1
|
Wang H, Su K, Liu M, Liu Y, Wu Z, Fu C. Overexpressing CYP81D11 enhances 2,4,6-trinitrotoluene tolerance and removal efficiency in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14364. [PMID: 38837226 DOI: 10.1111/ppl.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Phytoremediation is a promising technology for removing the high-toxic explosive 2,4,6-trinitrotoluene (TNT) pollutant from the environment. Mining dominant genes is the key research direction of this technology. Most previous studies have focused on the detoxification of TNT rather than plants' TNT tolerance. Here, we conducted a transcriptomic analysis of wild type Arabidopsis plants under TNT stress and found that the Arabidopsis cytochrome P450 gene CYP81D11 was significantly induced in TNT-treated plants. Under TNT stress, the root length was approximately 1.4 times longer in CYP81D11-overexpressing transgenic plants than in wild type plants. The half-removal time for TNT was much shorter in CYP81D11-overexpressing transgenic plants (1.1 days) than in wild type plants (t1/2 = 2.2 day). In addition, metabolic analysis showed no difference in metabolites in transgenic plants compared to wild type plants. These results suggest that the high TNT uptake rates of CYP81D11-overexpressing transgenic plants were most likely due to increased tolerance and biomass rather than TNT degradation. However, CYP81D11-overexpressing plants were not more tolerant to osmotic stresses, such as salt or drought. Taken together, our results indicate that CYP81D11 is a promising target for producing bioengineered plants with high TNT removing capability.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunlong Su
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Meifeng Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuchen Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Zhenying Wu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Hama JR, Fomsgaard IS, Topalović O, Vestergård M. Root uptake of cereal benzoxazinoids grants resistance to root-knot nematode invasion in white clover. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108636. [PMID: 38657547 DOI: 10.1016/j.plaphy.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Plants synthesize a plethora of chemical defence compounds, which vary between evolutionary lineages. We hypothesize that plants evolved the ability to utilize defence compounds synthesized and released by neighbouring heterospecific plants. In two experiments, we incubated clover (Trifolium repens L.) seedlings with individual benzoxazinoid (BX) compounds (2,4-dihydroxy-1,4-benzoxazin-3-one, 2-hydroxy-1,4-benzoxazin-3-one, benzoxazolinone, and 6-methoxy- benzoxazolin-2-one), a group of bioactive compounds produced by cereals, to allow clover BX uptake. Subsequently, we transplanted the seedlings into soil and quantified BX root and shoot content and invasion of root-knot nematodes in clover roots up to 8 weeks after transplantation. We show that clover root uptake of BXs substantially enhanced clover's resistance against the root-knot nematode Meloidogyne incognita. This effect lasted up to 6 weeks after the clover roots were exposed to the BXs. BXs were absorbed by clover roots, and then translocated to the shoots. As a result of clover metabolization, we detected the parent BXs and a range of their transformation products in the roots and shoots. Based on these novel findings, we envisage that co-cultivation of crop species with complementary and transferable chemical defence systems can add to plant protection.
Collapse
Affiliation(s)
- Jawameer R Hama
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Olivera Topalović
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mette Vestergård
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| |
Collapse
|
3
|
Li Z, Bai H, Bai Z, Han J, Luo D, Bai L. Multi-omics analysis identifies EcCS4 is negatively regulated in response to phytotoxin isovaleric acid stress in Echinochloa crus-galli. PEST MANAGEMENT SCIENCE 2024; 80:1957-1967. [PMID: 38088480 DOI: 10.1002/ps.7927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Knowledge of herbicidal targets is critical for weed management and food safety. The phytotoxin isovaleric acid (ISA) is effective against weeds with a broad spectrum, carries low environmental risks, and is thus an excellent herbicide lead. However, the biochemical and molecular mechanisms underlying the action of ISA remain unclear. RESULTS Multi-omics data showed that acetyl coenzyme A (acetyl-CoA) was the key affected metabolite, and that citrate synthase (CS) 4 was substantially down-regulated under ISA treatment in Echinochloa crus-galli leaves. In particular, the transcript level of EcCS4 was the most significantly regulated among the six genes involved in the top 10 different pathways. The EcCS4 encodes a protein of 472 amino acids and is localized to the cell membrane and mitochondria, similar to the CS4s of other plants. The protein content of EcCS4 was down-regulated after ISA treatment at 0.5 h. ISA markedly inhibited the CS4 activity in vitro in a concentration-dependent manner (IC50 = 41.35 μM). In addition, the transgenic rice plants overexpressing EcCS4 (IC50 = 111.8 mM for OECS4-8 line) were more sensitive, whereas loss-of-function rice mutant lines (IC50 = 746.5 mM for oscs4-19) were more resistant to ISA, compared to wild type (WT) plants (IC50 = 355.6 mM). CONCLUSION CS4 was first reported as a negative regulator of plant responses to ISA. These results highlight that CS4 is a candidate target gene for the development of novel herbicides and for breeding herbicide-resistant crops. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuren Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jincai Han
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Dingfeng Luo
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lianyang Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
4
|
Zhang H, Mu D, Li Y, Li X, Yan X, Li K, Jiao Y, Li J, Lin H, Lin W, Fang C. Glutathione S-transferase activity facilitates rice tolerance to the barnyard grass root exudate DIMBOA. BMC PLANT BIOLOGY 2024; 24:117. [PMID: 38365588 PMCID: PMC10874003 DOI: 10.1186/s12870-024-04802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND In paddy fields, the noxious weed barnyard grass secretes 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) to interfere with rice growth. Rice is unable to synthesize DIMBOA. Rice cultivars with high or low levels of allelopathy may respond differently to DIMBOA. RESULTS In this study, we found that low concentrations of DIMBOA (≤ 0.06 mM) promoted seedling growth in allelopathic rice PI312777, while DIMBOA (≤ 0.08 mM) had no significant influence on the nonallelopathic rice Lemont. DIMBOA treatment caused changes in the expression of a large number of glutathione S-transferase (GST) proteins, which resulting in enrichment of the glutathione metabolic pathway. This pathway facilitates plant detoxification of heterologous substances. The basal levels of GST activity in Lemont were significantly higher than those in PI312777, while GST activity in PI312777 was slightly induced by increasing DIMBOA concentrations. Overexpression of GST genes (Os09g0367700 and Os01g0949800) in these two cultivars enhanced rice resistance to DIMBOA. CONCLUSIONS Taken together, our results indicated that different rice accessions with different levels of allelopathy have variable tolerance to DIMBOA. Lemont had higher GST activity, which helped it tolerate DIMBOA, while PI312777 had lower GST activity that was more inducible. The enhancement of GST expression facilitates rice tolerance to DIMBOA toxins from barnyard grass root exudates.
Collapse
Affiliation(s)
- Huabin Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Mu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yushan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xilin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xue Yan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ke Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanyang Jiao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayu Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongmei Lin
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, 350002, China
| | - Changxun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Huang J, Li J, Chen H, Shen C, Wen Y. Phytotoxicity alleviation of imazethapyr to non-target plant wheat: active regulation between auxin and DIMBOA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116004-116017. [PMID: 37897577 DOI: 10.1007/s11356-023-30608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Effectively controlling target organisms while reducing the adverse effects of pesticides on non-target organisms is a crucial scientific inquiry and challenge in pesticide ecotoxicology research. Here, we studied the alleviation of herbicide (R)-imazethapyr [(R)-IM] to non-target plant wheat by active regulation between auxin and secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA). We found (R)-IM reduced 32.4% auxin content in wheat leaves and induced 40.7% DIMBOA accumulation compared to the control group, which effortlessly disrupted the balance between wheat growth and defense. Transcriptomic results indicated that restoration of the auxin level in plants promoted the up-regulation of growth-related genes and the accumulation of DIMBOA up-regulated the expression of defense-related genes. Auxin and DIMBOA alleviated herbicide stress primarily through effects in the two directions of wheat growth and defense, respectively. Additionally, as a common precursor of auxin and DIMBOA, indole adopted a combined growth and defense strategy in response to (R)-IM toxicity, i.e., restoring growth development and enhancing the defense system. Future regulation of auxin and DIMBOA levels in plants may be possible through appropriate methods, thus regulating the plant growth-defense balance under herbicide stress. Our insight into the interference mechanism of herbicides to the plant growth-defense system will facilitate the design of improved strategies for herbicide detoxification.
Collapse
Affiliation(s)
- Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Gharabli H, Della Gala V, Welner DH. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol Adv 2023; 67:108182. [PMID: 37268151 DOI: 10.1016/j.biotechadv.2023.108182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Glycosyltransferases catalyse the transfer of a glycosyl moiety from a donor to an acceptor. Members of this enzyme class are ubiquitous throughout all kingdoms of life and are involved in the biosynthesis of countless types of glycosides. Family 1 glycosyltransferases, also referred to as uridine diphosphate-dependent glycosyltransferases (UGTs), glycosylate small molecules such as secondary metabolites and xenobiotics. In plants, UGTs are recognised for their multiple functionalities ranging from roles in growth regulation and development, in protection against pathogens and abiotic stresses and in adaptation to changing environments. In this study, we review UGT-mediated glycosylation of phytohormones, endogenous secondary metabolites, and xenobiotics and contextualise the role this chemical modification plays in the response to biotic and abiotic stresses and plant fitness. Here, the potential advantages and drawbacks of altering the expression patterns of specific UGTs along with the heterologous expression of UGTs across plant species to improve stress tolerance in plants are discussed. We conclude that UGT-based genetic modification of plants could potentially enhance agricultural efficiency and take part in controlling the biological activity of xenobiotics in bioremediation strategies. However, more knowledge of the intricate interplay between UGTs in plants is needed to unlock the full potential of UGTs in crop resistance.
