1
|
Raza I, Sohail A, Muneer H, Fayyaz H, Uddin Z, Almars AI, Aggad WS, Almohaimeed HM, Ullah I. Viscosol Treatment Ameliorates Insulin-Mediated Regulation of Dyslipidemia, Hepatic Steatosis, and Lipid Metabolism by Targeting PTP1B in Type-2 Diabetic Mice Model. Int J Endocrinol 2024; 2024:3914332. [PMID: 39759127 PMCID: PMC11698613 DOI: 10.1155/ije/3914332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM. Numerous studies claimed the anti-inflammatory, hypoglycemic, hepatoprotective, and hypolipidemic activities of Dodonaea viscosa. Previously, we generated the high-fat diet (HFD)-low dose streptozotocin (STZ)-induced diabetic male mice model and treated it with a PTP1B inhibitor (5, 7-dihydroxy-3, 6-dimethoxy-2- (4-methoxy-3- (3-methyl-2-enyl) phenyl)-4H-chromen-4-one), isolated from Dodonaea viscosa. In the current study, we aimed to investigate the De novo lipogenesis, adipocyte differentiation, augmentation of lipoproteins clearance, fatty acid uptake, antilipolysis activity, and hepatic steatosis of PTP1B inhibition in adipose and liver tissues of the HFD-STZ-induced diabetic mice model. We found the retrieval of normal morphology of adipocytes and hepatocytes in the compound-treated group. The biochemical parameters showed the gradual reduction of LDL, VLDL, TC, and TG in the serum of the compound-treated group. To further test our hypothesis, real-time PCR was performed, and data revealed the reduction of PTP1B and other inflammatory markers in both tissues, showing enhanced expression of insulin signaling markers (INSR, IRS1, IRS2, and PI3K). Our compound upregulated the adipogenic (PPARγ), lipogenic (SREBP1c, FAS, ACC, and DGAT2), lipoprotein clearance (LPL, LDLR, and VLDLR), fatty acid uptake (CD36 and FATP1), and lipid droplet forming (FSP27 and perilipin-1) markers expressions in adipocytes and downregulated in hepatocytes. Furthermore, we found elevated cholesterol efflux (in adipose and liver) and decreased lipolysis in adipocytes and elevated in hepatocytes. Hence, we can conclude that our compound protects the adipocytes from abrupt lipolysis and stimulates adipocyte differentiation. In addition, it plays a hepatic protective role by shifting clearance and uptake of lipoproteins and fatty acids to the peripheral tissues and retrieving the fatty liver condition.
Collapse
Affiliation(s)
- Idrees Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Aamir Sohail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hamza Muneer
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hajra Fayyaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waheeb S. Aggad
- Division of Anatomy, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah 23234, Saudi Arabia
| | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
2
|
Sun Y, Dinenno FA, Tang P, Kontaridis MI. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: from mechanisms to therapeutics. Front Cardiovasc Med 2024; 11:1445739. [PMID: 39238503 PMCID: PMC11374623 DOI: 10.3389/fcvm.2024.1445739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator of metabolic and cardiovascular disease. It is a non-transmembrane protein tyrosine phosphatase that negatively regulates multiple signaling pathways integral to the regulation of growth, survival, and differentiation of cells, including leptin and insulin signaling, which are critical for development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given PTP1B's central role in glucose homeostasis, energy balance, and vascular function, targeted inhibition of PTP1B represents a promising strategy for treating these diseases. However, challenges, such as off-target effects, necessitate a focus on tissue-specific approaches, to maximize therapeutic benefits while minimizing adverse outcomes. In this review, we discuss molecular mechanisms by which PTP1B influences metabolic and cardiovascular functions, summarize the latest research on tissue-specific roles of PTP1B, and discuss the potential for PTP1B inhibitors as future therapeutic agents.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Frank A Dinenno
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Peiyang Tang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Saedi H, Waro G, Giacchetta L, Tsunoda S. miR-137 regulates PTP61F, affecting insulin signaling, metabolic homeostasis, and starvation resistance in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2319475121. [PMID: 38252824 PMCID: PMC10835047 DOI: 10.1073/pnas.2319475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
miR-137 is a highly conserved brain-enriched microRNA (miRNA) that has been associated with neuronal function and proliferation. Here, we show that Drosophila miR-137 null mutants display increased body weight with enhanced triglyceride content and decreased locomotor activity. In addition, when challenged by nutrient deprivation, miR-137 mutants exhibit reduced motivation to feed and prolonged survival. We show through genetic epistasis and rescue experiments that this starvation resistance is due to a disruption in insulin signaling. Our studies further show that miR-137 null mutants exhibit a drastic reduction in levels of the phosphorylated/activated insulin receptor, InR (InR-P). We investigated if this is due to the predicted miR-137 target, Protein Tyrosine Phosphatase 61F (PTP61F), ortholog of mammalian TC-PTP/PTP1B, which are known to dephosphorylate InR-P. Indeed, levels of an endogenously tagged GFP-PTP61F are significantly elevated in miR-137 null mutants, and we show that overexpression of PTP61F alone is sufficient to mimic many of the metabolic phenotypes of miR-137 mutants. Finally, we knocked-down elevated levels of PTP61F in the miR-137 null mutant background and show that this rescues levels of InR-P, restores normal body weight and triglyceride content, starvation sensitivity, as well as attenuates locomotor and starvation-induced feeding defects. Our study supports a model in which miR-137 is critical for dampening levels of PTP61F, thereby maintaining normal insulin signaling and energy homeostasis.
Collapse
Affiliation(s)
- Hana Saedi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Lea Giacchetta
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
4
|
Zhao TT, Hu HJ, Gao LX, Zhou YB, Zhu YL, Zhang C, Li J, Wang WL. Exploring the mechanism of the PTP1B inhibitors by molecular dynamics and experimental study. J Mol Graph Model 2023; 125:108585. [PMID: 37544021 DOI: 10.1016/j.jmgm.2023.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has proven to be an attractive target for the treatment of cancer, diabetes and other diseases. Although many PTP1B inhibitors with various scaffolds have been developed, there is still a lack of PTP1B inhibitor with high specificity and acceptable pharmacological properties. Therefore, it is urgent to develop more methods to explore complex action mode of PTP1B and ligands for designing ideal PTP1B modulators. In this work, we developed a potential molecular dynamics (MD) analytic mode to analyze the mechanism of active compounds 6a and 6e against PTP1B from different perspectives, including the stable ability, interactions and binding site of ligand and protein, the binding energy, relative movement between residues and changes in protein internal interactions. The simulated results demonstrated that compound 6a bound more stably to the active pocket of PTP1B than 6e due to its smaller molecular volume (326 Å3), matched electronegativity, and enhanced the positive correlation motion of residues, especially for WPD loop and P loop. Lastly, compound 6a as a competitive inhibitor for PTP1B was verified by enzyme kinetic assay. This work successfully studied the mechanism of compound 6a against PTP1B from various aspects, enriched the analysis of interaction mode between PTP1B and inhibitors. In summary, we hope that this work could provide more theoretical information for designing and developing more novel and ideal PTP1B inhibitors in the future.
Collapse
Affiliation(s)
- Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Hao-Jie Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China.
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
5
|
Oliver H, Ruta D, Thompson D, Kamli-Salino S, Philip S, Wilson HM, Mody N, Delibegovic M. Myeloid PTP1B deficiency protects against atherosclerosis by improving cholesterol homeostasis through an AMPK-dependent mechanism. J Transl Med 2023; 21:715. [PMID: 37828508 PMCID: PMC10568790 DOI: 10.1186/s12967-023-04598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory process induced by the influx and entrapment of excess lipoproteins into the intima media of arteries. Previously, our lab demonstrated that systemic PTP1B inhibition protects against atherosclerosis in preclinical LDLR-/- models. Similarly, it was shown that myeloid-specific PTP1B ablation decreases plaque formation and ameliorates dyslipidaemia in the ApoE-/- model of atherosclerosis. We hypothesized that the relevant improvements in dyslipidaemia following modification of PTP1B activation may either result from changes in hepatic cholesterol biosynthesis and/or increased uptake and degradation by liver-resident macrophages. We examined this in animal models and patients with coronary artery disease. METHODS In this study, we determined the cholesterol-lowering effect of myeloid-PTP1B deletion in mice fed a high-fat high-cholesterol diet and examined effects on total cholesterol levels and lipoprotein profiles. We also determined the effects of PTP1B inhibition to oxLDL-C challenge on foam cell formation and cholesterol efflux in human monocytes/macrophages. RESULTS We present evidence that myeloid-PTP1B deficiency significantly increases the affinity of Kupffer cells for ApoB containing lipoproteins, in an IL10-dependent manner. We also demonstrate that PTP1B inhibitor, MSI-1436, treatment decreased foam cell formation in Thp1-derived macrophages and increased macrophage cholesterol efflux to HDL in an AMPK-dependent manner. We present evidence of three novel and distinct mechanisms regulated by PTP1B: an increase in cholesterol efflux from foam cells, decreased uptake of lipoproteins into intra-lesion macrophages in vitro and a decrease of circulating LDL-C and VLDL-C in vivo. CONCLUSIONS Overall, these results suggest that myeloid-PTP1B inhibition has atheroprotective effects through improved cholesterol handling in atherosclerotic lesions, as well as increased reverse cholesterol transport. Trial registration Research registry, researchregistry 3235. Registered 07 November 2017, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/5a01d0fce7e1904e93e0aac5/ .
Collapse
Affiliation(s)
- Helk Oliver
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Dekeryte Ruta
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Dawn Thompson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sarah Kamli-Salino
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sam Philip
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Grampian Diabetes Research Unit, JJR Macleod Centre, NHS Grampian, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Heather M Wilson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Nimesh Mody
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
6
|
Zhao JF, Li LH, Guo XJ, Zhang HX, Tang LL, Ding CH, Liu WS. Identification of natural product inhibitors of PTP1B based on high-throughput virtual screening strategy: In silico, in vitro and in vivo studies. Int J Biol Macromol 2023:125292. [PMID: 37302637 DOI: 10.1016/j.ijbiomac.2023.125292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathway, which is a potential therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). In this study, we identified several PTP1B inhibitors with high activity by using high-throughput virtual screening and in vitro enzyme inhibition activity verification strategies. Among them, baicalin was first reported as a selective mixed inhibitor of PTP1B, with IC50 value of 3.87 ± 0.45 μM, and its inhibitory activity against homologous proteins TCPTP, SHP2, and SHP1 exceeded 50 μM. Molecular docking study found that baicalin and PTP1B could bind stably, and revealed that baicalin had a dual inhibitory effect. Cell experiments showed that baicalin was almost non-toxic and could significantly enhance the phosphorylation of IRS-1 in C2C12 myotube cells. Animal experiments showed that baicalin could significantly reduce the blood sugar of STZ-induced diabetic mice models, and had a liver protective effect. In conclusion, this study can provide new ideas for the development of PTP1B selective inhibitors.
