1
|
Power G, Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am J Physiol Heart Circ Physiol 2024; 327:H989-H1003. [PMID: 39178024 PMCID: PMC11482243 DOI: 10.1152/ajpheart.00431.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
Collapse
Affiliation(s)
- Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
2
|
Lin M, Xu F, Sun J, Song J, Shen Y, Lu S, Ding H, Lan L, Chen C, Ma W, Wu X, Song Z, Wang W. Integrative multi-omics analysis unravels the host response landscape and reveals a serum protein panel for early prognosis prediction for ARDS. Crit Care 2024; 28:213. [PMID: 38956604 PMCID: PMC11218270 DOI: 10.1186/s13054-024-05000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The multidimensional biological mechanisms underpinning acute respiratory distress syndrome (ARDS) continue to be elucidated, and early biomarkers for predicting ARDS prognosis are yet to be identified. METHODS We conducted a multicenter observational study, profiling the 4D-DIA proteomics and global metabolomics of serum samples collected from patients at the initial stage of ARDS, alongside samples from both disease control and healthy control groups. We identified 28-day prognosis biomarkers of ARDS in the discovery cohort using the LASSO method, fold change analysis, and the Boruta algorithm. The candidate biomarkers were validated through parallel reaction monitoring (PRM) targeted mass spectrometry in an external validation cohort. Machine learning models were applied to explore the biomarkers of ARDS prognosis. RESULTS In the discovery cohort, comprising 130 adult ARDS patients (mean age 72.5, 74.6% male), 33 disease controls, and 33 healthy controls, distinct proteomic and metabolic signatures were identified to differentiate ARDS from both control groups. Pathway analysis highlighted the upregulated sphingolipid signaling pathway as a key contributor to the pathological mechanisms underlying ARDS. MAP2K1 emerged as the hub protein, facilitating interactions with various biological functions within this pathway. Additionally, the metabolite sphingosine 1-phosphate (S1P) was closely associated with ARDS and its prognosis. Our research further highlights essential pathways contributing to the deceased ARDS, such as the downregulation of hematopoietic cell lineage and calcium signaling pathways, contrasted with the upregulation of the unfolded protein response and glycolysis. In particular, GAPDH and ENO1, critical enzymes in glycolysis, showed the highest interaction degree in the protein-protein interaction network of ARDS. In the discovery cohort, a panel of 36 proteins was identified as candidate biomarkers, with 8 proteins (VCAM1, LDHB, MSN, FLG2, TAGLN2, LMNA, MBL2, and LBP) demonstrating significant consistency in an independent validation cohort of 183 patients (mean age 72.6 years, 73.2% male), confirmed by PRM assay. The protein-based model exhibited superior predictive accuracy compared to the clinical model in both the discovery cohort (AUC: 0.893 vs. 0.784; Delong test, P < 0.001) and the validation cohort (AUC: 0.802 vs. 0.738; Delong test, P = 0.008). INTERPRETATION Our multi-omics study demonstrated the potential biological mechanism and therapy targets in ARDS. This study unveiled several novel predictive biomarkers and established a validated prediction model for the poor prognosis of ARDS, offering valuable insights into the prognosis of individuals with ARDS.
Collapse
Affiliation(s)
- Mengna Lin
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feixiang Xu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Song
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Yao Shen
- Department of Respiratory Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Su Lu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailin Ding
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lulu Lan
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Ma
- School of Public Health, Fudan University, Shanghai, China
| | - Xueling Wu
- Department of Respiratory Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhenju Song
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Emergency Rescue and Critical Care, Fudan University, Shanghai, China.
