1
|
Mendes GEM, Maio AR, Oliveira GDSRD, Rosa LC, Carvalho Costa LD, Oliveira LCVD, Freitas MSD, Cordeiro E Silva R, Santos Galvao RMD, Coutinho RC, Rezende Santos TC, Souza Carvalho TD, Souza Lima VHD, Bello ML. Biomolecular conformational changes and transient druggable binding sites through full-length AMPK molecular dynamics simulations. J Mol Graph Model 2025; 138:109039. [PMID: 40186940 DOI: 10.1016/j.jmgm.2025.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
AMPK (AMP-activated protein kinase) is a crucial signaling protein found in essentially all eukaryotic organisms and acts as an energy sensor. When activated by metabolic stress, AMPK phosphorylates a variety of molecular targets, altering enzyme activity and gene expression to regulate cellular responses. In general, in response to low intracellular ATP levels (high ADP:ATP ratio), AMPK triggers the activation of energy-producing pathways while simultaneously inhibiting energy-consuming processes. Recent studies have established a connection between molecular pathways involved in sensing energy and potential for extending longevity. AMPK indirect activator compounds have shown a potential strategy to obtain an anti-aging biological activity. This study explores the conformational changes and transient druggable binding pockets over the 1 μs trajectory of molecular dynamics simulations to comprehend the behavior of main domains and allosteric drug and metabolite (ADaM) site. The described conformations of the apo-ADaM site suggest an important influence of specific residues on the cavity volume variations. A clustering set of representative AMPK conformations allowed to identify the more favorable binding site volume and shape at the protein apo form, including the carbohydrate-binding module (CBM) region which exhibited a stable movement near the ADaM site of the alpha-subunit. The identification of gamma-subunit transient druggable binding pocket CBS3 during the microscale time trajectory simulations also offers valuable insights into structure-based AMP-mimetic drug design for AMPK activation.
Collapse
Affiliation(s)
- Guilherme Eduardo Martins Mendes
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Artur Rodrigues Maio
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Lidiane Conceição Rosa
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lucas de Carvalho Costa
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lucca Correa Viana de Oliveira
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mariana Silva de Freitas
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Rafael Cordeiro E Silva
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Raíssa Maria Dos Santos Galvao
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Rebecca Cunha Coutinho
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thadeu Cordeiro Rezende Santos
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thais de Souza Carvalho
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Victor Hugo de Souza Lima
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Murilo Lamim Bello
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Lee SS, Lee SH, Kim SY, Lee GY, Han SY, Lee BH, Yoo YC. Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress. Int J Mol Sci 2025; 26:5103. [PMID: 40507912 PMCID: PMC12154224 DOI: 10.3390/ijms26115103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/12/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases.
Collapse
Affiliation(s)
- Sang-Seop Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejon 32992, Republic of Korea; (S.-S.L.); (S.-H.L.); (S.-Y.K.); (G.-Y.L.)
| | - Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejon 32992, Republic of Korea; (S.-S.L.); (S.-H.L.); (S.-Y.K.); (G.-Y.L.)
| | - So-Yeon Kim
- Department of Microbiology, College of Medicine, Konyang University, Daejon 32992, Republic of Korea; (S.-S.L.); (S.-H.L.); (S.-Y.K.); (G.-Y.L.)
| | - Ga-Young Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejon 32992, Republic of Korea; (S.-S.L.); (S.-H.L.); (S.-Y.K.); (G.-Y.L.)
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejon 32992, Republic of Korea;
| | - Bong-Ho Lee
- Department of Chemical and Biological Engineering, College of Engineering, Hanbat National University, Daejon 34158, Republic of Korea;
- CINNAM Ltd., Daejon 34158, Republic of Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejon 32992, Republic of Korea; (S.-S.L.); (S.-H.L.); (S.-Y.K.); (G.-Y.L.)
| |
Collapse
|
3
|
Mishra P, Albensi BC, Fernyhough P. Estradiol activates the CaMKKβ/AMPK pathway to enhance neurite outgrowth in cultured adult sensory neurons. Mol Cell Neurosci 2025; 133:104008. [PMID: 40164320 DOI: 10.1016/j.mcn.2025.104008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025] Open
Abstract
Adult rat dorsal root ganglion (DRG) sensory neurons express estrogen receptors (ERs) α and β. Estrogen regulates multiple aspects of the nervous system including development, survival, and axonal outgrowth of DRG neurons. While previous studies have established estrogen's neuroprotective role in these neurons, the specific ER subtypes and downstream signaling pathways mediating these effects remain poorly defined. The objective of our study was to investigate the effects of 17 beta-estradiol (E2) on mitochondrial function and axonal regeneration of cultured DRG neurons and explore the pathways by which E2 acts. We observed that E2 treatment upregulated the levels of phosphorylated AMP-activated protein kinase (AMPK). E2 also increased the levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and activating transcription factor 3 (ATF3), which are proteins involved in mitochondrial biogenesis and axonal regeneration. The Seahorse assay showed that E2 elevated basal respiration in cultured DRG neurons. Additionally, E2 treatment for 24 h significantly increased total neurite outgrowth of DRG neurons. Pharmacological inhibition of AMPK using Compound C inhibited E2-mediated increases in ATF3 expression and neurite outgrowth. The Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor STO-609 blocked E2-mediated AMPK activation. Furthermore, we assessed whether these effects were mediated by ERα or ERβ by using the ERα selective agonist propyl pyrazole triol (PPT) and ERβ selective agonist diarylpropionitrile (DPN). PPT upregulated phosphorylated AMPK levels and increased total neurite outgrowth, whereas DPN was ineffective. The results demonstrate that E2 acts through ERα to promote neurite outgrowth via a pathway involving activation of CaMKKβ/AMPK in adult DRG neurons. Our findings identify ERα-mediated AMPK activation as a therapeutic target for enhancing neuronal regeneration and mitochondrial function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Pranav Mishra
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
4
|
Tan W, Wang Y, Li M, Zhao C, Hu Y, Gao R, Chen Z, Hu L, Li Q. A novel pyridine-2-one AMPK inhibitor: Discovery, mechanism, and in vivo evaluation in a hypoxic pulmonary arterial hypertension rat model. Eur J Med Chem 2025; 286:117266. [PMID: 39826489 DOI: 10.1016/j.ejmech.2025.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric serine-threonine kinase, has been identified as a promising target for regulating vascular remodeling in pulmonary arterial hypertension (PAH) due to its capacity to promote proliferation, autophagy, and anti-apoptosis in pulmonary artery smooth muscle cells (PASMCs). However, research into AMPK inhibitors is very limited. Herein, a virtual screening strategy was employed to identify CHEMBL3780091 as a lead compound for a series of novel AMPK inhibitors by exploring the structure-activity relationship around a specific pyridine-2-one scaffold. Subsequently, the most promising 13a was observed to exhibit excellent AMPK inhibitory activity and favorable anti-proliferative activity against PASMCs through the inhibition of the AMPK signaling pathway in vitro. Moreover, compound 13a significantly reduced right ventricular systolic pressure, attenuated vascular remodeling, and improved right heart function in hypoxia-induced PAH rats in vivo. In conclusion, this study provides a novel and potential lead compound for the study of AMPK inhibitors and a new direction for the development of PAH drugs that focus on improving vascular remodeling.
Collapse
Affiliation(s)
- Wenhua Tan
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yu Wang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Mengqi Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yuanbo Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Ruizhe Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| |
Collapse
|
5
|
Celine G, Thomas M. Temporal characterisation and electrophysiological implications of TBI-induced serine/threonine kinase activity in mouse cortex. Cell Mol Life Sci 2025; 82:102. [PMID: 40045019 PMCID: PMC11883073 DOI: 10.1007/s00018-025-05638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/09/2025]
Abstract
Traumatic brain injury (TBI) remains the leading cause of death and disability worldwide with no existing effective treatment. The early phase after TBI induction triggers numerous molecular cascades to regulate adaptive processes and cortical network activity. Kinases play a particularly prominent role in modifying peptide substrates, which include ion channels, receptors, transcription factors and inflammatory mediators. This study aimed to better understand the post-injury serine/threonine kinome; (1) Which kinases conduct phosphorylation-induced alterations of target peptides following unilateral TBI in mouse cortex? (2) How do these kinases effectuate pathological network hyperexcitability, which has detrimental long-term outcomes? We used a serine/threonine kinase assay at 4 h, 24 h and 72 h post-TBI to identify hyper-/hypo-active/phosphorylated kinases and peptides in the ipsilateral and contralateral cortical hemispheres relative to sham-operated controls. We pharmacologically mimicked the changes seen in ERK1/2 and PKC kinase activity, and using microelectrode array recordings we explored their significant electrophysiological implications on spontaneous and evoked cortical activity. We then used these findings to manipulate key kinase activity changes at 24 h post-TBI to rescue the hyperexcitability that is seen in the contralateral cortical network at this timepoint back to sham level. The contribution of specific downstream peptide target channel/receptor subunits was also shown. We conclude that volatile kinase activity has potent implications on cortical network activity after the injury and that these kinases and/or their peptide substrates should be more seriously considered as therapeutic targets for the clinical treatment of TBI.
