1
|
Li Y, Yang Y, Sun Y, He L, Zhao L, Sun H, Chang X, Liang R, Wang S, Han X, Zhu Y. The miR-203/ZBTB20/MAFA Axis Orchestrates Pancreatic β-Cell Maturation and Identity During Weaning and Diabetes. Diabetes 2024; 73:1673-1686. [PMID: 39058664 DOI: 10.2337/db23-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Maturation of postnatal β-cells is regulated in a cell-autonomous manner, and metabolically stressed β-cells regress to an immature state, ensuring defective β-cell function and the onset of type 2 diabetes. The molecular mechanisms connecting the nutritional transition to β-cell maturation remain largely unknown. Here, we report a mature form of miRNA (miR-203)/ZBTB20/MAFA regulatory axis that mediates the β-cell maturation process. We show that the level of the mature form of miRNA (miR-203) in β-cells changes during the nutritional transition and that miR-203 inhibits β-cell maturation at the neonatal stage and under high-fat diet conditions. Using single-cell RNA sequencing, we demonstrated that miR-203 elevation promoted the transition of immature β-cells into CgBHi endocrine cells while suppressing gene expressions associated with β-cell maturation in a ZBTB20/MAFA-dependent manner. ZBTB20 is an authentic target of miR-203 and transcriptionally upregulates MAFA expression. Manipulating the miR-203/ZBTB20/MAFA axis may therefore offer a novel strategy for boosting functional β-cell numbers to alleviate diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqian Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu He
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Zhao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoran Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Horvath C, Wolfrum C, Pelczar P. A safety guide for transgenic Cre drivers in metabolism. Nat Metab 2024; 6:1649-1652. [PMID: 39160335 DOI: 10.1038/s42255-024-01087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Affiliation(s)
- Carla Horvath
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Suda N, Bartolomé A, Liang J, Son J, Yagishita Y, Siebel C, Accili D, Ding H, Pajvani UB. β-cell Jagged1 is sufficient but not necessary for islet Notch activity and insulin secretory defects in obese mice. Mol Metab 2024; 81:101894. [PMID: 38311286 PMCID: PMC10877406 DOI: 10.1016/j.molmet.2024.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE Notch signaling, re-activated in β cells from obese mice and causal to β cell dysfunction, is determined in part by transmembrane ligand availability in a neighboring cell. We hypothesized that β cell expression of Jagged1 determines the maladaptive Notch response and resultant insulin secretory defects in obese mice. METHODS We assessed expression of Notch pathway components in high-fat diet-fed (HFD) or leptin receptor-deficient (db/db) mice, and performed single-cell RNA sequencing (scRNA-Seq) in islets from patients with and without type 2 diabetes (T2D). We generated and performed glucose tolerance testing in inducible, β cell-specific Jagged1 gain-of- and loss-of-function mice. We also tested effects of monoclonal neutralizing antibodies to Jagged1 in glucose-stimulated insulin secretion (GSIS) assays in isolated islets. RESULTS Jag1 was the only Notch ligand that tracked with increased Notch activity in HFD-fed and db/db mice, as well as in metabolically-inflexible β cells enriched in patients with T2D. Neutralizing antibodies to block Jagged1 in islets isolated from HFD-fed and db/db mice potentiated GSIS ex vivo. To demonstrate if β cell Jagged1 is sufficient to cause glucose tolerance in vivo, we generated inducible β cell-specific Jag1 transgenic (β-Jag1TG) and loss-of-function (iβ-Jag1KO) mice. While forced Jagged1 impaired glucose intolerance due to reduced GSIS, loss of β cell Jagged1 did not protect against HFD-induced insulin secretory defects. CONCLUSIONS Jagged1 is increased in islets from obese mice and in patients with T2D, and neutralizing Jagged1 antibodies lead to improved GSIS, suggesting that inhibition of Jagged1-Notch signaling may have therapeutic benefit. However, genetic loss-of-function experiments suggest that β cells are not a likely source of the Jagged1 signal.
Collapse
Affiliation(s)
- Nina Suda
- Department of Medicine, Columbia University, New York, NY, USA
| | | | - Jiani Liang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Jinsook Son
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yoko Yagishita
- Department of Medicine, Columbia University, New York, NY, USA
| | - Christian Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Domenico Accili
- Department of Medicine, Columbia University, New York, NY, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Kubota C, Torii R, Hosaka M, Takeuchi T, Gomi H, Torii S. Phogrin Regulates High-Fat Diet-Induced Compensatory Pancreatic β-Cell Growth by Switching Binding Partners. Nutrients 2024; 16:169. [PMID: 38201998 PMCID: PMC10780347 DOI: 10.3390/nu16010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The receptor protein tyrosine phosphatase phogrin primarily localizes to hormone secretory granules in neuroendocrine cells. Concurrent with glucose-stimulated insulin secretion, phogrin translocates to pancreatic β-cell plasma membranes, where it interacts with insulin receptors (IRs) to stabilize insulin receptor substrate 2 (IRS2) that, in turn, contributes to glucose-responsive β-cell growth. Pancreatic β-cell development was not altered in β-cell-specific, phogrin-deficient mice, but the thymidine incorporation rate decreased in phogrin-deficient islets with a moderate reduction in IRS2 protein expression. In this study, we analyzed the β-cell response to high-fat diet stress and found that the compensatory expansion in β-cell mass was significantly suppressed in phogrin-deficient mice. Phogrin-IR interactions occurred only in high-fat diet murine islets and proliferating β-cell lines, whereas they were inhibited by the intercellular binding of surface phogrin under confluent cell culture conditions. Thus, phogrin could regulate glucose-stimulated compensatory β-cell growth by changing its binding partner from another β-cell phogrin to IR in the same β-cells.
Collapse
Affiliation(s)
- Chisato Kubota
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Gunma, Japan (T.T.)
- Department of Nutrition, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan
| | - Ryoko Torii
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Gunma, Japan (T.T.)
| | - Masahiro Hosaka
- Department of Biotechnology, Akita Prefectural University, Akita 010-0195, Akita, Japan;
| | - Toshiyuki Takeuchi
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Gunma, Japan (T.T.)
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Kanagawa, Japan;
| | - Seiji Torii
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Gunma, Japan (T.T.)
- Center for Food Science and Wellness, Gunma University, Maebashi 371-8511, Gunma, Japan
| |
Collapse
|
5
|
Ueki K, Nishida Y, Aoyama S, Uzawa H, Kanai A, Ito M, Ikeda K, Iida H, Miyatsuka T, Watada H. Establishment of Pancreatic β-Cell-Specific Gene Knockout System Based on CRISPR-Cas9 Technology With AAV8-Mediated gRNA Delivery. Diabetes 2023; 72:1609-1620. [PMID: 37625131 DOI: 10.2337/db23-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The Cre-loxP system provides valuable resources to analyze the importance of tissue-specific gene knockout (KO), including pancreatic β-cells associated with the pathogenesis of diabetes. However, it is expensive and time consuming to generate transgenic mice harboring floxed genes of interest and cross them with cell-specific Cre expression mice. We establish a βCas9 system with mice expressing Cas9 in pancreatic β-cells and adeno-associated virus 8 (AAV8)-mediated guide RNA (gRNA) delivery based on CRISPR-Cas9 technology to overcome those shortcomings. Interbreeding CAG-loxP-STOP-loxP (LSL)-Cas9 with Ins1-Cre mice generates normal glucose-tolerant βCas9 mice expressing Cas9 with fluorescent reporter EGFP specifically in β-cells. We also show significant β-cell-specific gene KO efficiency with AAV8-mediated delivery of gRNA for EGFP reporter by intraperitoneal injection in the mice. As a proof of concept, we administered AAV8 to βCas9 mice for expressing gRNA for Pdx1, a culprit gene of maturity-onset diabetes of the young 4. As reported previously, we demonstrate that those mice show glucose intolerance with transdifferentiation of Pdx1 KO β-cells into glucagon-expressing cells. We successfully generated a convenient β-cell-specific gene KO system with βCas9 mice and AAV8-mediated gRNA delivery. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Kyosei Ueki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Shuhei Aoyama
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Hirotsugu Uzawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Akiko Kanai
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Minami Ito
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Koki Ikeda
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Hitoshi Iida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| |
Collapse
|
6
|
Kaur G, Helmer RA, Martinez-Marin D, Sennoune SR, Washburn RL, Martinez-Zaguilan R, Dufour JM, Chilton BS. Helicase-like transcription factor (Hltf)-deletion activates Hmgb1-Rage axis and granzyme A-mediated killing of pancreatic β cells resulting in neonatal lethality. PLoS One 2023; 18:e0286109. [PMID: 37624843 PMCID: PMC10456192 DOI: 10.1371/journal.pone.0286109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 08/27/2023] Open
Abstract
Epigenetic mechanisms are integral to pancreatic β cell function. Promoter hypermethylation of the helicase like-transcription factor (HLTF) gene-a component of the cellular DNA damage response that contributes to genome stability-has been implicated in age-associated changes in β cells. To study HLTF, we generated global and β cell-specific (β) Hltf knockout (KO) immune competent (IC) and immune deficient (ID) Rag2-/IL2- mice. IC global and β Hltf KO mice were neonatal lethal whereas ID global and β Hltf KO newborn mice had normal survival. This focused our investigation on the effects of Rag2 interruption with common gamma chain interruption on β cell function/survival. Three-way transcriptomic (RNAseq) analyses of whole pancreata from IC and ID newborn β Hltf KO and wild type (Hltf +/+) controls combined with spatially resolved transcriptomic analysis of formalin fixed paraffin embedded tissue, immunohistochemistry and laser scanning confocal microscopy showed DNA damage caused by β Hltf KO in IC mice upregulated the Hmgb1-Rage axis and a gene signature for innate immune cells. Perforin-delivered granzyme A (GzmA) activation of DNase, Nme1, showed damaged nuclear single-stranded DNA (γH2AX immunostaining). This caspase-independent method of cell death was supported by transcriptional downregulation of Serpinc1 gene that encodes a serine protease inhibitor of GzmA. Increased transcriptional availability of complement receptors C3ar1 and C5ar1 likely invited crosstalk with Hmgb1 to amplify inflammation. This study explores the complex dialog between β cells and immune cells during development. It has implications for the initiation of type I diabetes in utero when altered gene expression that compromises genome stability invokes a localized inflammatory response.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Helmer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Souad R. Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rachel L. Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
