F, Tucker DE, Bonventre JV, Gelb MH, Leslie CC. Function, activity, and membrane targeting of cytosolic phospholipase A(2)zeta in mouse lung fibroblasts. J Biol Chem 2007; 282:11676-86. [PMID: 17293613 PMCID: PMC2678067 DOI: 10.1074/jbc.m608458200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) initiates eicosanoid production; however, this pathway is not completely ablated in cPLA(2)alpha(-/-) lung fibroblasts stimulated with A23187 or serum. cPLA(2)alpha(+/+) fibroblasts preferentially released arachidonic acid, but A23187-stimulated cPLA(2)alpha(-/-) fibroblasts nonspecifically released multiple fatty acids. Arachidonic acid release from cPLA(2) alpha(-/-) fibroblasts was inhibited by the cPLA(2)alpha inhibitors pyrrolidine-2 (IC(50), 0.03 microM) and Wyeth-1 (IC(50), 0.1 microM), implicating another C2 domain-containing group IV PLA(2). cPLA(2) alpha(-/-) fibroblasts contain cPLA(2)beta and cPLA(2)zeta but not cPLA(2)epsilon or cPLA(2)delta. Purified cPLA(2)zeta exhibited much higher lysophospholipase and PLA(2) activity than cPLA(2)beta and was potently inhibited by pyrrolidine-2 and Wyeth-1, which did not inhibit cPLA(2)beta. In contrast to cPLA(2)beta, cPLA(2)zeta expressed in Sf9 cells mediated A23187-induced arachidonic acid release, which was inhibited by pyrrolidine-2 and Wyeth-1. cPLA(2)zeta exhibits specific activity, inhibitor sensitivity, and low micromolar calcium dependence similar to cPLA(2)alpha and has been identified as the PLA(2) responsible for calcium-induced fatty acid release and prostaglandin E(2) production from cPLA(2) alpha(-/-) lung fibroblasts. In response to ionomycin, EGFP-cPLA(2)zeta translocated to ruffles and dynamic vesicular structures, whereas EGFP-cPLA(2)alpha translocated to the Golgi and endoplasmic reticulum, suggesting distinct mechanisms of regulation for the two enzymes.
Collapse
Affiliation(s)
- Moumita Ghosh
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Robyn Loper
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Farideh Ghomashchi
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Dawn E. Tucker
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | | | - Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christina C. Leslie
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
- Departments of Pathology and Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
47
|
Goodridge HS, Simmons RM, Underhill DM. Dectin-1 Stimulation by Candida albicans Yeast or Zymosan Triggers NFAT Activation in Macrophages and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:3107-15. [PMID: 17312158 DOI: 10.4049/jimmunol.178.5.3107] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Innate immune pattern recognition receptors play critical roles in pathogen detection and initiation of antimicrobial responses. We and others have previously demonstrated the importance of the beta-glucan receptor Dectin-1 in the recognition of pathogenic fungi by macrophages and dendritic cells and have elucidated some of the mechanisms by which Dectin-1 signals to coordinate the antifungal response. While Dectin-1 signals alone are sufficient to trigger phagocytosis and Src-Syk-mediated induction of antimicrobial reactive oxygen species, collaboration with TLR2 signaling enhances NF-kappaB activation and regulates cytokine production. In this study we demonstrate that Dectin-1 signaling can also directly modulate gene expression via activation of NFAT. Dectin-1 ligation by zymosan particles or live Candida albicans yeast triggers NFAT activation in macrophages and dendritic cells. Dectin-1-triggered NFAT activation plays a role in the induction of early growth response 2 and early growth response 3 transcription factors, and cyclooxygenase-2. Furthermore, we show that NFAT activation regulates IL-2, IL-10 and IL-12 p70 production by zymosan-stimulated dendritic cells. These data establish NFAT activation in myeloid cells as a novel mechanism of regulation of the innate antimicrobial response.
Collapse
Affiliation(s)
- Helen S Goodridge
- Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
48
|
Ueyama T, Tatsuno T, Kawasaki T, Tsujibe S, Shirai Y, Sumimoto H, Leto TL, Saito N. A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox. Mol Biol Cell 2007; 18:441-54. [PMID: 17122360 PMCID: PMC1783789 DOI: 10.1091/mbc.e06-08-0731] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 11/11/2022] Open
Abstract
In the phagocytic cell, NADPH oxidase (Nox2) system, cytoplasmic regulators (p47(phox), p67(phox), p40(phox), and Rac) translocate and associate with the membrane-spanning flavocytochrome b(558), leading to activation of superoxide production. We examined membrane targeting of phox proteins and explored conformational changes in p40(phox) that regulate its translocation to membranes upon stimulation. GFP-p40(phox) translocates to early endosomes, whereas GFP-p47(phox) translocates to the plasma membrane in response to arachidonic acid. In contrast, GFP-p67(phox) does not translocate to membranes when expressed alone, but it is dependent on p40(phox) and p47(phox) for its translocation to early endosomes or the plasma membrane, respectively. Translocation of GFP-p40(phox) or GFP-p47(phox) to their respective membrane-targeting sites is abolished by mutations in their phox (PX) domains that disrupt their interactions with their cognate phospholipid ligands. Furthermore, GFP-p67(phox) translocation to either membrane is abolished by mutations that disrupt its interaction with p40(phox) or p47(phox). Finally, we detected a head-to-tail (PX-Phox and Bem1 [PB1] domain) intramolecular interaction within p40(phox) in its resting state by deletion mutagenesis, cell localization, and binding experiments, suggesting that its PX domain is inaccessible to interact with phosphatidylinositol 3-phosphate without cell stimulation. Thus, both p40(phox) and p47(phox) function as diverse p67(phox) "carrier proteins" regulated by the unmasking of membrane-targeting domains in distinct mechanisms.