Collapse
Affiliation(s)
- Gallagher Celine
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mittmann Thomas
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
6
|
Smiles WJ, Ovens AJ, Yu D, Ling NXY, Poblete Goycoolea AC, Morrison KR, Murphy EO, Glaser A, O’Byrne SFM, Taylor S, Chalk AM, Walkley CR, McAloon LM, Scott JW, Kemp BE, Hoque A, Langendorf CG, Petersen J, Galic S, Oakhill JS. AMPK phosphosite profiling by label-free mass spectrometry reveals a multitude of mTORC1-regulated substrates. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:8. [PMID: 40052110 PMCID: PMC11879883 DOI: 10.1038/s44324-025-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
The nutrient-sensitive protein kinases AMPK and mTORC1 form a fundamental negative feedback loop that governs cell growth and proliferation. mTORC1 phosphorylates α2-S345 in the AMPK αβγ heterotrimer to suppress its activity and promote cell proliferation under nutrient stress conditions. Whether AMPK contains other functional mTORC1 substrates is unknown. Using mass spectrometry, we generated precise stoichiometry profiles of phosphorylation sites across all twelve AMPK complexes expressed in proliferating human cells and identified seven sites displaying sensitivity to pharmacological mTORC1 inhibition. These included the abundantly phosphorylated residues β1-S182 and β2-S184, which were confirmed as mTORC1 substrates on purified AMPK, and four residues in the unique γ2 N-terminal extension. β-S182/184 phosphorylation was elevated in α1-containing complexes relative to α2, an effect attributed to the α-subunit serine/threonine-rich loop. Mutation of β1-S182 to non-phosphorylatable Ala had no effect on basal and ligand-stimulated AMPK activity; however, β2-S184A mutation increased nuclear AMPK activity, enhanced cell proliferation under nutrient stress and altered expression of genes implicated in glucose metabolism and Akt signalling. Our results indicate that mTORC1 directly or indirectly phosphorylates multiple AMPK residues that may contribute to metabolic rewiring in cancerous cells.
Collapse
Affiliation(s)
- William J. Smiles
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J. Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Dingyi Yu
- Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Naomi X. Y. Ling
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | | | - Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Emmanuel O. Murphy
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Sophie F. Monks O’Byrne
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Scott Taylor
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Alistair M. Chalk
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Carl R. Walkley
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Luke M. McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| | - John W. Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052 Australia
- The Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3052 Australia
| | - Bruce E. Kemp
- Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Christopher G. Langendorf
- Protein Engineering in Immunity and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Sandra Galic
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| |
Collapse
|
7
|
Katz DH, Lindholm ME, Ashley EA. Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Physiology (Bethesda) 2025; 40:0. [PMID: 39136551 DOI: 10.1152/physiol.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 11/21/2024] Open
Abstract
Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Furthermore, it offers a detailed discussion of known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multiomic technologies is explored with an emphasis on how multiomic and multitissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.
Collapse
Affiliation(s)
- Daniel H Katz
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Maléne E Lindholm
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Euan A Ashley
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
8
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Abdalla M, Ogunlana AT, Akinboade MW, Muraina RO, Adeosun OA, Okpasuo OJ, Olaoba OT, Alouffi A, Albutti A, Kurdee Z, AlAfaleq NO, Fatoberu AH, Adelus TI. Allosteric activation of AMPK ADaM's site by structural analogs of Epigallocatechin and Galegine: computational molecular modeling investigation. In Silico Pharmacol 2025; 13:19. [PMID: 39896884 PMCID: PMC11782767 DOI: 10.1007/s40203-025-00311-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
5'-Adenosine Monophosphate Protein Kinase (AMPK) is a central protein involved in cellular energy homeostasis, turning on catabolic pathways when the energy level is depleted and inhibiting anabolic pathways utilizing ATP. AMPK is implicated in several diseases including but not limited to diabetes, cancer, and cardiovascular diseases. Regulation of AMPK is cogent for restoring cellular energy levels which mediates the pathways leading to these diseases. Allosteric activation of AMPK via a novel ADaM site is intended for study in this case. In the search for AMPK activators, this study engaged a database for a virtual screening campaign through the ZINC15 database involving pharmacophoric modeling of two reported natural bioactive AMPK activators- Galegine and Epigallocatechin. Generated pharmacophores were targeted against the AMPK-ADaM site by employing various tools within the structure-based drug discovery process among which include consensus molecular docking, physicochemical profiling, ADMET, and molecular dynamics simulation. Advanced methods such as molecular mechanics (MM/GBSA) and quantitative structure-activity relationship (QSAR) were also performed. This investigation revealed promising pharmacophores that show better interactions and pharmacokinetic properties compared to the standards. This study proposes further development of these pharmacophores into potential drugs with better efficacies that could enhance the activation of the AMPK-ADaM site in ameliorating the aforementioned diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00311-x.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jinan, 250022 Shandong China
| | - Abdeen Tunde Ogunlana
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| | - Modinat Wuraola Akinboade
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| | - Ridwan Olajire Muraina
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| | - Oyindamola Anthonia Adeosun
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| | - Onyekachi Juliet Okpasuo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212 USA
| | - Olamide Tosin Olaoba
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212 USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212 USA
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, 12354 Saudi Arabia
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Zeyad Kurdee
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Nouf Omar AlAfaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Temitope Isaac Adelus
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212 USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212 USA
| |
Collapse
|
10
|
Yu Z, Lin S, Gong X, Zou Z, Yang X, Ruan Y, Qian L, Liu Y, Si Z. The role of macroautophagy in substance use disorders. Ann N Y Acad Sci 2025; 1543:68-78. [PMID: 39714908 DOI: 10.1111/nyas.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Macroautophagy, a universal cellular process, sends cellular material to lysosomes for breakdown and is often activated by stressors like hypoxia or drug exposure. It is vital for protein balance, neurotransmitter release, synaptic function, and neuron survival. The role of macroautophagy in substance use disorders is dual. On one hand, substances like cocaine, methamphetamine, opiates, and alcohol can activate macroautophagy pathways to degrade various neuroinflammatory factors in neuronal cells, providing a protective function. On the other hand, long-term and excessive use of addictive substances can inhibit macroautophagy pathways, obstructing the fusion of autophagosomes with lysosomes and losing the original protective function. This review first summarizes the key proteins and signaling pathways involved in macroautophagy, including mTORC1, AMPK, and endoplasmic reticulum stress, and suggests that the regulation of macroautophagy plays a central role in drug-rewarding behavior and addiction. Second, we focus on the interactions between macroautophagy and neuroinflammation induced by drugs, evaluating the potential of macroautophagy modulators as therapeutic strategies for substance use disorder (SUD), and identifying autophagy-related biomarkers that can be used for early diagnosis and monitoring of treatment response. Our review summarizes the important scientific basis involved in macroautophagy pathways for the development of new therapies for SUD.
Collapse
Affiliation(s)
- Zhaoying Yu
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Shujun Lin
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Xinshuang Gong
- Department of Medicine, School of Public Health, Ningbo University, Ningbo, China
| | - Zhiting Zou
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Xiangdong Yang
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Yuer Ruan
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Liyin Qian
- Department of Medicine, School of Public Health, Ningbo University, Ningbo, China
| | - Yu Liu
- Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China
| | - Zizhen Si
- Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Qu Q, Chen Y, Wang Y, Long S, Wang W, Yang HY, Li M, Tian X, Wei X, Liu YH, Xu S, Zhang C, Zhu M, Lam SM, Wu J, Yun C, Chen J, Xue S, Zhang B, Zheng ZZ, Piao HL, Jiang C, Guo H, Shui G, Deng X, Zhang CS, Lin SC. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 2024:10.1038/s41586-024-08329-5. [PMID: 39695227 DOI: 10.1038/s41586-024-08329-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C. elegans and D. melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Shengye Xue
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Department of Immunology, School of Basic Medical Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University, Beijing, China
| | - Hao Guo
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
12
|
Cronin NM, Dawson LW, DeMali KA. Shear stress-stimulated AMPK couples endothelial cell mechanics, metabolism and vasodilation. J Cell Sci 2024; 137:jcs262232. [PMID: 39513477 PMCID: PMC11795286 DOI: 10.1242/jcs.262232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Endothelial cells respond to mechanical force by stimulating cellular signaling, but how these pathways are linked to elevations in cell metabolism and whether metabolism supports the mechanical response remains poorly understood. Here, we show that the application of force to endothelial cells stimulates VE-cadherin to activate liver kinase B1 (LKB1; also known as STK11) and AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis. VE-cadherin-stimulated AMPK increases eNOS (also known as NOS3) activity and localization to the plasma membrane, reinforcement of the actin cytoskeleton and cadherin adhesion complex, and glucose uptake. We present evidence for the increase in metabolism being necessary to fortify the adhesion complex, actin cytoskeleton and cellular alignment. Together, these data extend the paradigm for how mechanotransduction and metabolism are linked to include a connection to vasodilation, thereby providing new insight into how diseases involving contractile, metabolic and vasodilatory disturbances arise.
Collapse
Affiliation(s)
- Nicholas M. Cronin
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton Rd, Iowa City, IA 52242, USA
| | - Logan W. Dawson
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton Rd, Iowa City, IA 52242, USA
| | - Kris A. DeMali
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton Rd, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Singh S, Singh PK, Ahmad Z, Das S, Foretz M, Viollet B, Giri S, Kumar A. Myeloid Cell-Specific Deletion of AMPKα1 Worsens Ocular Bacterial Infection by Skewing Macrophage Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1656-1665. [PMID: 39413004 PMCID: PMC11573643 DOI: 10.4049/jimmunol.2400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
AMP-activated protein kinase (AMPK) plays a crucial role in governing essential cellular functions such as growth, proliferation, and survival. Previously, we observed increased vulnerability to bacterial (Staphylococcus aureus) endophthalmitis in global AMPKα1 knockout mice. In this study, we investigated the specific involvement of AMPKα1 in myeloid cells using LysMCre;AMPKα1fl mice. Our findings revealed that whereas endophthalmitis resolved in wild-type C57BL/6 mice, the severity of the disease progressively worsened in AMPKα1-deficient mice over time. Moreover, the intraocular bacterial load and inflammatory mediators (e.g., IL-1β, TNF-α, IL-6, and CXCL2) were markedly elevated in the LysMCre;AMPKα1fl mice. Mechanistically, the deletion of AMPKα1 in myeloid cells skewed macrophage polarization toward the inflammatory M1 phenotype and impaired the phagocytic clearance of S. aureus by macrophages. Notably, transferring AMPK-competent bone marrow from wild-type mice to AMPKα1 knockout mice preserved retinal function and mitigated the severity of endophthalmitis. Overall, our study underscores the role of myeloid-specific AMPKα1 in promoting the resolution of inflammation in the eye during bacterial infection. Hence, therapeutic strategies aimed at restoring or enhancing AMPKα1 activity could improve visual outcomes in endophthalmitis and other ocular infections.
