1
|
Wang K, Liu Y, Li S, Zhao N, Qin F, Tao Y, Song Z. Unveiling the therapeutic potential and mechanisms of stanniocalcin-1 in retinal degeneration. Surv Ophthalmol 2025; 70:106-120. [PMID: 39270826 DOI: 10.1016/j.survophthal.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Retinal degeneration (RD) is a group of ocular diseases characterized by progressive photoreceptor apoptosis and visual impairment. Mitochondrial malfunction, excessive oxidative stress, and chronic activation of neuroglia collectively contribute to the development of RD. Currently, there is a lack of efficacious therapeutic interventions for RD. Stanniocalcin-1 (STC-1) is a promising candidate molecule to decelerate photoreceptor cell death. STC-1 is a secreted calcium/phosphorus regulatory protein that exerts diverse protective effects. Accumulating evidence suggests that STC-1 protects retinal cells from ischemic injury, oxidative stress, and excessive apoptosis through enhancing the expression of uncoupling protein-2 (UCP-2). Furthermore, STC-1 exerts its antiinflammatory effects by inhibiting the activation of microglia and macrophages, as well as the synthesis and secretion of proinflammatory cytokines, such as TNF-α, IL-1, and IL-6. By employing these mechanisms, STC-1 effectively shields the retinal photoreceptors and optic nerve, thereby slowing down the progression of RD. We summarize the STC-1-mediated therapeutic effects on the degenerating retina, with a particular focus on its underlying mechanisms. These findings highlight that STC-1 may act as a versatile molecule to treat degenerative retinopathy. Further research on STC-1 is imperative to establish optimal protocols for its clinical use.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Suh DK, Yeo WJ, Cheong K, Heo JW, Kim DH, Lee SM, Lee YS, Suh DW. Transcriptome Analysis of Platelet-Rich Plasma-Treated Osteoarthritic Chondrocyte. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7680736. [PMID: 39610694 PMCID: PMC11604281 DOI: 10.1155/2024/7680736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024]
Abstract
As a blood-derived biomaterial, platelet-rich plasma (PRP) has been considered a potential therapy and tried in knee and hip osteoarthritis with beneficial effects as an anti-inflammatory and potent regenerative agent. To better understand the substantial effect of PRP on chondrocytes in an inflammatory environment, we analyzed the transcriptome profile by RNA sequencing (RNA-seq) after PRP administration in IL-1β-treated osteoarthritic chondrocytes which were isolated from human knee articular cartilage tissue. A total of 24,424 genes were analyzed, and significant changes in expression were observed for 226 genes in the control (CTL) versus IL-1β group and 300 genes in the IL-1β versus IL-1β+PRP group. The Top 20 significantly upregulated and downregulated genes and the major altered genes in nine categories that are closely related to chondrocyte physiology were analyzed, and the expression of several important genes in each category was evaluated by qRT-PCR and western blot analysis. Our study revealed that the PRP, at the gene expression level, has apparent anti-inflammatory, cell proliferative, and regenerative activities in chondrocytes in the presence of IL-1β, which mimic an osteoarthritic environment. Identifying potent molecules that regulate cartilage physiology represents a promising therapeutic approach for suppressing cartilage degeneration, especially that caused by inflammation-induced osteoarthritis.
Collapse
Affiliation(s)
- Dae Keun Suh
- Department of Orthopaedic Surgery, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Woo Jin Yeo
- Joint Center, Barunsesang Hospital, Yatap-ro 75-5, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kuhoang Cheong
- Joint Center, Barunsesang Hospital, Yatap-ro 75-5, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae-Won Heo
- Joint Center, Barunsesang Hospital, Yatap-ro 75-5, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Dong Hyeon Kim
- Research Center for Cartilage Regeneration, Barunsesang Hospital, Yatap-ro 75-5, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Soo Mi Lee
- Research Center for Cartilage Regeneration, Barunsesang Hospital, Yatap-ro 75-5, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yong-Soo Lee
- Research Center for Cartilage Regeneration, Barunsesang Hospital, Yatap-ro 75-5, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Dong Won Suh
- Joint Center, Barunsesang Hospital, Yatap-ro 75-5, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Khatun M, Modhukur V, Piltonen TT, Tapanainen JS, Salumets A. Stanniocalcin Protein Expression in Female Reproductive Organs: Literature Review and Public Cancer Database Analysis. Endocrinology 2024; 165:bqae110. [PMID: 39186548 PMCID: PMC11398916 DOI: 10.1210/endocr/bqae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
Stanniocalcin (STC) 1 and 2 serve as antihyperglycemic polypeptide hormones with critical roles in regulating calcium and phosphate homeostasis. They additionally function as paracrine and/or autocrine factors involved in numerous physiological processes, including female reproduction. STC1 and STC2 contribute to the pathophysiology of several diseases, including female infertility- and pregnancy-associated conditions, and even tumorigenesis of reproductive organs. This comprehensive review highlights the dynamic expression patterns and potential dysregulation of STC1 and STC2, restricted to female fertility, and infertility- and pregnancy-associated diseases and conditions, such as endometriosis, polycystic ovary syndrome (PCOS), abnormal uterine bleeding, uterine polyps, and pregnancy complications, like impaired decidualization, preeclampsia, and preterm labor. Furthermore, the review elucidates the role of dysregulated STC in the progression of cancers of the reproductive system, including endometrial, cervical, and ovarian cancers. Additionally, the review evaluates the expression patterns and prognostic significance of STC in gynecological cancers by utilizing existing public datasets from The Cancer Genome Atlas to help decipher the multifaceted roles of these pleiotropic hormones in disease progression. Understanding the intricate mechanisms by which STC proteins influence all these reviewed conditions could lead to the development of targeted diagnostic and therapeutic strategies in the context of female reproductive health and oncology.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR—Cantonal Hospital of Fribourg and University of Fribourg, 79085 Fribourg, Switzerland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14152 Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes. Genes (Basel) 2022; 13:genes13091664. [PMID: 36140831 PMCID: PMC9498306 DOI: 10.3390/genes13091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The interest in stem cell research continuously increased over the last decades, becoming one of the most important trends in the 21st century medicine. Stem cell-based therapies have a potential to become a solution for a range of currently untreatable diseases, such as spinal cord injuries, type I diabetes, Parkinson’s disease, heart disease, stroke, and osteoarthritis. Hence, this study, based on canine material, aims to investigate the molecular basis of adipose-derived stem cell (ASC) differentiation into chondrocytes, to serve as a transcriptomic reference for further research aiming to introduce ASC into treatment of bone and cartilage related diseases, such as osteoarthritis in veterinary medicine. Adipose tissue samples were harvested from a canine specimen subjected to a routine ovariohysterecromy procedure at an associated veterinary clinic. The material was treated for ASC isolation and chondrogenic differentiation. RNA samples were isolated at day 1 of culture, day 30 of culture in unsupplemented culture media, and day 30 of culture in chondrogenic differentiation media. The resulting RNA was analyzed using RNAseq assays, with the results validated by RT-qPCR. Between differentiated chondrocytes, early and late cultures, most up- and down-regulated genes in each comparison were selected for further analysis., there are several genes (e.g., MMP12, MPEG1, CHI3L1, and CD36) that could be identified as new markers of chondrogenesis and the influence of long-term culture conditions on ASCs. The results of the study prove the usefulness of the in vitro culture model, providing further molecular insight into the processes associated with ASC culture and differentiation. Furthermore, the knowledge obtained could be used as a molecular reference for future in vivo and clinical studies.
Collapse
|
5
|
Pregnancy-Associated Plasma Protein (PAPP)-A2 in Physiology and Disease. Cells 2021; 10:cells10123576. [PMID: 34944082 PMCID: PMC8700087 DOI: 10.3390/cells10123576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays fundamental roles during development, maturation, and aging. Members of this axis, composed of various ligands, receptors, and binding proteins, are regulated in a tissue- and time-specific manner that requires precise control that is not completely understood. Some of the most recent advances in understanding the implications of this axis in human growth are derived from the identifications of new mutations in the gene encoding the pregnancy-associated plasma protein PAPP-A2 protease that liberates IGFs from their carrier proteins in a selective manner to allow binding to the IGF receptor 1. The identification of three nonrelated families with mutations in the PAPP-A2 gene has shed light on how this protease affects human physiology. This review summarizes our understanding of the implications of PAPP-A2 in growth physiology, obtained from studies in genetically modified animal models and the PAPP-A2 deficient patients known to date.
Collapse
|
6
|
Pemmari A, Tuure L, Hämäläinen M, Leppänen T, Moilanen T, Moilanen E. Effects of ibuprofen on gene expression in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. RMD Open 2021; 7:rmdopen-2021-001657. [PMID: 34497153 PMCID: PMC8438934 DOI: 10.1136/rmdopen-2021-001657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 11/04/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs are a widely used symptomatic treatment in osteoarthritis (OA), but their effects on cartilage remain controversial. We studied the effects of ibuprofen on gene expression in chondrocytes from patients with OA using RNA-Seq. Chondrocytes were isolated from cartilage samples of patients with OA undergoing knee replacement surgery, cultured with ibuprofen, and total mRNA was sequenced. Differentially expressed genes were identified with edgeR using pairwise comparisons. Functional analysis was performed using ingenuity pathway analysis (IPA). Ibuprofen did not induce statistically significant changes in chondrocyte transcriptome when the cells were cultured in the absence of added cytokines. In inflammatory conditions (when the cells were exposed to the OA-related cytokine interleukin (IL)-1β), 51 genes were upregulated and 42 downregulated by ibuprofen with fold change >1.5 in either direction. The upregulated genes included anti-inflammatory factors and genes associated with cell adhesion, while several mediators of inflammation were among the downregulated genes. IPA analysis revealed ibuprofen having modulating effects on inflammation-related pathways such as integrin, IL-8, ERK/MAPK and cAMP-mediated signalling pathways. In conclusion, the effects of ibuprofen on primary OA chondrocyte transcriptome appear to be neutral in normal conditions, but ibuprofen may shift chondrocyte transcriptome towards anti-inflammatory phenotype in inflammatory environments.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Zhao F, Yang G, Feng M, Cao Z, Liu Y, Qiu J, You L, Zheng L, Zhang T, Zhao Y. Expression, function and clinical application of stanniocalcin-1 in cancer. J Cell Mol Med 2020; 24:7686-7696. [PMID: 32468698 PMCID: PMC7348177 DOI: 10.1111/jcmm.15348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein stanniocalcin-1 functions as a regulatory endocrine hormone that maintains the balance of calcium and phosphorus in bony fish and as a paracrine/autocrine factor involved in many physiological/pathological processes in humans, including carcinogenesis. In this review, we provide an overview of (a) the possible mechanisms through which STC1 affects the malignant properties of cancer, (b) transcriptional and post-transcriptional regulation pathways of STC1 and (c) the potential clinical relevance of STC1 as a cancer biomarker and even a therapeutic target in the future. Exploring the role of STC1 in cancer development may provide a better understanding of the tumorigenesis process in humans and may facilitate finding an effective therapeutic method against cancer.