Collapse
Affiliation(s)
- Hani Gharabli
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Valeria Della Gala
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
7
|
Sun L, Yang M, Su W, Xu H, Xue F, Lu C, Wu R. Transcriptomic analysis of maize uncovers putative genes involved in metabolic detoxification under four safeners treatment. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105465. [PMID: 37532342 DOI: 10.1016/j.pestbp.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 08/04/2023]
Abstract
Isoxadifen-ethyl (IDF) and cyprosulfamide (CSA) can effectively protect maize from nicosulfuron (NIC) injury, while mefenpyr-diethyl (MPR) and fenchlorazole-ethyl (FCO) did not. Their chemical diversity and requirement to use them in combination with the corresponding herbicides suggest that their elicitation of gene expression are complex and whether it is associated with the safening activity remains elusive. In this study, our first objective was to determine whether or not the ability of four safeners to enhance the metabolic rate of nicosulfuron. It was found that nicosulfuron degradation in maize was accelerated by IDF and CSA, but not by FCO and MPR. Transcriptomic analysis showed that the number of genes induced by IDF and CSA were larger than that induced by FCO and MPR. Overall, 34 genes associated with detoxification were identified, including glutathione S-transferase (GST), cytochrome P450 (CYP450), UDP-glucosyltransferase (UGT), transporter and serine. Moreover, 14 detoxification genes were screened for further verification by real-time PCR in two maize inbred lines. Two maize inbred lines exhibited high expression levels of four genes (GST31, GST39, AGXT2 and ADH) after IDF treatment. GST6, GST19, MATE, SCPL18 and UF3GT were specifically up-regulated in telerant maize inbred line under IDF and IDF + NIC treatments. Seven genes, namely GST31, GST6, GST19, UF3GT, MATE, ADH and SCPL18, are induced by IDF and CSA to play a vital role in regulating the detoxification process of NIC. Accordingly, the GST activity in maize was accelerated by IDF and CSA, but not by FCO and MPR. This result is consistent with transcriptome and metabolic data.These results indicate that the mitigation of NIC damage is associated with enhanced herbicide metabolism. IDF and CSA were more effective in protecting maize from NIC injury due to their ability to enhance the detoxification of specific types of herbicides, compared to FCO and MPR. The chemical specificity of four safeners is attributed to the up-regulated genes related to the detoxification pathway.
Collapse
Affiliation(s)
- Lanlan Sun
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Muhan Yang
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Wangcang Su
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Hongle Xu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Fei Xue
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China.
| |
Collapse
|
8
|
Huang P, Hameed R, Abbas M, Balooch S, Alharthi B, Du Y, Abbas A, Younas A, Du D. Integrated omic techniques and their genomic features for invasive weeds. Funct Integr Genomics 2023; 23:44. [PMID: 36680630 DOI: 10.1007/s10142-023-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manzer Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan Province, People's Republic of China
| | - Sidra Balooch
- Institute of Botany, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, PO. Box 11099, Taif, 21944, Saudi Arabia
| | - Yizhou Du
- Faculty of Engineering, School of Computer Science, University of Sydney, Sydney, New South Wales, Australia
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
9
|
Ahmed S, Chouhan R, Junaid A, Jamwal VL, Thakur J, Mir BA, Gandhi SG. Transcriptome analysis and differential expression in Arabidopsis thaliana in response to rohitukine (a chromone alkaloid) treatment. Funct Integr Genomics 2023; 23:35. [PMID: 36629976 DOI: 10.1007/s10142-023-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
Rohitukine is a chromone alkaloid and precursor of potent anticancer drugs flavopiridol, P-276-00, and 2,6-dichloro-styryl derivative (11d) (IIIM-290). The metabolite is reported to possess anticancer, anti-inflammatory, antiadipogenic, immunomodulatory, gastroprotective, anti-implantation, antidyslipidemic, anti-arthritic, and anti-fertility properties. However, the physiological role of rohitukine in plant system is yet to be explored. Here, we studied the effect of rohitukine isolated from Dysoxylum gotadhora on Arabidopsis thaliana. The A. thaliana plants grown on a medium fortified with different rohitukine concentrations showed a significant effect on the growth and development. The root growth of A. thaliana seedlings showed considerable inhibition when grown on medium containing 1.0 mM of rohitukine. Transcriptomic analysis indicated the expression of 895 and 932 genes in control and treated samples respectively at a cut-off of FPKM ≥ 1 and P-value < 0.05. Gene ontology (GO) analysis revealed the upregulation of genes related to photosynthesis, membrane transport, antioxidation, xenobiotic degradation, and some transcription factors (TFs) in response to rohitukine. Conversely, rohitukine downregulated several genes including RNA helicases and those involved in nitrogen compound metabolism. The RNA-seq result was also validated by real-time qRT-PCR analysis. In light of these results, we discuss (i) likely ecological importance of rohitukine in parent plant as well as (ii) comparison between responses to rohitukine treatment in plants and mammals.
Collapse
Affiliation(s)
- Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India.,Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rekha Chouhan
- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Alim Junaid
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Vijay Lakshmi Jamwal
- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Jitendra Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Ladakh, Kargil Campus, Kargil, 194103, Ladakh, India.,Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Knoch E, Kovács J, Deiber S, Tomita K, Shanmuganathan R, Serra Serra N, Okada K, Becker C, Schandry N. Transcriptional response of a target plant to benzoxazinoid and diterpene allelochemicals highlights commonalities in detoxification. BMC PLANT BIOLOGY 2022; 22:402. [PMID: 35974304 PMCID: PMC9382751 DOI: 10.1186/s12870-022-03780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants growing in proximity to other plants are exposed to a variety of metabolites that these neighbors release into the environment. Some species produce allelochemicals to inhibit growth of neighboring plants, which in turn have evolved ways to detoxify these compounds. RESULTS In order to understand how the allelochemical-receiving target plants respond to chemically diverse compounds, we performed whole-genome transcriptome analysis of Arabidopsis thaliana exposed to either the benzoxazinoid derivative 2-amino- 3H-phenoxazin-3-one (APO) or momilactone B. These two allelochemicals belong to two very different compound classes, benzoxazinoids and diterpenes, respectively, produced by different Poaceae crop species. CONCLUSIONS Despite their distinct chemical nature, we observed similar molecular responses of A. thaliana to these allelochemicals. In particular, many of the same or closely related genes belonging to the three-phase detoxification pathway were upregulated in both treatments. Further, we observed an overlap between genes upregulated by allelochemicals and those involved in herbicide detoxification. Our findings highlight the overlap in the transcriptional response of a target plant to natural and synthetic phytotoxic compounds and illustrate how herbicide resistance could arise via pathways involved in plant-plant interaction.
Collapse
Affiliation(s)
- Eva Knoch
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Judit Kovács
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Sebastian Deiber
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Keisuke Tomita
- Agro-Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS), The University of Tokyo, Tokyo, 113-8657, Japan
| | - Reshi Shanmuganathan
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Núria Serra Serra
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Kazunori Okada
- Agro-Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS), The University of Tokyo, Tokyo, 113-8657, Japan
| | - Claude Becker
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| | - Niklas Schandry
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
11
|
The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. Int J Mol Sci 2022; 23:ijms23094618. [PMID: 35563008 PMCID: PMC9104956 DOI: 10.3390/ijms23094618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Collapse
|
12
|
Hussain MI, Vieites-Álvarez Y, Otero P, Prieto MA, Simal-Gandara J, Reigosa MJ, Sánchez-Moreiras AM. Weed pressure determines the chemical profile of wheat (Triticum aestivum L.) and its allelochemicals potential. PEST MANAGEMENT SCIENCE 2022; 78:1605-1619. [PMID: 34994056 DOI: 10.1002/ps.6779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Common purslane (Portulaca oleracea) and annual ryegrass (Lolium rigidum) are important infesting weeds of field crops. Herbicides are mostly used for weed suppression, while their environmental toxicity and resistance in weeds against them demand considering alternative options, such as the use of allelopathic crops for weed management. Wheat is an important allelopathic crop and present research focused on the identification and quantification of benzoxazinoids (BXZs) and polyphenols (phenolic acids and flavonoids) of the wheat accession 'Ursita' and to screen its allelopathic impact on P. oleracea and Lolium rigidum through equal-compartment-agar (ECA) method. RESULTS Weed germination, radicle length, biomass and photosynthetic pigments were altered following co-growth of weeds with Ursita for 10-day. Root exudates from Ursita reduced (29-60%) the seedling growth and photosynthetic pigments of Lolium rigidum depending on co-culture conditions of planting density. Weed pressure caused significant increase in the production of phenolic acids (vanillic, ferulic, syringic and p-coumaric acids) and root exudation of BXZs, in particular benzoxazolin-2-one (BOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA), 2-hydroxy-1,4-benzoxazin3-one (HBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) in wheat tissues (shoots, roots) and exudate in root rhizosphere agar medium in response to co-cultivation with Lolium rigidum and P. oleracea, depending on weed/crop density. CONCLUSION The work revealed that Ursita is allelopathic in nature and can be used in breeding programs to enhance its allelopathic activity. Meanwhile, there are opportunities to explore allelopathic effect of wheat cultivars to control P. oleracea and Lolium rigidum under field conditions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Yedra Vieites-Álvarez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Manuel J Reigosa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Adela M Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
13
|
Zhang H, Rutherford S, Qi S, Huang P, Dai Z, Du D. Transcriptome profiling of Arabidopsis thaliana roots in response to allelopathic effects of Conyza canadensis. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:53-63. [PMID: 34647200 DOI: 10.1007/s10646-021-02489-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The molecular mechanisms underlying allelopathy and their role in the interactions between invasive weeds and native species remain unclear. In this study, we aimed to explore the physiological and molecular response of plant roots of a native species to allelopathy from an invasive weed. We examined the growth and development of roots of native Arabidopsis thaliana for a 2-week period after being treated with aqueous extracts at different concentrations from invasive Conyza canadensis. Extracts with higher concentration in the Murashige and Skoog (MS) media (i.e., 4 mg of extract/mL of MS) significantly affected the root growth of A. thaliana. Roots of A. thaliana displayed weakened root tip activity and an accumulation of reactive oxygen species (ROS) in response to extracts from C. canadensis. The transcriptome analysis of A. thaliana roots exposed to phytotoxicity revealed differentially expressed genes (DEGs) involved in cell wall formation, abiotic stress, transporter genes and signal transduction. We found that genes associated with nutrient transport, such as major facilitator superfamily (MFS) and amino acid permease (AAP3) transporters as well as genes involved in stress response, including leucine-rich repeat receptor-like protein kinases (LRR-RLKs) were down-regulated. In addition, we found that many transcription factors associated with plant stress (such as APETALA2/ethylene response factors) were up-regulated while others (e.g., zinc-finger proteins) were down-regulated. Allelochemicals from C. canadensis also induced the up-regulation of detoxification (DTX) genes, ROS related genes, calcineurin B-like interacting protein kinases (CIPKs) and calmodulin. Overall, our findings provided insights into allelopathy in C. canadensis at the molecular level, and contributes to our understanding of invasion mechanisms of alien plant species. CLINICAL TRIALS REGISTRATION: This study does not contain any studies with clinical trials performed by any of the authors.