7
|
Gaspar TB, Jesus TT, Azevedo MT, Macedo S, Soares MA, Martins RS, Leite R, Rodrigues L, Rodrigues DF, Cardoso L, Borges I, Canberk S, Gärtner F, Miranda-Alves L, Lopes JM, Soares P, Vinagre J. Generation of an Obese Diabetic Mouse Model upon Conditional Atrx Disruption. Cancers (Basel) 2023; 15:cancers15113018. [PMID: 37296979 DOI: 10.3390/cancers15113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Atrx loss was recently ascertained as insufficient to drive pancreatic neuroendocrine tumour (PanNET) formation in mice islets. We have identified a preponderant role of Atrx in the endocrine dysfunction in a Rip-Cre;AtrxKO genetically engineered mouse model (GEMM). To validate the impact of a different Cre-driver line, we used similar methodologies and characterised the Pdx1-Cre;AtrxKO (P.AtrxKO) GEMM to search for PanNET formation and endocrine fitness disruption for a period of up to 24 months. Male and female mice presented different phenotypes. Compared to P.AtrxWT, P.AtrxHOM males were heavier during the entire study period, hyperglycaemic between 3 and 12 mo., and glucose intolerant only from 6 mo.; in contrast, P.AtrxHOM females started exhibiting increased weight gains later (after 6 mo.), but diabetes or glucose intolerance was detected by 3 mo. Overall, all studied mice were overweight or obese from early ages, which challenged the histopathological evaluation of the pancreas and liver, especially after 12 mo. Noteworthily, losing Atrx predisposed mice to an increase in intrapancreatic fatty infiltration (FI), peripancreatic fat deposition, and macrovesicular steatosis. As expected, no animal developed PanNETs. An obese diabetic GEMM of disrupted Atrx is presented as potentially useful for metabolic studies and as a putative candidate for inserting additional tumourigenic genetic events.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Maria Teresa Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Sofia Macedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Mariana Alves Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rui Sousa Martins
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Rúben Leite
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- School of Health (ESS), Polytechnic Institute of Porto (IPP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Lia Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Daniela Ferreira Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular and Cell Biology (IBMC), University of Porto, 4200-135 Porto, Portugal
| | - Luís Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Inês Borges
- Centro de Diagnóstico Veterinário (Cedivet), 4200-071 Porto, Portugal
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Manuel Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
8
|
Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Cell Rep 2023; 42:112529. [PMID: 37200193 PMCID: PMC10312392 DOI: 10.1016/j.celrep.2023.112529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Paula Mota de Sa
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Stavroula Bitsi
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manika Bhondeley
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Wandy Beatty
- Molecular Imaging Facility, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael Wyatt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Daniel E Frigo
- Departments of Cancer Systems Imaging and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaowen Liu
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK; National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TH, UK
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
9
|
He S, Yu X, Cui D, Liu Y, Yang S, Zhang H, Hu W, Su Z. Nuclear factor-Y mediates pancreatic β-cell compensation by repressing reactive oxygen species-induced apoptosis under metabolic stress. Chin Med J (Engl) 2023; 136:922-932. [PMID: 37000974 PMCID: PMC10278746 DOI: 10.1097/cm9.0000000000002645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Pancreatic β-cells elevate insulin production and secretion through a compensatory mechanism to override insulin resistance under metabolic stress conditions. Deficits in β-cell compensatory capacity result in hyperglycemia and type 2 diabetes (T2D). However, the mechanism in the regulation of β-cell compensative capacity remains elusive. Nuclear factor-Y (NF-Y) is critical for pancreatic islets' homeostasis under physiological conditions, but its role in β-cell compensatory response to insulin resistance in obesity is unclear. METHODS In this study, using obese ( ob/ob ) mice with an absence of NF-Y subunit A (NF-YA) in β-cells ( ob , Nf-ya βKO) as well as rat insulinoma cell line (INS1)-based models, we determined whether NF-Y-mediated apoptosis makes an essential contribution to β-cell compensation upon metabolic stress. RESULTS Obese animals had markedly augmented NF-Y expression in pancreatic islets. Deletion of β-cell Nf-ya in obese mice worsened glucose intolerance and resulted in β-cell dysfunction, which was attributable to augmented β-cell apoptosis and reactive oxygen species (ROS). Furthermore, primary pancreatic islets from Nf-ya βKO mice were sensitive to palmitate-induced β-cell apoptosis due to mitochondrial impairment and the attenuated antioxidant response, which resulted in the aggravation of phosphorylated c-Jun N-terminal kinase (JNK) and cleaved caspase-3. These detrimental effects were completely relieved by ROS scavenger. Ultimately, forced overexpression of NF-Y in INS1 β-cell line could rescue palmitate-induced β-cell apoptosis, dysfunction, and mitochondrial impairment. CONCLUSION Pancreatic NF-Y might be an essential regulator of β-cell compensation under metabolic stress.
Collapse
Affiliation(s)
- Siyuan He
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqian Yu
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Daxin Cui
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yin Liu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wanxin Hu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Rossi M, Salomon A, Chaumontel N, Molet J, Bailly S, Tillet E, Bouvard C. Warning regarding hematological toxicity of tamoxifen activated CreERT2 in young Rosa26CreERT2 mice. Sci Rep 2023; 13:5976. [PMID: 37045870 PMCID: PMC10097815 DOI: 10.1038/s41598-023-32633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The Cre-lox system is a versatile and powerful tool used in mouse genetics. It allows spatial and/or temporal control of the deletion of a target gene. The Rosa26-CreERT2 (R26CreERT2) mouse model allows ubiquitous expression of CreERT2. Once activated by tamoxifen, CreERT2 will enter into the nuclei and delete floxed DNA sequences. Here, we show that intraperitoneal injection of tamoxifen in young R26CreERT2 mice leads to morbidity and mortality within 10 days after the first injection, in the absence of a floxed allele. Activation of CreERT2 by tamoxifen led to severe hematological defects, with anemia and a strong disorganization of the bone marrow vascular bed. Cell proliferation was significantly reduced in the bone marrow and the spleen resulting in the depletion of several hematopoietic cells. However, not all cell types or organs were affected to the same extent. We realized that many research groups are not aware of the potential toxicity of Cre recombinases, resulting in misinterpretation of the observed phenotype and in a waste of time and resources. We discuss the necessity to include tamoxifen injected CreERT2 controls lacking a floxed allele in experimental designs and to improve communication about the limitations of Cre-lox mouse models among the scientific community.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Aude Salomon
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Nicolas Chaumontel
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Jenny Molet
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Emmanuelle Tillet
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France.
| |
Collapse
|
11
|
Basu L, Bhagat V, Ching MEA, Di Giandomenico A, Dostie S, Greenberg D, Greenberg M, Hahm J, Hilton NZ, Lamb K, Jentz EM, Larsen M, Locatelli CAA, Maloney M, MacGibbon C, Mersali F, Mulchandani CM, Najam A, Singh I, Weisz T, Wong J, Senior PA, Estall JL, Mulvihill EE, Screaton RA. Recent Developments in Islet Biology: A Review With Patient Perspectives. Can J Diabetes 2023; 47:207-221. [PMID: 36481263 PMCID: PMC9640377 DOI: 10.1016/j.jcjd.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Navigating the coronavirus disease-2019 (COVID-19, now COVID) pandemic has required resilience and creativity worldwide. Despite early challenges to productivity, more than 2,000 peer-reviewed articles on islet biology were published in 2021. Herein, we highlight noteworthy advances in islet research between January 2021 and April 2022, focussing on 5 areas. First, we discuss new insights into the role of glucokinase, mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase and mitochondrial function on insulin secretion from the pancreatic β cell, provided by new genetically modified mouse models and live imaging. We then discuss a new connection between lipid handling and improved insulin secretion in the context of glucotoxicity, focussing on fatty acid-binding protein 4 and fetuin-A. Advances in high-throughput "omic" analysis evolved to where one can generate more finely tuned genetic and molecular profiles within broad classifications of type 1 diabetes and type 2 diabetes. Next, we highlight breakthroughs in diabetes treatment using stem cell-derived β cells and innovative strategies to improve islet survival posttransplantation. Last, we update our understanding of the impact of severe acute respiratory syndrome-coronavirus-2 infection on pancreatic islet function and discuss current evidence regarding proposed links between COVID and new-onset diabetes. We address these breakthroughs in 2 settings: one for a scientific audience and the other for the public, particularly those living with or affected by diabetes. Bridging biomedical research in diabetes to the community living with or affected by diabetes, our partners living with type 1 diabetes or type 2 diabetes also provide their perspectives on these latest advances in islet biology.