Collapse
Affiliation(s)
- Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Kang X, Yang W, Wang R, Xie T, Li H, Feng D, Jin X, Sun H, Wu S. Sirtuin-1 (SIRT1) stimulates growth-plate chondrogenesis by attenuating the PERK-eIF-2α-CHOP pathway in the unfolded protein response. J Biol Chem 2018; 293:8614-8625. [PMID: 29653943 DOI: 10.1074/jbc.m117.809822] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
The NAD+-dependent deacetylase sirtuin-1 (SIRT1) has emerged as an important regulator of chondrogenesis and cartilage homeostasis, processes that are important for physiological skeletal growth and that are dysregulated in osteoarthritis. However, the functional role and underlying mechanism by which SIRT1 regulates chondrogenesis remain unclear. Using cultured rat metatarsal bones and chondrocytes isolated from rat metatarsal rudiments, here we studied the effects of the SIRT1 inhibitor EX527 or of SIRT1 siRNA on chondrocyte proliferation, hypertrophy, and apoptosis. We show that EX527 or SIRT1 siRNA inhibits chondrocyte proliferation and hypertrophy and induces apoptosis. We also observed that SIRT1 inhibition mainly induces the PERK-eIF-2α-CHOP axis of the endoplasmic reticulum (ER) stress response in growth-plate chondrocytes. Of note, EX527- or SIRT1 siRNA-mediated inhibition of metatarsal growth and growth-plate chondrogenesis were partly neutralized by phenylbutyric acid, a chemical chaperone that attenuates ER stress. Moreover, EX527-mediated impairment of chondrocyte function (i.e. of chondrocyte proliferation, hypertrophy, and apoptosis) was partly reversed in CHOP-/- cells. We also present evidence that SIRT1 physically interacts with and deacetylates PERK. Collectively, our findings indicate that SIRT1 deacetylates PERK and attenuates the PERK-eIF-2α-CHOP axis of the unfolded protein response pathway and thereby promotes growth-plate chondrogenesis and longitudinal bone growth.
Collapse
Affiliation(s)
- Xiaomin Kang
- From the Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Wei Yang
- From the Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ruiqi Wang
- From the Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Tianping Xie
- From the Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Huixia Li
- the Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China, and
| | - Dongxu Feng
- From the Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China.,the Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710054, China
| | - Xinxin Jin
- From the Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Hongzhi Sun
- the Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China, and
| | - Shufang Wu
- From the Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China,
| |
Collapse
|
9
|
Maehara M, Sato M, Toyoda E, Takahashi T, Okada E, Kotoku T, Watanabe M. Characterization of polydactyly-derived chondrocyte sheets versus adult chondrocyte sheets for articular cartilage repair. Inflamm Regen 2017; 37:22. [PMID: 29259721 PMCID: PMC5725814 DOI: 10.1186/s41232-017-0053-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We previously conducted a first-in-human clinical study of articular cartilage repair using autologous chondrocyte sheets and confirmed the regeneration of hyaline-like cartilage in all eight patients. However, regenerative medicine with autologous chondrocyte sheets requires the harvesting of tissue from healthy regions, and the quality of this tissue varies between individuals. To overcome such limitations, allogeneic transplantation is a promising treatment method, particularly for articular cartilage repair. In this study, we investigated the characteristics of polydactyly-derived chondrocyte sheets fabricated from the chondrocytes of young polydactyly donors. METHODS Polydactyly-derived chondrocyte (PD) sheets were fabricated from the tissue obtained from eight polydactyly donors (average age = 13.4 months). To create these PD sheets, chondrocytes at passage 2 or 3 were seeded on temperature-responsive culture inserts and cultured for 2 weeks. For comparison, adult chondrocyte sheets were fabricated from tissue obtained from 11 patients who underwent total knee arthroplasty (TKA; average age = 74 years). To create these TKA sheets, chondrocytes and synovial cells were cocultured, and the chondrocyte sheets were triple-layered according to the protocol from our previous clinical study. Cell count, cell viability, cell surface markers, cell histology, and humoral factors secreted by the sheets were characterized and compared between the PD sheets and TKA sheets. RESULTS Polydactyly-derived chondrocytes proliferated rapidly to establish a layered structure with sufficient extracellular matrix and formed sheets that could be easily manipulated without tearing. Similar to TKA sheets, PD sheets expressed aggrecan and fibronectin at the protein level and the surface markers CD44, CD81, and CD90, which are characteristic of mesenchymal cells. PD sheets also produced significantly higher levels of transforming growth factor beta-1 and lower levels of matrix metalloproteinase-3 than those produced by TKA sheets, suggesting that young polydactyly-derived chondrocytes have advantages as a potential cell source. CONCLUSIONS PD sheets exhibited characteristics thought to be important to chondrocyte sheets as well as proliferative capacity that may facilitate provision of a stable supply in the future.
Collapse
Affiliation(s)
- Miki Maehara
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Eriko Toyoda
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Takumi Takahashi
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Eri Okada
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | | | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
10
|
Rahmatalla SA, Arends D, Reissmann M, Said Ahmed A, Wimmers K, Reyer H, Brockmann GA. Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits. BMC Genet 2017; 18:92. [PMID: 29058610 PMCID: PMC5651574 DOI: 10.1186/s12863-017-0553-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/01/2017] [Indexed: 01/26/2023] Open
Abstract
Background Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. Results More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (FIS) did not differ from zero. Fst coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei’s genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high Fst values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. Conclusions The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high Fst values in Taggar goat and allowed to identify candidate genes which can be used in the development of breed selection programs to improve local breeds and find genetic factors contributing to the adaptation to harsh environments. Electronic supplementary material The online version of this article (10.1186/s12863-017-0553-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siham A Rahmatalla
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany.,Department of Dairy Production, Faculty of Animal Production, University of Khartoum, P.O. Box 32, 13314, Khartoum North, Shambat, Sudan
| | - Danny Arends
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Monika Reissmann
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Ammar Said Ahmed
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Klaus Wimmers
- Leibniz-Institut für Nutztierbiologie (FBN), Institut für Genombiologie, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Leibniz-Institut für Nutztierbiologie (FBN), Institut für Genombiologie, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany.
| |
Collapse
|
11
|
Argente J, Chowen JA, Pérez-Jurado LA, Frystyk J, Oxvig C. One level up: abnormal proteolytic regulation of IGF activity plays a role in human pathophysiology. EMBO Mol Med 2017; 9:1338-1345. [PMID: 28801361 PMCID: PMC5623872 DOI: 10.15252/emmm.201707950] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
The discovery of a mutation in a specific gene can be very important for determining the pathophysiology underlying the disease of a patient and may also help to decide the best treatment protocol on an individual basis. However, sometimes the discovery of mutations in new proteins advances our comprehension in a more widespread manner. The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is fundamental for systemic growth, but is also involved in many other important processes. Our understanding of this system in physiology and pathophysiology has advanced throughout the years with each discovery of mutations in members of this axis. This review focuses on the most recent discovery: mutations in the metalloproteinase pregnancy-associated plasma protein-A2 (PAPP-A2), one of the proteases involved in liberating IGF-1 from the complexes in which it circulates, in patients with delayed growth failure. We also discuss the advances in the stanniocalcins (STC1 and STC2), proteins that modulate PAPP-A2, as well as PAPP-A. These new advances not only bring us one step closer to understanding the strict spatial and temporal control of this axis in systemic growth and maturation, but also highlight possible therapeutic targets when this system goes awry.
Collapse
Affiliation(s)
- Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Julie A Chowen
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology & Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
12
|
Kim PH, Na SS, Lee B, Kim JH, Cho JY. Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress. BMB Rep 2016; 48:702-7. [PMID: 26424558 PMCID: PMC4791327 DOI: 10.5483/bmbrep.2015.48.12.158] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
To overcome the disadvantages of stem cell-based cell therapy like low cell survival at the disease site, we used stanniocalcin 2 (STC2), a family of secreted glycoprotein hormones that function to inhibit apoptosis and oxidative damage and to induce proliferation. STC2 gene was transfected into two kinds of stem cells to prolong cell survival and protect the cells from the damage by oxidative stress. The stem cells expressing STC2 exhibited increased cell viability and improved cell survival as well as elevated expression of the pluripotency and self-renewal markers (Oct4 and Nanog) under sub-lethal oxidative conditions. Up-regulation of CDK2 and CDK4 and down-regulation of cell cycle inhibitors p16 and p21 were observed after the delivery of STC2. Furthermore, STC2 transduction activated pAKT and pERK 1/2 signal pathways. Taken together, the STC2 can be used to enhance cell survival and maintain long-term stemness in therapeutic use of stem cells. [BMB Reports 2015; 48(12): 702-707]
Collapse
Affiliation(s)
- Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 35365, Korea; Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sang-Su Na
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Bomnaerin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Joo-Hyun Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Yeung BHY, Shek FH, Lee NP, Wong CKC. Stanniocalcin-1 Reduces Tumor Size in Human Hepatocellular Carcinoma. PLoS One 2015; 10:e0139977. [PMID: 26469082 PMCID: PMC4607425 DOI: 10.1371/journal.pone.0139977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023] Open
Abstract
Growing evidence has revealed high expression levels of stanniocalcin-1 (STC1) in different types of human cancers. Numerous experimental studies using cancer cell lines demonstrated the involvement of STC1 in inflammatory and apoptotic processes; however the role of STC1 in carcinogenesis remains elusive. Hepatocellular carcinoma (HCC) an exemplified model of inflammation-related cancer, represents a paradigm of studying the association between STC1 and tumor development. Therefore, we conducted a statistical analysis on the expression levels of STC1 using clinicopathological data from 216 HCC patients. We found that STC1 was upregulated in the tumor tissues and its expression levels was positively correlated with the levels of interleukin (IL)-6 and IL-8. Intriguingly tumors with greater expression levels of STC1 (tumor/normal ≥ 2) were significantly smaller than the lower level (tumor/normal<2) samples (p = 0.008). A pharmacological approach was implemented to reveal the functional correlation between STC1 and the ILs in the HCC cell-lines. IL-6 and IL-8 treatment of Hep3B cells induced STC1 expression. Lentiviral-based STC1 overexpression in Hep3B and MHCC-97L cells however showed inhibitory action on the pro-migratory effects of IL-6 and IL-8 and reduced size of tumor spheroids. The inhibitory effect of STC1 on tumor growth was confirmed in vivo using the stable STC1-overexpressing 97L cells on a mouse xenograft model. Genetic analysis of the xenografts derived from the STC1-overexpressing 97L cells, showed upregulation of the pro-apoptotic genes interleukin-12 and NOD-like receptor family, pyrin domain-containing 3. Collectively, the anti-inflammatory and pro-apoptotic functions of STC1 were suggested to relate its inhibitory effect on the growth of HCC cells. This study supports the notion that STC1 may be a potential therapeutic target for inflammatory tumors in HCC patients.