Collapse
Affiliation(s)
- Ji-Feng Zhao
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Li-Hua Li
- Eye Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Xiao-Jing Guo
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Hai-Xia Zhang
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Lin-Lin Tang
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China
| | - Chuan-Hua Ding
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China.
| | - Wen-Shan Liu
- Shandong Key Laboratory of Medicine and Health (Clinical Applied Pharmacology), Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong Province, China.
| |
Collapse
|
7
|
The Antidiabetic Activities of Neocryptotanshinone: Screened by Molecular Docking and Related to the Modulation of PTP1B. Nutrients 2022; 14:nu14153031. [PMID: 35893885 PMCID: PMC9330310 DOI: 10.3390/nu14153031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to provide a practical experimental basis for the development of Neocryptotanshinone (NCTS) as an effective hypoglycemic drug and a theoretical method for the rapid screening of natural compounds with hypoglycemic effects. Molecular docking was used to screen the most suitable ligand. Hematoxylin and eosin, immunohistochemical staining, enzyme-linked immunosorbent assay and Western Blotting approved the hypoglycemic effect of NCTS. According to the free energy of binding, among 180 active compounds from the Traditional Chinese Medicine Integrated Database, NCTS was finally chose for investigation its hypoglycemic effects. In db/db mice, NCTS significantly reduced body weight and plasma glucose, improved glucose tolerance and levels of fasting plasma glucose and glycated hemoglobin A1c, and decreased insulin resistance after six-week administration. NCTS restored the pathological state in the liver of db/db mice and significantly decreased protein tyrosine phosphatase 1B (PTP1B) expression in the liver and muscle of db/db mice, which is related to the regulatory effect of NCTS on insulin receptor substrate 1. In conclusion, we successfully explored the hypoglycemic effect of NCTS in db/db mice via regulating the expression of PTP1B.
Collapse
|
8
|
Tunnisa F, Nur Faridah D, Afriyanti A, Rosalina D, Ana Syabana M, Darmawan N, Dewi Yuliana N. Antioxidant and antidiabetic compounds identification in several Indonesian underutilized Zingiberaceae spices using SPME-GC/MS-based volatilomics and in silico methods. Food Chem X 2022; 14:100285. [PMID: 35342880 PMCID: PMC8943257 DOI: 10.1016/j.fochx.2022.100285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Volatile compounds linked with antidiabetic and antioxidant activity of 12 Zingiberaceae spices were identified using SPME-GC/MS and multivariate data analysis. Eucalyptol strongly correlated with α-glucosidase inhibitor and DPPH antioxidant activity. o-Cymene and terpinen-4-ol strongly correlated with FRAP and CUPRAC antioxidant activity. In silico study supported the results of the in-vitro experiment.
This study aimed to identify compounds in 12 minor Zingiberaceae spices grown in Indonesia linked with in vitro α-glucosidase inhibitor and antioxidant (DPPH, FRAP, CUPRAC) activities using SPME-GC/MS volatilomics. The results illustrated that Zingiber aromaticum Val., Alpinia malaccensis (Burm.f.) Roscoe, Amomum compactum Sol. ex Maton, and Zingiber purpureum Roscoe had the highest α-glucosidase inhibitor and DPPH, FRAP, CUPRAC antioxidant activities, respectively. Also, the total phenolic content positively influenced DPPH, FRAP, and CUPRAC antioxidant activities. The strongest positive correlation with α-glucosidase inhibitor and DPPH antioxidant activities was found in eucalyptol; whereas o-cymene and terpinen-4-ol had the strongest correlations with FRAP and CUPRAC antioxidants, respectively. Furthermore, the molecular docking analysis revealed that all compounds with a strong correlation with α-glucosidase inhibitor activity (based on their OPLS VIP score) had binding energies (−5.06 – −6.26 kcal/mol) close to Acarbose (−10.11 kcal/mol). Thus, this study provided vital information on the volatile compounds in underutilized spices associated with their health beneficial properties.
Collapse
Key Words
- AC, Amomum compactum Sol. ex Maton
- AGI, α-glucosidase inhibitor
- AM, Alpinia malaccensis (Burm.f.) Roscoe
- Antioxidant
- BR, Boesenbergia rotunda L. Mansf.
- CA, Curcuma aeruginosa Roxb
- CH, Curcuma heyneana Val. & Zijp
- CP, Curcuma purpurascens Blume
- CT, Curcuma petiolata Roxb
- CUPRAC, Cupric ion reducing antioxidant capacity
- CZ, Curcuma zedoria Roscoe
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- FRAP, Ferric reducing antioxidant property
- GC/MS, Gas chromatography/mass spectrometry
- Metabolomics
- OPLS, Orthogonal projection to the least square
- PCA, Principal component analysis
- SPME, Solid phase micro extraction
- SPME-GC/MS
- TFC, Total flavonoid content
- TPC, Total phenolic content
- Volatiles
- ZA, Zingiber aromaticum Val.
- ZC, Zingiber purpureum Roscoe
- ZO, Zingiber ottensii Val.
- ZZ, Zingiber zerumpet L. Roscoe ex Sm.
- α-Glucosidase inhibitor
Collapse
Affiliation(s)
- Fitra Tunnisa
- Department of Food Science and Technology, IPB University, Bogor, Indonesia
| | - Didah Nur Faridah
- Department of Food Science and Technology, IPB University, Bogor, Indonesia
| | - Ani Afriyanti
- Department of Food Science and Technology, IPB University, Bogor, Indonesia
| | - Dian Rosalina
- Department of Food Science and Technology, IPB University, Bogor, Indonesia
| | - Mohamad Ana Syabana
- Department of Food Technology and Center of Excellence for Local Food Innovation, Sultan Ageng Tirtayasa University, Serang, Indonesia
| | - Noviyan Darmawan
- Halal Science Center, IPB University, Bogor, Indonesia
- Department of Chemistry, IPB University, Bogor, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
- Halal Science Center, IPB University, Bogor, Indonesia
- Corresponding author at: Department of Food Science and Technology, IPB University, Bogor, Indonesia.
| |
Collapse
|
9
|
Liu R, Mathieu C, Berthelet J, Zhang W, Dupret JM, Rodrigues Lima F. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Int J Mol Sci 2022; 23:ijms23137027. [PMID: 35806030 PMCID: PMC9266911 DOI: 10.3390/ijms23137027] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation is an essential process in biological events and is considered critical for biological functions. In tissues, protein phosphorylation mainly occurs on tyrosine (Tyr), serine (Ser) and threonine (Thr) residues. The balance between phosphorylation and dephosphorylation is under the control of two super enzyme families, protein kinases (PKs) and protein phosphatases (PPs), respectively. Although there are many selective and effective drugs targeting phosphokinases, developing drugs targeting phosphatases is challenging. PTP1B, one of the most central protein tyrosine phosphatases (PTPs), is a key player in several human diseases and disorders, such as diabetes, obesity, and hematopoietic malignancies, through modulation of different signaling pathways. However, due to high conservation among PTPs, most PTP1B inhibitors lack specificity, raising the need to develop new strategies targeting this enzyme. In this mini-review, we summarize three classes of PTP1B inhibitors with different mechanisms: (1) targeting multiple aryl-phosphorylation sites including the catalytic site of PTP1B; (2) targeting allosteric sites of PTP1B; (3) targeting specific mRNA sequence of PTP1B. All three types of PTP1B inhibitors present good specificity over other PTPs and are promising for the development of efficient small molecules targeting this enzyme.
Collapse
Affiliation(s)
- Rongxing Liu
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
| | | | - Jérémy Berthelet
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Centre Epigénétique et Destin Cellulaire, Université Paris Cité, CNRS, F-75013 Paris, France
| | - Wenchao Zhang
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jean-Marie Dupret
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
| | - Fernando Rodrigues Lima
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Correspondence:
| |
Collapse
|
10
|
Cremonini E, Daveri E, Iglesias DE, Kang J, Wang Z, Gray R, Mastaloudis A, Kay CD, Hester SN, Wood SM, Fraga CG, Oteiza PI. A randomized placebo-controlled cross-over study on the effects of anthocyanins on inflammatory and metabolic responses to a high-fat meal in healthy subjects. Redox Biol 2022; 51:102273. [PMID: 35255426 PMCID: PMC8902616 DOI: 10.1016/j.redox.2022.102273] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of supplementation with a cyanidin- and delphinidin-rich extract (CDRE) on the postprandial dysmetabolism, inflammation, and redox and insulin signaling, triggered by the consumption of a high fat meal (HFM) in healthy individuals. Participants (n = 25) consumed a 1026-kcal HFM simultaneously with either the CDRE providing 320.4 mg of anthocyanins (90% cyanidin and delphinidin) or placebo. Diets were randomly assigned in a double blind, placebo-controlled crossover design. Blood was collected prior to (fasted, time 0), and for 5 h after meal consumption; plasma, serum, and peripheral blood mononuclear cells (PBMC) were isolated. AC metabolites were detected in serum as early as 30 min after CDRE consumption. The CDRE mitigated HFM-induced endotoxemia, reducing increases in plasma LPS and LPS-binding protein. The CDRE also reduced other events associated with HFM-triggered postprandial dysmetabolism including: i) plasma glucose and triglyceride increases; ii) TNFα and NOX4 upregulation in PBMC; and iii) JNK1/2 activation in PBMC. The CDRE did not significantly affect HFM-mediated increases in plasma insulin, GLP-1, GLP-2, GIP, and LDL- and HDL-cholesterol, and IKK phosphorylation in PBMC. In summary, dietary AC, i.e. cyanidin and delphinidin, exerted beneficial actions against unhealthy diets by modulating the associated postprandial dysmetabolism, endotoxemia, alterations of glycemia and lipidemia, and redox and insulin signaling.