Collapse
Affiliation(s)
- Lahari Basu
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Vriti Bhagat
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ma Enrica Angela Ching
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Sylvie Dostie
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Dana Greenberg
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Marley Greenberg
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jiwon Hahm
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - N Zoe Hilton
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Krista Lamb
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Emelien M Jentz
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Matt Larsen
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Cassandra A A Locatelli
- University of Ottawa Heart Institute, Energy Substrate Laboratory, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - MaryAnn Maloney
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Farida Mersali
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Adhiyat Najam
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ishnoor Singh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tom Weisz
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jordan Wong
- Alberta Diabetes Institute and Department of Pharmacology, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Senior
- Alberta Diabetes Institute and Department of Medicine, Edmonton, Alberta, Canada
| | - Jennifer L Estall
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal, Center for Cardiometabolic Health, Montréal, Québec, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Energy Substrate Laboratory, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert A Screaton
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
IWAMOTO TATSUYA, SHIMIZU SHIGEOMI, TAJIMA-SAKURAI HAJIME, YAMAGUCHI HIROFUMI, NISHIDA YUYA, ARAKAWA SATOKO, WATADA HIROTAKA. Inhibition of Insulin Secretion Induces Golgi Morphological Changes. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:42-49. [PMID: 38854847 PMCID: PMC11153068 DOI: 10.14789/jmj.jmj22-0040-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 06/11/2024]
Abstract
Objectives The role of autophagy in pancreatic β cells has been reported, but the relationship between autophagy and insulin metabolism is complex and is not fully understood yet. Design We here analyze the relationship between autophagy and insulin metabolism from a morphological aspect. Methods We observe the morphological changes of β cell-specific Atg7-deficient mice and Atg5-deficient MIN6 cells with electron microscopy. Results We find that Atg7-deficient β cells exhibit a marked expansion of the endoplasmic reticulum (ER). We also find that the inhibitory state of insulin secretion causes morphological changes in the Golgi, including ministacking and swelling. The same morphological alterations are observed when insulin secretion is suppressed in Atg5-deficient MIN6 cells. Conclusions The defect of autophagy induces ER expansion, and inhibition of insulin secretion induces Golgi swelling, probably via ER stress and Golgi stress, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - SATOKO ARAKAWA
- Corresponding author: Satoko Arakawa, Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan, TEL: +81-3-5803-4797 FAX: +81-3-5803-4821 E-mail: , Present address. Research Core (RCC), Institute of Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan, TEL: +81-3-5803-4127 FAX: +81-3-5803-0234 E-mail:
| | - HIROTAKA WATADA
- Corresponding author: Hirotaka Watada, Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, TEL: +81-3-5802-1579 FAX: +81-3-3813-5996 E-mail:
| |
Collapse
|
13
|
Cardiac-Specific Expression of Cre Recombinase Leads to Age-Related Cardiac Dysfunction Associated with Tumor-like Growth of Atrial Cardiomyocyte and Ventricular Fibrosis and Ferroptosis. Int J Mol Sci 2023; 24:ijms24043094. [PMID: 36834504 PMCID: PMC9962429 DOI: 10.3390/ijms24043094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
Transgenic expression of Cre recombinase driven by a specific promoter is normally used to conditionally knockout a gene in a tissue- or cell-type-specific manner. In αMHC-Cre transgenic mouse model, expression of Cre recombinase is controlled by the myocardial-specific α-myosin heavy chain (αMHC) promoter, which is commonly used to edit myocardial-specific genes. Toxic effects of Cre expression have been reported, including intro-chromosome rearrangements, micronuclei formation and other forms of DNA damage, and cardiomyopathy was observed in cardiac-specific Cre transgenic mice. However, mechanisms associated with Cardiotoxicity of Cre remain poorly understood. In our study, our data unveiled that αMHC-Cre mice developed arrhythmias and died after six months progressively, and none of them survived more than one year. Histopathological examination showed that αMHC-Cre mice had aberrant proliferation of tumor-like tissue in the atrial chamber extended from and vacuolation of ventricular myocytes. Furthermore, the αMHC-Cre mice developed severe cardiac interstitial and perivascular fibrosis, accompanied by significant increase of expression levels of MMP-2 and MMP-9 in the cardiac atrium and ventricular. Moreover, cardiac-specific expression of Cre led to disintegration of the intercalated disc, along with altered proteins expression of the disc and calcium-handling abnormality. Comprehensively, we identified that the ferroptosis signaling pathway is involved in heart failure caused by cardiac-specific expression of Cre, on which oxidative stress results in cytoplasmic vacuole accumulation of lipid peroxidation on the myocardial cell membrane. Taken together, these results revealed that cardiac-specific expression of Cre recombinase can lead to atrial mesenchymal tumor-like growth in the mice, which causes cardiac dysfunction, including cardiac fibrosis, reduction of the intercalated disc and cardiomyocytes ferroptosis at the age older than six months in mice. Our study suggests that αMHC-Cre mouse models are effective in young mice, but not in old mice. Researchers need to be particularly careful when using αMHC-Cre mouse model to interpret those phenotypic impacts of gene responses. As the Cre-associated cardiac pathology matched mostly to that of the patients, the model could also be employed for investigating age-related cardiac dysfunction.
Collapse
|
14
|
Alia AO, Jeon S, Popovic J, Salvo MA, Sadleir KR, Vassar R, Cuddy LK. Aberrant glial activation and synaptic defects in CaMKIIα-iCre and nestin-Cre transgenic mouse models. Sci Rep 2022; 12:22099. [PMID: 36543864 PMCID: PMC9772212 DOI: 10.1038/s41598-022-26671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Current scientific research is driven by the ability to manipulate gene expression by utilizing the Cre/loxP system in transgenic mouse models. However, artifacts in Cre-driver mouse lines that introduce undesired effects and confound results are increasingly being reported. Here, we show aberrant neuroinflammation and synaptic changes in two widely used Cre-driver mouse models. Neuroinflammation in CaMKIIα-iCre mice was characterized by the activation and proliferation of microglia and astrocytes in synaptic layers of the hippocampus. Increased GFAP and Iba1 levels were observed in hippocampal brain regions of 4-, 8- and 22-month-old CaMKIIα-iCre mice compared to WT littermates. Synaptic changes in NMDAR, AMPAR, PSD95 and phosphorylated CaMKIIα became apparent in 8-month-old CaMKIIα-iCre mice but were not observed in 4-month-old CaMKIIα-iCre mice. Synaptophysin and synaptoporin were unchanged in CaMKIIα-iCre compared to WT mice, suggesting that synaptic alterations may occur in excitatory postsynaptic regions in which iCre is predominantly expressed. Finally, hippocampal volume was reduced in 22-month-old CaMKIIα-iCre mice compared to WT mice. We tested the brains of mice of additional common Cre-driver mouse models for neuroinflammation; the nestin-Cre mouse model showed synaptic changes and astrocytosis marked by increased GFAP+ astrocytes in cortical and hippocampal regions, while the original CaMKIIα-Cre T29-1 strain was comparable to WT mice. The mechanisms underlying abnormal neuroinflammation in nestin-Cre and CaMKIIα-iCre are unknown but may be associated with high levels of Cre expression. Our findings are critical to the scientific community and demonstrate that the correct Cre-driver controls must be included in all studies using these mice.
Collapse
Affiliation(s)
- Alia O. Alia
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sohee Jeon
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jelena Popovic
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Miranda A. Salvo
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Katherine R. Sadleir
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Robert Vassar
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA ,grid.16753.360000 0001 2299 3507Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Leah K. Cuddy
- grid.16753.360000 0001 2299 3507The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
15
|
Uhlemeyer C, Müller N, Rieck M, Kuboth J, Schlegel C, Grieß K, Dorweiler TF, Heiduschka S, Eckel J, Roden M, Lammert E, Stoffel M, Belgardt BF. Selective ablation of P53 in pancreatic beta cells fails to ameliorate glucose metabolism in genetic, dietary and pharmacological models of diabetes mellitus. Mol Metab 2022; 67:101650. [PMID: 36470401 PMCID: PMC9791454 DOI: 10.1016/j.molmet.2022.101650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Beta cell dysfunction and death are critical steps in the development of both type 1 and type 2 diabetes (T1D and T2D), but the underlying mechanisms are incompletely understood. Activation of the essential tumor suppressor and transcription factor P53 (also known as TP53 and Trp53 in mice) was linked to beta cell death in vitro and has been reported in several diabetes mouse models and beta cells of humans with T2D. In this article, we set out to determine the beta cell specific role of P53 in beta cell dysfunction, cell death and development of diabetes in vivo. METHODS We generated beta cell specific P53 knockout (P53BKO) mice and used complementary genetic, dietary and pharmacological models of glucose intolerance, beta cell dysfunction and diabetes development to evaluate the functional role of P53 selectively in beta cells. We further analyzed the effect of P53 ablation on beta cell survival in isolated pancreatic islets exposed to diabetogenic stress inducers ex vivo by flow cytometry. RESULTS Beta cell specific ablation of P53/Trp53 failed to ameliorate glucose tolerance, insulin secretion or to increase beta cell numbers in genetic, dietary and pharmacological models of diabetes. Additionally, loss of P53 in beta cells did not protect against streptozotocin (STZ) induced hyperglycemia and beta cell death, although STZ-induced activation of classical pro-apoptotic P53 target genes was significantly reduced in P53BKO mice. In contrast, Olaparib mediated PARP1 inhibition protected against acute ex vivo STZ-induced beta cell death and islet destruction. CONCLUSIONS Our study reveals that ablation of P53 specifically in beta cells is unexpectedly unable to attenuate beta cell failure and death in vivo and ex vivo. While during development and progression of diabetes, P53 and P53-regulated pathways are activated, our study suggests that P53 signaling is not essential for loss of beta cells or beta cell dysfunction. P53 in other cell types and organs may predominantly regulate systemic glucose homeostasis.
Collapse
Affiliation(s)
- Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michael Rieck
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Kerstin Grieß
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Tim Florian Dorweiler
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Sonja Heiduschka
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jürgen Eckel
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes, Düsseldorf, Germany,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Eckhard Lammert
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Stoffel
- Institute of Molecular Health Sciences (IMHS), ETH Zürich, Zürich, Switzerland; Competence Center Personalized Medicine, ETH Zürich, Zürich, Switzerland; Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
16
|
Gaspar TB, Lopes JM, Soares P, Vinagre J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2022; 29:R191-R208. [PMID: 36197786 DOI: 10.1530/erc-22-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare and clinically challenging entities. At the molecular level, PanNENs' genetic profile is well characterized, but there is limited knowledge regarding the contribution of the newly identified genes to tumor initiation and progression. Genetically engineered mouse models (GEMMs) are the most versatile tool for studying the plethora of genetic variations influencing PanNENs' etiopathogenesis and behavior over time. In this review, we present the state of the art of the most relevant PanNEN GEMMs available and correlate their findings with the human neoplasms' counterparts. We discuss the historic GEMMs as the most used and with higher translational utility models. GEMMs with Men1 and glucagon receptor gene germline alterations stand out as the most faithful models in recapitulating human disease; RIP-Tag models are unique models of early-onset, highly vascularized, invasive carcinomas. We also include a section of the most recent GEMMs that evaluate pathways related to cell cycle and apoptosis, Pi3k/Akt/mTOR, and Atrx/Daxx. For the latter, their tumorigenic effect is heterogeneous. In particular, for Atrx/Daxx, we will require more in-depth studies to evaluate their contribution; even though they are prevalent genetic events in PanNENs, they have low/inexistent tumorigenic capacity per se in GEMMs. Researchers planning to use GEMMs can find a road map of the main clinical features in this review, presented as a guide that summarizes the chief milestones achieved. We identify pitfalls to overcome, concerning the novel designs and standardization of results, so that future models can replicate human disease more closely.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Vinagre
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Eerola K, Longo F, Reinbothe TM, Richard JE, Shevchouk OT, López-Ferreras L, Mishra D, Asker M, Tolö J, Miranda C, Musovic S, Olofsson CS, Rorsman P, Skibicka KP. Hindbrain insulin controls feeding behavior. Mol Metab 2022; 66:101614. [PMID: 36244663 PMCID: PMC9637798 DOI: 10.1016/j.molmet.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. METHODS To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. RESULTS Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and metabolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. CONCLUSIONS Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis.