Collapse
Affiliation(s)
- Bonnie H. Y. Yeung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Felix H. Shek
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chris K. C. Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- * E-mail:
| |
Collapse
|
14
|
Kløverpris S, Mikkelsen JH, Pedersen JH, Jepsen MR, Laursen LS, Petersen SV, Oxvig C. Stanniocalcin-1 Potently Inhibits the Proteolytic Activity of the Metalloproteinase Pregnancy-associated Plasma Protein-A. J Biol Chem 2015. [PMID: 26195635 DOI: 10.1074/jbc.m115.650143] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stanniocalcin-1 (STC1) is a disulfide-bound homodimeric glycoprotein, first identified as a hypocalcemic hormone important for maintaining calcium homeostasis in teleost fish. STC1 was later found to be widely expressed in mammals, although it is not believed to function in systemic calcium regulation in these species. Several physiological functions of STC1 have been reported, although many molecular details are still lacking. We here demonstrate that STC1 is an inhibitor of the metzincin metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), which modulates insulin-like growth factor (IGF) signaling through proteolytic cleavage of IGF-binding proteins (IGFBPs). STC1 potently (Ki = 68 pm) inhibits PAPP-A cleavage of IGFBP-4, and we show in a cell-based assay that STC1 effectively antagonizes PAPP-A-mediated type 1 IGF receptor (IGF1R) phosphorylation. It has recently been found that the homologous STC2 inhibits PAPP-A proteolytic activity, and that this depends on the formation of a covalent complex between the inhibitor and the proteinase, mediated by Cys-120 of STC2. We find that STC1 is unable to bind covalently to PAPP-A, in agreement with the absence of a corresponding cysteine residue. It rather binds to PAPP-A with high affinity (KD = 75 pm). We further demonstrate that both STC1 and STC2 show inhibitory activity toward PAPP-A2, but not selected serine proteinases and metalloproteinases. We therefore conclude that the STCs are proteinase inhibitors, probably restricted in specificity to the pappalysin family of metzincin metalloproteinases. Our data are the first to identify STC1 as a proteinase inhibitor, suggesting a previously unrecognized function of STC1 in the IGF system.
Collapse
Affiliation(s)
| | | | | | | | | | - Steen V Petersen
- the Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Claus Oxvig
- From the Department of Molecular Biology and Genetics and
| |
Collapse
|
15
|
Shin J, Sohn YC. Identification of Ran-binding protein M as a stanniocalcin 2 interacting protein and implications for androgen receptor activity. BMB Rep 2015; 47:643-8. [PMID: 25154718 PMCID: PMC4281344 DOI: 10.5483/bmbrep.2014.47.11.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 11/20/2022] Open
Abstract
Stanniocalcin (STC), a glycoprotein hormone originally discovered in fish, has been implicated in calcium and phosphate homeostasis. While fishes and mammals possess two STC homologs (STC1 and STC2), the physiological roles of STC2 are largely unknown compared with those of STC1. In this study, we identified Ran-binding protein M (RanBPM) as a novel binding partner of STC2 using yeast two-hybrid screening. The interaction between STC2 and RanBPM was confirmed in mammalian cells by immunoprecipitation. STC2 enhanced the RanBPM-mediated transactivation of liganded androgen receptor (AR), but not thyroid receptor β, glucocorticoid receptor, or estrogen receptor β. We also found that AR interacted with RanBPM in both the absence and presence of testosterone (T). Furthermore, we discovered that STC2 recruits RanBPM/AR complex in T-dependent manner. Taken together, our findings suggest that STC2 is a novel RanBPM-interacting protein that promotes AR transactivation.
Collapse
Affiliation(s)
- Jihye Shin
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung 210-702, Korea
| | - Young Chang Sohn
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung 210-702, Korea
| |
Collapse
|
16
|
Gu J, Law AYS, Yeung BHY, Wong CKC. Characterization of stanniocalcin 1 binding and signaling in gill cells of Japanese eels. J Mol Endocrinol 2015; 54:305-14. [PMID: 25878057 DOI: 10.1530/jme-14-0320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 11/08/2022]
Abstract
Stanniocalcin 1 (STC1) is a hypocalcemic hormone that is known to play an important role in calcium metabolism in teleost fish. An increase in blood Ca(2) (+) levels stimulates its synthesis and release. The biological action of STC1 inhibits gill Ca(2) (+) transport (GCAT), but we as yet have no clear understanding of how STC1 inhibits GCAT. In the present study, we characterized the binding, signaling, and action of STC1 on gill cells. Treatment of gill cell cultures with the extracts of corpuscles of Stannius or recombinant STC1 proteins (STC1-V5) led to an increase in cytosolic cAMP levels. Using in situ ligand-binding assays, we demonstrated that STC1-V5 binds to both lamellar and inter-lamellar regions of gill sections. The binding sites were significantly increased in gill sections obtained from fish adapted to high-Ca(2) (+) (2 mM) freshwater (FW) as compared with those from fish adapted to low-Ca(2) (+) (0.2 mM) FW. Receptor-binding assays illustrated specific binding of STC1-alkaline phosphatase to plasma membrane (Kd of 0.36 nM), mitochondria (Kd of 0.41 nM), and nuclear (Kd of 0.71 nM) preparations from gill cells. STC1 binding capacity was significantly greater in the plasma membrane preparations of gills obtained from fish adapted to high-Ca(2) (+) FW. Using isolated pavement cells and mitochondria-rich cells in cAMP assays, we obtained results indicating that both cell types responded to STC1. To illustrate the biological action of STC1, we conducted Ca(2) (+) imaging experiments to demonstrate the effects of STC1 on thapsigargin-induced elevation of cytosolic Ca(2) (+). Our results indicated that STC1 exerted its inhibitory action via a cAMP pathway to lower intracellular Ca(2) (+) levels. Intriguingly, we were able to block the action of STC1 using an inhibitor, NS-398, of cyclooxygenase-2 (COX-2), which is known to stimulate the activity of sarcoplasmic and endoplasmic reticulum Ca(2) (+)-ATPase (SERCA). A follow-up experiment in which gill cells were incubated with STC1 revealed a downregulation of the epithelial Ca(2) (+) channel (ecacl) but an upregulation of cox-2 expression. The ECaCl is a gatekeeper for Ca(2) (+) entry, whereas COX-2 mediates an activation of SERCA. Taking these results together, the present study is, to our knowledge, the first to provide evidence of STC1 binding and signaling as well as the first to decipher the mechanism of the effect of STC1 on fish gills.
Collapse
Affiliation(s)
- J Gu
- Department of BiologyCroucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | - A Y S Law
- Department of BiologyCroucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | - B H Y Yeung
- Department of BiologyCroucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | - Chris K C Wong
- Department of BiologyCroucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| |
Collapse
|
17
|
Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields. Cell Signal 2015; 27:889-98. [DOI: 10.1016/j.cellsig.2015.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
|
18
|
Terra SR, Cardoso JCR, Félix RC, Martins LAM, Souza DOG, Guma FCR, Canário AVM, Schein V. STC1 interference on calcitonin family of receptors signaling during osteoblastogenesis via adenylate cyclase inhibition. Mol Cell Endocrinol 2015; 403:78-87. [PMID: 25591908 DOI: 10.1016/j.mce.2015.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022]
Abstract
Stanniocalcin 1 (STC1) and calcitonin gene-related peptide (CGRP) are involved in bone formation/remodeling. Here we investigate the effects of STC1 on functional heterodimer complex CALCRL/RAMP1, expression and activity during osteoblastogenesis. STC1 did not modify CALCRL and ramp1 gene expression during osteoblastogenesis when compared to controls. However, plasma membrane spatial distribution of CALCRL/RAMP1 was modified in 7-day pre-osteoblasts exposed to either CGRP or STC1, and both peptides induced CALCRL and RAMP1 assembly. CGRP, but not STC1 stimulated cAMP accumulation in 7-day osteoblasts and in CALCRL/RAMP1 transfected HEK293 cells. Furthermore, STC1 inhibited forskolin stimulated cAMP accumulation of HEK293 cells, but not in CALCRL/RAMP1 transfected HEK293 cells. However, STC1 inhibited cAMP accumulation in calcitonin receptor (CTR) HEK293 transfected cells stimulated by calcitonin. In conclusion, STC1 signals through inhibitory G-protein modulates CGRP receptor spatial localization during osteoblastogenesis and may function as a regulatory factor interacting with calcitonin peptide members during bone formation.