Collapse
Affiliation(s)
- Haiyan Zhang
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China
- Changzhou Environmental Monitoring Center, Puqian Street 149, Changzhou, 213000, PR China
| | - Susan Rutherford
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China
- The Royal Botanic Gardens and Domain Trust, MrsMacquaries Road, Sydney, NSW, 2000, Australia
| | - Shanshan Qi
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China
| | - Ping Huang
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China.
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China.
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China.
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
14
|
Detoxification of phenanthrene in Arabidopsis thaliana involves a Dioxygenase For Auxin Oxidation 1 (AtDAO1). J Biotechnol 2021; 342:36-44. [PMID: 34610365 DOI: 10.1016/j.jbiotec.2021.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination has a negative impact on ecosystems. PAHs are a large group of toxins with two or more benzene rings that are persistent in the environment. Some PAHs can be cytotoxic, teratogenic, and/or carcinogenic. In the bacterium Pseudomonas, PAHs can be modified by dioxygenases, which increase the reactivity of PAHs. We hypothesize that some plant dioxygenases are capable of PAH biodegradation. Herein, we investigate the involvement of Arabidopsis thaliana At1g14130 in the degradation of phenanthrene, our model PAH. The At1g14130 gene encodes Dioxygenase For Auxin Oxidation 1 (AtDAO1), an enzyme involved in the oxidative inactivation of the hormone auxin. Expression analysis using a β-glucuronidase (GUS) reporter revealed that At1g14130 is prominently expressed in new leaves of plants exposed to media with phenanthrene. Analysis of the oxidative state of gain-of-function mutants showed elevated levels of H2O2 after phenanthrene treatments, probably due to an increase in the oxidation of phenanthrene by AtDAO1. Biochemical assays with purified AtDAO1 and phenanthrene suggest an enzymatic activity towards the PAH. Thus, data presented in this study support the hypothesis that an auxin dioxygenase, AtDAO1, from Arabidopsis thaliana contributes to the degradation of phenanthrene and that there is possible toxic metabolite accumulation after PAH exposure.
Collapse
|
15
|
Suntichaikamolkul N, Sangpong L, Schaller H, Sirikantaramas S. Genome-wide identification and expression profiling of durian CYPome related to fruit ripening. PLoS One 2021; 16:e0260665. [PMID: 34847184 PMCID: PMC8631664 DOI: 10.1371/journal.pone.0260665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
Durian (Durio zibethinus L.) is a major economic crop native to Southeast Asian countries, including Thailand. Accordingly, understanding durian fruit ripening is an important factor in its market worldwide, owing to the fact that it is a climacteric fruit with a strikingly limited shelf life. However, knowledge regarding the molecular regulation of durian fruit ripening is still limited. Herein, we focused on cytochrome P450, a large enzyme family that regulates many biosynthetic pathways of plant metabolites and phytohormones. Deep mining of the durian genome and transcriptome libraries led to the identification of all P450s that are potentially involved in durian fruit ripening. Gene expression validation by RT-qPCR showed a high correlation with the transcriptome libraries at five fruit ripening stages. In addition to aril-specific and ripening-associated expression patterns, putative P450s that are potentially involved in phytohormone metabolism were selected for further study. Accordingly, the expression of CYP72, CYP83, CYP88, CYP94, CYP707, and CYP714 was significantly modulated by external treatment with ripening regulators, suggesting possible crosstalk between phytohormones during the regulation of fruit ripening. Interestingly, the expression levels of CYP88, CYP94, and CYP707, which are possibly involved in gibberellin, jasmonic acid, and abscisic acid biosynthesis, respectively, were significantly different between fast- and slow-post-harvest ripening cultivars, strongly implying important roles of these hormones in fruit ripening. Taken together, these phytohormone-associated P450s are potentially considered additional molecular regulators controlling ripening processes, besides ethylene and auxin, and are economically important biological traits.
Collapse
Affiliation(s)
- Nithiwat Suntichaikamolkul
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Lalida Sangpong
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Gu X, Chen IG, Tsai CJ. How do holoparasitic plants exploit vitamin K1? PLANT SIGNALING & BEHAVIOR 2021; 16:1976546. [PMID: 34514932 PMCID: PMC8525939 DOI: 10.1080/15592324.2021.1976546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/11/2023]
Abstract
Phylloquinone (vitamin K1) is a thylakoid-embedded electron carrier essential for photosynthesis. Paradoxically, we found that phylloquinone biosynthesis is retained in the nonphotosynthetic holoparasite Phelipanche aegyptiaca (Egyptian broomrape). The phylloquinone pathway genes are preferentially expressed during development of the invasive organ, the haustorium, and exhibit strong coexpression with redox-active proteins known to be involved in parasitism. Unlike in photoautotrophic taxa, the late pathway genes of the holoparasite lack the chloroplast-targeting sequence and their proteins are targeted to the plasma membrane instead. Plasma membrane phylloquinone may enable Phelipanche to sense changes in the redox environment during host interactions. The N-truncated isoforms are conserved in several other Orobanchaceae root holoparasites, and interestingly, in a number of closely related photoautotrophic species as well. This suggests an ancient origin of distinct phylloquinone pathways predating the evolution of parasitic plants in the Orobanchaceae. These findings represent exciting opportunities to probe plasma membrane phylloquinone function and diversification in parasitic and nonparasitic plant responses to external redox chemistry in the rhizosphere.
Collapse
Affiliation(s)
- Xi Gu
- Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Ing-Gin Chen
- School of Forestry and Natural Resources, University of Georgia, Athens, USA
| | - Chung-Jui Tsai
- Institute of Bioinformatics, University of Georgia, Athens, USA
- School of Forestry and Natural Resources, University of Georgia, Athens, USA
- Department of Genetics, University of Georgia, Athens, USA
- Department of Plant Biology, University of Georgia, Athens, USA
| |
Collapse
|
17
|
Koschmieder J, Wüst F, Schaub P, Álvarez D, Trautmann D, Krischke M, Rustenholz C, Mano J, Mueller MJ, Bartels D, Hugueney P, Beyer P, Welsch R. Plant apocarotenoid metabolism utilizes defense mechanisms against reactive carbonyl species and xenobiotics. PLANT PHYSIOLOGY 2021; 185:331-351. [PMID: 33721895 PMCID: PMC8133636 DOI: 10.1093/plphys/kiaa033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation of the molecules in the pathway. While plant carotenoid biosynthesis has been extensively characterized, research on carotenoid degradation and catabolism into apocarotenoids is a relatively novel field. To identify apocarotenoid metabolic processes, we characterized the transcriptome of transgenic Arabidopsis (Arabidopsis thaliana) roots accumulating high levels of β-carotene and, consequently, β-apocarotenoids. Transcriptome analysis revealed feedback regulation on carotenogenic gene transcripts suitable for reducing β-carotene levels, suggesting involvement of specific apocarotenoid signaling molecules originating directly from β-carotene degradation or after secondary enzymatic derivatizations. Enzymes implicated in apocarotenoid modification reactions overlapped with detoxification enzymes of xenobiotics and reactive carbonyl species (RCS), while metabolite analysis excluded lipid stress response, a potential secondary effect of carotenoid accumulation. In agreement with structural similarities between RCS and β-apocarotenoids, RCS detoxification enzymes also converted apocarotenoids derived from β-carotene and from xanthophylls into apocarotenols and apocarotenoic acids in vitro. Moreover, glycosylation and glutathionylation-related processes and translocators were induced. In view of similarities to mechanisms found in crocin biosynthesis and cellular deposition in saffron (Crocus sativus), our data suggest apocarotenoid metabolization, derivatization and compartmentalization as key processes in (apo)carotenoid metabolism in plants.
Collapse
Affiliation(s)
| | - Florian Wüst
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Schaub
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Álvarez
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Danika Trautmann
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Markus Krischke
- Julius-Maximilians-University Würzburg, Julius-von-Sachs-Institute for Biosciences, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Camille Rustenholz
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Jun’ichi Mano
- Science Research Center, Organization for Research Initiatives, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| | - Martin J Mueller
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Philippe Hugueney
- Julius-Maximilians-University Würzburg, Julius-von-Sachs-Institute for Biosciences, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Peter Beyer
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Hickman DT, Rasmussen A, Ritz K, Birkett MA, Neve P. Review: Allelochemicals as multi-kingdom plant defence compounds: towards an integrated approach. PEST MANAGEMENT SCIENCE 2021; 77:1121-1131. [PMID: 32902160 PMCID: PMC7891363 DOI: 10.1002/ps.6076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 05/05/2023]
Abstract
The capability of synthetic pesticides to manage weeds, insect pests and pathogens in crops has diminished due to evolved resistance. Sustainable management is thus becoming more challenging. Novel solutions are needed and, given the ubiquity of biologically active secondary metabolites in nature, such compounds require further exploration as leads for novel crop protection chemistry. Despite improving understanding of allelochemicals, particularly in terms of their potential for use in weed control, their interactions with multiple biotic kingdoms have to date largely been examined in individual compounds and not as a recurrent phenomenon. Here, multi-kingdom effects in allelochemicals are introduced by defining effects on various organisms, before exploring current understanding of the inducibility and possible ecological roles of these compounds with regard to the evolutionary arms race and dose-response relationships. Allelochemicals with functional benefits in multiple aspects of plant defence are described. Gathering these isolated areas of science under the unified umbrella of multi-kingdom allelopathy encourages the development of naturally-derived chemistries conferring defence to multiple discrete biotic stresses simultaneously, maximizing benefits in weed, insect and pathogen control, while potentially circumventing resistance. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Darwin T Hickman
- Rothamsted Research, HarpendenHertfordshireUK
- University of Nottingham, Sutton BoningtonLeicestershireUK
| | | | - Karl Ritz
- University of Nottingham, Sutton BoningtonLeicestershireUK
| | | | - Paul Neve
- Rothamsted Research, HarpendenHertfordshireUK
| |
Collapse
|
19
|
Scarabel L, Panozzo S, Loddo D, Mathiassen SK, Kristensen M, Kudsk P, Gitsopoulos T, Travlos I, Tani E, Chachalis D, Sattin M. Diversified Resistance Mechanisms in Multi-Resistant Lolium spp. in Three European Countries. FRONTIERS IN PLANT SCIENCE 2020; 11:608845. [PMID: 33384707 PMCID: PMC7769757 DOI: 10.3389/fpls.2020.608845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Annual ryegrass species (Lolium spp.) infest cereal crops worldwide. Ryegrass populations with multiple resistance to the acetyl coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors are an increasing problem in several European countries. We investigated the resistance pattern and level of resistance in ryegrass populations collected in Denmark, Greece and Italy and studied the diversity of mechanisms endowing resistance, both target-site and metabolism based. All populations showed high resistance indexes (RI) to the ALS inhibitors, iodosufuron-methyl-sodium + mesosulfuron-methyl (RI from 8 to 70), whereas the responses to the two ACCase inhibitors, clodinafop-propargyl and pinoxaden, differed. The Greek and Italian populations were moderately to highly resistant to clodinafop (RI > 8) and showed low to moderate resistance to pinoxaden (RI ranged from 3 to 13) except for one Italian population. In contrast, the Danish Lolium populations showed low to moderate resistance to clodinafop (RI ranged from 2 to 7) and only one population was resistant to pinoxaden. Different mutant ACCase alleles (Leu1781, Cys2027, Asn2041, Val2041, Gly2078, Arg2088, Ala2096) and ALS alleles (Gly122, Ala197, Gln197, Leu197, Ser197, Thr197, Val205, Asn376, Glu376, Leu574) endowing resistance were detected in the Greek and Italian populations. In several plants, no mutated ALS and ACCase alleles were found showing a great heterogeneity within and among the Greek and Italian populations. Conversely, no mutant ACCase alleles were identified in the four Danish populations and only one mutant ALS allele (Leu574) was detected in two Danish populations. The expression level of nitronate monooxygenase (NMO), glutathione S-transferase (GST) and cytochrome P450s (CYP72A1 and CYP72A2) varied broadly among populations and individual plants within the populations. Constitutive up-regulation of GST, CYP72A1 and CYP72A2 was detected in resistant plants respect to susceptible plants in one Danish and one Italian population. It appears that the mechanisms underlying resistance are rather complex and diversified among Lolium spp. populations from the three countries, coevolution of both target-site resistance and metabolic based herbicide resistance appears to be a common feature in Denmark and Italy. This must be considered and carefully evaluated in adopting resistance management strategies to control Lolium spp. in cereal crops.