Collapse
Affiliation(s)
- Kim Eerola
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden,Unit of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Francesco Longo
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | | | | | | | | | - Devesh Mishra
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Johan Tolö
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Caroline Miranda
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Saliha Musovic
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | | | - Patrik Rorsman
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Karolina P. Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden,Department of Nutritional Sciences and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA,Corresponding author. Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30, Gothenburg, Sweden. Fax: +46 31 786 3512.
| |
Collapse
|
18
|
de Jesus DS, Bargi-Souza P, Cruzat V, Yechoor V, Carpinelli AR, Peliciari-Garcia RA. BMAL1 modulates ROS generation and insulin secretion in pancreatic β-cells: An effect possibly mediated via NOX2. Mol Cell Endocrinol 2022; 555:111725. [PMID: 35868425 DOI: 10.1016/j.mce.2022.111725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
The pancreatic β cells circadian clock plays a relevant role in glucose metabolism. NADPH oxidase (NOX) family is responsible for producing reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, using NADPH as an electron donor. In pancreatic β-cells, NOX-derived ROS inhibits basal and glucose-stimulated insulin secretion. Thus, we hypothesized that the absence of BMAL1, a core circadian clock component, could trigger an increase of NOX2-derived ROS in pancreatic β cells, inhibiting insulin secretion under basal and stimulated glucose conditions. To test such hypothesis, Bmal1 knockdown (KD) was performed in cultured clonal β-cell line (INS-1E) and knocked out in isolated pancreatic islets, using a tissue-specific β-cells Bmal1 knockout (KO) mice. The insulin secretion was assessed in the presence of NOX inhibitors. The Bmal1 KD within INS-1E cells elicited a rise of intracellular ROS content under both glucose stimuli (2.8 mM and 16.7 mM), associated with an increase in Nox2 expression. Additionally, alterations of glutathione levels, CuZnSOD and catalase activities, reduction of ATP/ADP ratio, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and aconitase activities, followed by glucokinase and Slc2a2 (Glut2) expression were also observed in INS-1E β-cells, reflecting in a diminished insulin secretion pattern. The isolated islets from β-cell Bmal1-/- mice have shown a similar cellular response, where an increased NOX2-derived ROS content and a reduced basal- and glucose-stimulated insulin secretion were observed. Therefore, together with NOX inhibition (Apocynin), polyethene-glycol linked to superoxide dismutase (PEG-SOD), phorbol myristate acetate (PMA), and diethyldithiocarbamate (DDC) data, our findings suggest a possible BMAL1-mediated NOX2-derived ROS generation in pancreatic β cells, leading to the modulation of both basal- and glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Daniel Simoes de Jesus
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo (USP), SP, Brazil; Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Vinicius Cruzat
- Faculty of Health, Torrens University, Melbourne, Victoria, Australia
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo (USP), SP, Brazil
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| |
Collapse
|
19
|
Mousseaux C, Migeon T, Frère P, Verpont MC, Lutete E, Navarro C, Louedec L, Hadchouel J. Heterozygous expression of Cre recombinase in podocytes has no impact on the anti-glomerular basement membrane glomerulonephritis model in C57BL/6J mice. Physiol Rep 2022; 10:e15443. [PMID: 36082952 PMCID: PMC9461343 DOI: 10.14814/phy2.15443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/31/2022] Open
Abstract
A recent article described a thickening of the glomerular basement membrane (GBM) along with changes in the expression of key components of the extracellular matrix in 6-month-old NPHS2-Cre transgenic mice, which express the Cre recombinase specifically in podocytes. This transgenic line has been widely used to characterize the implication of candidate genes in glomerular diseases in younger mice. Using a different mouse strain (C57BL/6J) than the previous report (129S6/SvEvTac), we sought to characterize 3- and 6-month-old NPHS2-Cre+/- mice in control and pathological conditions. At baseline, there was no difference in renal function and histology between control and NPHS2-Cre+/- mice. Notably, GBM thickness evaluated by transmission electron microscopy was similar between the two groups. We then induced an immune-mediated severe glomerular insult, the anti-glomerular basement membrane glomerulonephritis model (anti-GBM-GN) in 3-month-old control and NPHS2-Cre+/- mice. NPHS2-Cre+/- mice exhibited the same alterations in renal function and structure as control mice. In summary, our study strongly suggests that NPHS2-Cre+/- transgenic mice on a C57BL/6J background can be safely used for podocyte-specific gene inactivation in control conditions and in the anti-GBM-GN model.
Collapse
Affiliation(s)
- Cyril Mousseaux
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Tiffany Migeon
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Perrine Frère
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Marie Christine Verpont
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Elisabeth Lutete
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Claire Navarro
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Liliane Louedec
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| |
Collapse
|
20
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
21
|
Synaptotagmin 2 is ectopically overexpressed in excitatory presynapses of a widely used CaMKΙΙα-Cre mouse line. iScience 2022; 25:104692. [PMID: 35856033 PMCID: PMC9287804 DOI: 10.1016/j.isci.2022.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The CaMKΙΙα-Cre mouse lines, possibly the most used Cre lines in neuroscience, have resulted in over 800 articles to date. Here, we demonstrate that the second most widely used CaMKΙΙα-Cre line, Tg(Camk2a-cre)2Gsc (or CamiCre), shows ectopic overexpression of synaptotagmin 2, the most efficient Ca2+ sensor for fast synchronous neurotransmitter release, in excitatory presynapses of Cre+ brains. Moreover, the upregulation of immediate-early genes and genes incorporated in bacterial artificial chromosome (BAC) transgenes, such as L-proline transporter Slc6a7, was found in Cre+ hippocampus. The copy number and integration site of the transgene are suggested to have caused the aberrant gene expression in Cre+ brains. Most importantly, CamiCre+ mice showed functional phenotypes, such as hyperactivity and enhanced associative learning, suggesting that neural activities are affected. These unexpected results suggest difficulties in interpreting results from studies using the CamiCre line and raise a warning of potential pitfalls in using Cre driver lines in general. CamiCre+ mice show the ectopic overexpression of SYT2 in excitatory presynapses CamiCre+ mice show the ectopic overexpression of SLC6A7 in hippocampal mossy fibers CamiCre+ mice show hyperactivity and enhanced associative learning Multiple copies of bacterial artificial chromosome (BAC) transgenes are integrated into the Syt2 locus
Collapse
|
22
|
Blandino-Rosano M, Scheys JO, Werneck-de-Castro JP, Louzada RA, Almaça J, Leibowitz G, Rüegg MA, Hall MN, Bernal-Mizrachi E. Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. Am J Physiol Endocrinol Metab 2022; 323:E133-E144. [PMID: 35723227 PMCID: PMC9291412 DOI: 10.1152/ajpendo.00076.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/23/2023]
Abstract
Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in β-cells has been extensively studied, less is known about mTORC2's function in β-cells. Here, we show that mice with constitutive and inducible β-cell-specific deletion of RICTOR (βRicKO and iβRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in βRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in βRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua O Scheys
- Medical School, Division of Metabolism, Endocrinology, and Diabetes and Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruy A Louzada
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Miami VA Healthcare System, Miami, Florida
| |
Collapse
|
23
|
A critical role of the mechanosensor PIEZO1 in glucose-induced insulin secretion in pancreatic β-cells. Nat Commun 2022; 13:4237. [PMID: 35869052 PMCID: PMC9307633 DOI: 10.1038/s41467-022-31103-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Glucose-induced insulin secretion depends on β-cell electrical activity. Inhibition of ATP-regulated potassium (KATP) channels is a key event in this process. However, KATP channel closure alone is not sufficient to induce β-cell electrical activity; activation of a depolarizing membrane current is also required. Here we examine the role of the mechanosensor ion channel PIEZO1 in this process. Yoda1, a specific PIEZO1 agonist, activates a small membrane current and thereby triggers β-cell electrical activity with resultant stimulation of Ca2+-influx and insulin secretion. Conversely, the PIEZO1 antagonist GsMTx4 reduces glucose-induced Ca2+-signaling, electrical activity and insulin secretion. Yet, PIEZO1 expression is elevated in islets from human donors with type-2 diabetes (T2D) and a rodent T2D model (db/db mouse), in which insulin secretion is reduced. This paradox is resolved by our finding that PIEZO1 translocates from the plasmalemma into the nucleus (where it cannot influence the membrane potential of the β-cell) under experimental conditions emulating T2D (high glucose culture). β-cell-specific Piezo1-knockout mice show impaired glucose tolerance in vivo and reduced glucose-induced insulin secretion, β-cell electrical activity and Ca2+ elevation in vitro. These results implicate mechanotransduction and activation of PIEZO1, via intracellular accumulation of glucose metabolites, as an important physiological regulator of insulin secretion.