Collapse
|
11
|
Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues. Int J Mol Sci 2022; 23:ijms23031075. [PMID: 35162998 PMCID: PMC8834734 DOI: 10.3390/ijms23031075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
- Correspondence:
| | - Gulnara Giniyatullina
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Denis Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technicka’ 5, Prague 6, 16628 Prague, Czech Republic;
| |
Collapse
|
12
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Natural α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitors: A Source of Scaffold Molecules for Synthesis of New Multitarget Antidiabetic Drugs. Molecules 2021; 26:molecules26164818. [PMID: 34443409 PMCID: PMC8400511 DOI: 10.3390/molecules26164818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) represents a group of metabolic disorders that leads to acute and long-term serious complications and is considered a worldwide sanitary emergence. Type 2 diabetes (T2D) represents about 90% of all cases of diabetes, and even if several drugs are actually available for its treatment, in the long term, they show limited effectiveness. Most traditional drugs are designed to act on a specific biological target, but the complexity of the current pathologies has demonstrated that molecules hitting more than one target may be safer and more effective. The purpose of this review is to shed light on the natural compounds known as α-glucosidase and Protein Tyrosine Phosphatase 1B (PTP1B) dual-inhibitors that could be used as lead compounds to generate new multitarget antidiabetic drugs for treatment of T2D.
Collapse
|
14
|
Saeting O, Chandarajoti K, Phongphisutthinan A, Hongsprabhas P, Sae-tan S. Water Extract of Mungbean ( Vigna radiata L.) Inhibits Protein Tyrosine Phosphatase-1B in Insulin-Resistant HepG2 Cells. Molecules 2021; 26:molecules26051452. [PMID: 33800074 PMCID: PMC7962124 DOI: 10.3390/molecules26051452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the effects of mungbean water extract (MWE) on insulin downstream signaling in insulin-resistant HepG2 cells. Whole seed mungbean was extracted using boiling water, mimicking a traditional cooking method. Vitexin and isovitexin were identified in MWE. The results showed that MWE inhibited protein tyrosine phosphatase (PTP)-1B (IC50 = 10 μg/mL), a negative regulator of insulin signaling. MWE enhanced cellular glucose uptake and altered expression of genes involved in glucose metabolism, including forkhead box O1 (FOXO1), phosphoenolpyruvate carboxykinase (PEPCK), and glycogen synthase kinase (GSK)-3β in the insulin-resistant HepG2 cells. In addition, MWE inhibited both α-amylase (IC50 = 36.65 mg/mL) and α-glucosidase (IC50 = 3.07 mg/mL). MWE also inhibited the formation of advanced glycation end products (AGEs) (IC50 = 2.28 mg/mL). This is the first study to show that mungbean water extract increased cellular glucose uptake and improved insulin sensitivity of insulin-resistant HepG2 cells through PTP-1B inhibition and modulating the expression of genes related to glucose metabolism. This suggests that mungbean water extract has the potential to be a functional ingredient for diabetes.
Collapse
Affiliation(s)
- Orathai Saeting
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (O.S.); (P.H.)
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand;
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Angsuma Phongphisutthinan
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Rangsit Center, Pathumthani 12121, Thailand;
| | - Parichat Hongsprabhas
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (O.S.); (P.H.)
| | - Sudathip Sae-tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (O.S.); (P.H.)
- Correspondence: ; Tel.: +66-2562-5037
| |
Collapse
|
15
|
Proença C, Ribeiro D, Freitas M, Carvalho F, Fernandes E. A comprehensive review on the antidiabetic activity of flavonoids targeting PTP1B and DPP-4: a structure-activity relationship analysis. Crit Rev Food Sci Nutr 2021; 62:4095-4151. [PMID: 33554619 DOI: 10.1080/10408398.2021.1872483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Type 2 diabetes (T2D) is an expanding global health problem, resulting from defects in insulin secretion and/or insulin resistance. In the past few years, both protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl peptidase-4 (DPP-4), as well as their role in T2D, have attracted the attention of the scientific community. PTP1B plays an important role in insulin resistance and is currently one of the most promising targets for the treatment of T2D, since no available PTP1B inhibitors were still approved. DPP-4 inhibitors are among the most recent agents used in the treatment of T2D (although its use has been associated with possible cardiovascular adverse events). The antidiabetic properties of flavonoids are well-recognized, and include inhibitory effects on the above enzymes, although hitherto not therapeutically explored. In the present study, a comprehensive review of the literature of both synthetic and natural isolated flavonoids as inhibitors of PTP1B and DPP-4 activities is made, including their type of inhibition and experimental conditions, and structure-activity relationship, covering a total of 351 compounds. We intend to provide the most favorable chemical features of flavonoids for the inhibition of PTP1B and DPP-4, gathering information for the future development of compounds with improved potential as T2D therapeutic agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Puckett D, Alquraishi M, Alani DS, Chahed S, Frankel VD, Donohoe D, Voy B, Whelan J, Bettaieb A. Zyflamend, a unique herbal blend, induces cell death and inhibits adipogenesis through the coordinated regulation of PKA and JNK. Adipocyte 2020; 9:454-471. [PMID: 32779962 PMCID: PMC7469463 DOI: 10.1080/21623945.2020.1803642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The prevalence of obesity and its comorbidities has sparked a worldwide concern to address rates of adipose tissue accrual. Recent studies have demonstrated a novel role of Zyflamend, a blend of natural herbal extracts, in regulating lipid metabolism in several cancer cell lines through the activation of the AMPK signalling pathway. Yet, the role of Zyflamend in adipogenic differentiation and lipid metabolism remains largely unexplored. The objective of this study is to investigate the effects of Zyflamend on white 3T3-MBX pre-adipocyte differentiation and elucidate the molecular mechanisms. We demonstrate that Zyflamend treatment altered cell cycle progression, attenuated proliferation, and increased cell death of 3T3-MBX pre-adipocytes. In addition, treatment with Zyflamend inhibited lipid accumulation during the differentiation of 3T3-MBX cells, consistent with decreased expression of lipogenic genes and increased lipolysis. Mechanistically, Zyflamend-induced alterations in adipogenesis were mediated, at least in part, through the activation of AMPK, PKA, and JNK. Inhibition of AMPK partially reversed Zyflamend-induced inhibition of differentiation, whereas the inhibition of either JNK or PKA fully restored adipocyte differentiation and decreased lipolysis. Taken together, the present study demonstrates that Zyflamend, as a novel anti-adipogenic bioactive mix, inhibits adipocyte differentiation through the activation of the PKA and JNK pathways. Abbreviation: 7-AAD: 7-amino-actinomycin D; ACC: acetyl-CoA carboxylase; AKT: protein kinase B; AMPK: AMP-activated protein kinase; ATGL: adipose triglyceride lipase; C/EBPα: CCAAT-enhancer binding protein alpha; DMEM: Dulbecco’s Modified Eagle Medium; DMSO: dimethyl sulphoxide; DTT: dithiothreitol; EGTA: ethylene glycol-bis-(2-aminoethyl)-N,N,N’,N’-tetraacetic acid; ERK: extracellular signal–regulated kinases; FASN: fatty acid synthase; FBS: foetal bovine serum; GLUT: glucose transporter; HSL: hormone-sensitive lipase; IR: insulin receptor; IRS: insulin receptor substrate; JNK: c-JUN N-terminal kinase; MGL: monoacylglycerol lipase; NaF: sodium fluoride; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; PBS: phosphate buffered- saline; PCB: pyruvate carboxylase; PDE: phosphodiesterase; PKA: protein kinase cAMP-dependent; PMSF: phenylmethylsulfonyl fluoride; PPARγ: perilipin peroxisome proliferator-activated receptor gamma; PREF-1: pre-adipocyte factor 1; PVDF: polyvinylidene fluoride; RIPA: radio-immunoprecipitation assay; SDS-PAGE: sodium dodecyl sulphate polyacrylamide gel electrophoresis; SEM: standard error of the mean; SOX9: suppressor of cytokine signalling 9; TGs: triacylglycerols.
Collapse
Affiliation(s)
- Dexter Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Dina S. Alani
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Samah Chahed
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Victoria D. Frankel
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Dallas Donohoe
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Brynn Voy
- Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, USA
- Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
17
|
Binding properties of marine bromophenols with human protein tyrosine phosphatase 1B: Molecular docking, surface plasmon resonance and cellular insulin resistance study. Int J Biol Macromol 2020; 163:200-208. [PMID: 32619661 DOI: 10.1016/j.ijbiomac.2020.06.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 11/23/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a highly validated target for the treatment of type 2 diabetes and obesity. Previous studies have shown that bromophenols from marine red alga Rhodomela confervoides can inhibit PTP1B activity. However, traditional in vitro enzymatic assays may result in false positive activity. Here, we reported a successful application of molecular docking and surface plasmon resonance (SPR) assay for the characterization of small-molecule PTP1B inhibitors with high affinity. First, molecular docking study indicated that six bromophenol compounds preferred to bind PTP1B with open conformation rather than one with closed conformation. Next, SPR study indicated that compound 3 was the most potent and stable PTP1B inhibitor at the nanomolar level. Then Lineweaver-Burk plot data showed that compound 3 was a competitive PTP1B inhibitor. Moreover, compound 3 could improve palmitate-induced insulin resistance in HepG2 cells. Taken together, molecular docking and SPR-based methodology could apply in the development of PTP1B inhibitors with high affinity.
Collapse
|
18
|
Luo J, Zheng M, Jiang B, Li C, Guo S, Wang L, Li X, Yu R, Shi D. Antidiabetic activity in vitro and in vivo of BDB, a selective inhibitor of protein tyrosine phosphatase 1B, from Rhodomela confervoides. Br J Pharmacol 2020; 177:4464-4480. [PMID: 32663313 DOI: 10.1111/bph.15195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/24/2020] [Accepted: 07/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Protein tyrosine phosphatase (PTP) 1B (PTP1B) plays a critical role in the regulation of obesity, Type 2 diabetes mellitus and other metabolic diseases. However, drug candidates exhibiting PTP1B selectivity and oral bioavailability are currently lacking. Here, the enzyme inhibitory characteristics and pharmacological benefits of 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol (BDB) were investigated in vitro and in vivo. EXPERIMENTAL APPROACH Surface plasmon resonance (SPR) assay was performed to validate the direct binding of BDB to PTP1B, and Lineweaver-Burk analysis of the enzyme kinetics was used to characterise the inhibition by BDB. Both in vitro enzyme-inhibition assays and SPR experiments were also conducted to study the selectivity exhibited by BDB towards four other PTP-family proteins: TC-PTP, SHP-1, SHP-2, and LAR. C2C12 myotubes were used to evaluate cellular permeability to BDB. Effects of BDB on insulin signalling, hypoglycaemia and hypolipidaemia were investigated in diabetic BKS db mice, after oral gavage. The beneficial effects of BDB on pancreatic islets were examined based on insulin and/or glucagon staining. KEY RESULTS BDB acted as a competitive inhibitor of PTP1B and demonstrated high selectivity for PTP1B among the tested PTP-family proteins. Moreover, BDB was cell-permeable and enhanced insulin signalling in C2C12 myotubes. Lastly, oral administration of BDB produced effective antidiabetic effects in spontaneously diabetic mice and markedly improved islet architecture, which was coupled with an increase in the ratio of β-cells to α-cells. CONCLUSION AND IMPLICATIONS BDB application offers a potentially practical pharmacological approach for treating Type 2 diabetes mellitus by selectively inhibiting PTP1B.