| | - Weibing Wang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
- School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Li X, Zou J, Lin A, Chi J, Hao H, Chen H, Liu Z. Oxidative Stress, Endothelial Dysfunction, and N-Acetylcysteine in Type 2 Diabetes Mellitus. Antioxid Redox Signal 2024; 40:968-989. [PMID: 38497734 PMCID: PMC11535463 DOI: 10.1089/ars.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Junyong Zou
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Aiping Lin
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jingshu Chi
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Hao
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Chen
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenguo Liu
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
4
|
Bassila C, Kluck GEG, Thyagarajan N, Chathely KM, Gonzalez L, Trigatti BL. Ligand-dependent interactions between SR-B1 and S1PR1 in macrophages and atherosclerotic plaques. J Lipid Res 2024; 65:100541. [PMID: 38583587 PMCID: PMC11087725 DOI: 10.1016/j.jlr.2024.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
HDLs carry sphingosine-1-phosphate (S1P) and stimulate signaling pathways in different cells including macrophages and endothelial cells, involved in atherosclerotic plaque development. HDL signaling via S1P relies on the HDL receptor scavenger receptor class B, type I (SR-B1) and the sphingosine-1-phosphate receptor 1 (S1PR1), which interact when both are heterologously overexpressed in the HEK293 cell line. In this study, we set out to test if SR-B1 and S1PR1 interacted in primary murine macrophages in culture and atherosclerotic plaques. We used knock-in mice that endogenously expressed S1PR1 tagged with eGFP-(S1pr1eGFP/eGFP mice), combined with proximity ligation analysis to demonstrate that HDL stimulates the physical interaction between SR-B1 and S1PR1 in primary macrophages, that this is dependent on HDL-associated S1P and can be blocked by an inhibitor of SR-B1's lipid transfer activity or an antagonist of S1PR1. We also demonstrate that a synthetic S1PR1-selective agonist, SEW2871, stimulates the interaction between SR-B1 and S1PR1 and that this was also blocked by an inhibitor of SR-B1's lipid transport activity. Furthermore, we detected abundant SR-B1/S1PR1 complexes in atherosclerotic plaques of S1pr1eGFP/eGFP mice that also lacked apolipoprotein E. Treatment of mice with the S1PR1 antagonist, Ex26, for 12 h disrupted the SR-B1-S1PR1 interaction in atherosclerotic plaques. These findings demonstrate that SR-B1 and S1PR1 form ligand-dependent complexes both in cultured primary macrophages and within atherosclerotic plaques in mice and provide mechanistic insight into how SR-B1 and S1PR1 participate in mediating HDL signaling to activate atheroprotective responses in macrophages.
Collapse
Affiliation(s)
- Christine Bassila
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| | - George E G Kluck
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Narmadaa Thyagarajan
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kevin M Chathely
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Leticia Gonzalez
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Wu J, Liang Y, Fu P, Feng A, Lu Q, Unwalla HJ, Marciano DP, Black SM, Wang T. Sphingosine-1-Phosphate Receptor 3 Induces Endothelial Barrier Loss via ADAM10-Mediated Vascular Endothelial-Cadherin Cleavage. Int J Mol Sci 2023; 24:16083. [PMID: 38003272 PMCID: PMC10671260 DOI: 10.3390/ijms242216083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Mechanical ventilation (MV) is a life-supporting strategy employed in the Intensive Care Unit (ICU). However, MV-associated mechanical stress exacerbates existing lung inflammation in ICU patients, resulting in limited improvement in mortality and a condition known as Ventilator-Induced Lung Injury (VILI). Sphingosine-1-phosphate (S1P) is a circulating bioactive lipid that maintains endothelial integrity primarily through S1P receptor 1 (S1PR1). During VILI, mechanical stress upregulates endothelial S1PR3 levels. Unlike S1PR1, S1PR3 mediates endothelial barrier disruption through Rho-dependent pathways. However, the specific impact of elevated S1PR3 on lung endothelial function, apart from Rho activation, remains poorly understood. In this study, we investigated the effects of S1PR3 in endothelial pathobiology during VILI using an S1PR3 overexpression adenovirus. S1PR3 overexpression caused cytoskeleton rearrangement, formation of paracellular gaps, and a modified endothelial response towards S1P. It resulted in a shift from S1PR1-dependent barrier enhancement to S1PR3-dependent barrier disruption. Moreover, S1PR3 overexpression induced an ADAM10-dependent cleavage of Vascular Endothelial (VE)-cadherin, which hindered endothelial barrier recovery. S1PR3-induced cleavage of VE-cadherin was at least partially regulated by S1PR3-mediated NFκB activation. Additionally, we employed an S1PR3 inhibitor TY-52156 in a murine model of VILI. TY-52156 effectively attenuated VILI-induced increases in bronchoalveolar lavage cell counts and protein concentration, suppressed the release of pro-inflammatory cytokines, and inhibited lung inflammation as assessed via a histological evaluation. These findings confirm that mechanical stress associated with VILI increases S1PR3 levels, thereby altering the pulmonary endothelial response towards S1P and impairing barrier recovery. Inhibiting S1PR3 is validated as an effective therapeutic strategy for VILI.