Collapse
|
24
|
Martin Vázquez E, Cobo-Vuilleumier N, Araujo Legido R, Marín-Cañas S, Nola E, Dorronsoro A, López Bermudo L, Crespo A, Romero-Zerbo SY, García-Fernández M, Martin Montalvo A, Rojas A, Comaills V, Bérmudez-Silva FJ, Gannon M, Martin F, Eizirik D, Lorenzo PI, Gauthier BR. NR5A2/LRH-1 regulates the PTGS2-PGE 2-PTGER1 pathway contributing to pancreatic islet survival and function. iScience 2022; 25:104345. [PMID: 35602948 PMCID: PMC9117883 DOI: 10.1016/j.isci.2022.104345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection. LRH-1 ablation within developing beta cells impeded beta cell proliferation, correlating with mouse growth retardation, weight loss, and hypoglycemia leading to lethality. LRH-1 deletion in adult beta cells abolished the BL001 antidiabetic action, correlating with beta cell destruction and blunted Ptgs2 induction. Islet PTGS2 inactivation led to reduced PGE2 levels and loss of BL001 protection against cytokines as evidenced by increased cytochrome c release and cleaved-PARP. The PTGER1 antagonist-ONO-8130-negated BL001-mediated islet survival. Our results define the LRH-1/PTGS2/PGE2/PTGER1 signaling axis as a key pathway mediating BL001 survival properties.
Collapse
Affiliation(s)
- Eugenia Martin Vázquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Raquel Araujo Legido
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emanuele Nola
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Akaitz Dorronsoro
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Lucia López Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alejandra Crespo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Silvana Y. Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, Málaga, Spain
| | - Maria García-Fernández
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, Málaga, Spain
| | - Alejandro Martin Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Anabel Rojas
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valentine Comaills
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Francisco J. Bérmudez-Silva
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville USA
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Decio Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
25
|
Expression of Cre recombinase in chondrocytes causes abnormal craniofacial and skeletal development. Transgenic Res 2022; 31:399-411. [DOI: 10.1007/s11248-022-00308-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
26
|
Chen M, Tian X, Xu L, Wu R, He H, Zhu H, Xu W, Wei CJ. Membrane tethering of CreER decreases uninduced cell labeling and cytotoxicity while maintaining recombination efficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1078-1091. [PMID: 35228901 PMCID: PMC8851158 DOI: 10.1016/j.omtn.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023]
Abstract
Genetic lineage tracing is indispensable to unraveling the origin, fate, and plasticity of cells. However, the intrinsic leakiness in the CreER-loxP system raises concerns on data interpretation. Here, we reported the generation of a novel dual inducible CreER-loxP system with superior labeling characteristics. This two-component system consists of membrane localized CreER (mCreER: CD8α-FRB-CS-CreER) and TEV protease (mTEVp: CD8α-FKBP-TEVp), which are fusion proteins incorporated with the chemically induced dimerization machinery. Rapamycin and tamoxifen induce sequential dimerization of FKBP and FRB, cleavage of CreER from the membrane, and translocation into the nucleus. The labeling leakiness in Ad293 cells reduced dramatically from more than 70% to less than 5%. This tight labeling feature depends largely on the association of mCreER with HSP90, which conceals the TEV protease cutting site between FRB and CreER and thus preventing uninduced cleavage of the membrane-tethering CreER. Membrane-bound CreER also diminished significantly cytotoxicity. Our studies showed mCreER under the control of the rat insulin promoter increased labeling specificity in MIN6 islet beta-cells. Viability and insulin secretion of MIN6 cells remained intact. Our results demonstrate that this novel system can provide more stringent temporal and spatial control of gene expression and will be useful in cell fate probing.
Collapse
Affiliation(s)
- Mianqiao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Xiong Tian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Liqun Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Ruolan Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Haoming He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Haibao Zhu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Wencan Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chi-ju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
- Corresponding author Chi-ju Wei, PhD, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
27
|
Zhao Y, Zhao S, Qin XY, He TT, Hu MM, Gong Z, Wang HM, Gong FY, Gao XM, Wang J. Altered Phenotype and Enhanced Antibody-Producing Ability of Peripheral B Cells in Mice with Cd19-Driven Cre Expression. Cells 2022; 11:cells11040700. [PMID: 35203346 PMCID: PMC8870415 DOI: 10.3390/cells11040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Given the importance of B lymphocytes in inflammation and immune defense against pathogens, mice transgenic for Cre under the control of Cd19 promoter (Cd19Cre/+ mice) have been widely used to specifically investigate the role of loxP-flanked genes in B cell development/function. However, impacts of expression/insertion of the Cre transgene on the phenotype and function of B cells have not been carefully studied. Here, we show that the number of marginal zone B and B1a cells was selectively reduced in Cd19Cre/+ mice, while B cell development in the bone marrow and total numbers of peripheral B cells were comparable between Cd19Cre/+ and wild type C57BL/6 mice. Notably, humoral responses to both T cell-dependent and independent antigens were significantly increased in Cd19Cre/+ mice. We speculate that these differences are mainly attributable to reduced surface CD19 levels caused by integration of the Cre-expressing cassette that inactivates one Cd19 allele. Moreover, our literature survey showed that expression of Cd19Cre/+ alone may affect the development/progression of inflammatory and anti-infectious responses. Thus, our results have important implications for the design and interpretation of results on gene functions specifically targeted in B cells in the Cd19Cre/+ mouse strain, for instance, in the context of (auto) inflammatory/infectious diseases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China;
| | - Sai Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Yuan Qin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Miao-Miao Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Hong-Min Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Fang-Yuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| |
Collapse
|
28
|
Saleh M, Mohamed NA, Sehrawat A, Zhang T, Thomas M, Wang Y, Kalsi R, Molitoris J, Prasadan K, Gittes GK. β-cell Smad2 null mice have improved β-cell function and are protected from diet-induced hyperglycemia. J Biol Chem 2021; 297:101235. [PMID: 34582892 PMCID: PMC8605249 DOI: 10.1016/j.jbc.2021.101235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed Saleh
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nada A Mohamed
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anuradha Sehrawat
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ting Zhang
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madison Thomas
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yan Wang
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjeet Kalsi
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Justin Molitoris
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George K Gittes
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
29
|
Birling MC, Fray MD, Kasparek P, Kopkanova J, Massimi M, Matteoni R, Montoliu L, Nutter LMJ, Raspa M, Rozman J, Ryder EJ, Scavizzi F, Voikar V, Wells S, Pavlovic G, Teboul L. Importing genetically altered animals: ensuring quality. Mamm Genome 2021; 33:100-107. [PMID: 34536110 PMCID: PMC8913481 DOI: 10.1007/s00335-021-09908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.
Collapse
Affiliation(s)
- M-C Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, 67404, Strasbourg, France.
| | - M D Fray
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - P Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - J Kopkanova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - M Massimi
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - R Matteoni
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - L Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid and CIBERER-ISCIII, Madrid, Spain
| | - L M J Nutter
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Raspa
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - J Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - E J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,LGC, Sport and Specialised Analytical Services, Fordham, UK
| | - F Scavizzi
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - V Voikar
- Neuroscience Center and Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - S Wells
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - G Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, 67404, Strasbourg, France.
| | - L Teboul
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK.
| |
Collapse
|
30
|
Schaschkow A, Pang L, Vandenbempt V, Elvira B, Litwak SA, Vekeriotaite B, Maillard E, Vermeersch M, Paula FMM, Pinget M, Perez-Morga D, Gough DJ, Gurzov EN. STAT3 Regulates Mitochondrial Gene Expression in Pancreatic β-Cells and Its Deficiency Induces Glucose Intolerance in Obesity. Diabetes 2021; 70:2026-2041. [PMID: 34183374 DOI: 10.2337/db20-1222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/20/2021] [Indexed: 11/13/2022]
Abstract
Most obese and insulin-resistant individuals do not develop diabetes. This is the result of the capacity of β-cells to adapt and produce enough insulin to cover the needs of the organism. The underlying mechanism of β-cell adaptation in obesity, however, remains unclear. Previous studies have suggested a role for STAT3 in mediating β-cell development and human glucose homeostasis, but little is known about STAT3 in β-cells in obesity. We observed enhanced cytoplasmic expression of STAT3 in severely obese subjects with diabetes. To address the functional role of STAT3 in adult β-cells, we generated mice with tamoxifen-inducible partial or full deletion of STAT3 in β-cells and fed them a high-fat diet before analysis. Interestingly, β-cell heterozygous and homozygous STAT3-deficient mice showed glucose intolerance when fed a high-fat diet. Gene expression analysis with RNA sequencing showed that reduced expression of mitochondrial genes in STAT3 knocked down human EndoC-β1H cells, confirmed in FACS-purified β-cells from obese STAT3-deficient mice. Moreover, silencing of STAT3 impaired mitochondria activity in EndoC-β1H cells and human islets, suggesting a mechanism for STAT3-modulated β-cell function. Our study postulates STAT3 as a novel regulator of β-cell function in obesity.
Collapse
Affiliation(s)
- Anaïs Schaschkow
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Lokman Pang
- Department of Medicine, The University of Melbourne, Parkville, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Bernat Elvira
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Sara A Litwak
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Beata Vekeriotaite
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Elisa Maillard
- Université de Strasbourg, Strasbourg, France
- Centre Européen d'Etude du Diabéte, Strasbourg, France
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Flavia M M Paula
- ULB-Center for Diabetes Research, Université libre de Bruxelles, Brussels, Belgium
| | - Michel Pinget
- Université de Strasbourg, Strasbourg, France
- Centre Européen d'Etude du Diabéte, Strasbourg, France
| | - David Perez-Morga
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Science and Translational Medicine, Monash University, Melbourne, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
- Department of Medicine, The University of Melbourne, Parkville, Australia
| |
Collapse
|
31
|
White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab 2021; 52:101304. [PMID: 34274528 PMCID: PMC8551477 DOI: 10.1016/j.molmet.2021.101304] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of insulin 100 years ago and its application to the treatment of human disease in the years since have marked a major turning point in the history of medicine. The availability of purified insulin allowed for the establishment of its physiological role in the regulation of blood glucose and ketones, the determination of its amino acid sequence, and the solving of its structure. Over the last 50 years, the function of insulin has been applied into the discovery of the insulin receptor and its signaling cascade to reveal the role of impaired insulin signaling-or resistance-in the progression of type 2 diabetes. It has also become clear that insulin signaling can impact not only classical insulin-sensitive tissues, but all tissues of the body, and that in many of these tissues the insulin signaling cascade regulates unexpected physiological functions. Despite these remarkable advances, much remains to be learned about both insulin signaling and how to use this molecular knowledge to advance the treatment of type 2 diabetes and other insulin-resistant states.