Collapse
Affiliation(s)
- Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology/ Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marc Foretz
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris 75014, France
| | - Benoit Viollet
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris 75014, France
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
14
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
15
|
Frankish BP, Murphy RM. Does AMPK bind glycogen in skeletal muscle or is the relationship correlative? Essays Biochem 2024; 68:337-347. [PMID: 39192605 DOI: 10.1042/ebc20240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Since its discovery over five decades ago, an emphasis on better understanding the structure and functional role of AMPK has been prevalent. In that time, the role of AMPK as a heterotrimeric enzyme that senses the energy state of various cell types has been established. Skeletal muscle is a dynamic, plastic tissue that adapts to both functional and metabolic demands of the human body, such as muscle contraction or exercise. With a deliberate focus on AMPK in skeletal muscle, this review places a physiological lens to the association of AMPK and glycogen that has been established biochemically. It discusses that, to date, no in vivo association of AMPK with glycogen has been shown and this is not altered with interventions, either by physiological or biochemical utilisation of glycogen in skeletal muscle. The reason for this is likely due to the persistent phosphorylation of Thr148 in the β-subunit of AMPK which prevents AMPK from binding to carbohydrate domains. This review presents the correlative data that suggests AMPK senses glycogen utilisation through a direct interaction with glycogen, the biochemical data showing that AMPK can bind carbohydrate in vitro, and highlights that in a physiological setting of rodent skeletal muscle, AMPK does not directly bind to glycogen.
Collapse
Affiliation(s)
- Barnaby P Frankish
- Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia Insert Affiliation Text Here
| |
Collapse
|
16
|
Salt IP, Carling D. A special issue of Essays in Biochemistry on AMPK and AMPK-related kinases. Essays Biochem 2024; 68:269-271. [PMID: 39552567 DOI: 10.1042/ebc20240038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
In eukaryotic cells, AMP-activated protein kinase (AMPK) plays a central role in responding to nutrient limitation by switching-off ATP-consuming (anabolic) pathways and switching-on ATP generating (catabolic) pathways. Over the last 30 years or so, a considerable body of research has been carried out that has provided us with a wealth of knowledge regarding the regulation and role of AMPK. Despite this, there is still much to learn about AMPK and the field remains highly active, with many groups around the world continuing to explore new roles for AMPK, providing insight into its biological function. This review series was inspired by recent AMPK-focused meetings in Scotland (2022) and Australia (2023) and draws on some of the research presented at those meetings.
Collapse
Affiliation(s)
- Ian P Salt
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - David Carling
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0HS, U.K
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
17
|
McAloon LM, Muller AG, Nay K, Lu EL, Smeuninx B, Means AR, Febbraio MA, Scott JW. CaMKK2: bridging the gap between Ca2+ signaling and energy-sensing. Essays Biochem 2024; 68:309-320. [PMID: 39268917 DOI: 10.1042/ebc20240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Calcium (Ca2+) ions are ubiquitous and indispensable signaling messengers that regulate virtually every cell function. The unique ability of Ca2+ to regulate so many different processes yet cause stimulus specific changes in cell function requires sensing and decoding of Ca2+ signals. Ca2+-sensing proteins, such as calmodulin, decode Ca2+ signals by binding and modifying the function of a diverse range of effector proteins. These effectors include the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme, which is the core component of a signaling cascade that plays a key role in important physiological and pathophysiological processes, including brain function and cancer. In addition to its role as a Ca2+ signal decoder, CaMKK2 also serves as an important junction point that connects Ca2+ signaling with energy metabolism. By activating the metabolic regulator AMP-activated protein kinase (AMPK), CaMKK2 integrates Ca2+ signals with cellular energy status, enabling the synchronization of cellular activities regulated by Ca2+ with energy availability. Here, we review the structure, regulation, and function of CaMKK2 and discuss its potential as a treatment target for neurological disorders, metabolic disease, and cancer.
Collapse
Affiliation(s)
- Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Eudora L Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Benoit Smeuninx
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
18
|
Sodhi RK, Kumar H, Singh R, Bansal Y, Kondepudi KK, Bishnoi M, Kuhad A. Protective effects of menthol against olanzapine-induced metabolic alterations in female mice. Eur J Pharmacol 2024; 983:177010. [PMID: 39299481 DOI: 10.1016/j.ejphar.2024.177010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
AIM Metabolic comorbidities such as obesity type 2 diabetes, insulin resistance, glucose intolerance, dyslipidemia are the major contributors for lower life expectancy and reduced patient compliance during antipsychotic therapy in patients with severe mental illnesses such as schizophrenia, bipolar disorder, and depression. TRPM8 activation by menthol is also reported to alleviate high fat diet-induced obesity in mice. Additionally, this TRPM8 activation leads to increase in gene expression of thermogenic genes in white adipocytes and dietary menthol was found to increase browning of WAT along with improved glucose utilization. Therefore, we aimed to evaluate the plausible role of TRPM8 channels in olanzapine-induced metabolic alterations in female balb/c mice. METHODS 6 weeks olanzapine (6 mg kg-1, per oral) model was used in female balb/c mice. Pharmacological manipulation of TRPM8 channel was done using menthol and N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide (AMTB), the agonist and antagonist respectively. KEY RESULTS Menthol co-treatment for six weeks prevented olanzapine-induced metabolic alterations such as weight gain, increased food intake, decreased energy expenditure, adiposity, liver lipid accumulation, systemic inflammation and insulin resistance. Although no significant change in TRPM8 mRNA expression was found in the hypothalamus, however, some of the protective effects of menthol were absent in presence of AMTB indicating possible involvement of TRPM8 channels. CONCLUSION Our results suggest possible therapeutic implications of menthol in the management of antipsychotic-induced weight gain and other metabolic alterations.
Collapse
Affiliation(s)
- Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India
| | - Hemant Kumar
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India
| | - Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Kanthi Kiran Kondepudi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, Sahibzada Ajit Singh Nagar (SAS Nagar), Punjab, India
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, Sahibzada Ajit Singh Nagar (SAS Nagar), Punjab, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India.
| |
Collapse
|
19
|
Liu JY, Liu JX, Li R, Zhang ZQ, Zhang XH, Xing SJ, Sui BD, Jin F, Ma B, Zheng CX. AMPK, a hub for the microenvironmental regulation of bone homeostasis and diseases. J Cell Physiol 2024; 239:e31393. [PMID: 39210747 DOI: 10.1002/jcp.31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
AMP-activated protein kinase (AMPK), a crucial regulatory kinase, monitors energy levels, conserving ATP and boosting synthesis in low-nutrition, low-energy states. Its sensitivity links microenvironmental changes to cellular responses. As the primary support structure and endocrine organ, the maintenance, and repair of bones are closely associated with the microenvironment. While a series of studies have explored the effects of specific microenvironments on bone, there is lack of angles to comprehensively evaluate the interactions between microenvironment and bone cells, especially for bone marrow mesenchymal stem cells (BMMSCs) which mediate the differentiation of osteogenic lineage. It is noteworthy that accumulating evidence has indicated that AMPK may serve as a hub between BMMSCs and microenvironment factors, thus providing a new perspective for us to understand the biology and pathophysiology of stem cells and bone. In this review, we emphasize AMPK's pivotal role in bone microenvironment modulation via ATP, inflammation, reactive oxygen species (ROS), calcium, and glucose, particularly in BMMSCs. We further explore the use of AMPK-activating drugs in the context of osteoarthritis and osteoporosis. Moreover, building upon the foundation of AMPK, we elucidate a viewpoint that facilitates a comprehensive understanding of the dynamic relationship between the microenvironment and bone homeostasis, offering valuable insights for prospective investigations into stem cell biology and the treatment of bone diseases.
Collapse
Affiliation(s)
- Jin-Yu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Rang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Shu-Juan Xing
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- State Key Laboratory of National Security Specially Needed Medicines, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Sophronea T, Agrawal S, Kumari N, Mishra J, Walecha V, Luthra PM. A 2AR antagonists triggered the AMPK/m-TOR autophagic pathway to reverse the calcium-dependent cell damage in 6-OHDA induced model of PD. Neurochem Int 2024; 178:105793. [PMID: 38880232 DOI: 10.1016/j.neuint.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A2A R modulates IP3-dependent intracellular Ca2+ signalling via PKA. Moreover, A2A R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca2+ ([Ca2+]i) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A2A R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca2+]i was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl2, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca2+]i homeostasis, accompanied by activation of autophagy and apoptosis. A2A R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca2+]i overload and oxidative stress. In addition, we found that A2A R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A2A R antagonists alleviated 6-OHDA toxicity by modulating [Ca2+]i signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Tuithung Sophronea
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Saurabh Agrawal
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Namrata Kumari
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Vaishali Walecha
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
22
|
Schneider C, Hilbert J, Genevaux F, Höfer S, Krauß L, Schicktanz F, Contreras CT, Jansari S, Papargyriou A, Richter T, Alfayomy AM, Falcomatà C, Schneeweis C, Orben F, Öllinger R, Wegwitz F, Boshnakovska A, Rehling P, Müller D, Ströbel P, Ellenrieder V, Conradi L, Hessmann E, Ghadimi M, Grade M, Wirth M, Steiger K, Rad R, Kuster B, Sippl W, Reichert M, Saur D, Schneider G. A Novel AMPK Inhibitor Sensitizes Pancreatic Cancer Cells to Ferroptosis Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307695. [PMID: 38885414 PMCID: PMC11336956 DOI: 10.1002/advs.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.