Collapse
Affiliation(s)
- Jialin Wu
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Ying Liang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Anlin Feng
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Immunology and Nanomedicine, Florida International University, Miami, FL 33199, USA
| | - David P. Marciano
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Ahmed MS, Hasan NH, Saeed MG. Chemical analysis of mineral trioxide agregate mixed with hyaluronic acids as an accelerant. Braz Dent J 2023; 34:50-66. [PMID: 38133092 PMCID: PMC10742354 DOI: 10.1590/0103-6440202305549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 12/23/2023] Open
Abstract
MATERIALS AND METHOD Mineral trioxide aggregate (MTA) has many clinical applications in dentistry; the main drawback is the long setting. The main objective is to investigate and compare the chemical effect of using two commercially available hyaluronic acid hydrogels (HA) instead of distilled water for mixing MTA as an accelerant of setting time. Test materials were divided into three groups; Group 1: (control) mixing MTA with distilled water supplied by the manufacturer; Group 2: mixing MTA with a hybrid cooperative complex of high and low molecular weight HA (Profhilo®); Group 3: mixing MTA with High molecular weight / non-cross-linked HA (Jalupro®). Mixing time, and setting time (initial and final) were determined, Fourier-transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy, Field emission Scanning Electron Microscopy, and X-ray diffraction were performed. RESULTS mixing time, initial, and final setting time for (MTA + HA) groups were significantly different and lower in comparison to the control group (p < 0.05). This study revealed higher expression of calcium silicate hydrate and calcium hydroxide expression with higher Ca release in the MTA + HA group than the control group. CONCLUSION commercially available HA demonstrated better chemical properties when used as a mixing medium for MTA. The Mixing and setting time for MTA + HA group were significantly shorter than those of the control group were. Thus, commercially available HA can be used as a mixing medium for MTA.
Collapse
Affiliation(s)
| | - Nadia H. Hasan
- Department of Conservative Dentistry, College of Dentistry,
University of Mosul, Mosul, Iraq
| | | |
Collapse
|
7
|
Wendt TS, Gonzales RJ. Ozanimod differentially preserves human cerebrovascular endothelial barrier proteins and attenuates matrix metalloproteinase-9 activity following in vitro acute ischemic injury. Am J Physiol Cell Physiol 2023; 325:C951-C971. [PMID: 37642239 DOI: 10.1152/ajpcell.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
8
|
Wilkins GC, Gilmour J, Giannoudaki E, Kirby JA, Sheerin NS, Ali S. Dissecting the Therapeutic Mechanisms of Sphingosine-1-Phosphate Receptor Agonism during Ischaemia and Reperfusion. Int J Mol Sci 2023; 24:11192. [PMID: 37446370 PMCID: PMC10342646 DOI: 10.3390/ijms241311192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) and S1P receptors (S1PR) regulate many cellular processes, including lymphocyte migration and endothelial barrier function. As neutrophils are major mediators of inflammation, their transendothelial migration may be the target of therapeutic approaches to inflammatory conditions such as ischaemia-reperfusion injury (IRI). The aim of this project was to assess whether these therapeutic effects are mediated by S1P acting on neutrophils directly or indirectly through the endothelial cells. First, our murine model of peritoneum cell recruitment demonstrated the ability of S1P to reduce CXCL8-mediated neutrophil recruitment. Mechanistic in vitro studies revealed that S1P signals in neutrophils mainly through the S1PR1 and 4 receptors and induces phosphorylation of ERK1/2; however, this had no effect on neutrophil transmigration and adhesion. S1P treatment of endothelial cells significantly reduced TNF-α-induced neutrophil adhesion under flow (p < 0.01) and transendothelial migration towards CXCL8 during in vitro chemotaxis assays (p < 0.05). S1PR1 agonist CYM5442 treatment of endothelial cells also reduced neutrophil transmigration (p < 0.01) and endothelial permeability (p < 0.005), as shown using in vitro permeability assays. S1PR3 agonist had no effects on chemotaxis or permeability. In an in vivo mouse model of renal IRI, S1PR agonism with CYM5442 reduced endothelial permeability as shown by reduced Evan's Blue dye extravasation. Western blot was used to assess phosphorylation at different sites on vascular endothelial (VE)-cadherin and showed that CYM5442 reduced VEGF-mediated phosphorylation. Taken together, the results of this study suggest that reductions in neutrophil infiltration during IRI in response to S1P are mediated primarily by S1PR1 signalling on endothelial cells, possibly by altering phosphorylation of VE-cadherin. The results also demonstrate the therapeutic potential of S1PR1 agonist during IRI.