Collapse
Affiliation(s)
- Silvia R Terra
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90003-035, Brazil
| | - João Carlos R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro 8005-139, Portugal
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro 8005-139, Portugal
| | - Leo Anderson M Martins
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90003-035, Brazil
| | - Diogo Onofre G Souza
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90003-035, Brazil
| | - Fatima C R Guma
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90003-035, Brazil
| | - Adelino Vicente M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro 8005-139, Portugal
| | - Vanessa Schein
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90003-035, Brazil; Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro 8005-139, Portugal.
| |
Collapse
|
19
|
Ma X, Gu L, Li H, Gao Y, Li X, Shen D, Gong H, Li S, Niu S, Zhang Y, Fan Y, Huang Q, Lyu X, Zhang X. Hypoxia-induced overexpression of stanniocalcin-1 is associated with the metastasis of early stage clear cell renal cell carcinoma. J Transl Med 2015; 13:56. [PMID: 25740019 PMCID: PMC4337255 DOI: 10.1186/s12967-015-0421-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Although metastasis of clear cell renal cell carcinoma (ccRCC) is predominantly observed in late stage tumors, early stage metastasis of ccRCC can also be found with indefinite molecular mechanism, leading to inappropriate clinical decisions and poor prognosis. Stanniocalcin-1 (STC1) is a glycoprotein hormone involved in calcium/phosphate homeostasis, which regulates various cellular processes in normal development and tumorigenesis. This study aimed to investigate the role and mechanism of regulation of STC1 in the metastasis of early stage ccRCC. Methods STC1 mRNA and protein expression was determined in ccRCC surgical specimens, RCC cell lines, and human kidney tubule epithelial cell line HKC by real-time polymerase chain reaction (RT-PCR) and western blotting. Immunohistochemistry staining (IHC) and immunofluorescence were also used to examine the expression and localization of STC1 in ccRCC tissues and cancer cells. Knockdown and overexpression studies were conducted in vitro in RCC cell lines using small interfering RNAs (siRNA) and lentiviral-mediated gene delivery to evaluate the role of STC1 in cell proliferation, anchorage-dependent and independent growth, cell cycle control, and migration and invasion. Results STC1 mRNA and protein expression were significantly up-regulated in tumors when compared with non-tumor tissues, with the greatest increase in expression observed in metastatic tissues. Clinicopathological analysis revealed that STC1 mRNA expression was associated with Fuhrman tumor grade (P = 0.008) and overall Tumor Node Metastasis (TNM) staging (P = 0.018). STC1 expression was elevated in T1 stage metastatic tumors when compared with localized tumors, and was positively correlated with average tumor diameter. Silencing of STC1 expression by Caki-1 and A498 resulted in the inhibition of cell proliferation, migration, and invasion, meanwhile down-regulation of STC1 impaired epithelial–mesenchymal transition (EMT) of ccRCC cell lines. Overexpression of STC1 in Caki-2 enhanced cell growth and proliferation but not migration and invasion. Further investigation identified hypoxia and HIF-1α as candidate regulators of STC1 expression. Conclusions Our findings demonstrate a role for STC1 in metastasis of early stage ccRCC and suggest that STC1 may be a biomarker of potential value both for the prognosis of this disease and for guiding clinical decisions regarding surgical strategies and adjuvant treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0421-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Liangyou Gu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Hongzhao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Yu Gao
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Xintao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Donglai Shen
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Huijie Gong
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Shichao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Shaoxi Niu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Yu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Yang Fan
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Qingbo Huang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Xiangjun Lyu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| | - Xu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China.
| |
Collapse
|
20
|
Chou MY, Lin CH, Chao PL, Hung JC, Cruz SA, Hwang PP. Stanniocalcin-1 controls ion regulation functions of ion-transporting epithelium other than calcium balance. Int J Biol Sci 2015; 11:122-32. [PMID: 25561895 PMCID: PMC4279088 DOI: 10.7150/ijbs.10773] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
Stanniocalcin-1 (STC-1) was first identified to involve in Ca(2+) homeostasis in teleosts, and was thought to act as a hypocalcemic hormone in vertebrate. Recent studies suggested that STC-1 exhibits broad effects on ion balance, not confines to Ca(2+), but the mechanism of this regulation process remains largely unknown. Here, we used zebrafish embryos as an alternative in vivo model to investigate how STC-1 regulates transepithelial ion transport function in ion-transporting epithelium. Expression of stc-1 mRNA in zebrafish embryos was increased in high-Ca(2+) environments but decreased by acidic and ion-deficient treatments while overexpression of stc-1 impaired the hypotonic acclimation by decreasing whole body Ca(2+), Na(+), and Cl(-) contents and H(+) secretion ability. Injection of STC-1 mRNA also down-regulated mRNA expressions of epithelial Ca(2+) channel, H(+)-ATPase, and Na(+)-Cl(-) cotransporter, suggesting the roles of STC-1 in regulation of ions other than Ca(2+). Knockdown of STC-1 caused an increase in ionocyte progenitors (foxi3a as the marker) and mature ionocytes (ion transporters as the markers), but did not affect epithelium stem cells (p63 as the marker) in the embryonic skin. Overexpression of STC-1 had the corresponding opposite effect on ionocyte progenitors, mature ionocytes in the embryonic skin. Taken together, STC-1 negatively regulates the number of ionocytes to reduce ionocyte functions. This process is important for body fluid ionic homeostasis, which is achieved by the regulation of ion transport functions in ionocytes. The present findings provide new insights into the broader functions of STC-1, a hypocalcemic hormone.
Collapse
Affiliation(s)
- Ming-Yi Chou
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan. ; 2. RIKEN Brain Science Institute, Laboratory for Developmental Gene Regulation, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chia-Hao Lin
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Lin Chao
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jo-Chi Hung
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shelly A Cruz
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pung-Pung Hwang
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
21
|
Felthaus O, Gosau M, Klein S, Prantl L, Reichert TE, Schmalz G, Morsczeck C. Dexamethasone-related osteogenic differentiation of dental follicle cells depends on ZBTB16 but not Runx2. Cell Tissue Res 2014; 357:695-705. [PMID: 24816988 DOI: 10.1007/s00441-014-1891-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/08/2014] [Indexed: 01/23/2023]
Abstract
Dental follicle cells (DFCs) can be artificially differentiated into mineralizing cells. With a dexamethasone-based differentiation protocol, transcription factors ZBTB16 and NR4A3 are highly upregulated but Runx2 and other osteogenic marker genes are not. Previous studies have suggested the involvement of a Runx2-independent differentiation pathway. The objective of this study is to further elucidate this mechanism. Differentiation of DFCs was examined by alkaline phosphatase (ALP) staining and ALP activity measurement, by Alizarin Red S staining and by real-time reverse transcription plus the polymerase chain reaction. ZBTB16 was overexpressed by using a transient transfection method. Resulting genome-wide gene expression changes were assessed by microarray. ZBTB16 and Runx2 were inhibited by short interfering RNA transfection. Promoter binding of ZBTB16 was evaluated by chromatin immunoprecipitation. Downregulation of Runx2 had no effect on dexamethasone-induced differentiation but was effective on BMP2-induced differentiation. Downregulation of ZBTB16, however, impaired dexamethasone-induced differentiation. Genes that were upregulated by dexamethasone induction were also upregulated by ZBTB16 overexpression. Genes that were not upregulated during dexamethasone-induced differentiation were also not regulated by ZBTB16 overexpression. ZBTB16 bound directly to the promoter regions of osterix and NR4A3 but not that of Runx2. Overexpression of ZBTB16 led to changes in the gene expression profile, whereby upregulated genes were overrepresented in osteogenesis-associated biological processes. Our findings suggest that, in DFCs, a Runx2-independent differentiation mechanism exists that is regulated by ZBTB16.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department of Cranio- and Maxillofacial Surgery, University Medical Center, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Guan J, Mishra S, Shi J, Plovie E, Qiu Y, Cao X, Gianni D, Jiang B, Del Monte F, Connors LH, Seldin DC, Lavatelli F, Rognoni P, Palladini G, Merlini G, Falk RH, Semigran MJ, Dec GW, Macrae CA, Liao R. Stanniocalcin1 is a key mediator of amyloidogenic light chain induced cardiotoxicity. Basic Res Cardiol 2013; 108:378. [PMID: 23982491 DOI: 10.1007/s00395-013-0378-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 01/17/2023]
Abstract
Immunoglobulin light chain (LC) amyloidosis (AL) results from overproduction of circulating amyloidogenic LC proteins and subsequent amyloid fibril deposition in organs. Mortality in AL amyloidosis patients is highly associated with a rapidly progressive AL cardiomyopathy, marked by profound impairment of diastolic and systolic cardiac function and significant early mortality. While myocardial fibril deposition contributes to the severe diastolic dysfunction seen in AL cardiomyopathy patients, the degree of fibril deposition has not been found to correlate with prognosis. Previously, we and others showed a direct cardiotoxic effect of amyloidogenic LC proteins (AL-LC), which may contribute to the pathophysiology and mortality observed in AL cardiomyopathy patients. However, the mechanisms underlying AL-LC related cardiotoxicity remain unknown. Mammalian stanniocalcin1 (STC1) is associated with a number of cellular processes including oxidative stress and cell death. Herein, we find that STC1 expression is elevated in cardiac tissue from AL cardiomyopathy patients, and is induced in isolated cardiomyocytes in response to AL-LC, but not non-amyloidogenic LC. STC1 overexpression in vitro recapitulates the pathophysiology of AL-LC mediated cardiotoxicity, with increased ROS production, contractile dysfunction and cell death. Overexpression of STC1 in vivo results in significant cardiac dysfunction and cell death. Genetic silencing of STC1 prevents AL-LC induced cardiotoxicity in cardiomyocytes and protects against AL-LC induced cell death and early mortality in zebrafish. The cardiotoxic effects of STC1 appears to be mediated via mitochondrial dysfunction as indicated by loss of mitochondrial membrane potential, ROS production and increased mitochondrial calcium levels. Collectively, this work identifies STC1 as a critical determinant of AL-LC cardiotoxicity.
Collapse
Affiliation(s)
- Jian Guan
- Divisions of Cardiovascular Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB 431, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stanniocalcin1 (STC1) Inhibits Cell Proliferation and Invasion of Cervical Cancer Cells. PLoS One 2013; 8:e53989. [PMID: 23382863 PMCID: PMC3558422 DOI: 10.1371/journal.pone.0053989] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/05/2012] [Indexed: 12/05/2022] Open
Abstract
STC1 is a glycoprotein hormone involved in calcium/phosphate (Pi) homeostasis. There is mounting evidence that STC1 is tightly associated with the development of cancer. But the function of STC1 in cancer is not fully understood. Here, we found that STC1 is down-regulated in Clinical tissues of cervical cancer compared to the adjacent normal cervical tissues (15 cases). Subsequently, the expression of STC1 was knocked down by RNA interference in cervical cancer CaSki cells and the low expression promoted cell growth, migration and invasion. We also found that STC1 overexpression inhibited cell proliferation and invasion of cervical cancer cells. Moreover, STC1 overexpression sensitized CaSki cells to drugs. Further, we showed that NF-κB p65 protein directly bound to STC1 promoter and activated the expression of STC1 in cervical cancer cells. Thus, these results provided evidence that STC1 inhibited cell proliferation and invasion through NF-κB p65 activation in cervical cancer.