Collapse
Affiliation(s)
- Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China.,CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Meiling Zheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Bo Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shuju Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lijun Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Inhibition of Protein-tyrosine Phosphatase PTP1B and LMPTP Promotes Palmitate/Oleate-challenged HepG2 Cell Survival by Reducing Lipoapoptosis, Improving Mitochondrial Dynamics and Mitigating Oxidative and Endoplasmic Reticulum Stress. J Clin Med 2020; 9:jcm9051294. [PMID: 32369900 PMCID: PMC7288314 DOI: 10.3390/jcm9051294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) is considered a well-known pathology that is determined without using alcohol and has emerged as a growing public health problem. Lipotoxicity is known to promote hepatocyte death, which, in the context of NAFLD, is termed lipoapoptosis. The severity of NAFLD correlates with the degree of hepatocyte lipoapoptosis. Protein–tyrosine phosphatases (PTP) including PTP1B and Low molecular weight PTP (LMPTP), are negative regulators of the insulin signaling pathway and are considered a promising therapeutic target in the treatment of diabetes. In this study, we hypothesized that the inhibition of PTP1B and LMPTP may potentially prevent hepatocyte apoptosis, mitochondrial dysfunction and endoplasmic reticulum (ER) stress onset, following lipotoxicity induced using a free fatty acid (FFA) mixture. Methods: HepG2 cells were cultured in the presence or absence of two PTP inhibitors, namely MSI-1436 and Compound 23, prior to palmitate/oleate overloading. Apoptosis, ER stress, oxidative stress, and mitochondrial dynamics were then evaluated by either MUSE or RT-qPCR analysis. Results: The obtained data demonstrate that the inhibition of PTP1B and LMPTP prevents apoptosis induced by palmitate and oleate in the HepG2 cell line. Moreover, mitochondrial dynamics were positively improved following inhibition of the enzyme, with concomitant oxidative stress reduction and ER stress abrogation. Conclusion: In conclusion, PTP’s inhibitory properties may be a promising therapeutic strategy for the treatment of FFA-induced lipotoxicity in the liver and ultimately in the management of the NAFLD condition.
Collapse
|
20
|
The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance. Biomolecules 2019; 9:biom9070286. [PMID: 31319588 PMCID: PMC6680919 DOI: 10.3390/biom9070286] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction is a key feature of cardiovascular disorders associated with obesity and diabetes. Several studies identified protein tyrosine phosphatase (PTP)-1B, a member of the PTP superfamily, as a major negative regulator for insulin receptor signaling and a novel molecular player in endothelial dysfunction and cardiovascular disease. Unlike other anti-diabetic approaches, genetic deletion or pharmacological inhibition of PTP1B was found to improve glucose homeostasis and insulin signaling without causing lipid buildup in the liver, which represents an advantage over existing therapies. Furthermore, PTP1B was reported to contribute to cardiovascular disturbances, at various molecular levels, which places this enzyme as a unique single therapeutic target for both diabetes and cardiovascular disorders. Synthesizing selective small molecule inhibitors for PTP1B is faced with multiple challenges linked to its similarity of sequence with other PTPs; however, overcoming these challenges would pave the way for novel approaches to treat diabetes and its concurrent cardiovascular complications. In this review article, we summarized the major roles of PTP1B in cardiovascular disease with special emphasis on endothelial dysfunction and its interplay with insulin resistance. Furthermore, we discussed some of the major challenges hindering the synthesis of selective inhibitors for PTP1B.
Collapse
|
21
|
Méndez-García LA, Trejo-Millán F, Martínez-Reyes CP, Manjarrez-Reyna AN, Esquivel-Velázquez M, Melendez-Mier G, Islas-Andrade S, Rojas-Bernabé A, Kzhyshkowska J, Escobedo G. Infliximab ameliorates tumor necrosis factor-alpha-induced insulin resistance by attenuating PTP1B activation in 3T3L1 adipocytes in vitro. Scand J Immunol 2018; 88:e12716. [PMID: 30260514 DOI: 10.1111/sji.12716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 02/06/2023]
Abstract
Insulin resistance is the inability to respond to insulin and is considered a key pathophysiological factor in the development of type 2 diabetes. Tumor necrosis factor-alpha (TNF-alpha) can directly contribute to insulin resistance by disrupting the insulin signalling pathway via protein-tyrosine phosphatase 1B (PTP1B) activation, especially in adipocytes. Infliximab (Remicade® ) is a TNF-alpha-neutralizing antibody that has not been fully studied in insulin resistance. We investigated the effect of infliximab on TNF-alpha-induced insulin resistance in 3T3L1 adipocytes in vitro, and examined the possible molecular mechanisms involved. Once differentiated, adipocytes were cultured with 5 mmol L-1 2-deoxy-D-glucose-3 H and stimulated twice with 2 μmol L-1 insulin, in the presence or absence of 5 ng/mL TNF-alpha and/or 10 ng/mL infliximab. Glucose uptake was measured every 20 minutes for 2 hour, and phosphorylated forms of insulin receptor (IR), insulin receptor substrate-2 (IRS-2), protein kinase B (AKT) and PTP1B were determined by Western blotting. TNF-alpha-treated adipocytes showed a significant 64% decrease in insulin-stimulated glucose uptake as compared with control cells, whereas infliximab reversed TNF-alpha actions by significantly improving glucose incorporation. Although IR phosphorylation remained unaltered, TNF-alpha was able to increase PTP1B activation and decrease phosphorylation of IRS-2 and AKT. Notably, infliximab restored phosphorylation of IRS-2 and AKT by attenuating PTP1B activation. This work demonstrates for the first time that infliximab ameliorates TNF-alpha-induced insulin resistance in 3T3L1 adipocytes in vitro by restoring the insulin signalling pathway via PTP1B inhibition. Further clinical research is needed to determine the potential benefit of using infliximab for treating insulin resistance in patients.
Collapse
Affiliation(s)
- Lucia A Méndez-García
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Fernanda Trejo-Millán
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Camilo P Martínez-Reyes
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Aarón N Manjarrez-Reyna
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Marcela Esquivel-Velázquez
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Guillermo Melendez-Mier
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Sergio Islas-Andrade
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Araceli Rojas-Bernabé
- Research Unit for Experimental Medicine, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Galileo Escobedo
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
22
|
Daveri E, Cremonini E, Mastaloudis A, Hester SN, Wood SM, Waterhouse AL, Anderson M, Fraga CG, Oteiza PI. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol 2018; 18:16-24. [PMID: 29890336 PMCID: PMC6035912 DOI: 10.1016/j.redox.2018.05.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
Consumption of diets high in fat and/or fructose content promotes tissue inflammation, oxidative stress, and insulin resistance, activating signals (e.g. NF-κB/JNK) that downregulate the insulin cascade. Current evidence supports the concept that select flavonoids can mitigate obesity and type 2 diabetes (T2D). This work investigated if supplementation with the anthocyanidins (AC) cyanidin and delphinidin could attenuate the adverse consequences of consuming a high fat diet (HFD) in mice. Consumption of an AC-rich blend mitigated HFD-induced obesity, dyslipidemia and insulin resistance (impaired responses to insulin and glucose). HFD-fed mice were characterized by increased liver lipid deposition and inflammation, which were also attenuated upon AC supplementation. HFD caused liver oxidative stress showing an increased expression of NADPH oxidases, generators of superoxide and H2O2, and high levels of oxidized lipid-protein adducts. This was associated with the activation of the redox sensitive signals IKK/NF-κB and JNK1/2, and increased expression of the NF-κB-regulated PTP1B phosphatase, all known inhibitors of the insulin pathway. In agreement with an improved insulin sensitivity, AC supplementation inhibited oxidative stress, NF-κB and JNK activation, and PTP1B overexpression. Thus, cyanidin and delphinidin consumption either through diet or by supplementation could be a positive strategy to control the adverse effects of Western style diets, including overweight, obesity, and T2D. Modulation of inflammation, oxidative stress, and NF-κB/JNK activation emerge as relevant targets of AC beneficial actions.
Collapse
Key Words
- ac, anthocyanidins
- gip, gastric inhibitory polypeptide
- glp-1, glucagon-like peptide-1
- gtt, glucose tolerance test
- hfd, high fat diet
- 4-hne, 4-hydroxynonenal
- ikk, iκb kinase
- irs1, insulin receptor substrate-1
- itt, insulin tolerance test
- jnk, c-jun n-terminal kinase
- mcp-1, monocyte chemoattractant protein-1, nafld, nonalcoholic fatty liver disease
- nos2, inducible nitric oxide synthase
- nox, nadph oxidase
- ptp1b, protein tyrosine phosphatase 1b
- tnfα, tumor necrosis factor alpha
- t2d, type 2 diabetes
Collapse
Affiliation(s)
- Elena Daveri
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | | | | | - Steven M Wood
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Mauri Anderson
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, CA, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Mojena M, Pimentel-Santillana M, Povo-Retana A, Fernández-García V, González-Ramos S, Rada P, Tejedor A, Rico D, Martín-Sanz P, Valverde AM, Boscá L. Protection against gamma-radiation injury by protein tyrosine phosphatase 1B. Redox Biol 2018; 17:213-223. [PMID: 29705509 PMCID: PMC6006913 DOI: 10.1016/j.redox.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs) from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant.
Collapse
Affiliation(s)
- Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - María Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Alberto Tejedor
- Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, United Kingdom
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Spain.