Collapse
Affiliation(s)
| | | | | | | | - Neil S. Sheerin
- Immunity and Inflammation, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.C.W.); (J.G.); (E.G.); (J.A.K.)
| | - Simi Ali
- Immunity and Inflammation, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.C.W.); (J.G.); (E.G.); (J.A.K.)
| |
Collapse
|
9
|
Berdiaki A, Neagu M, Spyridaki I, Kuskov A, Perez S, Nikitovic D. Hyaluronan and Reactive Oxygen Species Signaling—Novel Cues from the Matrix? Antioxidants (Basel) 2023; 12:antiox12040824. [PMID: 37107200 PMCID: PMC10135151 DOI: 10.3390/antiox12040824] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG) localized to the cell surface and the tissue extracellular matrix (ECM). It is composed of disaccharides containing glucuronic acid and N-acetylglucosamine, is synthesized by the HA synthase (HAS) enzymes and is degraded by hyaluronidase (HYAL) or reactive oxygen and nitrogen species (ROS/RNS) actions. HA is deposited as a high molecular weight (HMW) polymer and degraded to low molecular weight (LMW) fragments and oligosaccharides. HA affects biological functions by interacting with HA-binding proteins (hyaladherins). HMW HA is anti-inflammatory, immunosuppressive, and antiangiogenic, whereas LMW HA has pro-inflammatory, pro-angiogenetic, and oncogenic effects. ROS/RNS naturally degrade HMW HA, albeit at enhanced levels during tissue injury and inflammatory processes. Thus, the degradation of endothelial glycocalyx HA by increased ROS challenges vascular integrity and can initiate several disease progressions. Conversely, HA exerts a vital role in wound healing through ROS-mediated HA modifications, which affect the innate immune system. The normal turnover of HA protects against matrix rigidification. Insufficient turnover leads to increased tissue rigidity, leading to tissue dysfunction. Both endogenous and exogenous HMW HA have a scavenging capacity against ROS. The interactions of ROS/RNS with HA are more complex than presently perceived and present an important research topic.
Collapse
|
10
|
Sugita S, Naito Y, Zhou L, He H, Hao Q, Sakamoto A, Lee JW. Hyaluronic acid restored protein permeability across injured human lung microvascular endothelial cells. FASEB Bioadv 2022; 4:619-631. [PMID: 36089980 PMCID: PMC9447422 DOI: 10.1096/fba.2022-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Lung endothelial permeability is a key pathological feature of acute respiratory distress syndrome. Hyaluronic acid (HA), a major component of the glycocalyx layer on the endothelium, is generated by HA synthase (HAS) during inflammation and injury and is critical for repair. We hypothesized that administration of exogenous high molecular weight (HMW) HA would restore protein permeability across human lung microvascular endothelial cells (HLMVEC) injured by an inflammatory insult via upregulation of HAS by binding to CD44. A transwell coculture system was used to study the effects of HA on protein permeability across HLMVEC injured by cytomix, a mixture of IL-1β, TNFα, and IFNγ, with or without HMW or low molecular weight (LMW) HA. Coincubation with HMW HA, but not LMW HA, improved protein permeability following injury at 24 h. Fluorescence microscopy demonstrated that exogenous HMW HA partially prevented the increase in "actin stress fiber" formation. HMW HA also increased the synthesis of HAS2 mRNA expression and intracellular HMW HA levels in HLMVEC following injury. Pretreatment with an anti-CD44 antibody or 4-methylumbelliferone, a HAS inhibitor, blocked the therapeutic effects. In conclusion, exogenous HMW HA restored protein permeability across HLMVEC injured by an inflammatory insult in part through upregulation of HAS2.