Collapse
Affiliation(s)
- Morris F White
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
32
|
Coppola I, Brouwers B, Meulemans S, Ramos-Molina B, Creemers JWM. Differential Effects of Furin Deficiency on Insulin Receptor Processing and Glucose Control in Liver and Pancreatic β Cells of Mice. Int J Mol Sci 2021; 22:6344. [PMID: 34198511 PMCID: PMC8231939 DOI: 10.3390/ijms22126344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/04/2023] Open
Abstract
The insulin receptor (IR) is critically involved in maintaining glucose homeostasis. It undergoes proteolytic cleavage by proprotein convertases, which is an essential step for its activation. The importance of the insulin receptor in liver is well established, but its role in pancreatic β cells is still controversial. In this study, we investigated the cleavage of the IR by the proprotein convertase FURIN in β cells and hepatocytes, and the contribution of the IR in pancreatic β cells and liver to glucose homeostasis. β-cell-specific Furin knockout (βFurKO) mice were glucose intolerant, but liver-specific Furin knockout (LFurKO) mice were normoglycemic. Processing of the IR was blocked in βFurKO cells, but unaffected in LFurKO mice. Most strikingly, glucose homeostasis in β-cell-specific IR knockout (βIRKO) mice was normal in younger mice (up to 20 weeks), and only mildly affected in older mice (24 weeks). In conclusion, FURIN cleaves the IR non-redundantly in β cells, but redundantly in liver. Furthermore, we demonstrated that the IR in β cells plays a limited role in glucose homeostasis.
Collapse
Affiliation(s)
- Ilaria Coppola
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
| | - Bas Brouwers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
| | - Sandra Meulemans
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
- Obesity and Metabolism Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - John W. M. Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (I.C.); (B.B.); (S.M.)
| |
Collapse
|
33
|
Quilichini E, Fabre M, Nord C, Dirami T, Le Marec A, Cereghini S, Pasek RC, Gannon M, Ahlgren U, Haumaitre C. Insights into the etiology and physiopathology of MODY5/HNF1B pancreatic phenotype with a mouse model of the human disease. J Pathol 2021; 254:31-45. [PMID: 33527355 PMCID: PMC8251562 DOI: 10.1002/path.5629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Maturity-onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron-2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total β-cell volume. These defects were associated with a 30% decrease in expression of the pro-endocrine gene Neurog3 that we previously identified as a direct target of Hnf1b, showing a developmental etiology. As another clinical feature of MODY5 patients, the Hnf1bsp2/+ pancreases display exocrine dysfunction with hypoplasia. We observed chronic pancreatitis with loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis, with upregulation of signaling pathways and impaired acinar cell regeneration. This was associated with ductal cell deficiency characterized by shortened primary cilia. Importantly, the Hnf1bsp2/+ mouse model reproduces the pancreatic features of the human MODY5/HNF1B disease, providing a unique in vivo tool for molecular studies of the endocrine and exocrine defects and to advance basic and translational research. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Evans Quilichini
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
| | - Mélanie Fabre
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
| | | | - Thassadite Dirami
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Axelle Le Marec
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Silvia Cereghini
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Raymond C Pasek
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Maureen Gannon
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Ulf Ahlgren
- Umeå Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Cécile Haumaitre
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| |
Collapse
|
34
|
β Cell GHS-R Regulates Insulin Secretion and Sensitivity. Int J Mol Sci 2021; 22:ijms22083950. [PMID: 33920473 PMCID: PMC8069226 DOI: 10.3390/ijms22083950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Growth hormone secretagogue receptor (GHS-R) is widely known to regulate food intake and adiposity, but its role in glucose homeostasis is unclear. In this study, we investigated the expression of GHS-R in mouse pancreatic islets and its role in glycemic regulation. We used Ghsr-IRES-tauGFP mice, with Green Fluorescent Protein (GFP) as a surrogate for GHS-R, to demonstrate the GFP co-localization with insulin and glucagon expression in pancreatic islets, confirming GHS-R expression in β and α cells. We then generated β-cell-specific GHSR-deleted mice with MIP-Cre/ERT and validated that GHS-R suppression was restricted to the pancreatic islets. MIP-Cre/ERT;Ghsrf/f mice showed normal energy homeostasis with similar body weight, body composition, and indirect calorimetry profile. Interestingly, MIP-Cre/ERT;Ghsrf/f mice exhibited an impressive phenotype in glucose homeostasis. Compared to controls, MIP-Cre/ERT;Ghsrf/f mice showed lower fasting blood glucose and insulin; reduced first-phase insulin secretion during a glucose tolerance test (GTT) and glucose-stimulated insulin secretion (GSIS) test in vivo. The isolated pancreatic islets of MIP-Cre/ERT;Ghsrf/f mice also showed reduced insulin secretion during GSIS ex vivo. Further, MIP-Cre/ERT;Ghsrf/f mice exhibited improved insulin sensitivity during insulin tolerance tests (ITT). Overall, our results confirmed GHS-R expression in pancreatic β and α cells; GHS-R cell-autonomously regulated GSIS and modulated systemic insulin sensitivity. In conclusion, β cell GHS-R was an important regulator of glucose homeostasis, and GHS-R antagonists may have therapeutic potential for Type 2 Diabetes.
Collapse
|
35
|
Lindner L, Cayrou P, Rosahl TW, Zhou HH, Birling MC, Herault Y, Pavlovic G. Droplet digital PCR or quantitative PCR for in-depth genomic and functional validation of genetically altered rodents. Methods 2021; 191:107-119. [PMID: 33838271 DOI: 10.1016/j.ymeth.2021.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Gene targeting and additive (random) transgenesis have proven to be powerful technologies with which to decipher the mammalian genome. With the advent of CRISPR/Cas9 genome editing, the ability to inactivate or modify the function of a gene has become even more accessible. However, the impact of each generated modification may be different from what was initially desired. Minimal validation of mutant alleles from genetically altered (GA) rodents remains essential to guarantee the interpretation of experimental results. The protocol described here combines design strategies for genomic and functional validation of genetically modified alleles with droplet digital PCR (ddPCR) or quantitative PCR (qPCR) for target DNA or mRNA quantification. In-depth analysis of the results obtained with GA models through the analysis of target DNA and mRNA quantification is also provided, to evaluate which pitfalls can be detected using these two methods, and we propose recommendations for the characterization of different type of mutant allele (knock-out, knock-in, conditional knock-out, FLEx, IKMC model or transgenic). Our results also highlight the possibility that mRNA expression of any mutated allele can be different from what might be expected in theory or according to common assumptions. For example, mRNA analyses on knock-out lines showed that nonsense-mediated mRNA decay is generally not achieved with a critical-exon approach. Likewise, comparison of multiple conditional lines crossed with the same CreERT2 deleter showed that the inactivation outcome was very different for each conditional model. DNA quantification by ddPCR of G0 to G2 generations of transgenic rodents generated by pronuclear injection showed an unexpected variability, demonstrating that G1 generation rodents cannot be considered as established lines.
Collapse
Affiliation(s)
- Loic Lindner
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Pauline Cayrou
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Thomas W Rosahl
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Heather H Zhou
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Marie-Christine Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Yann Herault
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Guillaume Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France.
| |
Collapse
|
36
|
Salazar-Petres ER, Sferruzzi-Perri AN. Pregnancy-induced changes in β-cell function: what are the key players? J Physiol 2021; 600:1089-1117. [PMID: 33704799 DOI: 10.1113/jp281082] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal metabolic adaptations during pregnancy ensure appropriate nutrient supply to the developing fetus. This is facilitated by reductions in maternal peripheral insulin sensitivity, which enables glucose to be available in the maternal circulation for transfer to the fetus for growth. To balance this process and avoid excessive hyperglycaemia and glucose intolerance in the mother during pregnancy, maternal pancreatic β-cells undergo remarkable changes in their function including increasing their proliferation and glucose-stimulated insulin secretion. In this review we examine how placental and maternal hormones work cooperatively to activate several signalling pathways, transcription factors and epigenetic regulators to drive adaptations in β-cell function during pregnancy. We also explore how adverse maternal environmental conditions, including malnutrition, obesity, circadian rhythm disruption and environmental pollutants, may impact the endocrine and molecular mechanisms controlling β-cell adaptations during pregnancy. The available data from human and experimental animal studies highlight the need to better understand how maternal β-cells integrate the various environmental, metabolic and endocrine cues and thereby determine appropriate β-cell adaptation during gestation. In doing so, these studies may identify targetable pathways that could be used to prevent not only the development of pregnancy complications like gestational diabetes that impact maternal and fetal wellbeing, but also more generally the pathogenesis of other metabolic conditions like type 2 diabetes.
Collapse
Affiliation(s)
- Esteban Roberto Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
37
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Jo S, Lockridge A, Mohan R, Esch N, Schlichting R, Panigrahy N, Essawy A, Gustafson E, Alejandro EU. Translational Factor eIF4G1 Regulates Glucose Homeostasis and Pancreatic β-Cell Function. Diabetes 2021; 70:155-170. [PMID: 33115825 PMCID: PMC7881850 DOI: 10.2337/db20-0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/18/2020] [Indexed: 12/27/2022]
Abstract
Protein translation is essential for cell physiology, and dysregulation of this process has been linked to aging-related diseases such as type 2 diabetes. Reduced protein level of a requisite scaffolding protein of the initiation complex, eIF4G1, downstream of nutrients and insulin signaling is associated with diabetes in humans and mice. In the current study, we tested the hypothesis that eIF4G1 is critical for β-cell function and glucose homeostasis by genetically ablating eIF4G1 specifically in β-cells in vivo (βeIF4G1 knockout [KO]). Adult male and female βeIF4G1KO mice displayed glucose intolerance but normal insulin sensitivity. β-Cell mass was normal under steady state and under metabolic stress by diet-induced obesity, but we observed increases in proliferation and apoptosis in β-cells of βeIF4G1KO. We uncovered deficits in insulin secretion, partly due to reduced mitochondrial oxygen consumption rate, glucose-stimulated Ca2+ flux, and reduced insulin content associated with loss of eIF4E, the mRNA 5' cap-binding protein of the initiation complex and binding partner of eIF4G1. Genetic reconstitution of eIF4E in single β-cells or intact islets of βeIF4G1KO mice recovers insulin content, implicating an unexplored role for eIF4G1/eIF4E in insulin biosynthesis. Altogether these data demonstrate an essential role for the translational factor eIF4G1 on glucose homeostasis and β-cell function.