Collapse
Affiliation(s)
- Takehiko Ueyama
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Toshihiko Tatsuno
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takumi Kawasaki
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Satoshi Tsujibe
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yasuhito Shirai
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Thomas L. Leto
- Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Naoaki Saito
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
49
|
Liu M, Du P, Heinrich G, Cox GM, Gelli A. Cch1 mediates calcium entry in Cryptococcus neoformans and is essential in low-calcium environments. EUKARYOTIC CELL 2006; 5:1788-96. [PMID: 16950930 PMCID: PMC1595334 DOI: 10.1128/ec.00158-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 08/21/2006] [Indexed: 11/20/2022]
Abstract
The ability of Cryptococcus neoformans to grow at the mammalian body temperature (37 degrees C to 39 degrees C) is a well-established virulence factor. Growth of C. neoformans at this physiological temperature requires calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase. When cytosolic calcium concentrations are low ( approximately 50 to 100 nM), calcineurin is inactive and becomes active only when cytosolic calcium concentrations rise ( approximately 1 to 10 microM) through the activation of calcium channels. In this study we analyzed the function of Cch1 in C. neoformans and found that Cch1 is a Ca(2+)-permeable channel that mediates calcium entry in C. neoformans. Analysis of the Cch1 protein sequence revealed differences in the voltage sensor (S4 regions), suggesting that Cch1 may have diminished voltage sensitivity or possibly an alternative gating mechanism. The inability of the cch1 mutant to grow under conditions of limited extracellular calcium concentrations ([Ca(2+)](extracellular), approximately 100 nM) suggested that Cch1 was required for calcium uptake in low-calcium environments. These results are consistent with the role of ScCch1 in mediating high-affinity calcium uptake in Saccharomyces cerevisiae. Although the growth defect of the cch1 mutant under conditions of limited [Ca(2+)](extracellular) ( approximately 100 nM) became more severe with increasing temperature (25 degrees C to 38.5 degrees ), this temperature sensitivity was not observed when the cch1 mutant was grown on rich medium ([Ca(2+)](extracellular), approximately 0.140 mM). Accordingly, the cch1 mutant strain displayed only attenuated virulence when tested in the mouse inhalation model of cryptococcosis, further suggesting that C. neoformans may have a limited requirement for Cch1 and that this requirement appears to include ion stress tolerance.
Collapse
Affiliation(s)
- Min Liu
- Department of Medical Pharmacology and Toxicology, University of California, Davis, Genome and Biomedical Sciences Facility, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
50
|
Levy R. The role of cytosolic phospholipase A2-alfa in regulation of phagocytic functions. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1323-34. [PMID: 17046321 DOI: 10.1016/j.bbalip.2006.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 08/14/2006] [Accepted: 09/06/2006] [Indexed: 11/16/2022]
Abstract
Phospholipase A2(s) (PLA2(s)) are a family of enzymes that is present in a variety of mammalian and nonmammalian sources. Phagocytic cells contain cytosolic PLA2 (cPLA2) as well as several types of secreted PLA2, all of which have the potential to produce proinflammatory lipid mediators. The role of the predominant form of cPLA2 present in neutrophils is cPLA2alpha was studied by many groups. By modulating its expression in a variety of phagocytes it was found that it plays a major role in formation of eicosanoids. In addition, it was reported that cPLA2alpha also regulates the NADPH oxidase activation. The specificity of its effect on the NADPH oxidase is evident by results demonstrating that the differentiation process as well as other phagocytic functions are normal in cPLA2alpha-deficient PLB cell model. The novel dual subcellular localization of cPLA2alpha in different compartments, in the plasma membranes and in the nucleus, provides a molecular mechanism for the participation of cPLA2alpha in different processes (stimulation of NADPH oxidase and formation of eicosanoids) in the same cells.
Collapse
Affiliation(s)
- Rachel Levy
- Infectious Diseases Laboratory, Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka Medical Center, Beer Sheva 84105, Israel.
| |
Collapse
|