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain; Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Spain.
| |
Collapse
|
24
|
Luo J, Xu Q, Jiang B, Zhang R, Jia X, Li X, Wang L, Guo C, Wu N, Shi D. Selectivity, cell permeability and oral availability studies of novel bromophenol derivative HPN as protein tyrosine phosphatase 1B inhibitor. Br J Pharmacol 2017; 175:140-153. [PMID: 29059712 DOI: 10.1111/bph.14080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signalling by tyrosine dephosphorylation of the insulin receptor. It is a highly validated target for type 2 diabetes therapeutics. Here, the anti-diabetic effects of HPN were evaluated in the diabetic BKS db mice. EXPERIMENTAL APPROACH The mode of inhibition of PTP1B by HPN was determined according to the Lineweaver-Burk plot. A surface plasmon resonance assay and molecular docking were used to study the interaction between HPN and PTP1B. C2C12 skeletal muscle cells were used to investigate the cell permeability of HPN and the effect of HPN on insulin signalling pathways. Long-term effects of HPN on glycaemic control were investigated in diabetic BKS db mice. Glycogen contents in liver and muscle were determined. Furthermore, changes in the number of beta cells were evaluated by Gomori staining. KEY RESULTS HPN was identified as a specific PTP1B inhibitor. HPN directly interacted with PTP1B by binding to the catalytic domain through hydrogen bonds in a competitive mode. Approximately 56.98% of HPN entered into the cultured C2C12 myotubes. HPN ameliorated the impaired insulin signalling in palmitate-treated C2C12 myocytes. Notably, oral administration of HPN significantly protected mice from hyperglycaemia, dyslipidemia and hyperinsulinaemia. HPN also enhanced the storage of glycogen in liver and muscle. Moreover, HPN obviously improved the beta cell numbers of the pancreatic islets. CONCLUSION AND IMPLICATIONS Our results indicate that HPN is a specific PTP1B inhibitor, with anti-diabetic properties and good cell permeability and oral availability.
Collapse
Affiliation(s)
- Jiao Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoling Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangqian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chuanlong Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Ito Y, Hsu MF, Bettaieb A, Koike S, Mello A, Calvo-Rubio M, Villalba JM, Haj FG. Protein tyrosine phosphatase 1B deficiency in podocytes mitigates hyperglycemia-induced renal injury. Metabolism 2017; 76:56-69. [PMID: 28987240 PMCID: PMC5690491 DOI: 10.1016/j.metabol.2017.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Diabetic nephropathy is one of the most devastating complications of diabetes, and growing evidence implicates podocyte dysfunction in disease pathogenesis. The objective of this study was to investigate the contribution of protein tyrosine phosphatase 1B (PTP1B) in podocytes to hyperglycemia-induced renal injury. METHODS To determine the in vivo function of PTP1B in podocytes we generated mice with podocyte-specific PTP1B disruption (hereafter termed pod-PTP1B KO). Kidney functions were determined in control and pod-PTP1B KO mice under normoglycemia and high-fat diet (HFD)- and streptozotocin (STZ)-induced hyperglycemia. RESULTS PTP1B expression increased in murine kidneys following HFD and STZ challenges. Under normoglycemia control and pod-PTP1B KO mice exhibited comparable renal functions. However, podocyte PTP1B disruption attenuated hyperglycemia-induced albuminuria and renal injury and preserved glucose control. Also, podocyte PTP1B disruption was accompanied with improved renal insulin signaling and enhanced autophagy with decreased inflammation and fibrosis. Moreover, the beneficial effects of podocyte PTP1B disruption in vivo were recapitulated in E11 murine podocytes with lentiviral-mediated PTP1B knockdown. Reconstitution of PTP1B in knockdown podocytes reversed the enhanced insulin signaling and autophagy suggesting that they were likely a consequence of PTP1B deficiency. Further, pharmacological attenuation of autophagy in PTP1B knockdown podocytes mitigated the protective effects of PTP1B deficiency. CONCLUSIONS These findings demonstrate that podocyte PTP1B deficiency attenuates hyperglycemia-induced renal damage and suggest that PTP1B may present a therapeutic target in renal injury.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Ming-Fo Hsu
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Ahmed Bettaieb
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Aline Mello
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Miguel Calvo-Rubio
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Jose M Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, United States; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
26
|
Dual role of protein tyrosine phosphatase 1B in the progression and reversion of non-alcoholic steatohepatitis. Mol Metab 2017; 7:132-146. [PMID: 29126873 PMCID: PMC5784331 DOI: 10.1016/j.molmet.2017.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
Objectives Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. Protein tyrosine phosphatase 1B (PTP1B), a negative modulator of insulin and cytokine signaling, is a therapeutic target for type 2 diabetes and obesity. We investigated the impact of PTP1B deficiency during NAFLD, particularly in non-alcoholic steatohepatitis (NASH). Methods NASH features were evaluated in livers from wild-type (PTP1BWT) and PTP1B-deficient (PTP1BKO) mice fed methionine/choline-deficient diet (MCD) for 8 weeks. A recovery model was established by replacing MCD to chow diet (CHD) for 2–7 days. Non-parenchymal liver cells (NPCs) were analyzed by flow cytometry. Oval cells markers were measured in human and mouse livers with NASH, and in oval cells from PTP1BWT and PTP1BKO mice. Results PTP1BWT mice fed MCD for 8 weeks exhibited NASH, NPCs infiltration, and elevated Fgf21, Il6 and Il1b mRNAs. These parameters decreased after switching to CHD. PTP1B deficiency accelerated MCD-induced NASH. Conversely, after switching to CHD, PTP1BKO mice rapidly reverted NASH compared to PTP1BWT mice in parallel to the normalization of serum triglycerides (TG) levels. Among NPCs, a drop in cytotoxic natural killer T (NKT) subpopulation was detected in PTP1BKO livers during recovery, and in these conditions M2 macrophage markers were up-regulated. Oval cells markers (EpCAM and cytokeratin 19) significantly increased during NASH only in PTP1B-deficient livers. HGF-mediated signaling and proliferative capacity were enhanced in PTP1BKO oval cells. In NASH patients, oval cells markers were also elevated. Conclusions PTP1B elicits a dual role in NASH progression and reversion. Additionally, our results support a new role for PTP1B in oval cell proliferation during NAFLD. PTP1B deficiency accelerates MCD-induced NASH. The liver inflammatory responses during NASH are enhanced in PTP1B-deficient mice. PTP1B deficiency accelerates the reversion of NASH in a recovery dietary model. In a DCC model PTP1BKO livers increased oval cells markers and proliferative capacity. PTP1B deficiency enhances HGF-mediated signaling and proliferation of oval cells.
Collapse
|
27
|
Sorokoumov VN, Shpakov AO. Protein phosphotyrosine phosphatase 1B: Structure, function, role in the development of metabolic disorders and their correction by the enzyme inhibitors. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Zhang Y, Ye J, Fan J. Regulation of malonyl-CoA-acyl carrier protein transacylase network in umbilical cord blood affected by intrauterine hyperglycemia. Oncotarget 2017; 8:75254-75263. [PMID: 29088862 PMCID: PMC5650417 DOI: 10.18632/oncotarget.20766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) has been shown to be associated with high risk of diabetes in offspring. However, the mechanisms involved in the insulin resistance in offspring are still unclear. Mitochondrial dysfunction is related with insulin resistance. In mitochondria, malonyl-CoA-acyl carrier protein transacylase (MCAT) is the key enzyme of mitochondrial fatty acid synthesis and is estimated to contribute to insulin resistance. In this study, we aimed to examine the role of MCAT and its network in the umbilical cord blood in GDM-induced offspring insulin resistance. Methods We isolated lymphocytes from umbilical cord vein blood in 6 GDM patients and 6 controls and examined the differences of RNA by RNA sequencing. qRT-PCR and western blot were used to measure mRNA and protein changes. Bisulfite genomic sequencing PCR was applied to detect DNA methylation. Results We found more than 400 genes were differentially regulated in the lymphocytes of umbilical cord blood from GDM patients and these genes were mainly enriched in immune system and endocrine system, which relate to mitochondrial dysfunction and insulin resistance. MCAT closely related with PTPN1 (Protein Tyrosine Phosphatase, Non-Receptor Type1) and STAT5A (Signal Transducer And Activator of Transcription 5A), which were all increased in umbilical cord blood from GDM patients. Increase in MCAT may be due to decreased MCAT DNA methylation. Conclusion MCAT and its network with PTPN1, STAT5A are regulated in umbilical cord blood affected by maternal intrauterine hyperglycemia.