Collapse
Affiliation(s)
- Laura Scarabel
- Institute for Sustainable Plant Protection (IPSP-CNR), National Research Council of Italy, Padua, Italy
| | - Silvia Panozzo
- Institute for Sustainable Plant Protection (IPSP-CNR), National Research Council of Italy, Padua, Italy
| | - Donato Loddo
- Institute for Sustainable Plant Protection (IPSP-CNR), National Research Council of Italy, Padua, Italy
| | | | | | - Per Kudsk
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
| | - Thomas Gitsopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter, Thessaloniki, Greece
| | - Ilias Travlos
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Eleni Tani
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | - Maurizio Sattin
- Institute for Sustainable Plant Protection (IPSP-CNR), National Research Council of Italy, Padua, Italy
| |
Collapse
|
20
|
Duke SO, Pan Z, Bajsa-Hirschel J. Proving the Mode of Action of Phytotoxic Phytochemicals. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1756. [PMID: 33322386 PMCID: PMC7763512 DOI: 10.3390/plants9121756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Knowledge of the mode of action of an allelochemical can be valuable for several reasons, such as proving and elucidating the role of the compound in nature and evaluating its potential utility as a pesticide. However, discovery of the molecular target site of a natural phytotoxin can be challenging. Because of this, we know little about the molecular targets of relatively few allelochemicals. It is much simpler to describe the secondary effects of these compounds, and, as a result, there is much information about these effects, which usually tell us little about the mode of action. This review describes the many approaches to molecular target site discovery, with an attempt to point out the pitfalls of each approach. Clues from molecular structure, phenotypic effects, physiological effects, omics studies, genetic approaches, and use of artificial intelligence are discussed. All these approaches can be confounded if the phytotoxin has more than one molecular target at similar concentrations or is a prophytotoxin, requiring structural alteration to create an active compound. Unequivocal determination of the molecular target site requires proof of activity on the function of the target protein and proof that a resistant form of the target protein confers resistance to the target organism.
Collapse
Affiliation(s)
- Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38655, USA
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Oxford, MS 38655, USA; (Z.P.); (J.B.-H.)
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Oxford, MS 38655, USA; (Z.P.); (J.B.-H.)
| |
Collapse
|
21
|
Giannakopoulos G, Dittgen J, Schulte W, Zoellner P, Helmke H, Lagojda A, Edwards R. Safening activity and metabolism of the safener cyprosulfamide in maize and wheat. PEST MANAGEMENT SCIENCE 2020; 76:3413-3422. [PMID: 32083366 DOI: 10.1002/ps.5801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Safeners extend the application of existing herbicides by selectively enhancing tolerance in large-grained cereal crops. While their activity is linked to enhanced herbicide metabolism, their exact mode of action and reasons for their crop specificity have yet to be determined. In this study, we investigated the selectivity of the recently developed sulfonamide safener cyprosulfamide (CSA) in maize (Zea mays L.) and wheat (Triticum aestivum), focusing on its uptake, distribution and metabolism in the two species. RESULTS CSA protected maize, but not wheat, from injury by thiencarbazone-methyl (TCM). This correlated with the selective enhanced detoxification of the herbicide in maize. CSA underwent more rapid metabolism in maize than in wheat, with the formation of a specific hydroxylated metabolite correlating with safening. Studies with the nsf1 mutant sweetcorn line showed that the hydroxylation of CSA was partly mediated by the cytochrome P450 CYP81A9. However, primary metabolites of CSA were chemically synthesised and tested for their ability to safen TCM in maize but when tested were inactive as safeners. CONCLUSION The results of this study suggest that the protection against TCM injury by CSA is linked to enhanced herbicide metabolism. This selective activity is due to the specific recognition of parent CSA in maize but not in wheat. Subsequent rapid oxidative metabolism of CSA led to its inactivation, demonstrating that cytochrome P450s regulate the activity of safeners as well as herbicides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- George Giannakopoulos
- Crop Protection Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jan Dittgen
- Weed Control Research, Bayer AG, Frankfurt, Germany
| | | | - Peter Zoellner
- Small Molecules Technologies, Bayer AG, Frankfurt, Germany
| | | | - Andreas Lagojda
- Structure Elucidation, Environmental Safety, Development, Bayer AG, Monheim, Germany
| | - Robert Edwards
- Crop Protection Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Graña E, Díaz-Tielas C, Sánchez-Moreiras AM, Reigosa MJ, Celeiro M, Abagyan R, Teijeira M, Duke MV, Clerk T, Pan Z, Duke SO. Transcriptome and binding data indicate that citral inhibits single strand DNA-binding proteins. PHYSIOLOGIA PLANTARUM 2020; 169:99-109. [PMID: 31828797 DOI: 10.1111/ppl.13055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
The mechanism of phytotoxicity of citral was probed in Arabidopsis thaliana using RNA-Seq and in silico binding analyses. Inhibition of growth by 50% by citral downregulated transcription of 9156 and 5541 genes in roots and shoots, respectively, after 1 h. Only 56 and 62 genes in roots and shoots, respectively, were upregulated. In the shoots, the downregulation increased at 3 h (6239 genes downregulated, vs 66 upregulated). Of all genes affected in roots at 1 h (time of greatest effect), 7.69% of affected genes were for nucleic acid binding functions. Genes for single strand DNA binding proteins (SSBP) WHY1, WHY 2 and WHY3 were strongly downregulated in the shoot up until 12 h after citral exposure. Effects were strong in the root at just 1 h after the treatment and then at 12 and 24 h. Similar effects occurred with the transcription factors MYC-2, ANAC and SCR-SHR, which were also significantly downregulated for the first hour of treatment, and downregulation occurred again after 12 and 24 h treatment. Downregulation of ANAC in the first hour of treatment was significantly (P < 0.0001) decreased more than eight times compared to the control. In silico molecular docking analysis suggests binding of citral isomers to the SSBPs WHY1, WHY2, and WHY3, as well as with other transcription factors such as MYC-2, ANAC and SCR-SHR. Such effects could account for the profound and unusual effects of citral on downregulation of gene transcription.