Collapse
|
24
|
Ching LY, Yeung BHY, Wong CKC. Synergistic effect of p53 on TSA-induced stanniocalcin 1 expression in human nasopharyngeal carcinoma cells, CNE2. J Mol Endocrinol 2012; 48:241-50. [PMID: 22493143 DOI: 10.1530/jme-11-0159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human stanniocalcin 1 (STC1) has recently been identified as a putative protein factor involved in cellular apoptosis. The use of histone deacetylase inhibitor (i.e. trichostatin A (TSA)) and doxorubicin (Dox) is one of the common treatment methods to induce apoptosis in human cancer cells. A study on TSA and Dox-mediated apoptosis may shed light on the regulation and function of STC1 in cancer treatment. In this study, TSA and Dox cotreatment in human nasopharyngeal carcinoma cells (CNE2) elicited synergistic effects on STC1 gene expression and cellular apoptosis. An activation of p53 (TP53) transcriptional activity in Dox- or Dox+TSA-treated cells was revealed by the increased expression levels of p53 mRNA/protein as well as p53-driven luciferase activities. To elucidate the possible involvement of p53 in STC1 gene transcription, a vector expressing wild-type or dominant negative (DN) p53 was transiently transfected into the cells. Both STC1 promoter luciferase constructs and chromatin immunoprecipitation assays did not support the direct role of p53 in STC1 gene transactivation. However, the synergistic effects of p53 on the induction of NF-κB phosphorylation and the recruitment of acetylated histone H3 in STC1 promoter were observed in TSA-cotreated cells. The overexpression of exogenous STC1 sensitized apoptosis in Dox-treated cells. Taken together, this study provides data to show the cross talk of NF-κB, p53, and histone protein in the regulation of STC1 expression and function.
Collapse
Affiliation(s)
- L Y Ching
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | |
Collapse
|
25
|
Yeung BHY, Law AYS, Wong CKC. Evolution and roles of stanniocalcin. Mol Cell Endocrinol 2012; 349:272-80. [PMID: 22115958 DOI: 10.1016/j.mce.2011.11.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022]
Abstract
In fish, stanniocalcin-1 (STC1) is a key endocrine factor that acts on gill, intestine and kidney to regulate serum calcium and phosphate homeostasis. The recent identification and study of mammalian STCs (STC1 and STC2) revealed that the hormones are made in virtually all tissues and they act primarily as paracrine/autocrine factors to regulate various biological functions. Based on their ubiquitous expression patterns and generally undetectable levels in blood serum, it is unlikely that the mammalian STCs play important roles in serum Ca(2+)/P(i) homeostasis. However current evidences still support the local action of STCs in Ca(2+) and P(i) transport, probably via their action on Ca(2+)-channels and Na(+)/P(i) co-transporter. At present, information about the sequence, expression and distribution of the STC receptor(s) is lacking. However, recent emerging evidence hints the involvement of STC1 and STC2 in the sub-cellular functions of mitochondria and endoplasmic reticulum respectively, particularly responding to oxidative stress and unfolded protein response. With increasing evidence that demonstrates the local actions of STCs, the focus of the research has been moved to cellular inflammation and carcinogenesis. This review integrates the information available on STCs in fish and mammals, focusing mainly on their embryonic origin, tissue distribution, their potential regulatory mechanisms and the modes of action, and their physiological and pathophysiological functions, particularly in cancer biology.
Collapse
Affiliation(s)
- B H Y Yeung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | |
Collapse
|
26
|
Richards TDJ, Fenton AL, Syed R, Wagner GF. Characterization of stanniocalcin-1 receptors in the rainbow trout. ISRN ENDOCRINOLOGY 2012; 2012:257841. [PMID: 22474594 PMCID: PMC3302014 DOI: 10.5402/2012/257841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/20/2011] [Indexed: 01/08/2023]
Abstract
Mammalian stanniocalcin-1 (STC-1) is one of several ligands targeted to mitochondria. High affinity STC-1 receptors are present on the mitochondrial membranes of nephron cells, myocytes, and hepatocytes, to enable ligand sequestration within the matrix. However, STC-1 receptors have not been characterized in fish. Nor is it known if mitochondrial targeting occurs in fish. The aim of the study was to address these questions. Saturation binding assays were carried out to obtain estimates of KD
and
Bmax. They revealed the presence of saturable, high-affinity receptors on both membranes and mitochondria of liver, muscle, and gill filament. In situ ligand binding (ISLB) was used to localize receptors at the histological level and revealed some unexpected findings. In cranium, for instance, receptors were found mainly in the cartilage matrix, as opposed to the chondrocytes. In brain, the majority of receptors were located on neuropil areas as opposed to neuronal cell bodies. In skeletal muscle, receptors were confined to periodic striations, tentatively identified as the Z lines. Receptors were even found on STC-1 producing corpuscles of Stannius cells, raising the possibility of there being an autocrine feedback loop or, perhaps, a soluble binding protein that is released with the ligand to regulate its bioavailability.
Collapse
Affiliation(s)
- Timothy D J Richards
- Department of Physiology and Pharmacology, Faculty of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | |
Collapse
|
27
|
Law AYS, Yeung BHY, Ching LY, Wong CKC. Sp1 is a transcription repressor to stanniocalcin-1 expression in TSA-treated human colon cancer cells, HT29. J Cell Biochem 2011; 112:2089-96. [PMID: 21465530 DOI: 10.1002/jcb.23127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Our previous study demonstrated that, stanniocalcin-1 (STC1) was a target of histone deacetylase (HDAC) inhibitors and was involved in trichostatin A (TSA) induced apoptosis in the human colon cancer cells, HT29. In this study, we reported that the transcriptional factor, specificity protein 1 (Sp1) in association with retinoblastoma (Rb) repressed STC1 gene transcription in TSA-treated HT29 cells. Our data demonstrated that, a co-treatment of the cells with TSA and Sp1 inhibitor, mithramycin A (MTM) led to a marked synergistic induction of STC1 transcript levels, STC1 promoter (1 kb)-driven luciferase activity and an increase of apoptotic cell population. The knockdown of Sp1 gene expression in TSA treated cells, revealed the repressor role of Sp1 in STC1 transcription. Using a protein phosphatase inhibitor okadaic acid (OKA), an increase of Sp1 hyperphosphorylation and so a reduction of its transcriptional activity, led to a significant induction of STC1 gene expression. Chromatin immunoprecipitation (ChIP) assay revealed that Sp1 binding on STC1 proximal promoter in TSA treated cells. The binding of Sp1 to STC1 promoter was abolished by the co-treatment of MTM or OKA in TSA-treated cells. Re-ChIP assay illustrated that Sp1-mediated inhibition of STC1 transcription was associated with the recruitment of another repressor molecule, Rb. Collectively our findings identify STC1 is a downstream target of Sp1.
Collapse
Affiliation(s)
- Alice Y S Law
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | |
Collapse
|
28
|
Yeung BHY, Wong CKC. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes. PLoS One 2011; 6:e27094. [PMID: 22069492 PMCID: PMC3206080 DOI: 10.1371/journal.pone.0027094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/10/2011] [Indexed: 11/19/2022] Open
Abstract
Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca2+]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca2+]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca2+]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.
Collapse
Affiliation(s)
- Bonnie H. Y. Yeung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chris K. C. Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- * E-mail:
| |
Collapse
|
29
|
Jauhiainen S, Häkkinen SK, Toivanen PI, Heinonen SE, Jyrkkänen HK, Kansanen E, Leinonen H, Levonen AL, Ylä-Herttuala S. Vascular Endothelial Growth Factor (VEGF)-D Stimulates VEGF-A, Stanniocalcin-1, and Neuropilin-2 and Has Potent Angiogenic Effects. Arterioscler Thromb Vasc Biol 2011; 31:1617-24. [DOI: 10.1161/atvbaha.111.225961] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective—
The mature form of human vascular endothelial growth factor-D (hVEGF-D
ΔNΔC
) is an efficient angiogenic factor, but its full mechanism of action has remained unclear. We studied the effects of hVEGF-D
ΔNΔC
in endothelial cells using gene array, signaling, cell culture, and in vivo gene transfer techniques.
Methods and Results—
Concomitant with the angiogenic and proliferative responses, hVEGF-D
ΔNΔC
enhanced the phosphorylation of VEGF receptor-2, Akt, and endothelial nitric oxide synthase. Gene arrays, quantitative reverse transcription–polymerase chain reaction, and Western blot revealed increases in VEGF-A, stanniocalcin-1 (STC1), and neuropilin (NRP) 2 expression by hVEGF-D
ΔNΔC
stimulation, whereas induction with hVEGF-A
165
altered the expression of STC1 and NRP1, another coreceptor for VEGFs. The effects of hVEGF-D
ΔNΔC
were seen only under high-serum conditions, whereas for hVEGF-A
165
, the strongest response was observed under low-serum conditions. The hVEGF-D
ΔNΔC
-induced upregulation of STC1 and NRP2 was also evident in vivo in mouse skeletal muscle treated with hVEGF-D
ΔNΔC
by adenoviral gene delivery. The importance of NRP2 in hVEGF-D
ΔNΔC
signaling was further studied with NRP2 small interfering RNA and NRP antagonist, which were able to block hVEGF-D
ΔNΔC
-induced survival of endothelial cells.
Conclusion—
In this study, the importance of serum and upregulation of NRP2 and STC1 for VEGF-D
ΔNΔC
effects were demonstrated. Better knowledge of VEGF-D
ΔNΔC
signaling and regulation is valuable for the development of efficient and safe VEGF-D
ΔNΔC
-based therapeutic applications for cardiovascular diseases.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Sanna-Kaisa Häkkinen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Pyry I. Toivanen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Suvi E. Heinonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Henna-Kaisa Jyrkkänen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Emilia Kansanen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Hanna Leinonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Anna-Liisa Levonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| |
Collapse
|
30
|
He LF, Wang TT, Gao QY, Zhao GF, Huang YH, Yu LK, Hou YY. Stanniocalcin-1 promotes tumor angiogenesis through up-regulation of VEGF in gastric cancer cells. J Biomed Sci 2011; 18:39. [PMID: 21672207 PMCID: PMC3142497 DOI: 10.1186/1423-0127-18-39] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/14/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Stanniocalcin-1(STC-1) is up-regulated in several cancers including gastric cancer. Evidences suggest that STC-1 is associated with carcinogenesis and angiogenic process. However, it is unclear on the exact role for STC-1 in inducing angiogenesis and tumorigeneisis. METHOD BGC/STC cells (high-expression of STC-1) and BGC/shSTC cells (low- expression of STC-1) were constructed to investigate the effect of STC-1 on the xenograft tumor growth and angiogenesis in vitro and in vivo. ELISA assay was used to detect the expression of vascular endothelial growth factor (VEGF) in the supernatants. Neutralizing antibody was used to inhibit VEGF expression in supernatants. The expression of phosphorylated -PKCβII, phosphorylated -ERK1/2 and phosphorylated -P38 in the BGC treated with STC-1protein was detected by western blot. RESULTS STC-1 could promote angiogenesis in vitro and in vivo, and the angiogenesis was consistent with VEGF expression in vitro. Inhibition of VEGF expression in supernatants with neutralizing antibody markedly abolished angiogenesis induced by STC-1 in vitro. The process of STC-1-regulated VEGF expression was mediated via PKCβII and ERK1/2. CONCLUSIONS STC-1 promotes the expression of VEGF depended on the activation of PKCβII and ERK1/2 pathways. VEGF subsequently enhances tumor angiogenesis which in turn promotes the gastric tumor growth.