Collapse
Affiliation(s)
- Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Nicholas Esch
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Regina Schlichting
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Neha Panigrahy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Ahmad Essawy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Eric Gustafson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
39
|
Khant Aung Z, Kokay IC, Grattan DR, Ladyman SR. Prolactin-Induced Adaptation in Glucose Homeostasis in Mouse Pregnancy Is Mediated by the Pancreas and Not in the Forebrain. Front Endocrinol (Lausanne) 2021; 12:765976. [PMID: 34867810 PMCID: PMC8632874 DOI: 10.3389/fendo.2021.765976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Adaptive changes in glucose homeostasis during pregnancy require proliferation of insulin-secreting beta-cells in the pancreas, together with increased sensitivity for glucose-stimulated insulin secretion. Increased concentrations of maternal prolactin/placental lactogen contribute to these changes, but the site of action remains uncertain. Use of Cre-lox technology has generated pancreas-specific prolactin receptor (Prlr) knockouts that demonstrate the development of a gestational diabetic like state. However, many Cre-lines for the pancreas also express Cre in the hypothalamus and prolactin could act centrally to modulate glucose homeostasis. The aim of the current study was to examine the relative contribution of prolactin action in the pancreas and brain to these pregnancy-induced adaptations in glucose regulation. Deletion of prolactin receptor (Prlr) from the pancreas using Pdx-cre or Rip-cre led to impaired glucose tolerance and increased non-fasting blood glucose levels during pregnancy. Prlrlox/lox /Pdx-Cre mice also had impaired glucose-stimulated insulin secretion and attenuated pregnancy-induced increase in beta-cell fraction. Varying degrees of Prlr recombination in the hypothalamus with these Cre lines left open the possibility that central actions of prolactin could contribute to the pregnancy-induced changes in glucose homeostasis. Targeted deletion of Prlr specifically from the forebrain, including areas of expression induced by Pdx-Cre and Rip-cre, had no effect on pregnancy-induced adaptations in glucose homeostasis. These data emphasize the pancreas as the direct target of prolactin/placental lactogen action in driving adaptive changes in glucose homeostasis during pregnancy.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ilona C. Kokay
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sharon R. Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- *Correspondence: Sharon R. Ladyman,
| |
Collapse
|
40
|
Takei S, Nagashima S, Takei A, Yamamuro D, Wakabayashi T, Murakami A, Isoda M, Yamazaki H, Ebihara C, Takahashi M, Ebihara K, Dezaki K, Takayanagi Y, Onaka T, Fujiwara K, Yashiro T, Ishibashi S. β-Cell-Specific Deletion of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) Reductase Causes Overt Diabetes due to Reduction of β-Cell Mass and Impaired Insulin Secretion. Diabetes 2020; 69:2352-2363. [PMID: 32796082 DOI: 10.2337/db19-0996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/03/2020] [Indexed: 11/13/2022]
Abstract
Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), statins, which are used to prevent cardiovascular diseases, are associated with a modest increase in the risk of new-onset diabetes. To investigate the role of HMGCR in the development of β-cells and glucose homeostasis, we deleted Hmgcr in a β-cell-specific manner by using the Cre-loxP technique. Mice lacking Hmgcr in β-cells (β-KO) exhibited hypoinsulinemic hyperglycemia as early as postnatal day 9 (P9) due to decreases in both β-cell mass and insulin secretion. Ki67-positive cells were reduced in β-KO mice at P9; thus, β-cell mass reduction was caused by proliferation disorder immediately after birth. The mRNA expression of neurogenin3 (Ngn3), which is transiently expressed in endocrine progenitors of the embryonic pancreas, was maintained despite a striking reduction in the expression of β-cell-associated genes, such as insulin, pancreatic and duodenal homeobox 1 (Pdx1), and MAF BZIP transcription factor A (Mafa) in the islets from β-KO mice. Histological analyses revealed dysmorphic islets with markedly reduced numbers of β-cells, some of which were also positive for glucagon. In conclusion, HMGCR plays critical roles not only in insulin secretion but also in the development of β-cells in mice.
Collapse
Affiliation(s)
- Shoko Takei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Akihito Takei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Akiko Murakami
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Masayo Isoda
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Hisataka Yamazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Chihiro Ebihara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Katsuya Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| |
Collapse
|
41
|
Sakano D, Uefune F, Tokuma H, Sonoda Y, Matsuura K, Takeda N, Nakagata N, Kume K, Shiraki N, Kume S. VMAT2 Safeguards β-Cells Against Dopamine Cytotoxicity Under High-Fat Diet-Induced Stress. Diabetes 2020; 69:2377-2391. [PMID: 32826296 PMCID: PMC7576560 DOI: 10.2337/db20-0207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Vesicular monoamine transporter 2 (VMAT2) uptakes cytoplasmic monoamines into vesicles for storage. VMAT2 plays a role in modulating insulin release by regulating dopamine levels in the pancreas, although the exact mechanism remains elusive. We found that VMAT2 expression in β-cells specifically increases under high blood glucose conditions. The islets isolated from β-cell-specific Vmat2 knockout (βVmat2KO) mice show elevated insulin secretion levels in response to glucose stimulation. Under prolonged high-fat diet feedings, the βVmat2KO mice exhibit impaired glucose and insulin tolerance and progressive β-cell dysfunction. Here we demonstrate VMAT2 uptake of dopamine to protect dopamine from degradation by monoamine oxidase, thereby safeguarding β-cells from excess reactive oxygen species (ROS) exposure. In the context of high demand for insulin secretion, the absence of VMAT2 leads to elevated ROS in β-cells, which accelerates β-cell dedifferentiation and β-cell loss. Therefore, VMAT2 controls the amount of dopamine in β-cells, thereby protecting pancreatic β-cells from excessive oxidative stress.
Collapse
Affiliation(s)
- Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Fumiya Uefune
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiraku Tokuma
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yuki Sonoda
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kumi Matsuura
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Takeda
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
42
|
Bernard H, Teijeiro A, Chaves-Pérez A, Perna C, Satish B, Novials A, Wang JP, Djouder N. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. CELL REPORTS MEDICINE 2020; 1:100125. [PMID: 33205075 PMCID: PMC7659558 DOI: 10.1016/j.xcrm.2020.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Enteroviruses are suspected to contribute to insulin-producing β cell loss and hyperglycemia-induced diabetes. However, mechanisms are not fully defined. Here, we show that coxsackievirus B type 4 (CVB4) infection in human islet-engrafted mice and in rat insulinoma cells displays loss of unconventional prefoldin RPB5 interactor (URI) and PDX1, affecting β cell function and identity. Genetic URI ablation in the mouse pancreas causes PDX1 depletion in β cells. Importantly, diabetic PDX1 heterozygous mice overexpressing URI in β cells are more glucose tolerant. Mechanistically, URI loss triggers estrogen receptor nuclear translocation leading to DNA methyltransferase 1 (DNMT1) expression, which induces Pdx1 promoter hypermethylation and silencing. Consequently, demethylating agent procainamide-mediated DNMT1 inhibition reinstates PDX1 expression and protects against diabetes in pancreatic URI-depleted mice . Finally, the β cells of human diabetes patients show correlations between viral protein 1 and URI, PDX1, and DNMT1 levels. URI and DNMT1 expression and PDX1 silencing provide a causal link between enterovirus infection and diabetes. Coxsackievirus B type 4 infection downregulates URI and affects β cell function Genetic URI ablation in mouse pancreas recapitulates diabetes URI controls Pdx1 methylation via ERα-activating DNMT1 Coxsackievirus B type 4, URI, PDX1, and DNMT1 expression correlate in human pancreata
Collapse
MESH Headings
- Animals
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/metabolism
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/virology
- Disease Models, Animal
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Enterovirus B, Human/pathogenicity
- Female
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/transplantation
- Male
- Mice
- Mice, Transgenic
- Procainamide/pharmacology
- Rats
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Hugo Bernard
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana Teijeiro
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Basanthi Satish
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Novials
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute and, CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
- Corresponding author
| |
Collapse
|
43
|
Metabolic Effects of Selective Deletion of Group VIA Phospholipase A 2 from Macrophages or Pancreatic Islet Beta-Cells. Biomolecules 2020; 10:biom10101455. [PMID: 33080873 PMCID: PMC7602969 DOI: 10.3390/biom10101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
To examine the role of group VIA phospholipase A2 (iPLA2β) in specific cell lineages in insulin secretion and insulin action, we prepared mice with a selective iPLA2β deficiency in cells of myelomonocytic lineage, including macrophages (MØ-iPLA2β-KO), or in insulin-secreting β-cells (β-Cell-iPLA2β-KO), respectively. MØ-iPLA2β-KO mice exhibited normal glucose tolerance when fed standard chow and better glucose tolerance than floxed-iPLA2β control mice after consuming a high-fat diet (HFD). MØ-iPLA2β-KO mice exhibited normal glucose-stimulated insulin secretion (GSIS) in vivo and from isolated islets ex vivo compared to controls. Male MØ-iPLA2β-KO mice exhibited enhanced insulin responsivity vs. controls after a prolonged HFD. In contrast, β-cell-iPLA2β-KO mice exhibited impaired glucose tolerance when fed standard chow, and glucose tolerance deteriorated further when introduced to a HFD. β-Cell-iPLA2β-KO mice exhibited impaired GSIS in vivo and from isolated islets ex vivo vs. controls. β-Cell-iPLA2β-KO mice also exhibited an enhanced insulin responsivity compared to controls. These findings suggest that MØ iPLA2β participates in HFD-induced deterioration in glucose tolerance and that this mainly reflects an effect on insulin responsivity rather than on insulin secretion. In contrast, β-cell iPLA2β plays a role in GSIS and also appears to confer some protection against deterioration in β-cell functions induced by a HFD.