Collapse
Affiliation(s)
- Elisa Graña
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, 36310, Spain
| | - Carla Díaz-Tielas
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, 36310, Spain
| | - Adela M Sánchez-Moreiras
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, 36310, Spain
- Agri-Food Research and Transfer Centre of the Water Campus (CITACA), University of Vigo, Vigo, Spain
| | - Manuel J Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, 36310, Spain
- Agri-Food Research and Transfer Centre of the Water Campus (CITACA), University of Vigo, Vigo, Spain
| | - María Celeiro
- Department of Organic Chemistry, University of Vigo, Vigo, 36310, Spain
- Institute of Health of Southern Galicia, University of Vigo, Vigo, 36310, Spain
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marta Teijeira
- Department of Organic Chemistry, University of Vigo, Vigo, 36310, Spain
- Institute of Health of Southern Galicia, University of Vigo, Vigo, 36310, Spain
| | - Mary V Duke
- USDA, ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA
| | - Tracy Clerk
- USDA, ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA
| | - Zhiqiang Pan
- USDA, ARS, Natural Products Utilization Research Unit, Oxford, MS, 38677, USA
| | - Stephen O Duke
- USDA, ARS, Natural Products Utilization Research Unit, Oxford, MS, 38677, USA
| |
Collapse
|
23
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 2020; 33:860-879. [PMID: 32259433 PMCID: PMC7175458 DOI: 10.1021/acs.chemrestox.9b00476] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
Collapse
Affiliation(s)
- Mele N. Avilla
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Kristen M. C. Malecki
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Rachel H. Wilson
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
- McArdle
Laboratory for Cancer Research, University of Wisconsin School of Medicine
and Public Health, Madison, Wisconsin 53705-227, United States
| |
Collapse
|
24
|
Díaz-Tielas C, Graña E, Sánchez-Moreiras AM, Reigosa MJ, Vaughn JN, Pan Z, Bajsa-Hirschel J, Duke MV, Duke SO. Transcriptome responses to the natural phytotoxin t-chalcone in Arabidopsis thaliana L. PEST MANAGEMENT SCIENCE 2019; 75:2490-2504. [PMID: 30868714 DOI: 10.1002/ps.5405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND New modes of action are needed for herbicides. The flavonoid synthesis intermediate t-chalcone causes apoptosis-like symptoms in roots and bleaching of shoots of Arabidospsis, suggesting a unique mode of action as a phytotoxin. RESULTS Using RNA-Seq, transcriptome changes were monitored in Arabidopsis seedlings during the first 24 h of exposure (at 1, 3, 6, 12 and 24 h) to 21 μm t-chalcone (I50 dose), examining effects on roots and shoots separately. Expression of 892 and 1000 genes was affected in roots and shoots, respectively. According to biological classification, many of the affected genes were transcription factors and genes associated with oxidative stress, heat shock proteins, xenobiotic detoxification, ABA and auxin biosynthesis, and primary metabolic processess. These are secondary effects found with most phytotoxins. Potent phytotoxins usually act by inhibiting enzymes of primary metabolism. KEGG pathway analysis of transcriptome results from the first 3 h of t-chalcone exposure indicated several potential primary metabolism target sites for t-chalcone. Of these, p-hydroxyphenylpyruvate dioxygenase (HPPD) and tyrosine amino transferase were consistent with the bleaching effect of the phytotoxin. Supplementation studies with Lemna paucicostata and Arabidiopsis supported HPPD as the target, although in vitro enzyme inhibition was not found. CONCLUSIONS t-Chalcone is possibly a protoxin that is converted to a HPPD inhibitor in vivo. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carla Díaz-Tielas
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - Elisa Graña
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | | | - Manuel J Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - Justin N Vaughn
- Genomics and Bioinformatics Research Unit, USDA, ARS, Athens, GA, USA
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, USDA, ARS, Oxford, MS, USA
| | | | - Mary V Duke
- Genomics and Bioinformatics Research, USDA, ARS, Stoneville, MS, USA
| | - Stephen O Duke
- Natural Products Utilization Research Unit, USDA, ARS, Oxford, MS, USA
| |
Collapse
|
25
|
Baek YS, Goodrich LV, Brown PJ, James BT, Moose SP, Lambert KN, Riechers DE. Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum. FRONTIERS IN PLANT SCIENCE 2019; 10:192. [PMID: 30906302 PMCID: PMC6418823 DOI: 10.3389/fpls.2019.00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/05/2019] [Indexed: 05/04/2023]
Abstract
Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for investigating plant responses to safener treatment in cereal crops, and most transcriptome analyses in response to safener treatments have been conducted in dicot model species that are not protected by safener from herbicide injury. In this study, three different approaches were utilized in grain sorghum (Sorghum bicolor (L.) Moench) to investigate mechanisms involved in safener-regulated signaling pathways. An initial transcriptome analysis was performed to examine global gene expression in etiolated shoot tissues of hybrid grain sorghum following treatment with the sorghum safener, fluxofenim. Most upregulated transcripts encoded detoxification enzymes, including P450s, GSTs, and UDP-dependent glucosyltransferases (UGTs). Interestingly, several of these upregulated transcripts are similar to genes involved with the biosynthesis and recycling/catabolism of dhurrin, an important chemical defense compound, in these seedling tissues. Secondly, 761 diverse sorghum inbred lines were evaluated in a genome-wide association study (GWAS) to determine key molecular-genetic factors governing safener-mediated signaling mechanisms and/or herbicide detoxification. GWAS revealed a significant single nucleotide polymorphism (SNP) associated with safener-induced response on chromosome 9, located within a phi-class SbGST gene and about 15-kb from a different phi-class SbGST. Lastly, the expression of these two candidate SbGSTs was quantified in etiolated shoot tissues of sorghum inbred BTx623 in response to fluxofenim treatment. SbGSTF1 and SbGSTF2 transcripts increased within 12-hr after fluxofenim treatment but the level of safener-induced expression differed between the two genes. In addition to identifying specific GSTs potentially involved in the safener-mediated detoxification pathway, this research elucidates a new direction for studying both constitutive and inducible mechanisms for chemical defense in cereal crop seedlings.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Loren V. Goodrich
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Jerseyville Research Center, Monsanto Company, Jerseyville, IL, United States
| | - Patrick J. Brown
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Brandon T. James
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Stephen P. Moose
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kris N. Lambert
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
26
|
Biochemical Characterization of the Rice Cinnamyl Alcohol Dehydrogenase Gene Family. Molecules 2018; 23:molecules23102659. [PMID: 30332817 PMCID: PMC6222663 DOI: 10.3390/molecules23102659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/30/2022] Open
Abstract
Cinnamyl alcohol dehydrogenase (CAD) is involved in the final step of the phenylpropanod pathway, catalyzing the NADPH-dependent reduction of hydroxy-cinnamaldehydes into the corresponding alcohols. The rice genome contains twelve CAD and CAD-like genes, collectively called OsCADs. To elucidate the biochemical function of the OsCADs, OsCAD1, 2, 6, and 7, which are highly expressed in rice, were cloned from rice tissues. The cloned OsCADs were heterologously expressed in Escherichia coli as His-tag fusion proteins. The activity assay of the recombinant OsCADs showed that OsCAD2, 6, and 7 have CAD activity toward hydroxycinnamaldehydes, but OsCAD1 has no detectable catalytic activity. The kinetic parameters of the enzyme reactions demonstrated that OsCAD2 has the highest catalytic activity among the examined enzymes. This result agrees well with the finding that the Zn binding and NADPH binding motifs and the residues constituting the substrate binding pocket in bona fide plant CADs were fully conserved in OsCAD2. Although they have large variations in the residue for the substrate binding pocket, OsCAD6 and 7 catalyzed the reduction of hydroxycinnamaldehydes with a similar efficiency. Alignment of amino acid sequences showed that OsCAD1 lacks the GxxxxP motif for NADPH binding and has mismatches in residues important in the reduction process, which could be responsible for the loss of catalytic activity. OsCAD2 belongs to CAD Class I with bona fide CADs from other plant species and is constitutively expressed throughout the developmental stages of rice, with preferential expression in actively lignifying tissues such as the root, stem, and panicle, suggesting that it is mainly involved in developmental lignification in rice. The expression of OsCAD2 was also induced by biotic and abiotic stresses such as Xanthomonas oryzae pv. oryzae (Xoo) infection and UV-irradiation, suggesting that it plays a role in the defense response of rice, in addition to a bona fide role in developmental lignification. OsCAD6 and 7 belong in CAD Class II. Their expression is relatively lower than that of OsCAD2 and is confined to certain tissues, such as the leaf sheath, stem, and panicle. The expression of OsCAD6 was stimulated by Xoo infection and UV-irradiation. Thus OsCAD6 appears to be an inducible OsCAD that is likely involved in the defense response of rice against biotic and abiotic stresses.
Collapse
|
27
|
Alberto D, Couée I, Pateyron S, Sulmon C, Gouesbet G. Low doses of triazine xenobiotics mobilize ABA and cytokinin regulations in a stress- and low-energy-dependent manner. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:8-22. [PMID: 30080643 DOI: 10.1016/j.plantsci.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
The extent of residual contaminations of pesticides through drift, run-off and leaching is a potential threat to non-target plant communities. Arabidopsis thaliana responds to low doses of the herbicide atrazine, and of its degradation products, desethylatrazine and hydroxyatrazine, not only in the long term, but also under conditions of short-term exposure. In order to investigate underlying molecular mechanisms of low-dose responses and to decipher commonalities and specificities between different chemical treatments, parallel transcriptomic studies of the early effects of the atrazine-desethylatrazine-hydroxyatrazine chemical series were undertaken using whole-genome microarrays. All of the triazines under study produced coordinated and specific changes in gene expression. Hydroxyatrazine-responsive genes were mainly linked to root development, whereas atrazine and desethylatrazine mostly affected molecular signaling networks implicated in stress and hormone responses. Analysis of signaling-related genes, promoter sites and shared-function interaction networks highlighted the involvement of energy-, stress-, abscisic acid- and cytokinin-regulated processes, and emphasized the importance of cold-, heat- and drought-related signaling in the perception of low doses of triazines. These links between low-dose xenobiotic impacts and stress-hormone crosstalk pathways give novel insights into plant-pesticide interactions and plant-pollution interactions that are essential for toxicity evaluation in the context of environmental risk assessment.
Collapse
Affiliation(s)
- Diana Alberto
- Université de Rennes 1 / Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Rennes, F-35000, France
| | - Ivan Couée
- Université de Rennes 1 / Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Rennes, F-35000, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Cécile Sulmon
- Université de Rennes 1 / Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Rennes, F-35000, France
| | - Gwenola Gouesbet
- Université de Rennes 1 / Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Rennes, F-35000, France.
| |
Collapse
|
28
|
Plant Protection by Benzoxazinoids—Recent Insights into Biosynthesis and Function. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080143] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Benzoxazinoids (BXs) are secondary metabolites present in many Poaceae including the major crops maize, wheat, and rye. In contrast to other potentially toxic secondary metabolites, BXs have not been targets of counter selection during breeding and the effect of BXs on insects, microbes, and neighbouring plants has been recognised. A broad knowledge about the mode of action and metabolisation in target organisms including herbivorous insects, aphids, and plants has been gathered in the last decades. BX biosynthesis has been elucidated on a molecular level in crop cereals. Recent advances, mainly made by investigations in maize, uncovered a significant diversity in the composition of BXs within one species. The pattern can be specific for single plant lines and dynamic changes triggered by biotic and abiotic stresses were observed. Single BXs might be toxic, repelling, attractive, and even growth-promoting for insects, depending on the particular species. BXs delivered into the soil influence plant and microbial communities. Furthermore, BXs can possibly be used as signalling molecules within the plant. In this review we intend to give an overview of the current data on the biosynthesis, structure, and function of BXs, beyond their characterisation as mere phytotoxins.