Collapse
Affiliation(s)
- Yong Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Jianxia Fan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
29
|
Bettaieb A, Koike S, Chahed S, Zhao Y, Bachaalany S, Hashoush N, Graham J, Huma F, Havel PJ, Gruzdev A, Zeldin DC, Hammock BD, Haj FG. Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury. FEBS J 2017; 284:1970-1986. [PMID: 28485854 PMCID: PMC5515292 DOI: 10.1111/febs.14100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/22/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
Podocytes play an important role in maintaining glomerular function, and podocyte injury is a significant component in the pathogenesis of proteinuria. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose genetic deficiency and pharmacological inhibition have beneficial effects on renal function, but its role in podocytes remains unexplored. The objective of this study was to investigate the contribution of sEH in podocytes to lipopolysaccharide (LPS)-induced kidney injury. We report increased sEH transcript and protein expression in murine podocytes upon LPS challenge. To determine the function of sEH in podocytes in vivo we generated podocyte-specific sEH-deficient (pod-sEHKO) mice. Following LPS challenge, podocyte sEH-deficient mice exhibited lower kidney injury, proteinuria, and blood urea nitrogen concentrations than controls suggestive of preserved renal function. Also, renal mRNA and serum concentrations of inflammatory cytokines IL-6, IL-1β, and TNFα were significantly lower in LPS-treated pod-sEHKO than control mice. Moreover, podocyte sEH deficiency was associated with decreased LPS-induced NF-κB and MAPK activation and attenuated endoplasmic reticulum stress. Furthermore, the protective effects of podocyte sEH deficiency in vivo were recapitulated in E11 murine podocytes treated with a selective sEH pharmacological inhibitor. Altogether, these findings identify sEH in podocytes as a contributor to signaling events in acute renal injury and suggest that sEH inhibition may be of therapeutic value in proteinuria. ENZYMES Soluble epoxide hydrolase: EC 3.3.2.10.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN 37996
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Samah Chahed
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Yi Zhao
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN 37996
| | - Santana Bachaalany
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Nader Hashoush
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - James Graham
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Fatima Huma
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Peter J. Havel
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, North Carolina, NC 27709
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, North Carolina, NC 27709
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817
| | - Fawaz G. Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817
| |
Collapse
|
30
|
Willoughby LF, Manent J, Allan K, Lee H, Portela M, Wiede F, Warr C, Meng TC, Tiganis T, Richardson HE. Differential regulation of protein tyrosine kinase signalling by Dock and the PTP61F variants. FEBS J 2017; 284:2231-2250. [PMID: 28544778 DOI: 10.1111/febs.14118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/12/2017] [Accepted: 05/19/2017] [Indexed: 01/01/2023]
Abstract
Tyrosine phosphorylation-dependent signalling is coordinated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). There is a growing list of adaptor proteins that interact with PTPs and facilitate the dephosphorylation of substrates. The extent to which any given adaptor confers selectivity for any given substrate in vivo remains unclear. Here we have taken advantage of Drosophila melanogaster as a model organism to explore the influence of the SH3/SH2 adaptor protein Dock on the abilities of the membrane (PTP61Fm)- and nuclear (PTP61Fn)-targeted variants of PTP61F (the Drosophila othologue of the mammalian enzymes PTP1B and TCPTP respectively) to repress PTK signalling pathways in vivo. PTP61Fn effectively repressed the eye overgrowth associated with activation of the epidermal growth factor receptor (EGFR), PTK, or the expression of the platelet-derived growth factor/vascular endothelial growth factor receptor (PVR) or insulin receptor (InR) PTKs. PTP61Fn repressed EGFR and PVR-induced mitogen-activated protein kinase signalling and attenuated PVR-induced STAT92E signalling. By contrast, PTP61Fm effectively repressed EGFR- and PVR-, but not InR-induced tissue overgrowth. Importantly, coexpression of Dock with PTP61F allowed for the efficient repression of the InR-induced eye overgrowth, but did not enhance the PTP61Fm-mediated inhibition of EGFR and PVR-induced signalling. Instead, Dock expression increased, and PTP61Fm coexpression further exacerbated the PVR-induced eye overgrowth. These results demonstrate that Dock selectively enhances the PTP61Fm-mediated attenuation of InR signalling and underscores the specificity of PTPs and the importance of adaptor proteins in regulating PTP function in vivo.
Collapse
Affiliation(s)
| | - Jan Manent
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Kirsten Allan
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Han Lee
- Institute of Biochemical Sciences, National Taiwan University, and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Marta Portela
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Florian Wiede
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Coral Warr
- School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Tzu-Ching Meng
- Institute of Biochemical Sciences, National Taiwan University, and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tony Tiganis
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Helena E Richardson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia.,Department of Biochemistry & Molecular Biology, University of Melbourne, Victoria, Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Mendes NF, Castro G, Guadagnini D, Tobar N, Cognuck SQ, Elias LLK, Boer PA, Prada PO. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior. Metabolism 2017; 70:1-11. [PMID: 28403933 DOI: 10.1016/j.metabol.2017.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/03/2017] [Accepted: 01/27/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. RESULTS Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. CONCLUSIONS Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders.
Collapse
Affiliation(s)
| | - Gisele Castro
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Natalia Tobar
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Susana Quiros Cognuck
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, USP, Brazil
| | | | - Patricia Aline Boer
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Patricia Oliveira Prada
- School of Applied Sciences, State University of Campinas, UNICAMP, Brazil; Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil.
| |
Collapse
|
32
|
Rivera Franco MM, Leon Rodriguez E, Martinez Benitez B, Villanueva Rodriguez LG, de la Luz Sevilla Gonzalez M, Armengol Alonso A. Association of PTP1B with Outcomes of Breast Cancer Patients Who Underwent Neoadjuvant Chemotherapy. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:177-184. [PMID: 27840578 PMCID: PMC5098408 DOI: 10.4137/bcbcr.s40934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/29/2022]
Abstract
PTP1B is involved in the oncogenesis of breast cancer. In addition, neoadjuvant therapy has been widely used in breast cancer; thus, a measurement to assess survival improvement could be pathological complete response (pCR). Our objective was to associate PTP1B overexpression with outcomes of breast cancer patients who underwent neoadjuvant chemotherapy. Forty-six specimens were included. Diagnostic biopsies were immunostained using anti-PTP1B antibody. Expression was categorized as negative (<5%) and overexpression (≥5%). Patients’ responses were graded according to the Miller–Payne system. Sixty-three percent of patients overexpressed PTP1B. There was no significant association between PTP1B overexpression and pCR (P = 0.2). However, when associated with intrinsic subtypes, overexpression was higher in human epidermal growth factor receptor 2-positive-enriched specimens (P = 0.02). Ten-year progression-free survival showed no differences. Our preliminary results do not show an association between PTP1B over-expression and pCR; however, given the limited sample and heterogeneous treatment in our cohort, this hypothesis cannot be excluded.
Collapse
Affiliation(s)
- Monica M Rivera Franco
- Postgraduate and Research Department, Medical Faculty, National Polytechnic Institute, Mexico City, Mexico
| | - Eucario Leon Rodriguez
- Hematology and Oncology Department, National Institute of Medical Science and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Braulio Martinez Benitez
- Antomical Pathology Deparment, National Institute of Medical Science and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Luisa G Villanueva Rodriguez
- Endocrinology Department, National Institute of Medical Science and Nutrition Salvador Zubiran, Mexico City, Mexico
| | | | - Alejandra Armengol Alonso
- Hematology and Oncology Department, National Institute of Medical Science and Nutrition Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
33
|
Torok NJ. Dysregulation of redox pathways in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G667-G674. [PMID: 27562057 PMCID: PMC5142204 DOI: 10.1152/ajpgi.00050.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species are implicated in physiological signaling and cell fate decisions. In chronic liver diseases persistent and increased production of oxidative radicals drives a fibrogenic response that is a common feature of disease progression. Despite our understanding the biology of the main prooxidant enzymes, their targets, and antioxidant mechanisms in the liver, there is still lack of knowledge concerning their precise role in the pathogenesis of fibrosis. This review will examine the role of physiological redox signaling in the liver, provide an overview on recent advances in prooxidant and antioxidant pathways that are dysregulated during fibrosis, and highlight possible novel treatment targets.
Collapse
Affiliation(s)
- Natalie J. Torok
- UC Davis Medical Center, Sacramento, California; and Northern California VA System, Mather, California
| |
Collapse
|
34
|
Cremonini E, Bettaieb A, Haj FG, Fraga CG, Oteiza PI. (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch Biochem Biophys 2016; 599:13-21. [PMID: 26968772 DOI: 10.1016/j.abb.2016.03.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
Abstract
Obesity constitutes a major public health concern, being frequently associated with type 2 diabetes (T2D). Evidence from studies in humans and experimental animals suggest that consumption of the flavan-3-ol (-)-epicatechin (EC) and of EC-rich foods may improve insulin sensitivity. To further understand the potential benefits of dietary EC consumption on insulin resistance, this study investigated the capacity of EC supplementation to prevent high fat diet (HFD)-induced insulin resistance in mice. To assess the underlying mechanisms, the effects of HFD and EC consumption on the activation of the insulin cascade and of its negative modulators were evaluated. HFD consumption for 15 w caused obesity and insulin resistance in C57BL/6J mice as evidenced by high fasted and fed plasma glucose and insulin levels, and impaired ITT and GTT tests. This was associated with alterations in the activation of components of the insulin-triggered signaling cascade (insulin receptor, IRS1, ERK1/2, Akt) in adipose and liver tissues. EC supplementation prevented/ameliorated all these parameters. EC acted improving insulin sensitivity in the HFD-fed mice in part through a downregulation of the inhibitory molecules JNK, IKK, PKC and protein tyrosine phosphatase 1B (PTP1B). Thus, the above results suggest that consumption of EC-rich foods could constitute a dietary strategy to mitigate obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California, Davis, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California, Davis, USA; Department of Internal Medicine, University of California, Davis, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Physical Chemistry-IBIMOL (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
35
|
Choi S, Jung JE, Yang YR, Kim ES, Jang HJ, Kim EK, Kim IS, Lee JY, Kim JK, Seo JK, Kim JM, Park J, Suh PG, Choi JH. Novel phosphorylation of PPARγ ameliorates obesity-induced adipose tissue inflammation and improves insulin sensitivity. Cell Signal 2015; 27:2488-95. [PMID: 26385316 DOI: 10.1016/j.cellsig.2015.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023]
Abstract
Chronic inflammation in adipose tissue is highly associated with insulin resistance. Herein, we demonstrate that a novel modification of PPARγ is strongly associated with inflammatory responses in adipose tissue. c-Src kinase directly phosphorylated PPARγ at Tyr78, and this process was reversed by protein tyrosine phosphatase-1B (PTP-1B). In adipocytes, phosphorylation of PPARγ suppressed the expression of pro-inflammatory genes as well as the secretion of chemokines and cytokines, thus reducing macrophage migration. Importantly, pharmacological inhibition of c-Src kinase aggravated insulin resistance in obese mice with a concomitant increase in the expression of pro-inflammatory genes in adipose tissue. These data strongly suggest that PPARγ phosphorylation is the key regulatory mechanism of the inflammatory response in adipose tissue, which is highly associated with glucose tolerance and insulin sensitivity. Furthermore, these data increase our understanding of the mechanical aspects of developing novel anti-diabetic drugs targeting PPARγ phosphorylation.