Collapse
Affiliation(s)
- Ling-fang He
- Immunology and Reproductive Biology Lab, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Ting-ting Wang
- Immunology and Reproductive Biology Lab, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Qian-ying Gao
- Immunology and Reproductive Biology Lab, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Guang-feng Zhao
- Immunology and Reproductive Biology Lab, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Ya-hong Huang
- Immunology and Reproductive Biology Lab, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Li-ke Yu
- First Department of Respiratory Medicine, Nanjing Chest Hospital, 215 Guangzhou Road, Nanjing, PR China
| | - Ya-yi Hou
- Immunology and Reproductive Biology Lab, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| |
Collapse
|
31
|
Wu S, Zang W, Li X, Sun H. Proepithelin stimulates growth plate chondrogenesis via nuclear factor-kappaB-p65-dependent mechanisms. J Biol Chem 2011; 286:24057-67. [PMID: 21566130 DOI: 10.1074/jbc.m110.201368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proepithelin, a previously unrecognized growth factor in cartilage, has recently emerged as an important regulator for cartilage formation and function. In the present study, we provide several lines of evidences in proepithelin-mediated induction of cell proliferation, differentiation, and apoptosis in the metatarsal growth plate. Proepithelin-mediated stimulation of metatarsal growth and growth plate chondrogenesis was neutralized by pyrrolidine dithiocarbamate, a known NF-κB inhibitor. In rat growth plate chondrocytes, proepithelin induced NF-κB-p65 nuclear translocation, and nuclear NF-κB-p65 initiated its target gene cyclin D1 to regulate chondrocyte functions. The inhibition of NF-κB-p65 expression and activity (by p65 short interfering RNA (siRNA) and pyrrolidine dithiocarbamate, respectively) in chondrocytes reversed the proepithelin-mediated induction of cell proliferation and differentiation and the proepithelin-mediated prevention of cell apoptosis. Moreover, the inhibition of the phosphatidylinositol 3-kinase and Akt abolished the effects of proepithelin on NF-κB activation. Finally, using siRNA and antisense strategies, we demonstrated that endogenously produced proepithelin by chondrocytes is important for chondrocyte growth in serum-deprived conditions. These results support the hypothesis that the induction of NF-κB activity of in growth plate chondrocytes is critical in proepithelin-mediated growth plate chondrogenesis and longitudinal bone growth.
Collapse
Affiliation(s)
- Shufang Wu
- First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, 710061 China.
| | | | | | | |
Collapse
|
32
|
Abstract
Vertebrates have a large glycoprotein hormone, stanniocalcin, which originally was shown to inhibit calcium uptake from the environment in teleost fish gills. Later, humans, other mammals, and teleost fish were shown to have two forms of stanniocalcin (STC1 and STC2) that were widely distributed in many tissues. STC1 is associated with calcium and phosphate homeostasis and STC2 with phosphate, but their receptors and signaling pathways have not been elucidated. We undertook a phylogenetic investigation of stanniocalcin beyond the vertebrates using a combination of BLAST and HMMER homology searches in protein, genomic, and expressed sequence tag databases. We identified novel STC homologs in a diverse array of multicellular and unicellular organisms. Within the eukaryotes, almost all major taxonomic groups except plants and algae have STC homologs, although some groups like echinoderms and arthropods lack STC genes. The critical structural feature for recognition of stanniocalcins was the conserved pattern of ten cysteines, even though the amino acid sequence identity was low. Signal peptides in STC sequences suggest they are secreted from the cell of synthesis. The role of glycosylation signals and additional cysteines is not yet clear, although the 11th cysteine, if present, has been shown to form homodimers in some vertebrates. We predict that large secreted stanniocalcin homologs appeared in evolution as early as single-celled eukaryotes. Stanniocalcin's tertiary structure with five disulfide bonds and its primary structure with modest amino acid conservation currently lack an established receptor-signaling system, although we suggest possible alternatives.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | |
Collapse
|
33
|
Sugita A, Kawai S, Hayashibara T, Amano A, Ooshima T, Michigami T, Yoshikawa H, Yoneda T. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis. J Biol Chem 2011; 286:3094-103. [PMID: 21075853 PMCID: PMC3024802 DOI: 10.1074/jbc.m110.148403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 10/13/2010] [Indexed: 12/13/2022] Open
Abstract
Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.
Collapse
Affiliation(s)
- Atsushi Sugita
- From the Departments of Biochemistry
- the Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | - Takashi Ooshima
- Pediatric Dentistry, Osaka University Graduate School of Dentistry, and
| | - Toshimi Michigami
- the Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka 594-1101, Japan and
| | - Hideki Yoshikawa
- the Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
34
|
Kikuchi M, Nakano Y, Nambo Y, Haneda S, Matsui M, Miyake Y, Macleod JN, Nagaoka K, Imakawa K. Production of calcium maintenance factor Stanniocalcin-1 (STC1) by the equine endometrium during the early pregnant period. J Reprod Dev 2010; 57:203-11. [PMID: 21139325 DOI: 10.1262/jrd.10-079k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A factor responsible for progression to pregnancy establishment in the mare has not been definitively characterized. To identify factors possibly involved in the establishment of equine pregnancy, the endometrium was collected from day 13 (day 0=day of ovulation) cyclic and day 13, 19 and 25 pregnant animals. From initial subtractive hybridization studies, a calcium regulating factor, Stanniocalcin-1 (STC1) mRNA, was found as a candidate molecule expressed uniquely in the pregnant endometrium. Endometrial expression of STC1 mRNA was noted on day 19 and was markedly increased in the day 25 gravid endometrium. STC1 protein was found in the extracts of day 25 gravid endometrium and immunochemically localized in the uterine glands. In addition, STC1 protein was detected in uterine flushing media collected from day 25 pregnant mares. High concentrations of estradiol-17 β (E(2)) were detected in day 25 conceptuses. E(2) levels were much higher in the gravid endometrium than in other regions, whereas progesterone levels did not differ among the samples from different endometrial regions. Expression of STC1 mRNA, however, was not significantly upregulated in cultured endometrial explants treated with various concentrations of E(2) (0.01-100 ng/ml) with or without 10 ng/ml progesterone. These results indicate that an increase in STC1 expression appears to coincide with capsule disappearance in the conceptus, and suggest that STC1 from the uterine glands likely plays a role in conceptus development during the pregnancy establishment period in the mare.
Collapse
Affiliation(s)
- Masato Kikuchi
- Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Elizondo MR, Budi EH, Parichy DM. trpm7 regulation of in vivo cation homeostasis and kidney function involves stanniocalcin 1 and fgf23. Endocrinology 2010; 151:5700-9. [PMID: 20881241 PMCID: PMC2999483 DOI: 10.1210/en.2010-0853] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/25/2010] [Indexed: 12/31/2022]
Abstract
The transient receptor potential melastatin 7 (trpm7) channel kinase is a primary regulator of magnesium homeostasis in vitro. Here we show that trpm7 is an important regulator of cation homeostasis as well as kidney function in vivo. Using zebrafish trpm7 mutants, we show that early larvae exhibit reduced levels of both total magnesium and total calcium. Accompanying these deficits, we show that trpm7 mutants express higher levels of stanniocalcin 1 (stc1), a potent regulator of calcium homeostasis. Using transgenic overexpression and morpholino oligonucleotide knockdown, we demonstrate that stc1 modulates both calcium and magnesium levels in trpm7 mutants and in the wild type and that levels of these cations are restored to normal in trpm7 mutants when stc1 activity is blocked. Consistent with defects in both calcium and phosphate homeostasis, we further show that trpm7 mutants develop kidney stones by early larval stages and exhibit increased levels of the anti-hyperphosphatemic factor, fibroblast growth factor 23 (fgf23). Finally, we demonstrate that elevated fgf23 expression contributes to kidney stone formation by morpholino knockdown of fgf23 in trpm7 mutants. Together, these analyses reveal roles for trpm7 in regulating cation homeostasis and kidney function in vivo and implicate both stc1 and fgf23 in these processes.
Collapse
Affiliation(s)
- Michael R Elizondo
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
36
|
Stanniocalcin-1 detection of peripheral blood in patients with colorectal cancer. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0274-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Yamamoto R, Minamizaki T, Yoshiko Y, Yoshioka H, Tanne K, Aubin JE, Maeda N. 1alpha,25-dihydroxyvitamin D3 acts predominately in mature osteoblasts under conditions of high extracellular phosphate to increase fibroblast growth factor 23 production in vitro. J Endocrinol 2010; 206:279-86. [PMID: 20530653 PMCID: PMC2917591 DOI: 10.1677/joe-10-0058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoblasts/osteocytes are the principle sources of fibroblast growth factor 23 (FGF23), a phosphaturic hormone, but the regulation of FGF23 expression during osteoblast development remains uncertain. Because 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and inorganic phosphate (Pi) may act as potent activators of FGF23 expression, we estimated how these molecules regulate FGF23 expression during rat osteoblast development in vitro. 1,25(OH)(2)D(3)-dependent FGF23 production was restricted largely to mature cells in correlation with increased vitamin D receptor (VDR) mRNA levels, in particular, when Pi was present. Pi alone and more so in combination with 1,25(OH)(2)D(3) increased FGF23 production and VDR mRNA expression. Parathyroid hormone, stanniocalcin 1, prostaglandin E(2), FGF2, and foscarnet did not increase FGF23 mRNA expression. Thus, these results suggest that 1,25(OH)(2)D(3) may exert its largest effect on FGF23 expression/production when exposed to high levels of extracellular Pi in osteoblasts/osteocytes.