Collapse
Affiliation(s)
- Shinji Sugita
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yoshifumi Naito
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Li Zhou
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hongli He
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Qi Hao
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
| | - Jae W. Lee
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
11
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Hwang W, Shimizu M, Lee JW. Role of extracellular vesicles in severe pneumonia and sepsis. Expert Opin Biol Ther 2022; 22:747-762. [PMID: 35418256 PMCID: PMC9971738 DOI: 10.1080/14712598.2022.2066470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Extracellular vesicles (EV) released constitutively or following external stimuli from structural and immune cells are now recognized as important mediators of cell-to-cell communication. They are involved in the pathogenesis of pneumonia and sepsis, leading causes of acute respiratory distress syndrome (ARDS) where mortality rates remain up to 40%. Multiple investigators have demonstrated that one of the underlying mechanisms of the effects of EVs is through the transfer of EV content to host cells, resulting in apoptosis, inflammation, and permeability in target organs. AREAS COVERED The current review focuses on preclinical research examining the role of EVs released into the plasma and injured alveolus during pneumonia and sepsis. EXPERT OPINION Inflammation is associated with elevated levels of circulating EVs that are released by activated structural and immune cells and can have significant proinflammatory, procoagulant, and pro-permeability effects in critically ill patients with pneumonia and/or sepsis. However, clinical translation of the use of EVs as biomarkers or potential therapeutic targets may be limited by current methodologies used to identify and quantify EVs accurately (whether from host cells or infecting organisms) and lack of understanding of the role of EVs in the reparative phase during recovery from pneumonia and/or sepsis.
Collapse
Affiliation(s)
- Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s hospital, Catholic College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Masaru Shimizu
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California.,Jae-Woo Lee, MD, Professor, University of California San Francisco, Department of Anesthesiology, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, Telephone: (415) 476-0452, Fax: (415) 514-2999,
| |
Collapse
|
13
|
DeOre BJ, Partyka PP, Fan F, Galie PA. CD44 mediates shear stress mechanotransduction in an in vitro blood-brain barrier model through small GTPases RhoA and Rac1. FASEB J 2022; 36:e22278. [PMID: 35436025 PMCID: PMC10758994 DOI: 10.1096/fj.202100822rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/04/2024]
Abstract
Fluid shear stress is an important mediator of vascular permeability, yet the molecular mechanisms underlying the effect of shear on the blood-brain barrier (BBB) have yet to be clarified in cerebral vasculature despite its importance for brain homeostasis. The goal of this study is to probe components of shear mechanotransduction within the BBB to gain a better understanding of pathologies associated with changes in cerebral perfusion including ischemic stroke. Interrogating the effects of shear stress in vivo is complicated by the complexity of factors in the brain parenchyma and the difficulty associated with modulating blood flow regimes. The in vitro model used in this study is compatible with real-time measurement of barrier function using a transendothelial electrical resistance as well as immunocytochemistry and dextran permeability assays. These experiments reveal that there is a threshold level of shear stress required for barrier formation and that the composition of the extracellular matrix, specifically the presence of high molecular weight hyaluronan, dictates the flow response. Gene editing to modulate the expression of CD44, a mechanosensitive receptor for hyaluronan, demonstrates that the receptor is required for the endothelial response to shear stress. Manipulation of small GTPase activity reveals CD44 activates Rac1 while inhibiting RhoA activation. Additionally, adducin-γ localizes to tight junctions in response to shear stress and RhoA inhibition and is required to maintain the barrier. This study identifies specific components of the mechanosensing complex associated with the BBB response to fluid shear stress and, therefore, illuminates potential targets for barrier manipulation in vivo.
Collapse
Affiliation(s)
- Brandon J. DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Paul P. Partyka
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Peter A. Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
14
|
Thomas JM, Sudhadevi T, Basa P, Ha AW, Natarajan V, Harijith A. The Role of Sphingolipid Signaling in Oxidative Lung Injury and Pathogenesis of Bronchopulmonary Dysplasia. Int J Mol Sci 2022; 23:ijms23031254. [PMID: 35163176 PMCID: PMC8835774 DOI: 10.3390/ijms23031254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Premature infants are born with developing lungs burdened by surfactant deficiency and a dearth of antioxidant defense systems. Survival rate of such infants has significantly improved due to advances in care involving mechanical ventilation and oxygen supplementation. However, a significant subset of such survivors develops the chronic lung disease, Bronchopulmonary dysplasia (BPD), characterized by enlarged, simplified alveoli and deformed airways. Among a host of factors contributing to the pathogenesis is oxidative damage induced by exposure of the developing lungs to hyperoxia. Recent data indicate that hyperoxia induces aberrant sphingolipid signaling, leading to mitochondrial dysfunction and abnormal reactive oxygen species (ROS) formation (ROS). The role of sphingolipids such as ceramides and sphingosine 1-phosphate (S1P), in the development of BPD emerged in the last decade. Both ceramide and S1P are elevated in tracheal aspirates of premature infants of <32 weeks gestational age developing BPD. This was faithfully reflected in the murine models of hyperoxia and BPD, where there is an increased expression of sphingolipid metabolites both in lung tissue and bronchoalveolar lavage. Treatment of neonatal pups with a sphingosine kinase1 specific inhibitor, PF543, resulted in protection against BPD as neonates, accompanied by improved lung function and reduced airway remodeling as adults. This was accompanied by reduced mitochondrial ROS formation. S1P receptor1 induced by hyperoxia also aggravates BPD, revealing another potential druggable target in this pathway for BPD. In this review we aim to provide a detailed description on the role played by sphingolipid signaling in hyperoxia induced lung injury and BPD.