Collapse
Affiliation(s)
- Sunsil Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Ji-Eun Jung
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Yong Ryoul Yang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Eun-Sun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Hyun-Jun Jang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Eung-Kyun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Il Shin Kim
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Joo-Young Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Joong Kwan Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jung-Min Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jiyoung Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.
| |
Collapse
|
36
|
Chen PJ, Cai SP, Huang C, Meng XM, Li J. Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology 2015; 337:10-20. [PMID: 26299811 DOI: 10.1016/j.tox.2015.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 12/11/2022]
Abstract
Phosphorylation of tyrosine residues within proteins, which is controlled by the reciprocal action of protein tyrosine kinases and protein tyrosine phosphatases, plays a key role in regulating almost all physiological responses. Therefore, it comes as no surprise that once the balance of tyrosine phosphorylation is disturbed, drastic effects can occur. Protein tyrosine phosphatase 1B (PTP1B), a classical non-transmembrane tyrosine phosphatase, is a pivotal regulator and promising drug target in type 2 diabetes and obesity. Recently it has received renewed attention in liver diseases and represents an intriguing opportunity as a drug target by modulating hepatocyte death and survival, hepatic lipogenesis and so on. Here, the multiple roles of PTP1B in liver diseases will be presented, with respect to liver regeneration, drug-induced liver disease, non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pei-Jie Chen
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Shuang-Peng Cai
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
37
|
Bettaieb A, Jiang JX, Sasaki Y, Chao TI, Kiss Z, Chen X, Tian J, Katsuyama M, Yabe-Nishimura C, Xi Y, Szyndralewiez C, Schröder K, Shah A, Brandes RP, Haj FG, Török NJ. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology 2015; 149:468-80.e10. [PMID: 25888330 PMCID: PMC4516583 DOI: 10.1053/j.gastro.2015.04.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 03/18/2015] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Reactive oxidative species (ROS) are believed to be involved in the progression of nonalcoholic steatohepatitis (NASH). However, little is known about the sources of ROS in hepatocytes or their role in disease progression. We studied the effects of nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (NOX4) in liver tissues from patients with NASH and mice with steatohepatitis. METHODS Liver biopsy samples were obtained from 5 patients with NASH, as well as 4 patients with simple steatosis and 5 patients without steatosis (controls) from the University of California, Davis Cancer Center Biorepository. Mice with hepatocyte-specific deletion of NOX4 (NOX4(hepKO)) and NOX4(floxp+/+) C57BL/6 mice (controls) were given fast-food diets (supplemented with high-fructose corn syrup) or choline-deficient l-amino acid defined diets to induce steatohepatitis, or control diets, for 20 weeks. A separate group of mice were given the NOX4 inhibitor (GKT137831). Liver tissues were collected and immunoblot analyses were performed determine levels of NOX4, markers of inflammation and fibrosis, double-stranded RNA-activated protein kinase, and phospho-eIF-2α kinase-mediated stress signaling pathways. We performed hyperinsulinemic-euglycemic clamp studies and immunoprecipitation analyses to determine the oxidation and phosphatase activity of PP1C. RESULTS Levels of NOX4 were increased in patients with NASH compared with controls. Hepatocyte-specific deletion of NOX4 reduced oxidative stress, lipid peroxidation, and liver fibrosis in mice with diet-induced steatohepatitis. A small molecule inhibitor of NOX4 reduced liver inflammation and fibrosis and increased insulin sensitivity in mice with diet-induced steatohepatitis. In primary hepatocytes, NOX4 reduced the activity of the phosphatase PP1C, prolonging activation of double-stranded RNA-activated protein kinase and phosphorylation of extracellular signal-regulated kinase-mediated stress signaling. Mice with hepatocyte-specific deletion of NOX4 and mice given GKT137831 had increased insulin sensitivity. CONCLUSIONS NOX4 regulates oxidative stress in the liver and its levels are increased in patients with NASH and mice with diet-induced steatohepatitis. Inhibitors of NOX4 reduce liver inflammation and fibrosis and increase insulin sensitivity, and might be developed for treatment of NASH.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Department of Nutrition, University of California Davis, Davis, California
| | - Joy X Jiang
- Department of Medicine, Gastroenterology and Hepatology, University of California Davis, and VA Medical Center, Sacramento, California
| | - Yu Sasaki
- Department of Medicine, Gastroenterology and Hepatology, University of California Davis, and VA Medical Center, Sacramento, California
| | - Tzu-I Chao
- Department of Medicine, Gastroenterology and Hepatology, University of California Davis, and VA Medical Center, Sacramento, California
| | - Zsofia Kiss
- Department of Medicine, Gastroenterology and Hepatology, University of California Davis, and VA Medical Center, Sacramento, California
| | - Xiangling Chen
- Department of Medicine, Gastroenterology and Hepatology, University of California Davis, and VA Medical Center, Sacramento, California
| | - Jijing Tian
- Department of Medicine, Gastroenterology and Hepatology, University of California Davis, and VA Medical Center, Sacramento, California
| | | | | | - Yannan Xi
- Department of Nutrition, University of California Davis, Davis, California
| | | | | | - Ajay Shah
- King's College London British Heart Foundation Centre, London, UK
| | | | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, California
| | - Natalie J Török
- Department of Medicine, Gastroenterology and Hepatology, University of California Davis, and VA Medical Center, Sacramento, California.
| |
Collapse
|
38
|
González-Rodríguez Á, Santamaría B, Mas-Gutierrez JA, Rada P, Fernández-Millán E, Pardo V, Álvarez C, Cuadrado A, Ros M, Serrano M, Valverde ÁM. Resveratrol treatment restores peripheral insulin sensitivity in diabetic mice in a sirt1-independent manner. Mol Nutr Food Res 2015; 59:1431-42. [DOI: 10.1002/mnfr.201400933] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
| | - Beatriz Santamaría
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
| | | | - Patricia Rada
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Spain
| | - Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
- Departamento de Bioquímica y Biología Molecular II; Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Virginia Pardo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
| | - Carmen Álvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
- Departamento de Bioquímica y Biología Molecular II; Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Spain
- Instituto de Investigacion Sanitaria La Paz (IdiPaz); Madrid Spain
| | - Manuel Ros
- Facultad de Ciencias; Universidad Rey Juan Carlos; Madrid Spain
| | - Manuel Serrano
- Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
- Instituto de Investigacion Sanitaria La Paz (IdiPaz); Madrid Spain
| |
Collapse
|
39
|
Gurzov EN, Stanley WJ, Brodnicki TC, Thomas HE. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab 2015; 26:30-9. [PMID: 25432462 DOI: 10.1016/j.tem.2014.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that generally oppose the actions of protein tyrosine kinases (PTKs). Genetic polymorphisms for particular PTPs are associated with altered risk of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Moreover, recent evidence suggests that PTPs play crucial roles in metabolism. They can act as regulators of liver homeostasis, food intake, or immune-mediated pancreatic b cell death. In this review we describe the mechanisms by which different members of the non-receptor PTP (PTPN) family influence metabolic physiology. This 'metabolic job' of PTPs is discussed in depth and the role of these proteins in different cell types compared. Understanding the pathways regulated by PTPs will provide novel therapeutic strategies for the treatment of diabetes.
Collapse
|
40
|
Ren C, Zhang Y, Cui W, Lu G, Wang Y, Gao H, Huang L, Mu Z. A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin. Int J Biol Macromol 2015; 72:951-9. [DOI: 10.1016/j.ijbiomac.2014.09.060] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/08/2023]
|
41
|
Passos E, Pereira CD, Gonçalves IO, Rocha-Rodrigues S, Silva N, Guimarães JT, Neves D, Ascensão A, Magalhães J, Martins MJ. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci 2014; 123:51-60. [PMID: 25534442 DOI: 10.1016/j.lfs.2014.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/21/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023]
Abstract
AIMS Pro-inflammatory mediators, glucocorticoids and transforming growth factor (TGF)-β are implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH)-related insulin resistance. As physical activity is beneficial against NASH, we analyzed the voluntary physical activity (VPA) and endurance training (ET) (preventive and therapeutic strategies) effects on hepatic insulin, pro-inflammatory and glucocorticoid signaling regulators/mediators in high-fat (Lieber-DeCarli) diet (HFD)-induced NASH. MAIN METHODS Adult male Sprague-Dawley rats were divided in standard diet (SD) or HFD, with sedentary, VPA and ET animals in both diet regimens. Plasma glucose and insulin concentrations were analyzed; plasma insulin sensitivity index (ISI) was calculated. Hepatic insulin, pro-inflammatory and glucocorticoid signaling regulators/mediators were evaluated by Western blot or reverse transcriptase-PCR. KEY FINDINGS ET improved ISI in both diet regimens. HFD-feeding increased interleukin-1β and induced a similar pattern on interleukin-6 and TGF-β, which were globally reduced by physical exercise. ET decreased HFD leukemia inhibitory factor level, SD+VPA animals presenting higher values than HFD+VPA animals. HFD increased the ratio of IRS-1(Ser307)/total IRS-1, which was completely mitigated by physical exercise. Physical exercise reduced total ERK and JNK (total and activated) expression in HFD. In SD vs. HFD, VPA presented higher activated JNK and ET presented higher total JNK. Generally, in HFD, the ratio (activated/total) of AKT, and each separately, decreased with exercise and also for activated AKT in SD. Overall, in both diets, exercise reduced 11β-hydroxysteroid dehydrogenase type 1. ET increased glucocorticoid receptor and reduced PTP1B in HFD. SIGNIFICANCE Physical exercise mitigates the expression of pro-inflammatory mediators and positively modulates insulin and glucocorticoid signaling in NASH.
Collapse
Affiliation(s)
- E Passos
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - C D Pereira
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - I O Gonçalves
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - S Rocha-Rodrigues
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - N Silva
- Department of Clinical Pathology, Hospital of São João Centre EPE, and EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
| | - J T Guimarães
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; Department of Clinical Pathology, Hospital of São João Centre EPE, and EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
| | - D Neves
- Department of Experimental Biology, Faculty of Medicine, Instituto de Investigação e Inovação em Saúde, and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - A Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - M J Martins
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
42
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022] Open
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|
43
|
Bakke J, Haj FG. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Semin Cell Dev Biol 2014; 37:58-65. [PMID: 25263014 DOI: 10.1016/j.semcdb.2014.09.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 01/19/2023]
Abstract
Metabolic homeostasis requires integration of complex signaling networks which, when deregulated, contribute to metabolic syndrome and related disorders. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a key regulator of signaling networks that are implicated in metabolic diseases such as obesity and type 2 diabetes. In this review, we examine mechanisms that regulate PTP1B-substrate interaction, enzymatic activity and experimental approaches to identify PTP1B substrates. We then highlight findings that implicate PTP1B in metabolic regulation. In particular, insulin and leptin signaling are discussed as well as recently identified PTP1B substrates that are involved in endoplasmic reticulum stress response, cell-cell communication, energy balance and vesicle trafficking. In summary, PTP1B exhibits exquisite substrate specificity and is an outstanding pharmaceutical target for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jesse Bakke
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
44
|
Mobasher MA, de Toro-Martín J, González-Rodríguez Á, Ramos S, Letzig LG, James LP, Muntané J, Álvarez C, Valverde ÁM. Essential role of protein-tyrosine phosphatase 1B in the modulation of insulin signaling by acetaminophen in hepatocytes. J Biol Chem 2014; 289:29406-19. [PMID: 25204659 DOI: 10.1074/jbc.m113.539189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B(-/-) mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver.