Collapse
Affiliation(s)
- Ryoko Yamamoto
- Orthodontics and Craniofacial Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| | - Tomoko Minamizaki
- Oral Growth and Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| | - Yuji Yoshiko
- Oral Growth and Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
- (Correspondence should be addressed to Y Yoshiko; )
| | - Hirotaka Yoshioka
- Oral Growth and Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| | - Kazuo Tanne
- Orthodontics and Craniofacial Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| | - Jane E Aubin
- Department of Molecular Genetics, Faculty of MedicineUniversity of Toronto1 King's College Circle, Toronto, OntarioCanadaM5S 1A8
| | - Norihiko Maeda
- Oral Growth and Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| |
Collapse
|
38
|
Block GJ, DiMattia GD, Prockop DJ. Stanniocalcin-1 regulates extracellular ATP-induced calcium waves in human epithelial cancer cells by stimulating ATP release from bystander cells. PLoS One 2010; 5:e10237. [PMID: 20422040 PMCID: PMC2857883 DOI: 10.1371/journal.pone.0010237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/16/2010] [Indexed: 11/29/2022] Open
Abstract
Background The epithelial cell response to stress involves the transmission of signals between contiguous cells that can be visualized as a calcium wave. In some cell types, this wave is dependent on the release of extracellular trinucleotides from injured cells. In particular, extracellular ATP has been reported to be critical for the epithelial cell response to stress and has recently been shown to be upregulated in tumors in vivo. Methodology/Principal Findings Here, we identify stanniocalcin-1 (STC1), a secreted pleiotrophic protein, as a critical mediator of calcium wave propagation in monolayers of pulmonary (A549) and prostate (PC3) epithelial cells. Addition of STC1 enhanced and blocking STC1 decreased the distance traveled by an extracellular ATP-dependent calcium wave. The same effects were observed when calcium was stimulated by the addition of exogenous ATP. We uncover a positive feedback loop in which STC1 promotes the release of ATP from cells in vitro and in vivo. Conclusions/Significance The results indicated that STC1 plays an important role in the early response to mechanical injury by epithelial cells by modulating signaling of extracellular ATP. This is the first report to describe STC1 as a modulator or purinergic receptor signaling.
Collapse
Affiliation(s)
- Gregory J. Block
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Sciences Center, Temple, Texas, United States of America
| | - Gabriel D. DiMattia
- London Regional Cancer Program and the Department of Oncology, Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Darwin J. Prockop
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Sciences Center, Temple, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Johnston J, Ramos-Valdes Y, Stanton LA, Ladhani S, Beier F, Dimattia GE. Human stanniocalcin-1 or -2 expressed in mice reduces bone size and severely inhibits cranial intramembranous bone growth. Transgenic Res 2010; 19:1017-39. [PMID: 20174869 DOI: 10.1007/s11248-010-9376-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 02/04/2010] [Indexed: 01/27/2023]
Abstract
Stanniocalcin-1 (STC1) and -2 (STC2) are highly related, secreted, homodimeric glycoproteins that are significantly upregulated by different forms of stress including high phosphate levels. Transgenic mice that constitutively express either human STC1 or STC2 exhibit intra-uterine growth restriction and permanent post-natal growth retardation. STC1 is expressed in chondrocytic and osteoblastic cells during murine development and can enhance differentiation of calvarial cells in culture. Therefore, there is mounting evidence that stanniocalcins (STCs) modulate bone development in vivo. To further define the effects of stanniocalcins on skeletal development, we performed a series of measurements on components of the axial, appendicular, and cranial skeleton in transgenic and wildtype mice. We show that skeletal growth is retarded and that the intramembranous bones of the cranium exhibit a particularly severe delay in suture closure. The posterior frontal suture remains patent throughout the lifetime of human STC1 and STC2 transgenic mice. We did not observe significant effects on chondrogenesis: however, calvarial cells exhibited reduced viability, proliferation and delayed differentiation, indicating that developing osteoblasts are particularly sensitive to the levels of STCs. Given the evidence linking STC1 to cellular phosphate homeostasis, we assessed the expression of a variety of phosphate regulators in transgenic and wildtype calvarial cells and found significantly lower levels of Mepe, Dmp1, Sfrp4 in transgenic cells without a change in Pit1 or Pit2. Collectively these data support a direct regulatory role for STCs in osteoblasts and suggest that overexposure to these factors inhibits normal skeletal development without significant changes in patterning.
Collapse
Affiliation(s)
- Jennifer Johnston
- Cancer Research Laboratory Program, London Regional Cancer Program (LRCP), 790 Commissioners Rd, Room A4-921, London, ON, N6A 4L6, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R, DiMattia G, Sullivan DE, Prockop DJ. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells 2009; 27:670-681. [PMID: 19267325 DOI: 10.1002/stem.20080742] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multipotent stromal cells (MSCs) have been shown to reduce apoptosis in injured cells by secretion of paracrine factors, but these factors were not fully defined. We observed that coculture of MSCs with previously UV-irradiated fibroblasts reduced apoptosis of the irradiated cells, but fresh MSC conditioned medium was unable reproduce the effect. Comparative microarray analysis of MSCs grown in the presence or absence of UV-irradiated fibroblasts demonstrated that the MSCs were activated by the apoptotic cells to increase synthesis and secretion of stanniocalcin-1 (STC-1), a peptide hormone that modulates mineral metabolism and has pleiotrophic effects that have not been fully characterized. We showed that STC-1 was required but not sufficient for reduction of apoptosis of UV-irradiated fibroblasts. In contrast, we demonstrated that MSC-derived STC-1 was both required and sufficient for reduction of apoptosis of lung cancer epithelial cells made apoptotic by incubation at low pH in hypoxia. Our data demonstrate that STC-1 mediates the antiapoptotic effects of MSCs in two distinct models of apoptosis in vitro.
Collapse
Affiliation(s)
- Gregory J Block
- Tulane Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, 70112
| | - Shinya Ohkouchi
- Tulane Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, 70112
| | - France Fung
- Tulane Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, 70112
| | - Joshua Frenkel
- Tulane Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, 70112
| | - Carl Gregory
- Tulane Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, 70112
| | - Radhika Pochampally
- Tulane Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, 70112
| | - Gabriel DiMattia
- London Regional Cancer Program and the Dept. of Oncology, Biochemistry, The University of Western Ontario
| | - Deborah E Sullivan
- Tulane University, Department of Microbiology and Immunology, New Orleans LA, 70112
| | - Darwin J Prockop
- Tulane Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, 70112
| |
Collapse
|
41
|
Stanniocalcin-1 acts in a negative feedback loop in the prosurvival ERK1/2 signaling pathway during oxidative stress. Oncogene 2009; 28:1982-92. [PMID: 19347030 DOI: 10.1038/onc.2009.65] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian Stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in various biological processes including angiogenesis. Aberrant STC1 expression has been reported in breast, ovarian and prostate cancers, but the significance of this is not well understood. Here, we report that oxidative stress caused a 40-fold increase in STC1 levels in mouse embryo fibroblasts (MEFs). STC1-/- MEFs were resistant to growth inhibition and cell death induced by H(2)O(2) or by 20% O(2) (which is hyperoxic for most mammalian cells); this is the first phenotype reported for STC1-null cells. STC1-/- cells had higher levels of activated MEK and ERK1/2 than their wild-type (WT) counterparts, and these levels were all reduced by stable expression of exogenous STC1 in STC1-/- cells. Furthermore, pharmacological inhibition by PD98059 or UO126 of MEK and therefore of ERK1/2 activation restored sensitivity of STC1-/- cells to oxidative stress. We also found that H(2)O(2)-induced STC1 expression in WT cells was abolished by inhibition of ERK1/2 activation. Thus, the ERK1/2 signaling pathway upregulates STC1 expression, which in turn downregulates the level of activated MEK and consequently ERK1/2 in a novel negative feedback loop. Therefore, STC1 expression downregulates prosurvival ERK1/2 signaling and reduces survival under conditions of oxidative stress.
Collapse
|
42
|
Multipotent Stromal Cells Are Activated to Reduce Apoptosis in Part by Upregulation and Secretion of Stanniocalcin-1. Stem Cells 2009. [DOI: 10.1634/stemcells.2008-0742] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Law AYS, Lai KP, Lui WC, Wan HT, Wong CKC. Histone deacetylase inhibitor-induced cellular apoptosis involves stanniocalcin-1 activation. Exp Cell Res 2008; 314:2975-84. [PMID: 18652825 DOI: 10.1016/j.yexcr.2008.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 01/16/2023]
Abstract
Our previous studies have demonstrated the involvement of HIF-1 and p53 in the regulation of stanniocalcin-1 (STC1) gene transcription in human cancer cells. In this study, we reported that the treatment of human colon adenoma HT29 cells with a histone deacetylase (HDAC) inhibitor (i.e. trichostatin A, TSA) induced both cellular apoptosis and STC1 expression. The activation of STC1 expression was also observed in other TSA-treated human cancer cells (i.e. SKOV3, CaCo-2, Jurkat and CNE-2 cells). STC1 mRNA was rapidly induced within 4 h in TSA-treated HT29 cells, and was found to be transcriptionally regulated and was independent of new protein synthesis as revealed by ActD and CHX treatment respectively. The induction was correlated with increased cellular levels of acetyl histone H3 and H4 and acetyl NFkappaB. Chromatin immunoprecipitation (ChIP) assay showed the increased binding of acetyl histone H3 and H4 to STC1 promoter in the TSA-treated cells. A cotreatment of HT29 cells with a NFkappaB inhibitor (parthenolide) significantly inhibited the TSA-induced cellular levels of acetyl NFkappaB p65 and abolished the stimulation of STC1 gene expression. ChIP assay also demonstrated that TSA treatment increased while TSA/parthenolide cotreatment decreased NFkappaB p65 binding to STC1 gene promoter. In the STC1-luciferase promoter construct (1 kb) study, the data implied that the promoter can be activated by TSA treatment. Interestingly, the promoter region contains 2 putative NFkappaB binding sites. Consistent with the STC1mRNA expression data, TSA/parthenolide cotreatment also significantly inhibited the TSA-induced STC1 promoter-driven luciferase activity. Importantly, TSA-induced apoptotic process was found to be significantly reduced by the silencing of STC1 expression. This is the first study to show that histone hyper-acetylation and the recruitment of activated NFkappaB stimulated STC1 gene expression. In addition, our results support the notion that STC1 is a pro-apoptotic factor.