Collapse
Affiliation(s)
- Carolin Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Jorina Hilbert
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Franziska Genevaux
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Stefanie Höfer
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Felix Schicktanz
- Institute of PathologyTechnical University of Munich81675MunichGermany
| | - Constanza Tapia Contreras
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Shaishavi Jansari
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Aristeidis Papargyriou
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Institute of Stem Cell ResearchHelmholtz Zentrum MuenchenD‐85764NeuherbergGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
| | - Thorsten Richter
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Abdallah M. Alfayomy
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
- Department of Pharmaceutical ChemistryAl‐Azhar UniversityAssiut71524Egypt
| | - Chiara Falcomatà
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christian Schneeweis
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
| | - Felix Orben
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Ruppert Öllinger
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
| | - Florian Wegwitz
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Angela Boshnakovska
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
| | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Denise Müller
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
| | - Philipp Ströbel
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Volker Ellenrieder
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Lena Conradi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Elisabeth Hessmann
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Marian Grade
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Matthias Wirth
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Department of HematologyOncology and Cancer ImmunologyCampus Benjamin FranklinCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin12203BerlinGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Bernhard Kuster
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Wolfgang Sippl
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
- Center for Protein Assemblies (CPA)Technical University of Munich85747GarchingGermany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Günter Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| |
Collapse
|
23
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Akamine MAV, Ferreira Soares BMA, Telles JPM, Cicupira Rodrigues de Assis A, Rodriguez GNV, Soares PR, Chalela WA, Scudeler TL. Role of Dapagliflozin in Ischemic Preconditioning in Patients with Symptomatic Coronary Artery Disease-DAPA-IP Study Protocol. Pharmaceuticals (Basel) 2024; 17:920. [PMID: 39065769 PMCID: PMC11280174 DOI: 10.3390/ph17070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Ischemic preconditioning (IP) is a powerful cellular protection mechanism. The cellular pathways underlying IP are extremely complex and involve the participation of cell triggers, intracellular signaling pathways, and end-effectors. Experimental studies have shown that sodium-glucose transport protein 2 (SGLT2) inhibitors promote activation of 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK), the main regulator of adenosine 5'-triphosphate homeostasis and energy metabolism in the body. Despite its cardioprotective profile demonstrated by numerous clinical trials, the results of studies on the action of SGLT2 inhibitors in IP are scarce. This study will investigate the effects of dapagliflozin on IP in patients with coronary artery disease (CAD). Methods: The study will include 50 patients with multivessel CAD, ischemia documented by stress testing, and preserved left ventricular ejection fraction (LVEF). Patients will undergo four exercise tests, the first two with a time interval of 30 min between them after washout of cardiovascular or hypoglycemic medications and the last two after 7 days of dapagliflozin 10 mg once a day, also with a time interval of 30 min between them. Discussion: The role of SGLT2 inhibitors on IP is not clearly established. Several clinical trials have shown that SGLT2 inhibitors reduce the occurrence cardiovascular events, notably heart failure. However, such studies have not shown beneficial metabolic effects of SGLT2 inhibitors, such as reducing myocardial infarction or stroke. On the other hand, experimental studies with animal models have shown the beneficial effects of SGLT2 inhibitors on IP, a mechanism that confers cardiac and vascular protection from subsequent ischemia-reperfusion (IR) injury. This is the first clinical study to evaluate the effects of SGLT2 inhibitors on IP, which could result in an important advance in the treatment of patients with stable CAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thiago Luis Scudeler
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Cerqueira César, São Paulo 05403-000, Brazil; (M.A.V.A.); (B.M.A.F.S.); (J.P.M.T.); (A.C.R.d.A.); (G.N.V.R.); (P.R.S.); (W.A.C.)
| |
Collapse
|
25
|
Le DE, Alkayed NJ, Cao Z, Chattergoon NN, Garcia-Jaramillo M, Thornburg K, Kaul S. Metabolomics of repetitive myocardial stunning in chronic multivessel coronary artery stenosis: Effect of non-selective and selective β1-receptor blockers. J Physiol 2024; 602:3423-3448. [PMID: 38885335 PMCID: PMC11284965 DOI: 10.1113/jp285720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Chronic coronary artery stenosis can lead to regional myocardial dysfunction in the absence of myocardial infarction by repetitive stunning, hibernation or both. The molecular mechanisms underlying repetitive stunning-associated myocardial dysfunction are not clear. We used non-targeted metabolomics to elucidate responses to chronically stunned myocardium in a canine model with and without β-adrenergic blockade treatment. After development of left ventricular systolic dysfunction induced by ameroid constrictors on the coronary arteries, animals were randomized to 3 months of placebo, metoprolol or carvedilol. We compared these two β-blockers with their different β-adrenergic selectivities on myocardial function, perfusion and metabolic pathways involved in tissue undergoing chronic stunning. Control animals underwent sham surgery. Dysfunction in stunned myocardium was associated with reduced fatty acid oxidation and enhanced ketogenic amino acid metabolism, together with alterations in mitochondrial membrane phospholipid composition. These changes were consistent with impaired mitochondrial function and were linked to reduced nitric oxide and peroxisome proliferator-activated receptor signalling, resulting in a decline in adenosine monophosphate-activated protein kinase. Mitochondrial changes were ameliorated by carvedilol more than metoprolol, and improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. In summary, repetitive myocardial stunning commonly seen in chronic multivessel coronary artery disease is associated with adverse metabolic remodelling linked to mitochondrial dysfunction and specific signalling pathways. These changes are reversed by β-blockers, with the non-selective inhibitor having a more favourable impact. This is the first investigation to demonstrate that β-blockade-associated improvement of ventricular function in chronic myocardial stunning is associated with restoration of mitochondrial function. KEY POINTS: The mechanisms responsible for the metabolic changes associated with repetitive myocardial stunning seen in chronic multivessel coronary artery disease have not been fully investigated. In a canine model of repetitive myocardial stunning, we showed that carvedilol, a non-selective β-receptor blocker, ameliorated adverse metabolic remodelling compared to metoprolol, a selective β1-receptor blocker, by improving nitric oxide synthase and adenosine monophosphate protein kinase function, enhancing calcium/calmodulin-dependent protein kinase, probably increasing hydrogen sulphide, and suppressing cyclic-adenosine monophosphate signalling. Mitochondrial fatty acid oxidation alterations were ameliorated by carvedilol to a larger extent than metoprolol; this improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. Both β-blockers improved the cardiac energy imbalance by reducing metabolites in ketogenic amino acid and nucleotide metabolism. These results elucidated why metabolic remodelling with carvedilol is preferable to metoprolol when treating chronic ischaemic left ventricular systolic dysfunction caused by repetitive myocardial stunning.
Collapse
Affiliation(s)
- D. Elizabeth Le
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Nabil J. Alkayed
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Zhiping Cao
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Natasha N. Chattergoon
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Kent Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
26
|
Ahmed ME, Suhail H, Nematullah M, Hoda MN, Giri S, Ahmad AS. Loss of AMPK potentiates inflammation by activating the inflammasome after traumatic brain injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600422. [PMID: 38979231 PMCID: PMC11230198 DOI: 10.1101/2024.06.25.600422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Traumatic brain injury (TBI) is a significant public health concern characterized by a complex cascade of cellular events. TBI induces adenosine monophosphate-activated protein kinase (AMPK) dysfunction impairs energy balance activates inflammatory cytokines and leads to neuronal damage. AMPK is a key regulator of cellular energy homeostasis during inflammatory responses. Recent research has revealed its key role in modulating the inflammatory process in TBI. Following TBI the activation of AMPK can influence various important pathways and mechanisms including metabolic pathways and inflammatory signaling. Our study investigated the effects of post-TBI loss of AMPK function on functional outcomes inflammasome activation, and inflammatory cytokine production. Male C57BL/6 adult wild-type (WT) and AMPK knockout (AMPK-KO) mice were subjected to a controlled cortical impact (CCI) model of TBI or sham surgery. The mice were tested for behavioral impairment at 24 h post-TBI thereafter, mice were anesthetized, and their brains were quickly removed for histological and biochemical evaluation. In vitro we investigated inflammasome activation in mixed glial cells stimulated with lipopolysaccharides+ Interferon-gamma (LI) (0.1 μg/20 ng/ml LPS/IFNg) for 6 h to induce an inflammatory response. Estimating the nucleotide-binding domain, leucine-rich-containing family pyrin domain containing western blotting ELISA and qRT-PCR performed 3 (NLRP3) inflammasome activation and cytokine production. Our findings suggest that TBI leads to reduced AMPK phosphorylation in WT mice and that the loss of AMPK correlates with worsened behavioral deficits at 24 h post-TBI in AMPK-KO mice as compared to WT mice. Moreover compared with the WT mice AMPK-KO mice exhibit exacerbated NLRP3 inflammasome activation and increased expression of proinflammatory mediators such as IL-1b IL-6 TNF-a iNOS and Cox 2. These results align with the in vitro studies using brain glial cells under inflammatory conditions, demonstrating greater activation of inflammasome components in AMPK-KO mice than in WT mice. Our results highlighted the critical role of AMPK in TBI outcomes. We found that the absence of AMPK worsens behavioral deficits and heightens inflammasome-mediated inflammation thereby exacerbating brain injury after TBI. Restoring AMPK activity after TBI could be a promising therapeutic approach for alleviating TBI-related damage.