Collapse
|
44
|
Estall JL, Screaton RA. Of Mice and Men, Redux: Modern Challenges in β Cell Gene Targeting. Endocrinology 2020; 161:5839917. [PMID: 32422652 PMCID: PMC7357958 DOI: 10.1210/endocr/bqaa078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Jennifer L Estall
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
- Correspondence: Jennifer L. Estall, PhD, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada. E-mail:
| | - Robert A Screaton
- Department of Biochemistry, Sunnybrook Research Institute and University of Toronto, Toronto, Canada
| |
Collapse
|
45
|
Plecitá-Hlavatá L, Jabůrek M, Holendová B, Tauber J, Pavluch V, Berková Z, Cahová M, Schröder K, Brandes RP, Siemen D, Ježek P. Glucose-Stimulated Insulin Secretion Fundamentally Requires H 2O 2 Signaling by NADPH Oxidase 4. Diabetes 2020; 69:1341-1354. [PMID: 32245800 DOI: 10.2337/db19-1130] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022]
Abstract
NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of β-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations, and the patch-clamped KATP channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4βKO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause β-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H2O2 constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Pavluch
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Berková
- Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Monika Cahová
- Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt, Germany
| | - Detlef Siemen
- Klinik für Neurologie, Universität Magdeburg, Magdeburg, Germany
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
46
|
Ramzy A, Tudurí E, Glavas MM, Baker RK, Mojibian M, Fox JK, O'Dwyer SM, Dai D, Hu X, Denroche HC, Edeer N, Gray SL, Verchere CB, Johnson JD, Kieffer TJ. AAV8 Ins1-Cre can produce efficient β-cell recombination but requires consideration of off-target effects. Sci Rep 2020; 10:10518. [PMID: 32601405 PMCID: PMC7324556 DOI: 10.1038/s41598-020-67136-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In vivo genetic manipulation is used to study the impact of gene deletion or re-expression on β-cell function and organism physiology. Cre-LoxP is a system wherein LoxP sites flanking a gene are recognized by Cre recombinase. Cre transgenic mice are the most prevalent technology used to deliver Cre but many models have caveats of off-target recombination, impaired β-cell function, and high cost of animal production. Inducible estrogen receptor conjugated Cre models face leaky recombination and confounding effects of tamoxifen. As an alternative, we characterize an adeno associated virus (AAV) with a rat insulin 1 promoter driving Cre recombinase (AAV8 Ins1-Cre) that is economical and rapid to implement, and has limited caveats. Intraperitoneal AAV8 Ins1-Cre produced efficient β-cell recombination, alongside some hepatic, exocrine pancreas, α-cell, δ-cell, and hypothalamic recombination. Delivery of lower doses via the pancreatic duct retained good rates of β-cell recombination and limited rates of off-target recombination. Unlike inducible Cre in transgenic mice, AAV8 Ins1-Cre required no tamoxifen and premature recombination was avoided. We demonstrate the utility of this technology by inducing hyperglycemia in inducible insulin knockout mice (Ins1−/−;Ins2f/f). AAV-mediated expression of Cre in β-cells provides an effective alternative to transgenic approaches for inducible knockout studies.
Collapse
Affiliation(s)
- Adam Ramzy
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Instituto de Investigación, Desarrollo e innovación en Biotecnología Sanitaria de Elche (IDiBE), Elche, Spain
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica K Fox
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek Dai
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heather C Denroche
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nazde Edeer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Cameron B Verchere
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
47
|
Jennemann R, Kaden S, Volz M, Nordström V, Herzer S, Sandhoff R, Gröne HJ. Gangliosides modulate insulin secretion by pancreatic beta cells under glucose stress. Glycobiology 2020; 30:722-734. [PMID: 32149357 DOI: 10.1093/glycob/cwaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
In pancreatic beta cells, the entry of glucose and downstream signaling for insulin release is regulated by the glucose transporter 2 (Glut2) in rodents. Dysfunction of the insulin-signaling cascade may lead to diabetes mellitus. Gangliosides, sialic acid-containing glycosphingolipids (GSLs), have been reported to modulate the function of several membrane proteins.Murine islets express predominantly sialylated GSLs, particularly the simple gangliosides GM3 and GD3 having a potential modulatory role in Glut2 activity. Conditional, tamoxifen-inducible gene targeting in pancreatic islets has now shown that mice lacking the glucosylceramide synthase (Ugcg), which represents the rate-limiting enzyme in GSL biosynthesis, displayed impaired glucose uptake and showed reduced insulin secretion. Consequently, mice with pancreatic GSL deficiency had higher blood glucose levels than respective controls after intraperitoneal glucose application. High-fat diet feeding enhanced this effect. GSL-deficient islets did not show apoptosis or ER stress and displayed a normal ultrastructure. Their insulin content, size and number were similar as in control islets. Isolated beta cells from GM3 synthase null mice unable to synthesize GM3 and GD3 also showed lower glucose uptake than respective control cells, corroborating the results obtained from the cell-specific model. We conclude that in particular the negatively charged gangliosides GM3 and GD3 of beta cells positively influence Glut2 function to adequately respond to high glucose loads.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Sylvia Kaden
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Martina Volz
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Silke Herzer
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2 Marburg 35043, Germany
| |
Collapse
|
48
|
Conditional Knockout of GLT-1 in Neurons Leads to Alterations in Aspartate Homeostasis and Synaptic Mitochondrial Metabolism in Striatum and Hippocampus. Neurochem Res 2020; 45:1420-1437. [PMID: 32144526 DOI: 10.1007/s11064-020-03000-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Expression of the glutamate transporter GLT-1 in neurons has been shown to be important for synaptic mitochondrial function in the cerebral cortex. Here we determined whether neuronal GLT-1 plays a similar role in the hippocampus and striatum, using conditional GLT-1 knockout mice in which GLT-1 was inactivated in neurons by expression of synapsin-Cre (synGLT-1 KO). Ex vivo 13C-labelling using [1,2-13C]acetate, representing astrocytic metabolism, yielded increased [4,5-13C]glutamate levels, suggesting increased astrocyte-neuron glutamine transfer, in the striatum but not in the hippocampus of the synGLT-1 KO. Moreover, aspartate concentrations were reduced - 38% compared to controls in the hippocampus and the striatum of the synGLT-1 KO. Mitochondria isolated from the hippocampus of synGLT-1 KO mice exhibited a lower oxygen consumption rate in the presence of oligomycin A, indicative of a decreased proton leak across the mitochondrial membrane, whereas the ATP production rate was unchanged. Electron microscopy revealed reduced mitochondrial inter-cristae distance within excitatory synaptic terminals in the hippocampus and striatum of the synGLT-1 KO. Finally, dilution of 13C-labelling originating from [U-13C]glucose, caused by metabolism of unlabelled glutamate, was reduced in hippocampal synGLT-1 KO synaptosomes, suggesting that neuronal GLT-1 provides glutamate for synaptic tricarboxylic acid cycle metabolism. Collectively, these data demonstrate an important role of neuronal expression of GLT-1 in synaptic mitochondrial metabolism in the forebrain.
Collapse
|
49
|
VEGF-B ablation in pancreatic β-cells upregulates insulin expression without affecting glucose homeostasis or islet lipid uptake. Sci Rep 2020; 10:923. [PMID: 31969592 PMCID: PMC6976647 DOI: 10.1038/s41598-020-57599-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) affects millions of people and is linked with obesity and lipid accumulation in peripheral tissues. Increased lipid handling and lipotoxicity in insulin producing β-cells may contribute to β-cell dysfunction in T2DM. The vascular endothelial growth factor (VEGF)-B regulates uptake and transcytosis of long-chain fatty acids over the endothelium to tissues such as heart and skeletal muscle. Systemic inhibition of VEGF-B signaling prevents tissue lipid accumulation, improves insulin sensitivity and glucose tolerance, as well as reduces pancreatic islet triglyceride content, under T2DM conditions. To date, the role of local VEGF-B signaling in pancreatic islet physiology and in the regulation of fatty acid trans-endothelial transport in pancreatic islet is unknown. To address these questions, we have generated a mouse strain where VEGF-B is selectively depleted in β-cells, and assessed glucose homeostasis, β-cell function and islet lipid content under both normal and high-fat diet feeding conditions. We found that Vegfb was ubiquitously expressed throughout the pancreas, and that β-cell Vegfb deletion resulted in increased insulin gene expression. However, glucose homeostasis and islet lipid uptake remained unaffected by β-cell VEGF-B deficiency.
Collapse
|
50
|
Smith LIF, Hill TG, Bowe JE. Generating Beta-Cell-Specific Transgenic Mice Using the Cre-Lox System. Methods Mol Biol 2020; 2128:181-205. [PMID: 32180194 DOI: 10.1007/978-1-0716-0385-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Beta-cell-specific transgenic mice provide an invaluable model for dissecting the direct signaling mechanisms involved in regulating beta-cell structure and function. Furthermore, generating novel transgenic models is now easier and more cost-effective than ever, thanks to exciting novel approaches such as CRISPR.Here, we describe the commonly used approaches for generating and maintaining beta-cell-specific transgenic models and some of the considerations involved in their use. This includes the use of different beta-cell-specific promoters (e.g., pancreatic and duodenal homeobox factor 1 (Pdx1), rat insulin 2 promoter (RIP), and mouse insulin 1 promoter (MIP)) to drive site-specific recombinase technology. Important considerations during selection include level and uniformity of expression in the beta-cell population, ectopic transgene expression, and the use of inducible models.This chapter provides a guide to the procurement, generation, and maintenance of a beta-cell-specific transgene colony from preexisting Cre and loxP mouse strains, providing methods for crossbreeding and genotyping, as well as subsequent maintenance and, in the case of inducible models, transgenic induction.
Collapse
Affiliation(s)
- Lorna I F Smith
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK.
| | - Thomas G Hill
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - James E Bowe
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|