Collapse
|
29
|
Salas-Perez RA, Saski CA, Noorai RE, Srivastava SK, Lawton-Rauh AL, Nichols RL, Roma-Burgos N. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PLoS One 2018; 13:e0195488. [PMID: 29672568 PMCID: PMC5908165 DOI: 10.1371/journal.pone.0195488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2018] [Indexed: 11/24/2022] Open
Abstract
Amaranthus palmeri (Amaranthaceae) is a noxious weed in several agroecosystems and in some cases seriously threatens the sustainability of crop production in North America. Glyphosate-resistant Amaranthus species are widespread, prompting the use of alternatives to glyphosate such as glufosinate, in conjunction with glufosinate-resistant crop cultivars, to help control glyphosate-resistant weeds. An experiment was conducted to analyze the transcriptome of A. palmeri plants that survived exposure to 0.55 kg ha-1 glufosinate. Since there was no record of glufosinate use at the collection site, survival of plants within the population are likely due to genetic expression that pre-dates selection; in the formal parlance of weed science this is described as natural tolerance. Leaf tissues from glufosinate-treated and non-treated seedlings were harvested 24 h after treatment (HAT) for RNA-Seq analysis. Global gene expression was measured using Illumina DNA sequence reads from non-treated and treated surviving (presumably tolerant, T) and susceptible (S) plants. The same plants were used to determine the mechanisms conferring differential tolerance to glufosinate. The S plants accumulated twice as much ammonia as did the T plants, 24 HAT. The relative copy number of the glufosinate target gene GS2 did not differ between T and S plants, with 1 to 3 GS2 copies in both biotypes. A reference cDNA transcriptome consisting of 72,780 contigs was assembled, with 65,282 sequences putatively annotated. Sequences of GS2 from the transcriptome assembly did not have polymorphisms unique to the tolerant plants. Five hundred sixty-seven genes were differentially expressed between treated T and S plants. Of the upregulated genes in treated T plants, 210 were more highly induced than were the upregulated genes in the treated S plants. Glufosinate-tolerant plants had greater induction of ABC transporter, glutathione S-transferase (GST), NAC transcription factor, nitronate monooxygenase (NMO), chitin elicitor receptor kinase (CERK1), heat shock protein 83, ethylene transcription factor, heat stress transcription factor, NADH-ubiquinone oxidoreductase, ABA 8'-hydroxylase, and cytochrome P450 genes (CYP72A, CYP94A1). Seven candidate genes were selected for validation using quantitative real time-PCR. While GST was upregulated in treated tolerant plants in at least one population, CYP72A219 was consistently highly expressed in all treated tolerant biotypes. These genes are candidates for contributing tolerance to glufosinate. Taken together, these results show that differential induction of stress-protection genes in a population can enable some individuals to survive herbicide application. Elevated expression of detoxification-related genes can get fixed in a population with sustained selection pressure, leading to evolution of resistance. Alternatively, sustained selection pressure could select for mutation(s) in the GS2 gene with the same consequence.
Collapse
Affiliation(s)
- Reiofeli A. Salas-Perez
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Christopher A. Saski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Rooksana E. Noorai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Subodh K. Srivastava
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Amy L. Lawton-Rauh
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | | | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
30
|
Brazier‐Hicks M, Gershater M, Dixon D, Edwards R. Substrate specificity and safener inducibility of the plant UDP-glucose-dependent family 1 glycosyltransferase super-family. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:337-348. [PMID: 28640934 PMCID: PMC5785338 DOI: 10.1111/pbi.12775] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 05/05/2023]
Abstract
Plants contain large numbers of family 1 UDP-glucose-dependent glycosyltransferases (UGTs), including members that conjugate xenobiotics. Arabidopsis contains 107 UGT genes with 99 family members successfully expressed as glutathione transferase (GST)-fusion proteins in E. coli. A high-throughput catalytic screen was developed based on quantification of the fusion by measuring GST activity. UGT activity using UDP-glucose as donor was then determined using 11 synthetic acceptors bearing hydroxyl, amino and thiol groups that had been shown to undergo conjugation in plant extracts. In total, 44 UGTs, largely members of the D and E groups, were active towards xenobiotics, glucosylating phenol and thiol acceptors. In contrast, N-glucosyltransferase (NGT) activity was almost exclusively restricted to a single enzyme, UGT72B1. Using DNA microarrays, the induction of UGT transcripts following treatment with the herbicide safener fenclorim was compared in Arabidopsis and rice. D and L group members were the most safener-inducible UGTs in both species. The respective Arabidopsis enzymes showed low conjugating activity towards xenobiotics. Using Genevestigator, a small group of safened D and L UGTs were consistently induced in response to biotic and abiotic stress suggestive of protective activities beyond xenobiotic detoxification in both species. The induction of other detoxifying gene families following treatment with fenclorim, namely cytochromes P450 and glutathione transferases, further confirmed the selective enhancement of related subfamily members in the two species giving new insight into the safening response in cereals, where herbicide tolerance is enhanced compared with dicots, which are unresponsive to these treatments.
Collapse
Affiliation(s)
- Melissa Brazier‐Hicks
- School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK
| | | | | | - Robert Edwards
- School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
31
|
Dong W, Liu K, Liu J, Shi Z, Xin F, Zhang W, Ma J, Wu H, Wang F, Jiang M. Expression and characterization of the key enzymes involved in 2-benzoxazolinone degradation by Pigmentiphaga sp. DL-8. BIORESOURCE TECHNOLOGY 2018; 248:153-159. [PMID: 28684178 DOI: 10.1016/j.biortech.2017.06.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the key enzymes involved in 2-benzoxazolinone (BOA) degradation by Pigmentiphaga sp. DL-8 were further verified and characterized in Escherichia coli. By codon optimization and co-expression of molecular chaperones in a combined strategy, recombinant BOA amidohydrolase (rCbaA) and 2-aminophenol (2-AP) 1,2-dioxygenase (rCnbCαCβ) were expressed and purified with the highest activity of 1934.6U·mgprotein-1 and 32.80U·mgprotein-1, respectively. BOA could be hydrolyzed to 2AP by rCbaA, which was further transformed to picolinic acid by rCnbCαCβ based on identified catalytic product. The optimal pH and temperature for rCbaA are 9.0 and 55°C with excellent stability for catalytic environments, and the residual activity was >50% after incubation at temperatures <45°C or at pH between 6.0 and 10.0 for 24h. On the contrary, rCnbCαCβ composed of α-subunit (33kDa) and β-subunit (38kDa) showed poor stability against environmental factors, including temperature, pH, metal ions and chemicals.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
32
|
|
33
|
Landa P, Prerostova S, Langhansova L, Marsik P, Vanek T. Transcriptomic response of Arabidopsis thaliana (L.) Heynh. roots to ibuprofen. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:695-700. [PMID: 28398082 DOI: 10.1080/15226514.2016.1267697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface waters in urban areas are contaminated by ibuprofen (IBP), a popular and extensively used anti-inflammatory drug. In this study, we investigated the transcriptomic response in Arabidopsis thaliana (L.) Heynh. roots with the aim of revealing genes that are potentially involved in IBP detoxification and elucidating the effect of IBP on plants. IBP upregulated 63 and downregulated 38 transcripts (p-value < 0.1, fold change ≥2) after 2-day exposure to a 5-µM (1.03 mg/L) concentration of IBP under hydroponic conditions. Although the IBP concentration used in the experiment was highly relative to the concentrations found in rivers and wastewater, the number of genes with transcriptional changes was relatively low. The upregulation of cytochrome P450s, glutathione S-transferases, and UDP-glycosyltransferases indicates the occurrence of IBP oxidation in the first phase, followed by conjugation with glutathione and sugar in the second detoxification phase. ABC transporters could be involved in the transport of IBP and its metabolites. The identification of genes potentially involved in IBP detoxification could be useful in an IBP phytoremediation approach.
Collapse
Affiliation(s)
- Premysl Landa
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Sylva Prerostova
- b Laboratory of Hormonal Regulations in Plants , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
- c Department of Experimental Plant Biology, Faculty of Science , Charles University in Prague , Prague , Czech Republic
| | - Lenka Langhansova
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Petr Marsik
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Tomas Vanek
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| |
Collapse
|
34
|
Nathoo N, Bernards MA, MacDonald J, Yuan ZC. A Hydroponic Co-cultivation System for Simultaneous and Systematic Analysis of Plant/Microbe Molecular Interactions and Signaling. J Vis Exp 2017. [PMID: 28784965 DOI: 10.3791/55955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An experimental design mimicking natural plant-microbe interactions is very important to delineate the complex plant-microbe signaling processes. Arabidopsis thaliana-Agrobacterium tumefaciens provides an excellent model system to study bacterial pathogenesis and plant interactions. Previous studies of plant-Agrobacterium interactions have largely relied on plant cell suspension cultures, the artificial wounding of plants, or the artificial induction of microbial virulence factors or plant defenses by synthetic chemicals. However, these methods are distinct from the natural signaling in planta, where plants and microbes recognize and respond in spatial and temporal manners. This work presents a hydroponic cocultivation system where intact plants are supported by metal mesh screens and cocultivated with Agrobacterium. In this cocultivation system, no synthetic phytohormone or chemical that induces microbial virulence or plant defense is supplemented. The hydroponic cocultivation system closely resembles natural plant-microbe interactions and signaling homeostasis in planta. Plant roots can be separated from the medium containing Agrobacterium, and the signaling and responses of both the plant hosts and the interacting microbes can be investigated simultaneously and systematically. At any given timepoint/interval, plant tissues or bacteria can be harvested separately for various "omics" analyses, demonstrating the power and efficacy of this system. The hydroponic cocultivation system can be easily adapted to study: 1) the reciprocal signaling of diverse plant-microbe systems, 2) signaling between a plant host and multiple microbial species (i.e. microbial consortia or microbiomes), 3) how nutrients and chemicals are implicated in plant-microbe signaling, and 4) how microbes interact with plant hosts and contribute to plant tolerance to biotic or abiotic stresses.