Collapse
Affiliation(s)
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | | | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | | |
Collapse
|
27
|
Tran M, Gilling S, Wu J, Wang L, Shin DJ. miR-141/200c contributes to ethanol-mediated hepatic glycogen metabolism. Mol Metab 2024; 84:101942. [PMID: 38642890 PMCID: PMC11060962 DOI: 10.1016/j.molmet.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVE Hepatic glucose metabolism is profoundly perturbed by excessive alcohol intake. miR-141/200c expression is significantly induced by chronic ethanol feeding. This study aimed at identifying the role of miR-141/200c in glucose homeostasis during chronic ethanol exposure. METHODS WT and miR-141/200c KO mice were fed a control or an ethanol diet for 30 days, followed by a single binge of maltose dextrin or ethanol, respectively. Untargeted metabolomics analysis of hepatic primary metabolites was performed along with analyses for liver histology, gene expression, intracellular signaling pathways, and physiological relevance. Primary hepatocytes were used for mechanistic studies. RESULTS miR-141/200c deficiency rewires hepatic glucose metabolism during chronic ethanol feeding, increasing the abundance of glucose intermediates including G6P, an allosteric activator for GS. miR-141/200c deficiency replenished glycogen depletion during chronic ethanol feeding accompanied by reduced GS phosphorylation in parallel with increased expression of PP1 glycogen targeting subunits. Moreover, miR-141/200c deficiency prevented ethanol-mediated increases in AMPK and CaMKK2 activity. Ethanol treatment reduced glycogen content in WT-hepatocytes, which was reversed by dorsomorphin, a selective AMPK inhibitor, while KO-hepatocytes displayed higher glycogen content than WT-hepatocytes in response to ethanol treatment. Furthermore, treatment of hepatocytes with A23187, a calcium ionophore activating CaMKK2, lowered glycogen content in WT-hepatocytes. Notably, the suppressive effect of A23187 on glycogen deposition was reversed by dorsomorphin, demonstrating that the glycogen depletion by A23187 is mediated by AMPK. KO-hepatocytes exhibited higher glycogen content than WT-hepatocytes in response to A23187. Finally, miR-141/200c deficiency led to improved glucose tolerance and insulin sensitivity during chronic ethanol feeding. CONCLUSIONS miR-141/200c deficiency replenishes ethanol-mediated hepatic glycogen depletion through the regulation of GS activity and calcium signaling coupled with the AMPK pathway, improving glucose homeostasis and insulin sensitivity. These results underscore miR-141/200c as a potential therapeutic target for the management of alcohol intoxication.
Collapse
Affiliation(s)
- Melanie Tran
- Department of Physiology and Neurobiology, University of Connecticut, 75 N. Eagleville Rd, Storrs, CT 06269, USA
| | - Shaynian Gilling
- Department of Physiology and Neurobiology, University of Connecticut, 75 N. Eagleville Rd, Storrs, CT 06269, USA
| | - Jianguo Wu
- Department of Physiology and Neurobiology, University of Connecticut, 75 N. Eagleville Rd, Storrs, CT 06269, USA
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, 333 Cedar St, New Haven, CT 06510, USA
| | - Dong-Ju Shin
- Department of Physiology and Neurobiology, University of Connecticut, 75 N. Eagleville Rd, Storrs, CT 06269, USA.
| |
Collapse
|
28
|
Kong L, Cheng C, Cheruiyot A, Yuan J, Yang Y, Hwang S, Foust D, Tsao N, Wilkerson E, Mosammaparast N, Major MB, Piston DW, Li S, You Z. TCAF1 promotes TRPV2-mediated Ca 2+ release in response to cytosolic DNA to protect stressed replication forks. Nat Commun 2024; 15:4609. [PMID: 38816425 PMCID: PMC11139906 DOI: 10.1038/s41467-024-48988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.
Collapse
Affiliation(s)
- Lingzhen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chen Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abigael Cheruiyot
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jiayi Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yichan Yang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sydney Hwang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Foust
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ning Tsao
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Emily Wilkerson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease in the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, China.
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
29
|
Cronin NM, Dawson LW, DeMali KA. Mechanical activation of VE-cadherin stimulates AMPK to increase endothelial cell metabolism and vasodilation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593171. [PMID: 38798670 PMCID: PMC11118335 DOI: 10.1101/2024.05.09.593171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Endothelia cells respond to mechanical force by stimulating cellular signaling, but how these pathways are linked to elevations in cell metabolism and whether metabolism supports the mechanical response remains poorly understood. Here, we show that application of force to VE-cadherin stimulates liver kinase B1 (LKB1) to activate AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis. VE-cadherin stimulated AMPK increases eNOS activity and localization to the plasma membrane as well as reinforcement of the actin cytoskeleton and cadherin adhesion complex, and glucose uptake. We present evidence for the increase in metabolism being necessary to fortify the adhesion complex, actin cytoskeleton, and cellular alignment. Together these data extend the paradigm for how mechanotransduction and metabolism are linked to include a connection to vasodilation, thereby providing new insight into how diseases involving contractile, metabolic, and vasodilatory disturbances arise.
Collapse
Affiliation(s)
- Nicholas M Cronin
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton RD, Iowa City, IA 52242
| | - Logan W Dawson
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton RD, Iowa City, IA 52242
| | - Kris A DeMali
- Roy J. and Lucille A. Carver College of Medicine at the University of Iowa, Department of Biochemistry and Molecular Biology, 51 Newton RD, Iowa City, IA 52242
| |
Collapse
|
30
|
Xu X, Fang Y, Nowsheen S, Li YX, Lou Z, Deng M. Regulation of AMPK activation by extracellular matrix stiffness in pancreatic cancer. Genes Dis 2024; 11:101035. [PMID: 38292173 PMCID: PMC10825306 DOI: 10.1016/j.gendis.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 02/01/2024] Open
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) sits at a central node in the regulation of energy metabolism and tumor progression. AMPK is best known to sense high cellular ADP or AMP levels, which indicate the depletion of energy stores. Previous studies have shown that the low expression of phosphorylated AMPK is associated with a poor prognosis of pancreatic cancer. In this study, we report that AMPK is also highly sensitive to extracellular matrix (ECM) stiffness. We found that AMPK is activated in cells when cultured under low ECM stiffness conditions and is functionally required for the metabolic switch induced by ECM stiffness. This regulation of AMPK requires the Hippo kinases but not LKB1/CaMKKβ. Hippo kinases directly phosphorylate AMPKα at Thr172 to activate AMPK at low ECM stiffness. Furthermore, we found AMPK activity is inhibited in patients with pancreatic ductal adenocarcinoma (PDAC) with high ECM stiffness and is associated with a poor survival outcome. The activation of Hippo kinases by ROCK inhibitor Y-27632 in combination with the mitochondrial inhibitor metformin synergistically activates AMPK and dramatically inhibits PDAC growth. Together, these findings establish a novel model for AMPK regulation by the mechanical properties of ECMs and provide a rationale for simultaneously targeting the ECM stiffness-Hippo kinases-AMPK signaling and low glucose-LKB1-AMPK signaling pathways as an effective therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92093, USA
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
31
|
Chan WS, Ng CF, Pang BPS, Hang M, Tse MCL, Iu ECY, Ooi XC, Yang X, Kim JK, Lee CW, Chan CB. Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery. Sci Signal 2024; 17:eadh2783. [PMID: 38502732 PMCID: PMC11022078 DOI: 10.1126/scisignal.adh2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator-activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific Bdnf knockout (MBKO) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, MBKO mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.
Collapse
Affiliation(s)
- Wing Suen Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Chun Fai Ng
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Brian Pak Shing Pang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Miaojia Hang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Margaret Chui Ling Tse
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Elsie Chit Yu Iu
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xin Ci Ooi
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xiuying Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing 101399, China
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Chi Wai Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
33
|
Mio K, Iida-Tanaka N, Togo-Ohno M, Tadenuma N, Yamanaka C, Aoe S. Barley consumption under a high-fat diet suppresses lipogenic genes through altered intestinal bile acid composition. J Nutr Biochem 2024; 125:109547. [PMID: 38081474 DOI: 10.1016/j.jnutbio.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
We evaluated whether barley flour consumption in a high-fat environment affects lipid metabolism through signals mediated by bile acids. Four-week-old mice were fed a high-fat diet supplemented with cellulose (HC) or β-glucan-rich barley flour (HB) for 12 weeks. Bile acid composition in the intestinal tract and feces was measured by GC/MS. Gene expression levels involved in bile acid metabolism in the liver and intestinal tract were determined by RT-PCR. Similar parameters were measured in mice treated with antibiotics (antibiotics-cellulose [AC] and antibiotics-barley [AB]) to reduce the activity of intestinal bacteria. The Results showed that the HB group had lower liver blood cholesterol and triglyceride levels than the HC group. The HB group showed a significant decrease in primary bile acids in the gastrointestinal tract compared to the HC group. On the other hand, the concentration of secondary bile acids relatively increased in the cecum and feces. In the liver, Fxr activation suppressed gene expression levels in synthesizing bile acids and lipids. Furthermore, in the gastrointestinal tract, Tgr5 was activated by increased secondary bile acids. Correspondingly, AMP levels were increased in the HB group compared to the HC group, AMPK was phosphorylated in the liver, and gene expression involved in lipid synthesis was downregulated. A comparison of the AC and AB groups treated with antibiotics did not confirm these effects of barley intake. In summary, our results suggest that the prevention of lipid accumulation by barley consumption involves signaling through changes in bile acid composition in the intestinal tract.
Collapse
Affiliation(s)
- Kento Mio
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Naoko Iida-Tanaka
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| | - Marina Togo-Ohno
- Research and Development Department, Hakubaku Co., Ltd., Yamanashi, Japan
| | - Natsuki Tadenuma
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan
| | - Chiemi Yamanaka
- The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| | - Seiichiro Aoe
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan; The Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan.
| |
Collapse
|
34
|
Odongo K, Abe A, Kawasaki R, Kawabata K, Ashida H. Two Prenylated Chalcones, 4-Hydroxyderricin, and Xanthoangelol Prevent Postprandial Hyperglycemia by Promoting GLUT4 Translocation via the LKB1/AMPK Signaling Pathway in Skeletal Muscle Cells. Mol Nutr Food Res 2024; 68:e2300538. [PMID: 38267744 DOI: 10.1002/mnfr.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/30/2023] [Indexed: 01/26/2024]
Abstract
SCOPE Stimulation of glucose uptake in the skeletal muscle is crucial for the prevention of postprandial hyperglycemia. Insulin and certain polyphenols enhance glucose uptake through the translocation of glucose transporter 4 (GLUT4) in the skeletal muscle. The previous study reports that prenylated chalcones, 4-hydroxyderricin (4-HD), and xanthoangelol (XAG) promote glucose uptake and GLUT4 translocation in L6 myotubes, but their underlying molecular mechanism remains unclear. This study investigates the mechanism in L6 myotubes and confirms antihyperglycemia by 4-HD and XAG. METHODS AND RESULTS In L6 myotubes, 4-HD and XAG promote glucose uptake and GLUT4 translocation through the activation of adenosine monophosphate-activated protein kinase (AMPK) and liver kinase B1 (LKB1) signaling pathway without activating phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and Janus kinases (JAKs)/signal transducers and activators of transcriptions (STATs) pathways. Moreover, Compound C, an AMPK-specific inhibitor, as well as siRNA targeting AMPK and LKB1 completely canceled 4-HD and XAG-increased glucose uptake. Consistently, oral administration of 4-HD and XAG to male ICR mice suppresses acute hyperglycemia in an oral glucose tolerance test. CONCLUSION In conclusion, LKB1/AMPK pathway and subsequent GLUT4 translocation in skeletal muscle cells are involved in Ashitaba chalcone-suppressed acute hyperglycemia.