Collapse
Affiliation(s)
- A Y S Law
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | |
Collapse
|
44
|
Distribution of stanniocalcin binding sites in the lamina terminalis of the rat. Brain Res 2008; 1218:141-50. [DOI: 10.1016/j.brainres.2008.04.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/17/2008] [Accepted: 04/24/2008] [Indexed: 11/20/2022]
|
45
|
Yoshiko Y, Minamizaki T, Maeda N. New Insights into the Roles of Fibroblast Growth Factor 23. Clin Rev Bone Miner Metab 2008. [DOI: 10.1007/s12018-008-9008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Chang ACM, Hook J, Lemckert FA, McDonald MM, Nguyen MAT, Hardeman EC, Little DG, Gunning PW, Reddel RR. The murine stanniocalcin 2 gene is a negative regulator of postnatal growth. Endocrinology 2008; 149:2403-10. [PMID: 18258678 DOI: 10.1210/en.2007-1219] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stanniocalcin (STC), a secreted glycoprotein, was first studied in fish as a classical hormone with a role in regulating serum calcium levels. There are two closely related proteins in mammals, STC1 and STC2, with functions that are currently unclear. Both proteins are expressed in numerous mammalian tissues rather than being secreted from a specific endocrine gland. No phenotype has been detected yet in Stc1-null mice, and to investigate whether Stc2 could have compensated for the loss of Stc1, we have now generated Stc2(-/-) and Stc1(-/-) Stc2(-/-) mice. Although Stc1 is expressed in the ovary and lactating mouse mammary glands, like the Stc1(-/-) mice, the Stc1(-/-) Stc2(-/-) mice had no detected decrease in fertility, fecundity, or weight gain up until weaning. Serum calcium and phosphate levels were normal in Stc1(-/-) Stc2(-/-) mice, indicating it is unlikely that the mammalian stanniocalcins have a major physiological role in mineral homeostasis. Mice with Stc2 deleted were 10-15% larger and grew at a faster rate than wild-type mice from 4 wk onward, and the Stc1(-/-) Stc2(-/-) mice had a similar growth phenotype. This effect was not mediated through the GH/IGF-I axis. The results are consistent with STC2 being a negative regulator of postnatal growth.
Collapse
Affiliation(s)
- Andy C-M Chang
- Cancer Research Unit, The Children's Hospital, Westmead, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther 2008; 9:R100. [PMID: 17900349 PMCID: PMC2212557 DOI: 10.1186/ar2301] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/10/2007] [Accepted: 09/27/2007] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is characterized by alterations to subchondral bone as well as articular cartilage. Changes to bone in OA have also been identified at sites distal to the affected joint, which include increased bone volume fraction and reduced bone mineralization. Altered bone remodelling has been proposed to underlie these bone changes in OA. To investigate the molecular basis for these changes, we performed microarray gene expression profiling of bone obtained at autopsy from individuals with no evidence of joint disease (control) and from individuals undergoing joint replacement surgery for either degenerative hip OA, or fractured neck of femur (osteoporosis [OP]). The OP sample set was included because an inverse association, with respect to bone density, has been observed between OA and the low bone density disease OP. Compugen human 19K-oligo microarray slides were used to compare the gene expression profiles of OA, control and OP bone samples. Four sets of samples were analyzed, comprising 10 OA-control female, 10 OA-control male, 10 OA-OP female and 9 OP-control female sample pairs. Print tip Lowess normalization and Bayesian statistical analyses were carried out using linear models for microarray analysis, which identified 150 differentially expressed genes in OA bone with t scores above 4. Twenty-five of these genes were then confirmed to be differentially expressed (P < 0.01) by real-time PCR analysis. A substantial number of the top-ranking differentially expressed genes identified in OA bone are known to play roles in osteoblasts, osteocytes and osteoclasts. Many of these genes are targets of either the WNT (wingless MMTV integration) signalling pathway (TWIST1, IBSP, S100A4, MMP25, RUNX2 and CD14) or the transforming growth factor (TGF)-β/bone morphogenic protein (BMP) signalling pathway (ADAMTS4, ADM, MEPE, GADD45B, COL4A1 and FST). Other differentially expressed genes included WNT (WNT5B, NHERF1, CTNNB1 and PTEN) and TGF-β/BMP (TGFB1, SMAD3, BMP5 and INHBA) signalling pathway component or modulating genes. In addition a subset of genes involved in osteoclast function (GSN, PTK9, VCAM1, ITGB2, ANXA2, GRN, PDE4A and FOXP1) was identified as being differentially expressed in OA bone between females and males. Altered expression of these sets of genes suggests altered bone remodelling and may in part explain the sex disparity observed in OA.
Collapse
Affiliation(s)
- Blair Hopwood
- Division of Tissue Pathology, Institute of Medical & Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia
- Hanson Institute, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Anna Tsykin
- School of Mathematics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| | - David M Findlay
- Hanson Institute, Frome Road, Adelaide, South Australia, 5000, Australia
- Discipline of Orthopaedics & Trauma, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| | - Nicola L Fazzalari
- Division of Tissue Pathology, Institute of Medical & Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia
- Hanson Institute, Frome Road, Adelaide, South Australia, 5000, Australia
- Discipline of Pathology, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
48
|
Law AYS, Lai KP, Ip CKM, Wong AST, Wagner GF, Wong CKC. Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Exp Cell Res 2008; 314:1823-30. [PMID: 18394600 DOI: 10.1016/j.yexcr.2008.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 12/14/2022]
Abstract
Mammalian stanniocalcin-2 (STC2) is a secreted glycoprotein hormone with a putative role in unfolded protein response and apoptosis. Here we reported that STC2 expression was sporadically abrogated in human cancer cells by transcriptional silencing associated with CpG island promoter hypermethylation. Direct sequencing of bisulfite-modified DNA from a panel of seven human cancer cell lines revealed that CpG dinucleotides in STC2 promoter was methylated in human ovarian epithelial cancer (SKOV3, OVCAR3 and CaOV3), pancreatic cancer (BxP3), colon adenoma (HT29), and leukemia (Jurkat cells). STC2 CpG island hypermethylation was accompanied with a low basal STC2 expression level. Treatment of these cancer cells with 5-aza-2'-deoxycytidine (5-aza-CdR), an inhibitor of DNA methylation significantly induced STC2 expression. Using SKOV3 cells as a model, the link between DNA demethylation and STC2 expression was consistently demonstrated with hydralazine treatment, which was shown to reduce the protein level of DNA methyltransferase 1 (DNMT1) but stimulated STC2 expression. Two human normal surface ovarian cell-lines (i.e. IOSE 29 and 398) showed no methylation at CpG dinucleotides in the examined promoter region and were accompanied with high basal STC2 levels. Hypoxia stimulated STC2 expression in SKOV3 cells was markedly increased in 5-aza-CdR pretreated cells, showing that DNA methylation may hinder the HIF-1 mediated activation. To elucidate this possibility, RNA interference studies confirmed that endogenous HIF-1 alpha was a key factor for STC2 gene activation as well as in the synergistic induction of STC2 expression in 5-aza-CdR pretreated cells. Chromatin immunoprecipitation (ChIP) assay demonstrated the binding of HIF-1 alpha to STC2 promoter. The binding was increased in 5-aza-CdR pretreated cells. Collectively, this is the first report to show that STC2 was aberrantly hypermethylated in human cancer cells. The findings demonstrated that STC2 epigenetic inactivation may interfere with HIF-1 mediated activation of STC2 expression.
Collapse
Affiliation(s)
- Alice Y S Law
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | |
Collapse
|
49
|
Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N. Mineralized tissue cells are a principal source of FGF23. Bone 2007; 40:1565-73. [PMID: 17350357 DOI: 10.1016/j.bone.2007.01.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 12/22/2006] [Accepted: 01/16/2007] [Indexed: 11/16/2022]
Abstract
While fibroblast growth factor (FGF) 23 is known as a phosphaturic factor in inherited and/or acquired hypophosphatemic disorders, it also serves an endocrine role in normal phosphate homeostasis. FGF23 acts negatively on the NaPi2a cotransporter and 25-hydroxy D(3)-1 alpha-hydroxylase with a resultant decrease in renal phosphate (Pi) reabsorption, while osteoblasts appear to be a primary source of FGF23 whose expression is counter-upregulated by 1 alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). Here we have shown the distribution of FGF23 in normal rat bone and tooth, and its expression profile in fetal rat calvaria (RC) cell cultures. FGF23 mRNA was detectable in multiple fetal and adult tissues but levels were much higher in adult calvaria, femur and incisor, compared to the other tissues tested. Immunoreactive FGF23 was predominantly localized to osteoblasts, cementoblasts, and odontoblasts, with sporadic labeling in some chondrocytes, osteocytes and cementocytes. Notably, osteoclasts were also found to be a possible source of FGF23. Fetal bone and tooth germ cells labeled much less intensely than young adult osteoblasts and odontoblasts. In the RC cell model, FGF23 was expressed during osteoblast development. During matrix mineralization induced by beta-glycerophosphate (beta GP), FGF23 expression was transiently upregulated and then decreased to levels lower than in their non-beta GP-treated counterparts. 1,25(OH)(2)D(3) markedly increased FGF23 expression concomitant with the inhibition of beta GP-induced mineralization. Our data suggest that FGF23 expression in bone is closely correlated with bone formation in vitro and vivo, and points towards an important role(s) for FGF23 in young adult but not fetal mineralized tissues as a systemic factor for Pi homeostasis.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lai KP, Law AYS, Yeung HY, Lee LS, Wagner GF, Wong CKC. Induction of stanniocalcin-1 expression in apoptotic human nasopharyngeal cancer cells by p53. Biochem Biophys Res Commun 2007; 356:968-75. [PMID: 17395153 DOI: 10.1016/j.bbrc.2007.03.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 12/14/2022]
Abstract
There is growing evidence to suggest that altered patterns of STC1 gene expression relate to the process of human cancer development. Our previous study has demonstrated the involvement of HIF-1 in the regulation of STC1 expression in human cancer cells. Recently, STC1 has been implicated as a putative pro-apoptotic factor in regulating the cell-death mechanism. Thus it would be of interest to know if STC1 is regulated by a tumor suppressor protein, p53. In this study, we provide evidence to demonstrate that the induction of STC1 expression in apoptotic human nasopharyngeal cancer cells (CNE2) is mediated by the activation of p53. Our study indicated that the activation of STC1 and heat-shock protein (hsp70) accompanied iodoacetamide (IDAM)-induced apoptosis in CNE-2. In addition, cellular events such as GSH depletion, mitochondrial membrane depolarization, reduction of pAkt and procaspase-3, and the induction of total p53 protein, acetylated p53, and annexin V positive cells were observed. The activation of STC1 was found to be at the transcriptional level and was independent of prior protein synthesis. Co-treatment of IDAM exposed cells with N-acetyl cysteine (NAC) prevented cell death by restoring mitochondrial membrane potential and cellular levels of GSH. NAC co-treatment also suppressed STC1 expression but had no effect on IDAM-induced hsp70 expression. RNA interference studies demonstrated that endogenous p53 was involved in activating STC1 gene expression. Collectively, the present findings provide the first evidence of p53 regulation of STC1 expression in human cancer cells.
Collapse
Affiliation(s)
- Keng P Lai
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | |
Collapse
|