Collapse
Affiliation(s)
- Naeem Nathoo
- London Research and Development Centre, Agriculture & Agri-Food Canada; Department of Biology, University of Western Ontario
| | | | | | - Ze-Chun Yuan
- London Research and Development Centre, Agriculture & Agri-Food Canada; Department of Microbiology and Immunology, University of Western Ontario;
| |
Collapse
|
35
|
Matzrafi M, Shaar-Moshe L, Rubin B, Peleg Z. Unraveling the Transcriptional Basis of Temperature-Dependent Pinoxaden Resistance in Brachypodium hybridum. FRONTIERS IN PLANT SCIENCE 2017; 8:1064. [PMID: 28680434 PMCID: PMC5478685 DOI: 10.3389/fpls.2017.01064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 05/26/2023]
Abstract
Climate change endangers food security and our ability to feed the ever-increasing human population. Weeds are the most important biotic stress, reducing crop-plant productivity worldwide. Chemical control, the main approach for weed management, can be strongly affected by temperature. Previously, we have shown that temperature-dependent non-target site (NTS) resistance of Brachypodium hybridum is due to enhanced detoxification of acetyl-CoA carboxylase inhibitors. Here, we explored the transcriptional basis of this phenomenon. Plants were characterized for the transcriptional response to herbicide application, high-temperature and their combination, in an attempt to uncover the genetic basis of temperature-dependent pinoxaden resistance. Even though most of the variance among treatments was due to pinoxaden application (61%), plants were able to survive pinoxaden application only when grown under high-temperatures. Biological pathways and expression patterns of members of specific gene families, previously shown to be involved in NTS metabolic resistance to different herbicides, were examined. Cytochrome P450, glucosyl transferase and glutathione-S-transferase genes were found to be up-regulated in response to pinoxaden application under both control and high-temperature conditions. However, biological pathways related to oxidation and glucose conjugation were found to be significantly enriched only under the combination of pinoxaden application and high-temperature. Analysis of reactive oxygen species (ROS) was conducted at several time points after treatment using a probe detecting H2O2/peroxides. Comparison of ROS accumulation among treatments revealed a significant reduction in ROS quantities 24 h after pinoxaden application only under high-temperature conditions. These results may indicate significant activity of enzymatic ROS scavengers that can be correlated with the activation of herbicide-resistance mechanisms. This study shows that up-regulation of genes related to metabolic resistance is not sufficient to explain temperature-dependent pinoxaden resistance. We suggest that elevated activity of enzymatic processes at high-temperature may induce rapid and efficient pinoxaden metabolism leading to temperature-dependent herbicide resistance.
Collapse
Affiliation(s)
| | | | | | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
36
|
Schulz M, Sicker D, Schackow O, Hennig L, Hofmann D, Disko U, Ventura M, Basyuk K. 6-Hydroxy-5-nitrobenzo[ d]oxazol-2(3 H)-one-A degradable derivative of natural 6-Hydroxybenzoxazolin-2(3 H)-one produced by Pantoea ananatis. Commun Integr Biol 2017; 10:e1302633. [PMID: 28702124 PMCID: PMC5501217 DOI: 10.1080/19420889.2017.1302633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/10/2023] Open
Abstract
Pantoea ananatis is a bacterium associated with other microorganisms on Abutilon theophrasti Medik. roots. It converts 6-hydroxybenzoxazolin-2(3H)-one (BOA-6-OH), a hydroxylated derivative of the allelochemical benzoxazolin-2(3H)-one, into 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one. The compound was identified by NMR and mass spectrometric methods. In vitro synthesis succeeded with Pantoea protein, with isolated proteins from the Abutilon root surface or with horseradish peroxidase in the presence of nitrite and H2O2. Nitro-BOA-6-OH is completely degraded further by Pantoea ananatis and Abutilon root surface proteins. Under laboratory conditions, 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one inhibits Lepidium sativum seedling growth whereas Abutilon theophrasti is much less affected. Although biodegradable, an agricultural use of 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one is undesirable because of the high toxicity of nitro aromatic compounds to mammals.
Collapse
Affiliation(s)
- Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Dieter Sicker
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Oliver Schackow
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Lothar Hennig
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Disko
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marina Ventura
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Kateryna Basyuk
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Michlmayr H, Varga E, Lupi F, Malachová A, Hametner C, Berthiller F, Adam G. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077. Toxins (Basel) 2017; 9:E58. [PMID: 28208765 PMCID: PMC5331437 DOI: 10.3390/toxins9020058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023] Open
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s-1·mM-1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s-1·mM-1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| | - Elisabeth Varga
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Francesca Lupi
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via-Napoli 25, 71122 Foggia, Italy.
| | - Alexandra Malachová
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Franz Berthiller
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
38
|
Dumas AS, Taconnat L, Barbas E, Rigaill G, Catrice O, Bernard D, Benamar A, Macherel D, El Amrani A, Berthomé R. Unraveling the early molecular and physiological mechanisms involved in response to phenanthrene exposure. BMC Genomics 2016; 17:818. [PMID: 27769163 PMCID: PMC5073745 DOI: 10.1186/s12864-016-3133-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Higher plants have to cope with increasing concentrations of pollutants of both natural and anthropogenic origin. Given their capacity to concentrate and metabolize various compounds including pollutants, plants can be used to treat environmental problems - a process called phytoremediation. However, the molecular mechanisms underlying the stabilization, the extraction, the accumulation and partial or complete degradation of pollutants by plants remain poorly understood. RESULTS Here, we determined the molecular events involved in the early plant response to phenanthrene, used as a model of polycyclic aromatic hydrocarbons. A transcriptomic and a metabolic analysis strongly suggest that energy availability is the crucial limiting factor leading to high and rapid transcriptional reprogramming that can ultimately lead to death. We show that the accumulation of phenanthrene in leaves inhibits electron transfer and photosynthesis within a few minutes, probably disrupting energy transformation. CONCLUSION This kinetic analysis improved the resolution of the transcriptome in the initial plant response to phenanthrene, identifying genes that are involved in primary processes set up to sense and detoxify this pollutant but also in molecular mechanisms used by the plant to cope with such harmful stress. The identification of first events involved in plant response to phenanthrene is a key step in the selection of candidates for further functional characterization, with the prospect of engineering efficient ecological detoxification systems for polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Anne-Sophie Dumas
- Université de Rennes 1, CNRS/OSUR/UMR 6553, Ecosystèmes-Biodiversité-Evolution, campus de Beaulieu, Bâtiment 14A, 35042, Rennes cedex, France
| | - Ludivine Taconnat
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405, Orsay, France
| | - Evangelos Barbas
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405, Orsay, France
- Present Address: Laboratory of Forest Genetics and Tree Breeding, AUTH, University Campus, 54124, Thessaloniki, Greece
| | - Guillem Rigaill
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405, Orsay, France
| | - Olivier Catrice
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR INRA 441/CNRS 2594, CS 52627, 31326, Castanet Tolosan cedex, France
| | - Delphine Bernard
- Université de Rennes 1, CNRS/OSUR/UMR 6553, Ecosystèmes-Biodiversité-Evolution, campus de Beaulieu, Bâtiment 14A, 35042, Rennes cedex, France
- Present Address: Laboratoire de Génétique Moléculaire et de Génétique Epidémiologique, INSERM U1078, 46, rue Felix Le Dantec, CS 51819, 29218, Brest Cedex 2, France
| | - Abdelilah Benamar
- Université d'Angers, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), Bat ARES, 16 Boulevard Lavoisier, 49045, Angers cedex, France
| | - David Macherel
- Université d'Angers, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), Bat ARES, 16 Boulevard Lavoisier, 49045, Angers cedex, France
| | - Abdelhak El Amrani
- Université de Rennes 1, CNRS/OSUR/UMR 6553, Ecosystèmes-Biodiversité-Evolution, campus de Beaulieu, Bâtiment 14A, 35042, Rennes cedex, France.
| | - Richard Berthomé
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405, Orsay, France.
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR INRA 441/CNRS 2594, CS 52627, 31326, Castanet Tolosan cedex, France.
| |
Collapse
|
39
|
Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. CHEMOECOLOGY 2016. [DOI: 10.1007/s00049-016-0225-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Huang LJ, Li N, Thurow C, Wirtz M, Hell R, Gatz C. Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:200. [PMID: 27624344 PMCID: PMC5022239 DOI: 10.1186/s12870-016-0886-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/01/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Glutaredoxins (GRXs) are small proteins which bind glutathione to either reduce disulfide bonds or to coordinate iron sulfur clusters. Whereas these well-established functions are associated with ubiquitously occurring GRXs that encode variants of a CPYC or a CGFS motif in the active center, land plants also possess CCxC/S-type GRXs (named ROXYs) for which the biochemical functions are yet unknown. ROXYs physically and genetically interact with bZIP transcription factors of the TGA family. In Arabidopsis, ectopically expressed ROXY19 (originally named GRX480 or GRXC9) negatively regulates expression of jasmonic acid/ethylene-induced defense genes through an unknown mechanism that requires at least one of the redundant transcription factors TGA2, TGA5 or TGA6. RESULTS Ectopically expressed ROXY19 interferes with the activation of TGA-dependent detoxification genes. Similar to the tga2 tga5 tga6 mutant, 35S:ROXY19 plants are more susceptible to the harmful chemical TIBA (2,3,5-triiodobenzoic acid). The repressive function of ROXY19 depends on the integrity of the active site, which can be either CCMC or CPYC but not SSMS. Ectopic expression of the related GRX ROXY18/GRXS13 also led to increased susceptibility to TIBA, indicating potential functional redundancy of members of the ROXY gene family. This redundancy might explain why roxy19 knock-out plants did not show a phenotype with respect to the regulation of the TIBA-induced detoxification program. Complementation of the tga2 tga5 tga6 mutant with either TGA5 or TGA5C186S, in which the single potential target-site of ROXY19 had been eliminated, did not reveal any evidence for a critical redox modification that might be important for controlling the detoxification program. CONCLUSIONS ROXY19 and related proteins of the ROXY gene family can function as negative regulators of TGA-dependent promoters controlling detoxification genes.
Collapse
Affiliation(s)
- Li-Jun Huang
- Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Ning Li
- Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Corinna Thurow
- Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Christiane Gatz
- Albrecht-von-Haller-Institute for Plant Sciences, Molecular Biology and Physiology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| |
Collapse
|
41
|
Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P. Plant transcriptomics and responses to environmental stress: an overview. J Genet 2016; 94:525-37. [PMID: 26440096 DOI: 10.1007/s12041-015-0545-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant's response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.