Collapse
Affiliation(s)
- Kevin Odongo
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Ayane Abe
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Rina Kawasaki
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Kyuichi Kawabata
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
35
|
Kim DH. Contrasting views on the role of AMPK in autophagy. Bioessays 2024; 46:e2300211. [PMID: 38214366 PMCID: PMC10922896 DOI: 10.1002/bies.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Efficient management of low energy states is vital for cells to maintain basic functions and metabolism and avoid cell death. While autophagy has long been considered a critical mechanism for ensuring survival during energy depletion, recent research has presented conflicting evidence, challenging the long-standing concept. This recent development suggests that cells prioritize preserving essential cellular components while restraining autophagy induction when cellular energy is limited. This essay explores the conceptual discourse on autophagy regulation during energy stress, navigating through the studies that established the current paradigm and the recent research that has challenged its validity while proposing an alternative model. This exploration highlights the far-reaching implications of the alternative model, which represents a conceptual departure from the established paradigm, offering new perspectives on how cells respond to energy stress.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Tu Y, Yang Q, Tang M, Gao L, Wang Y, Wang J, Liu Z, Li X, Mao L, Jia RZ, Wang Y, Tang TS, Xu P, Liu Y, Dai L, Jia D. TBC1D23 mediates Golgi-specific LKB1 signaling. Nat Commun 2024; 15:1785. [PMID: 38413626 PMCID: PMC10899256 DOI: 10.1038/s41467-024-46166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Liver kinase B1 (LKB1), an evolutionarily conserved serine/threonine kinase, is a master regulator of the AMPK subfamily and controls cellular events such as polarity, proliferation, and energy homeostasis. Functions and mechanisms of the LKB1-AMPK axis at specific subcellular compartments, such as lysosome and mitochondria, have been established. AMPK is known to be activated at the Golgi; however, functions and regulatory mechanisms of the LKB1-AMPK axis at the Golgi apparatus remain elusive. Here, we show that TBC1D23, a Golgi-localized protein that is frequently mutated in the neurodevelopment disorder pontocerebellar hypoplasia (PCH), is specifically required for the LKB1 signaling at the Golgi. TBC1D23 directly interacts with LKB1 and recruits LKB1 to Golgi, promoting Golgi-specific activation of AMPK upon energy stress. Notably, Golgi-targeted expression of LKB1 rescues TBC1D23 deficiency in zebrafish models. Furthermore, the loss of LKB1 causes neurodevelopmental abnormalities in zebrafish, which partially recapitulates defects in TBC1D23-deficient zebrafish, and LKB1 sustains normal neuronal development via TBC1D23 interaction. Our study uncovers a regulatory mechanism of the LKB1 signaling, and reveals that a disrupted Golgi-LKB1 signaling underlies the pathogenesis of PCH.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Li Gao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanhao Wang
- State Key Laboratory of Reproductive Medicine, Interdisciplinary InnoCenter for Organoids, Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jiuqiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Binzhou Medical University, Yantai, 264003, China
| | - Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Rui Zhen Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, Interdisciplinary InnoCenter for Organoids, Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Zhang J, Li H, Zhong H, Chen X, Hu ZX. Omega-3 polyunsaturated fatty acids protect peritoneal mesothelial cells from hyperglycolysis and mesothelial-mesenchymal transition through the FFAR4/CaMKKβ/AMPK/mTOR signaling pathway. Int Immunopharmacol 2024; 128:111561. [PMID: 38262160 DOI: 10.1016/j.intimp.2024.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Peritoneal fibrosis is a severe clinical complication associated with peritoneal dialysis (PD) and impacts its efficacy and patient outcomes. The process of mesothelial-mesenchymal transition (MMT) in peritoneal mesothelial cells plays a pivotal role in fibrogenesis, whereas metabolic reprogramming, characterized by excessive glycolysis, is essential in MMT development. No reliable therapies are available despite substantial progress made in understanding the mechanisms underlying peritoneal fibrosis. Protective effect of omega-3 polyunsaturated fatty acids (ω3 PUFAs) has been described in PD-induced peritoneal fibrosis, although the detailed mechanisms remain unknown. It is known that ω3 PUFAs bind to and activate the free fatty acid receptor 4 (FFAR4). However, the expression and role of FFAR4 in the peritoneum have not been investigated. Thus, we hypothesized that ω3 PUFAs would alleviate peritoneal fibrosis by inhibiting hyperglycolysis and MMT through FFAR4 activation. First, we determined FFAR4 expression in peritoneal mesothelium in humans and mice. FFAR4 expression was abnormally decreased in patients on PD and mice and HMrSV5 mesothelial cells exposed to PD fluid (PDF); this change was restored by the ω3 PUFAs (EPA and DHA). ω3 PUFAs significantly inhibited peritoneal hyperglycolysis, MMT, and fibrosis in PDF-treated mice and HMrSV5 mesothelial cells; these changes induced by ω3 PUFAs were blunted by treatment with the FFAR4 antagonist AH7614 and FFAR4 siRNA. Additionally, ω3 PUFAs induced FFAR4, Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ), and AMPK and suppressed mTOR, leading to the inhibition of hyperglycolysis, demonstrating that the ω3 PUFAs-mediated FFAR4 activation ameliorated peritoneal fibrosis by inhibiting hyperglycolysis and MMT via CaMKKβ/AMPK/mTOR signaling. As natural FFAR4 agonists, ω3 PUFAs may be considered for the treatment of PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhong
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang-Xue Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China; National Clinical Research Center for Geriatrics and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Peifer-Weiß L, Al-Hasani H, Chadt A. AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle. Int J Mol Sci 2024; 25:1910. [PMID: 38339185 PMCID: PMC10855711 DOI: 10.3390/ijms25031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Impaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases. The two Rab GTPase-activating proteins (RabGAPs), TBC1D1 and TBC1D4, represent critical nodes at the convergence of insulin- and exercise-stimulated signaling pathways, as phosphorylation of the two closely related signaling factors leads to enhanced translocation of glucose transporter 4 (GLUT4) to the plasma membrane, resulting in increased cellular glucose uptake. However, the full network of intracellular signaling pathways that control exercise-induced glucose uptake and that overlap with the insulin-stimulated pathway upstream of the RabGAPs is not fully understood. In this review, we discuss the current state of knowledge on exercise- and insulin-regulated kinases as well as hypoxia as stimulus that may be involved in the regulation of skeletal muscle glucose uptake.
Collapse
Affiliation(s)
- Leon Peifer-Weiß
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
39
|
Franco JH, Harris RA, Ryan WG, Taylor RT, McCullumsmith RE, Chattopadhyay S, Pan ZK. Retinoic Acid-Mediated Inhibition of Mouse Coronavirus Replication Is Dependent on IRF3 and CaMKK. Viruses 2024; 16:140. [PMID: 38257840 PMCID: PMC10819102 DOI: 10.3390/v16010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The ongoing COVID-19 pandemic has revealed the shortfalls in our understanding of how to treat coronavirus infections. With almost 7 million case fatalities of COVID-19 globally, the catalog of FDA-approved antiviral therapeutics is limited compared to other medications, such as antibiotics. All-trans retinoic acid (RA), or activated vitamin A, has been studied as a potential therapeutic against coronavirus infection because of its antiviral properties. Due to its impact on different signaling pathways, RA's mechanism of action during coronavirus infection has not been thoroughly described. To determine RA's mechanism of action, we examined its effect against a mouse coronavirus, mouse hepatitis virus strain A59 (MHV). We demonstrated that RA significantly decreased viral titers in infected mouse L929 fibroblasts and RAW 264.7 macrophages. The reduced viral titers were associated with a corresponding decrease in MHV nucleocapsid protein expression. Using interferon regulatory factor 3 (IRF3) knockout RAW 264.7 cells, we demonstrated that RA-induced suppression of MHV required IRF3 activity. RNA-seq analysis of wildtype and IRF3 knockout RAW cells showed that RA upregulated calcium/calmodulin (CaM) signaling proteins, such as CaM kinase kinase 1 (CaMKK1). When treated with a CaMKK inhibitor, RA was unable to upregulate IRF activation during MHV infection. In conclusion, our results demonstrate that RA-induced protection against coronavirus infection depends on IRF3 and CaMKK.