Collapse
Affiliation(s)
- Maysa Ahmed Mobasher
- From the Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain, the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salid Carlos III, 28029 Madrid
| | - Juan de Toro-Martín
- the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salid Carlos III, 28029 Madrid, the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, 28034 Madrid, Spain
| | - Águeda González-Rodríguez
- From the Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain, the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salid Carlos III, 28029 Madrid
| | - Sonia Ramos
- the Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain
| | - Lynda G Letzig
- the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, and
| | - Laura P James
- the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, and
| | - Jordi Muntané
- the Department of General Surgery, Institute of Biomedicine of Seville, Hospital Universitary "Virgen del Rocío"/CSIC/University of Seville, 41013 Seville, Spain
| | - Carmen Álvarez
- the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salid Carlos III, 28029 Madrid, the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, 28034 Madrid, Spain
| | - Ángela M Valverde
- From the Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain, the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salid Carlos III, 28029 Madrid,
| |
Collapse
|
45
|
Cyclosporine A enhances gluconeogenesis while sirolimus impairs insulin signaling in peripheral tissues after 3 weeks of treatment. Biochem Pharmacol 2014; 91:61-73. [DOI: 10.1016/j.bcp.2014.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
|
46
|
Liu S, Xi Y, Bettaieb A, Matsuo K, Matsuo I, Kulkarni RN, Haj FG. Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects β-cell function. Endocrinology 2014; 155:3329-38. [PMID: 24956127 PMCID: PMC4138572 DOI: 10.1210/en.2013-2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and energy balance. However, the role of PTP1B in pancreatic endocrine function remains largely unknown. To investigate the metabolic role of pancreatic PTP1B, we generated mice with pancreas PTP1B deletion (panc-PTP1B KO). Mice were fed regular chow or a high-fat diet, and metabolic parameters, insulin secretion and glucose tolerance were determined. On regular chow, panc-PTP1B KO and control mice exhibited comparable glucose tolerance whereas aged panc-PTP1B KO exhibited mild glucose intolerance. Furthermore, high-fat feeding promoted earlier impairment of glucose tolerance and attenuated glucose-stimulated insulin secretion in panc-PTP1B KO mice. The secretory defect in glucose-stimulated insulin secretion was recapitulated in primary islets ex vivo, suggesting that the effects were likely cell-autonomous. At the molecular level, PTP1B deficiency in vivo enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in islets. Consistently, PTP1B overexpression in the glucose-responsive MIN6 β-cell line attenuated EphA5 tyrosyl phosphorylation, and substrate trapping identified EphA5 as a PTP1B substrate. In summary, these studies identify a novel role for PTP1B in pancreatic endocrine function.
Collapse
Affiliation(s)
- Siming Liu
- Nutrition Department (S.L., Y.X., A.B., K.M., I.M., F.G.H.), University of California Davis, Davis, California 95616; Joslin Diabetes Center (R.N.K.), Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215; and Division of Endocrinology, Diabetes and Metabolism (F.G.H.), Department of Internal Medicine, and Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817
| | | | | | | | | | | | | |
Collapse
|
47
|
Chiappini F, Catalano KJ, Lee J, Peroni OD, Lynch J, Dhaneshwar AS, Wellenstein K, Sontheimer A, Neel BG, Kahn BB. Ventromedial hypothalamus-specific Ptpn1 deletion exacerbates diet-induced obesity in female mice. J Clin Invest 2014; 124:3781-92. [PMID: 25083988 DOI: 10.1172/jci68585] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/19/2014] [Indexed: 01/05/2023] Open
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) regulates food intake (FI) and energy expenditure (EE) by inhibiting leptin signaling in the hypothalamus. In peripheral tissues, PTP1B regulates insulin signaling, but its effects on CNS insulin action are largely unknown. Mice harboring a whole-brain deletion of the gene encoding PTP1B (Ptpn1) are lean, leptin-hypersensitive, and resistant to high fat diet-induced (HFD-induced) obesity. Arcuate proopiomelanocortin (POMC) neuron-specific deletion of Ptpn1 causes a similar, but much milder, phenotype, suggesting that PTP1B also acts in other neurons to regulate metabolism. Steroidogenic factor-1-expressing (SF-1-expressing) neurons in the ventromedial hypothalamus (VMH) play an important role in regulating body weight, FI, and EE. Surprisingly, Ptpn1 deletion in SF-1 neurons caused an age-dependent increase in adiposity in HFD-fed female mice. Although leptin sensitivity was increased and FI was reduced in these mice, they had impaired sympathetic output and decreased EE. Immunohistochemical analysis showed enhanced leptin and insulin signaling in VMH neurons from mice lacking PTP1B in SF-1 neurons. Thus, in the VMH, leptin negatively regulates FI, promoting weight loss, whereas insulin suppresses EE, leading to weight gain. Our results establish a novel role for PTP1B in regulating insulin action in the VMH and suggest that increased insulin responsiveness in SF-1 neurons can overcome leptin hypersensitivity and enhance adiposity.
Collapse
|
48
|
Bettaieb A, Vazquez Prieto MA, Rodriguez Lanzi C, Miatello RM, Haj FG, Fraga CG, Oteiza PI. (-)-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress. Free Radic Biol Med 2014; 72:247-56. [PMID: 24746618 PMCID: PMC4077617 DOI: 10.1016/j.freeradbiomed.2014.04.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/02/2023]
Abstract
We investigated the capacity of dietary (-)-epicatechin (EC) to mitigate insulin resistance through the modulation of redox-regulated mechanisms in a rat model of metabolic syndrome. Adolescent rats were fed a regular chow diet without or with high fructose (HFr; 10% w/v) in drinking water for 8 weeks, and a group of HFr-fed rats was supplemented with EC in the diet. HFr-fed rats developed insulin resistance, which was mitigated by EC supplementation. Accordingly, the activation of components of the insulin signaling cascade (insulin receptor, IRS1, Akt, and ERK1/2) was impaired, whereas negative regulators (PKC, IKK, JNK, and PTP1B) were upregulated in the liver and adipose tissue of HFr rats. These alterations were partially or totally prevented by EC supplementation. In addition, EC inhibited events that contribute to insulin resistance: HFr-associated increased expression and activity of NADPH oxidase, activation of redox-sensitive signals, expression of NF-κB-regulated proinflammatory cytokines and chemokines, and some sub-arms of endoplasmic reticulum stress signaling. Collectively, these findings indicate that EC supplementation can mitigate HFr-induced insulin resistance and are relevant for defining interventions that can prevent/mitigate MetS-associated insulin resistance.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | - Marcela A Vazquez Prieto
- Department of Pathology, School of Medicine, National University of Cuyo and Institute of Medicine and Experimental Biology-CONICET, Mendoza, Argentina
| | - Cecilia Rodriguez Lanzi
- Department of Pathology, School of Medicine, National University of Cuyo and Institute of Medicine and Experimental Biology-CONICET, Mendoza, Argentina
| | - Roberto M Miatello
- Department of Pathology, School of Medicine, National University of Cuyo and Institute of Medicine and Experimental Biology-CONICET, Mendoza, Argentina
| | - Fawaz G Haj
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA; Department of Internal Medicine, University of California at Davis, Davis, CA 95616, USA
| | - César G Fraga
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA; Physical Chemistry-IBIMOL, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA; Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
49
|
Tchankouo-Nguetcheu S, Udinotti M, Durand M, Meng TC, Taouis M, Rabinow L. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B. Mol Genet Genomics 2014; 289:795-806. [DOI: 10.1007/s00438-014-0852-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
|
50
|
Través PG, Pardo V, Pimentel-Santillana M, González-Rodríguez Á, Mojena M, Rico D, Montenegro Y, Calés C, Martín-Sanz P, Valverde AM, Boscá L. Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in the macrophage response to pro-inflammatory and anti-inflammatory challenge. Cell Death Dis 2014; 5:e1125. [PMID: 24625984 PMCID: PMC3973223 DOI: 10.1038/cddis.2014.90] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been suggested as an attractive target to improve insulin sensitivity in different cell types. In the present work, we have investigated the effect of PTP1B deficiency on the response of human and murine macrophages. Using in vitro and in vivo approaches in mice and silencing PTP1B in human macrophages with specific siRNAs, we have demonstrated that PTP1B deficiency increases the effects of pro-inflammatory stimuli in both human and rodent macrophages at the time that decreases the response to alternative stimulation. Moreover, the absence of PTP1B induces a loss of viability in resting macrophages and mainly after activation through the classic pathway. Analysis of early gene expression in macrophages treated with pro-inflammatory stimuli confirmed this exacerbated inflammatory response in PTP1B-deficient macrophages. Microarray analysis in samples from wild-type and PTP1B-deficient macrophages obtained after 24 h of pro-inflammatory stimulation showed an activation of the p53 pathway, including the excision base repair pathway and the insulin signaling pathway in the absence of PTP1B. In animal models of lipopolysaccharide (LPS) and D-galactosamine challenge as a way to reveal in vivo inflammatory responses, animals lacking PTP1B exhibited a higher rate of death. Moreover, these animals showed an enhanced response to irradiation, in agreement with the data obtained in the microarray analysis. In summary, these results indicate that, although inhibition of PTP1B has potential benefits for the treatment of diabetes, it accentuates pro-inflammatory responses compromising at least macrophage viability.
Collapse
MESH Headings
- Animals
- Cell Survival
- Cells, Cultured
- Disease Models, Animal
- Galactosamine
- Gene Expression Profiling/methods
- Humans
- Immunity, Innate
- Inflammation/chemically induced
- Inflammation/enzymology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Lipopolysaccharides
- Macrophage Activation
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/pathology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- RNA Interference
- Signal Transduction
- Time Factors
- Transfection
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- P G Través
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - V Pardo
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
| | - M Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Á González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
| | - M Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - D Rico
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Center (CNIO), ISCIII, Madrid, Spain
| | - Y Montenegro
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - C Calés
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - P Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), ISCIII, Madrid, Spain
| | - A M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
- IB-Alberto Sols, Arturo Duperier 4, Madrid 28029, Spain. Tel: +34 91585400; Fax: +34 915854401; E-mail: (AMV) or Tel/Fax: +34 914972747; E-mail: (LB)
| | - L Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), ISCIII, Madrid, Spain
- IB-Alberto Sols, Arturo Duperier 4, Madrid 28029, Spain. Tel: +34 91585400; Fax: +34 915854401; E-mail: (AMV) or Tel/Fax: +34 914972747; E-mail: (LB)
| |
Collapse
|