Collapse
Affiliation(s)
- Sameen Ruqia Imadi
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, H-12 Campus, Islamabad 25000,
| | | | | | | | | |
Collapse
|
42
|
Wu B, Long Q, Gao Y, Wang Z, Shao T, Liu Y, Li Y, Ding W. Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq. BMC Genomics 2015; 16:1010. [PMID: 26608743 PMCID: PMC4659204 DOI: 10.1186/s12864-015-2151-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a valuable medicinal plant, the yield of Panax ginseng is seriously affected by autotoxicity, which is a common phenomenon due to continuous cropping. However, the mechanism of autotoxicity in P. ginseng is still unknown. RESULTS In total, high throughput sequencing of 18 RNA-Seq libraries produced 996,000,000 100-nt reads that were assembled into 72,732 contigs. Compared with control, 3697 and 2828 genes were significantly up- and down-regulated across different tissues and time points, respectively. Gene Ontology enrichment analysis showed that 'enzyme inhibitor activity', 'carboxylesterase activity', 'pectinesterase activity', 'centrosome cycle and duplication' and 'mitotic spindle elongation' were enriched for the up-regulated genes. Transcription factors including AP2s/ERFs, MYBs, and WRKYs were up-regulated in roots after benzoic acid treatment. Moreover, reactive oxygen species, peroxidases and superoxide dismutase contigs were up-regulated in roots after benzoic acid treatment. Physiological and biochemical indexes showed that the proline and malondialdehyde content were restored to lower levels at a later stage after benzoic acid treatment. Benzoic acid inhibited the root hair development in a dose-dependent manner, and several differential expressed genes potentially involved in hair development were identified. Several key contigs in the flavonoid and ginsenoside biosynthesis pathways were repressed. Finally, 58,518 alternative splicing (AS) events from 12,950 genes were found after benzoic acid treatment. Interestingly, contigs in the ginsenoside biosynthetic pathway underwent AS, providing useful information about post-transcriptional regulation in P. ginseng. CONCLUSIONS This study revealed the stress-response molecular mechanisms in P. ginseng induced by benzoic acid.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qiliang Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Tianwei Shao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yanan Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Wanlong Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
43
|
Cheng F, Cheng Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. FRONTIERS IN PLANT SCIENCE 2015; 6:1020. [PMID: 26635845 PMCID: PMC4647110 DOI: 10.3389/fpls.2015.01020] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 05/22/2023]
Abstract
Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant allelopathy.
Collapse
Affiliation(s)
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
44
|
El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R. "Omics" Insights into PAH Degradation toward Improved Green Remediation Biotechnologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11281-91. [PMID: 26352597 DOI: 10.1021/acs.est.5b01740] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review summarizes recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signaling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasizing how "omics" approaches bring new insight into decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are cometabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.
Collapse
Affiliation(s)
- Abdelhak El Amrani
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Anne-Sophie Dumas
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Lukas Y Wick
- UFZ, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research , Permoserstraße 15, D-04318 Leipzig, Germany
| | - Etienne Yergeau
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec Canada
| | - Richard Berthomé
- Plant Genomics Research Unit, UMR INRA 1165 - CNRS 8114 - UEVE , 2, Gaston Crémieux St., CP5708, 91057 Evry Cedex, France
| |
Collapse
|
45
|
Wasano N, Takemura T, Ismil R, Bakar B, Fujii Y. Transcriptomic Evaluation of Plant Growth Inhibitory Activity of Goniothalamin from the Malaysian Medicinal Plant Goniothalamus andersonii. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Goniothalamin produced by the Malaysian medicinal plant, Goniothalamus andersonii J. Sinclair, strongly inhibits plant growth. However, its mode of action has not been characterized at the gene expression level. We conducted DNA microarray assay to analyze the changes in early gene responses of Arabidopsis thaliana seedlings. After a 6-h exposure to goniothalamin, we observed an upregulation of genes highly associated with heat response, and 22 heat shock protein ( AtHSP) genes were upregulated more than 50 fold. Together with these genes, we observed upregulation of the genes related to oxidative stress and protein folding. Also, the genes related to cell wall modification and cell growth, expansin ( AtEXPA) genes, were significantly downregulated. The results suggested that goniothalamin induces oxidative stresses and inhibits the expression of cell wall-associated proteins resulting in growth inhibition of Arabidopsis seedlings.
Collapse
Affiliation(s)
- Naoya Wasano
- Department of International Environmental Agricultural Science, Tokyo University of Agriculture & Technology, 3-5-8 Saiwai-chou, Fuchu City, Tokyo 183-8509, Japan
| | - Tomoko Takemura
- Biodiversity Division, National Institute for Agro-Environmental Sciences, 3–1–3 Kan-nondai, Tsukuba, Ibaraki, 305–8604, Japan
| | - Raihan Ismil
- Biodiversity Division, National Institute for Agro-Environmental Sciences, 3–1–3 Kan-nondai, Tsukuba, Ibaraki, 305–8604, Japan
| | - Baki Bakar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoshiharu Fujii
- Department of International Environmental Agricultural Science, Tokyo University of Agriculture & Technology, 3-5-8 Saiwai-chou, Fuchu City, Tokyo 183-8509, Japan
| |
Collapse
|
46
|
Zhou Y, Xia X, Yu G, Wang J, Wu J, Wang M, Yang Y, Shi K, Yu Y, Chen Z, Gan J, Yu J. Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci Rep 2015; 5:9018. [PMID: 25761674 PMCID: PMC4356967 DOI: 10.1038/srep09018] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/04/2015] [Indexed: 11/09/2022] Open
Abstract
Pesticide residues in agricultural produce pose a threat to human health worldwide. Although the detoxification mechanisms for xenobiotics have been extensively studied in mammalian cells, information about the regulation network in plants remains elusive. Here we show that brassinosteroids (BRs), a class of natural plant hormones, decreased residues of common organophosphorus, organochlorine and carbamate pesticides by 30-70% on tomato, rice, tea, broccoli, cucumber, strawberry, and other plants when treated externally. Genome-wide microarray analysis showed that fungicide chlorothalonil (CHT) and BR co-upregulated 301 genes, including a set of detoxifying genes encoding cytochrome P450, oxidoreductase, hydrolase and transferase in tomato plants. The level of BRs was closely related to the respiratory burst oxidase 1 (RBOH1)-encoded NADPH oxides-dependent H2O2 production, glutathione biosynthesis and the redox homeostasis, and the activity of glutathione S-transferase (GST). Gene silencing treatments showed that BRs decreased pesticide residues in plants likely by promoting their metabolism through a signaling pathway involving BRs-induced H2O2 production and cellular redox change. Our study provided a novel approach for minimizing pesticide residues in crops by exploiting plants' own detoxification mechanisms.
Collapse
Affiliation(s)
- Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Gaobo Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jitao Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jingxue Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Mengmeng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Youxin Yang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Yunlong Yu
- Institute of Pesticide &Environmental Toxicology, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Zhixiang Chen
- Department of Botany &Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Jay Gan
- Department of Environmental Science, University of California Riverside, Riverside, CA 92521, USA
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| |
Collapse
|
47
|
Bajsa J, Pan Z, Duke SO. Cantharidin, a protein phosphatase inhibitor, strongly upregulates detoxification enzymes in the Arabidopsis proteome. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:33-40. [PMID: 25462076 DOI: 10.1016/j.jplph.2014.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/19/2014] [Accepted: 09/07/2014] [Indexed: 06/04/2023]
Abstract
Cantharidin, a potent inhibitor of plant serine/threonine protein phosphatases (PPPs), is highly phytotoxic and dramatically affects the transcriptome in Arabidopsis. To investigate the effect of cantharidin on the Arabidopsis proteome, a combination of two-dimensional difference gel electrophoresis (2-D DIGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI/TOF) mass spectrometry was employed for protein profiling. Multivariate statistical analysis identified 75 significant differential spots corresponding to 59 distinct cantharidin-responsive proteins, which were representative of different biological processes, cellular components, and molecular functions categories. The majority of identified proteins localized in the chloroplast had a significantly decreased presence, especially proteins involved in photosynthesis. Detoxification enzymes, especially glutathione-S-transferases (GSTs), were the most upregulated group (ca. 1.5- to 3.3-fold). Given that the primary role of GSTs is involved in the process of detoxification of both xenobiotic and endobiotic compounds, the induction of GSTs suggests that cantharidin promoted inhibition of PPPs may lead to defense-like responses through regulation of GST enzymes as well as other metabolic pathways.
Collapse
Affiliation(s)
- Joanna Bajsa
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA
| | - Zhiqiang Pan
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA
| | - Stephen O Duke
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA.
| |
Collapse
|
48
|
Zhao GY, Fan JY, Hua CP, Yan W, Chen CJ, Lu YH, Jiao RH, Tan RX. Resveratrol improves fungal ribosylation capacity through a unique mechanism. RSC Adv 2015. [DOI: 10.1039/c4ra12851f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The conventionally undetectable fungal ribosylation of phenols is addressed to provide evidence for microbial detoxification mechanisms and access to new ribosides.
Collapse
Affiliation(s)
- Guo-Yan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
- State Key Laboratory of Bioreactor Engineering
| | - Jing-Yang Fan
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Cheng-Pin Hua
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Wei Yan
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Chao-Jun Chen
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yan-Hua Lu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Rui-Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Ren-Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
49
|
Herrera-Vásquez A, Carvallo L, Blanco F, Tobar M, Villarroel-Candia E, Vicente-Carbajosa J, Salinas P, Holuigue L. Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:624-637. [PMID: 26696694 PMCID: PMC4677692 DOI: 10.1007/s11105-014-0782-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress. GRXC9, coding for a CC-type glutaredoxin from Arabidopsis, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using GRXC9 as a model gene. We first established that GRXC9 expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition. GRXC9 promoter analyses indicate that SA controls gene transcription through two activating sequence-1 (as-1)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the GRXC9 promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a knockout mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling GRXC9 expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of GRXC9 indicates that the GRXC9 protein negatively controls its own gene expression, forming part of the complex bound to the as-1-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of GRXC9 in the context of the defense response to stress.
Collapse
Affiliation(s)
- Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Loreto Carvallo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Francisca Blanco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Mariola Tobar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Eva Villarroel-Candia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Paula Salinas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
50
|
Sham A, Al-Azzawi A, Al-Ameri S, Al-Mahmoud B, Awwad F, Al-Rawashdeh A, Iratni R, AbuQamar S. Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis. PLoS One 2014; 9:e113718. [PMID: 25422934 PMCID: PMC4244146 DOI: 10.1371/journal.pone.0113718] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/30/2014] [Indexed: 12/01/2022] Open
Abstract
Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic modification to improve plant resistance to multiple stresses.
Collapse
Affiliation(s)
- Arjun Sham
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed Al-Azzawi
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Salma Al-Ameri
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam Al-Mahmoud
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical Engineering, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed Al-Rawashdeh
- Department of Mathematical Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Synan AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|