Collapse
Affiliation(s)
- Justin H. Franco
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
| | - Ryan A. Harris
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
| | - William G. Ryan
- Department of Neurosciences and Neurological Disorders, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Roger Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
- Department of Microbiology Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhixing K. Pan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
| |
Collapse
|
40
|
Shimura T, Sunaga K, Yamazaki M, Honoka N, Sasatani M, Kamiya K, Ushiyama A. Nuclear DNA damage-triggered ATM-dependent AMPK activation regulates the mitochondrial radiation response. Int J Radiat Biol 2024; 100:584-594. [PMID: 38166485 DOI: 10.1080/09553002.2023.2295297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/11/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and is essential for controlling mitochondrial homeostasis. Here, we investigated the regulatory mechanisms involved in AMPK activation to elucidate how networks of intracellular signaling pathways respond to stress conditions. MATERIALS AND METHODS Inhibitors of ATM, DNA-PK, and AKT were tested in normal TIG-3 and MRC-5 human fibroblasts to determine which upstream kinases are responsible for AMPK activation. SV40 transformed-human ATM-deficient fibroblasts (AT5BIVA) and their ATM-complemented cells (i.e., AT5BIVA/ATMwt) were also used. Protein expression associated with AMPK signaling was examined by immunostaining and/or Western blotting. RESULTS Radiation-induced nuclear DNA damage activates ATM-dependent AMPK signaling pathways that regulate mitochondrial quality control. In contrast, hypoxia and glucose starvation caused ATP depletion and activated AMPK via a pathway independent of ATM. DNA-PK and AKT are not involved in AMPK-mediated mitochondrial signaling pathways. CONCLUSION Activation of the AMPK signaling pathway differs depending on the stimulus. Radiation activates AMPK through two pathways: depletion of ATP-mediated LKB1 signaling and nuclear DNA damage-induced ATM signaling. Nuclear DNA damage signaling to mitochondria therefore plays a pivotal role in determining the cell fates of irradiated cells.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health Wako, Saitama, Japan
| | - Kenta Sunaga
- Faculty of Pharmaceutical Sciences Student, Meiji Pharmaceutical University, Kiyose, Japan
| | - Mayu Yamazaki
- Faculty of Pharmaceutical Sciences Student, Meiji Pharmaceutical University, Kiyose, Japan
| | - Nara Honoka
- Faculty of Pharmaceutical Sciences Student, Meiji Pharmaceutical University, Kiyose, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology; Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology; Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health Wako, Saitama, Japan
| |
Collapse
|
41
|
Ohtsuka S, Miyai Y, Mima H, Magari M, Chiba Y, Suizu F, Sakagami H, Ueno M, Tokumitsu H. Transcriptional, biochemical, and immunohistochemical analyses of CaMKKβ/2 splice variants that co-localize with CaMKIV in spermatids. Cell Calcium 2024; 117:102820. [PMID: 37979343 DOI: 10.1016/j.ceca.2023.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) phosphorylates and activates downstream protein kinases, including CaMKI, CaMKIV, PKB/Akt, and AMPK; thus, regulates various Ca2+-dependent physiological and pathophysiological pathways. Further, CaMKKβ/2 in mammalian species comprises multiple alternatively spliced variants; however, their functional differences or redundancy remain unclear. In this study, we aimed to characterize mouse CaMKKβ/2 splice variants (CaMKKβ-3 and β-3x). RT-PCR analyses revealed that mouse CaMKKβ-1, consisting of 17 exons, was predominantly expressed in the brain; whereas, mouse CaMKKβ-3 and β-3x, lacking exon 16 and exons 14/16, respectively, were primarily expressed in peripheral tissues. At the protein level, the CaMKKβ-3 or β-3x variants showed high expression levels in mouse cerebrum and testes. This was consistent with the localization of CaMKKβ-3/-3x in spermatids in seminiferous tubules, but not the localization of CaMKKβ-1. We also observed the co-localization of CaMKKβ-3/-3x with a target kinase, CaMKIV, in elongating spermatids. Biochemical characterization further revealed that CaMKKβ-3 exhibited Ca2+/CaM-induced kinase activity similar to CaMKKβ-1. Conversely, we noted that CaMKKβ-3x impaired Ca2+/CaM-binding ability, but exhibited significantly weak autonomous activity (approximately 500-fold lower than CaMKKβ-1 or β-3) due to the absence of C-terminal of the catalytic domain and a putative residue (Ile478) responsible for the kinase autoinhibition. Nevertheless, CaMKKβ-3x showed the ability to phosphorylate downstream kinases, including CaMKIα, CaMKIV, and AMPKα in transfected cells comparable to CaMKKβ-1 and β-3. Collectively, CaMKKβ-3/-3x were identified as functionally active and could be bona fide CaMKIV-kinases in testes involved in the activation of the CaMKIV cascade in spermatids, resulting in the regulation of spermiogenesis.
Collapse
Affiliation(s)
- Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Yumi Miyai
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Hiroyuki Mima
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Yoichi Chiba
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Futoshi Suizu
- Oncology Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, 252-0374, Japan
| | - Masaki Ueno
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
42
|
Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Biochem J 2023; 480:1951-1968. [PMID: 37962491 PMCID: PMC10754287 DOI: 10.1042/bcj20230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.
Collapse
Affiliation(s)
- Fiona A. Ross
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Simon A. Hawley
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Fiona M. Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Nicola Goodman
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| |
Collapse
|
43
|
Guo S, Zhang C, Zeng H, Xia Y, Weng C, Deng Y, Wang L, Wang H. Glycolysis maintains AMPK activation in sorafenib-induced Warburg effect. Mol Metab 2023; 77:101796. [PMID: 37696356 PMCID: PMC10550717 DOI: 10.1016/j.molmet.2023.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second deadly cancer in the world and still lacks curative treatment. Aerobic glycolysis, or Warburg effect, is a major resistance mechanism induced by first-line treatment of HCC, sorafenib, and is regulated by the master regulator of metabolism, AMPK. Activation of AMPK is required for resistance; however, activation dynamics of AMPK and its regulation is rarely studied. Engineering cells to express an AMPK activity biosensor, we monitor AMPK activation in single HCC cells in a high throughput manner during sorafenib-induced drug resistance. Sorafenib induces transient activation of AMPK, duration of which is dependent on glucose. Inhibiting glycolysis shortens AMPK activation; whereas increasing glycolysis increases its activation duration. Our data highlight that activation duration of AMPK is important for cancer evasion of therapeutic treatment and glycolysis is a key regulator of activation duration of AMPK.
Collapse
Affiliation(s)
- Sijia Guo
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chenhao Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Haiou Zeng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuit, Peking University, Beijing, 100871, China
| | - Yantao Xia
- University of California Los Angeles, Department of Chemical and Biomolecular Engineering, California, 90095, USA
| | - Chenghao Weng
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yichen Deng
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luda Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuit, Peking University, Beijing, 100871, China
| | - Huan Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
44
|
Chen N, Zhao M, Guo Y, Wu N, Cao B, Zhan B, Zhou T, Li Y, Zhu F, Chen W, Li Y, Zhang L. D-mannose is a rapid inducer of ACSS2 to trigger rapid and long-lasting antidepressant responses through augmenting BDNF and TPH2 levels. Transl Psychiatry 2023; 13:338. [PMID: 37914710 PMCID: PMC10620401 DOI: 10.1038/s41398-023-02636-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
The potentiation of synaptic plasticity and serotonin generation by brain-derived neurotrophic factor (BDNF) and tryptophan hydroxylase 2 (TPH2) is well characterized to facilitate rapid and long-lasting antidepressant actions. Therefore, the identification of the key protein that simultaneously controls both BDNF and TPH2 is important for the treatment of depression. We show here that a lack of acetyl-CoA synthetase short-chain family member 2 (ACSS2) causes impairments in BDNF-dependent synaptic plasticity and tryptophan hydroxylase 2 (TPH2)-mediated serotonin generation, thereby contributing to spontaneous and chronic restraint stress (CRS)-induced depressive-like behavior in mice. Conversely, D-mannose is identified as a rapid ACSS2 inducer and thus mediates rapid and long-lasting antidepressant-like effects. Mechanistically, acute and chronic D-mannose administration inhibits the phosphorylation of EF2 to increase BDNF levels and reverse the reduction of TPH2 histone acetylation and transcription. We reveal that ACSS2 promotes TPH2 histone acetylation and transcription with the requirement of AMPK activation. To elevate nuclear ACSS2 levels, D-mannose can rapidly and persistently activate AMPK via Ca2+-CAMKK2 and the lysosomal AXIN-LKB1 pathway to facilitate its fast-acting and persistent antidepressant responses. Taken together, the results presented here reveal that ACSS2 functions as a novel target to link rapid and persistent antidepressant actions and further suggest that D-mannose is a potential therapeutic agent to resist depression through its augmentation of the ACSS2 dependent BDNF and TPH2 pathways.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Wu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - WanJun Chen
- Mucosal Immunology Section, NIDCR, US National Institutes of Health, Bethesda, MD, USA.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
45
|
Hatsuda A, Kurisu J, Fujishima K, Kawaguchi A, Ohno N, Kengaku M. Calcium signals tune AMPK activity and mitochondrial homeostasis in dendrites of developing neurons. Development 2023; 150:dev201930. [PMID: 37823352 DOI: 10.1242/dev.201930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Dendritic outgrowth in immature neurons is enhanced by neuronal activity and is considered one of the mechanisms of neural circuit optimization. It is known that calcium signals affect transcriptional regulation and cytoskeletal remodeling necessary for dendritic outgrowth. Here, we demonstrate that activity-dependent calcium signaling also controls mitochondrial homeostasis via AMP-activated protein kinase (AMPK) in growing dendrites of differentiating mouse hippocampal neurons. We found that the inhibition of neuronal activity induced dendritic hypotrophy with abnormally elongated mitochondria. In growing dendrites, AMPK is activated by neuronal activity and dynamically oscillates in synchrony with calcium spikes, and this AMPK oscillation was inhibited by CaMKK2 knockdown. AMPK activation led to phosphorylation of MFF and ULK1, which initiate mitochondrial fission and mitophagy, respectively. Dendritic mitochondria in AMPK-depleted neurons exhibited impaired fission and mitophagy and displayed multiple signs of dysfunction. Genetic inhibition of fission led to dendritic hypoplasia that was reminiscent of AMPK-deficient neurons. Thus, AMPK activity is finely tuned by the calcium-CaMKK2 pathway and regulates mitochondrial homeostasis by facilitating removal of damaged components of mitochondria in growing neurons during normal brain development.
Collapse
Affiliation(s)
- Akane Hatsuda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
46
|
Kaiser J, Nay K, Horne CR, McAloon LM, Fuller OK, Muller AG, Whyte DG, Means AR, Walder K, Berk M, Hannan AJ, Murphy JM, Febbraio MA, Gundlach AL, Scott JW. CaMKK2 as an emerging treatment target for bipolar disorder. Mol Psychiatry 2023; 28:4500-4511. [PMID: 37730845 PMCID: PMC10914626 DOI: 10.1038/s41380-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.
Collapse
Affiliation(s)
- Jacqueline Kaiser
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Douglas G Whyte
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Andrew L Gundlach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia.
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
47
|
Petrvalska O, Honzejkova K, Koupilova N, Herman P, Obsilova V, Obsil T. 14-3-3 protein inhibits CaMKK1 by blocking the kinase active site with its last two C-terminal helices. Protein Sci 2023; 32:e4805. [PMID: 37817008 PMCID: PMC10588359 DOI: 10.1002/pro.4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023]
Abstract
Ca2+ /CaM-dependent protein kinase kinases 1 and 2 (CaMKK1 and CaMKK2) phosphorylate and enhance the catalytic activity of downstream kinases CaMKI, CaMKIV, and protein kinase B. Accordingly, CaMKK1 and CaMKK2 regulate key physiological and pathological processes, such as tumorigenesis, neuronal morphogenesis, synaptic plasticity, transcription factor activation, and cellular energy homeostasis, and promote cell survival. Both CaMKKs are partly inhibited by phosphorylation, which in turn triggers adaptor and scaffolding protein 14-3-3 binding. However, 14-3-3 binding only significantly affects CaMKK1 function. CaMKK2 activity remains almost unchanged after complex formation for reasons still unclear. Here, we aim at structurally characterizing CaMKK1:14-3-3 and CaMKK2:14-3-3 complexes by SAXS, H/D exchange coupled to MS, and fluorescence spectroscopy. The results revealed that complex formation suppresses the interaction of both phosphorylated CaMKKs with Ca2+ /CaM and affects the structure of their kinase domains and autoinhibitory segments. But these effects are much stronger on CaMKK1 than on CaMKK2 because the CaMKK1:14-3-3γ complex has a more compact and rigid structure in which the active site of the kinase domain directly interacts with the last two C-terminal helices of the 14-3-3γ protein, thereby inhibiting CaMKK1. In contrast, the CaMKK2:14-3-3 complex has a looser and more flexible structure, so 14-3-3 binding only negligibly affects the catalytic activity of CaMKK2. Therefore, Ca2+ /CaM binding suppression and the interaction of the kinase active site of CaMKK1 with the last two C-terminal helices of 14-3-3γ protein provide the structural basis for 14-3-3-mediated CaMKK1 inhibition.
Collapse
Affiliation(s)
- Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Nicola Koupilova
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Petr Herman
- Institute of Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
| | - Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| |
Collapse
|
48
|
Tompkins E, Mimic B, Penn RB, Pera T. The biased M3 mAChR ligand PD 102807 mediates qualitatively distinct signaling to regulate airway smooth muscle phenotype. J Biol Chem 2023; 299:105209. [PMID: 37660916 PMCID: PMC10520882 DOI: 10.1016/j.jbc.2023.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Airway smooth muscle (ASM) cells attain a hypercontractile phenotype during obstructive airway diseases. We recently identified a biased M3 muscarinic acetylcholine receptor (mAChR) ligand, PD 102807, that induces GRK-/arrestin-dependent AMP-activated protein kinase (AMPK) activation to inhibit transforming growth factor-β-induced hypercontractile ASM phenotype. Conversely, the balanced mAChR agonist, methacholine (MCh), activates AMPK yet does not regulate ASM phenotype. In the current study, we demonstrate that PD 102807- and MCh-induced AMPK activation both depend on Ca2+/calmodulin-dependent kinase kinases (CaMKKs). However, MCh-induced AMPK activation is calcium-dependent and mediated by CaMKK1 and CaMKK2 isoforms. In contrast, PD 102807-induced signaling is calcium-independent and mediated by the atypical subtype protein kinase C-iota and the CaMKK1 (but not CaMKK2) isoform. Both MCh- and PD 102807-induced AMPK activation involve the AMPK α1 isoform. PD 102807-induced AMPK α1 (but not AMPK α2) isoform activation mediates inhibition of the mammalian target of rapamycin complex 1 (mTORC1) in ASM cells, as demonstrated by increased Raptor (regulatory-associated protein of mTOR) phosphorylation as well as inhibition of phospho-S6 protein and serum response element-luciferase activity. The mTORC1 inhibitor rapamycin and the AMPK activator metformin both mimic the ability of PD 102807 to attenuate transforming growth factor-β-induced α-smooth muscle actin expression (a marker of hypercontractile ASM). These data indicate that PD 102807 transduces a signaling pathway (AMPK-mediated mTORC1 inhibition) qualitatively distinct from canonical M3 mAChR signaling to prevent pathogenic remodeling of ASM, thus demonstrating PD 102807 is a biased M3 mAChR ligand with therapeutic potential for the management of obstructive airway disease.
Collapse
Affiliation(s)
- Eric Tompkins
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Bogdana Mimic
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Tonio Pera
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
49
|
Garnier A, Leroy J, Deloménie C, Mateo P, Viollet B, Veksler V, Mericskay M, Ventura-Clapier R, Piquereau J. Modulation of cardiac cAMP signaling by AMPK and its adjustments in pressure overload-induced myocardial dysfunction in rat and mouse. PLoS One 2023; 18:e0292015. [PMID: 37733758 PMCID: PMC10513315 DOI: 10.1371/journal.pone.0292015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The beta-adrenergic system is a potent stimulus for enhancing cardiac output that may become deleterious when energy metabolism is compromised as in heart failure. We thus examined whether the AMP-activated protein kinase (AMPK) that is activated in response to energy depletion may control the beta-adrenergic pathway. We studied the cardiac response to beta-adrenergic stimulation of AMPKα2-/- mice or to pharmacological AMPK activation on contractile function, calcium current, cAMP content and expression of adenylyl cyclase 5 (AC5), a rate limiting step of the beta-adrenergic pathway. In AMPKα2-/- mice the expression of AC5 (+50%), the dose response curve of left ventricular developed pressure to isoprenaline (p<0.001) or the response to forskolin, an activator of AC (+25%), were significantly increased compared to WT heart. Similarly, the response of L-type calcium current to 3-isobutyl-l-methylxanthine (IBMX), a phosphodiesterase inhibitor was significantly higher in KO (+98%, p<0.01) than WT (+57%) isolated cardiomyocytes. Conversely, pharmacological activation of AMPK by 5-aminoimidazole-4-carboxamide riboside (AICAR) induced a 45% decrease in AC5 expression (p<0.001) and a 40% decrease of cAMP content (P<0.001) as measured by fluorescence resonance energy transfer (FRET) compared to unstimulated rat cardiomyocytes. Finally, in experimental pressure overload-induced cardiac dysfunction, AMPK activation was associated with a decreased expression of AC5 that was blunted in AMPKα2-/- mice. The results show that AMPK activation down-regulates AC5 expression and blunts the beta-adrenergic cascade. This crosstalk between AMPK and beta-adrenergic pathways may participate in a compensatory energy sparing mechanism in dysfunctional myocardium.
Collapse
Affiliation(s)
- Anne Garnier
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Jérôme Leroy
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Claudine Deloménie
- ACTAGen, UMS IPSIT, Univ. Paris-Sud, Université Paris Saclay, Orsay, France
| | - Philippe Mateo
- Physics for Medecine, Ecole Supérieure de Physique Chimie Industrielles de Paris, INSERM U1273, CNRS UMR8063, PSL University, Paris, France
| | - Benoit Viollet
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Vladimir Veksler
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Mathias Mericskay
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Jérôme Piquereau
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- Laboratoire PRéTI UR 24184, Université de Poitiers, Poitiers, France
| |
Collapse
|
50
|
Jiang D, Yang C, Wang X, Ma X, He Z, Wang L, Song L. The involvement of AMP-activated protein kinase α in regulating glycolysis in Yesso scallop Patinopecten yessoensis under high temperature stress. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108998. [PMID: 37586601 DOI: 10.1016/j.fsi.2023.108998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
AMP-activated protein kinase α subunit (AMPKα), the central regulatory molecule of energy metabolism, plays an important role in maintaining energy homeostasis and helping cells to resist the influence of various adverse factors. In the present study, an AMPKα was identified from Yesso scallop Patinopecten yessoensis (PyAMPKα). The open reading frame (ORF) of PyAMPKα was of 1599 bp encoding a putative polypeptide of 533 amino acid residues with a typical KD domain, a α-AID domain and a α-CTD domain. The deduced amino acid sequence of PyAMPKα shared 59.89-74.78% identities with AMPKαs from other species. The mRNA transcripts of PyAMPKα were found to be expressed in haemocytes and all the examined tissues, including gill, mantle, gonad, adductor muscle and hepatopancreas, with the highest expression level in adductor muscle. PyAMPKα was mainly located in cytoplasm of scallop haemocytes. At 3 h after high temperature stress treatment (25 °C), the mRNA transcripts of PyAMPKα, the phosphorylation level of PyAMPKα at Thr170 and the lactic acid (LD) content in adductor muscle all increased significantly, while the glycogen content decreased significantly. The activity of pyruvate kinase (PyPK) and the relative mRNA expression level of phosphofructokinase (PyPFK) were significantly up-regulated at 3 h after high temperature stress treatment (25 °C). Furthermore, the PyAMPKα activator AICAR could effectively upregulate the phosphorylation level of PyAMPKα, and increase activities of PyPFK and pyruvate kinase (PyPK). Meanwhile the glycogen content also declined under AICAR treatment. These results collectively suggested that PyAMPKα was involved in the high temperature stress response of scallops by enhancing glycolysis pathway of glycogen. These results would be helpful for understanding the functions of PyAMPKα in maintaining energy homeostasis under high temperature stress in scallops.
Collapse
Affiliation(s)
- Dongli Jiang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiangbo Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Ma
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoyu He
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|