Collapse
Affiliation(s)
- Jaya M. Thomas
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Alison W. Ha
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Correspondence: ; Tel.: +1-(216)-286-7038
| |
Collapse
|
15
|
Bermudez T, Sammani S, Song JH, Hernon VR, Kempf CL, Garcia AN, Burt J, Hufford M, Camp SM, Cress AE, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Cancio LC, Alvarez J, Rafikov R, Li Y, Zhang DD, Casanova NG, Bime C, Garcia JGN. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci Rep 2022; 12:696. [PMID: 35027578 PMCID: PMC8758770 DOI: 10.1038/s41598-021-04444-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.
Collapse
Affiliation(s)
- Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Alexander N Garcia
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jessica Burt
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | | | - Julie Alvarez
- Institute of Surgical Research, San Antonio, TX, USA
| | - Ruslan Rafikov
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Yansong Li
- Institute of Surgical Research, San Antonio, TX, USA
| | - Donna D Zhang
- College of Pharmacy, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
16
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Queisser KA, Mellema RA, Middleton EA, Portier I, Manne BK, Denorme F, Beswick EJ, Rondina MT, Campbell RA, Petrey AC. COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction. JCI Insight 2021; 6:147472. [PMID: 34314391 PMCID: PMC8492325 DOI: 10.1172/jci.insight.147472] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular injury has emerged as a complication contributing to morbidity in coronavirus disease 2019 (COVID-19). The glycosaminoglycan hyaluronan (HA) is a major component of the glycocalyx, a protective layer of glycoconjugates that lines the vascular lumen and regulates key endothelial cell functions. During critical illness, as in the case of sepsis, enzymes degrade the glycocalyx, releasing fragments with pathologic activities into circulation and thereby exacerbating disease. Here, we analyzed levels of circulating glycosaminoglycans in 46 patients with COVID-19 ranging from moderate to severe clinical severity and measured activities of corresponding degradative enzymes. This report provides evidence that the glycocalyx becomes significantly damaged in patients with COVID-19 and corresponds with severity of disease. Circulating HA fragments and hyaluronidase, 2 signatures of glycocalyx injury, strongly associate with sequential organ failure assessment scores and with increased inflammatory cytokine levels in patients with COVID-19. Pulmonary microvascular endothelial cells exposed to COVID-19 milieu show dysregulated HA biosynthesis and degradation, leading to production of pathological HA fragments that are released into circulation. Finally, we show that HA fragments present at high levels in COVID-19 patient plasma can directly induce endothelial barrier dysfunction in a ROCK- and CD44-dependent manner, indicating a role for HA in the vascular pathology of COVID-19.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Middleton
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Division of General Internal Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Bhanu Kanth Manne
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Ellen J. Beswick
- Department of Pathology and
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Matthew T. Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Department of Pathology and
- Division of General Internal Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Geriatric Research, Education, and Clinical Center and
- Department of Internal Medicine, George E. Wahlen Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
| | - Aaron C. Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Department of Pathology and
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
19
|
Sattar RSA, Sumi MP, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Mahajan B, Saluja SS. S1P signaling, its interactions and cross-talks with other partners and therapeutic importance in colorectal cancer. Cell Signal 2021; 86:110080. [PMID: 34245863 DOI: 10.1016/j.cellsig.2021.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-Phosphate (S1P) plays an important role in normal physiology, inflammation, initiation and progression of cancer. Deregulation of S1P signaling causes aberrant proliferation, affects survival, leads to angiogenesis and metastasis. Sphingolipid rheostat is crucial for cellular homeostasis. Discrepancy in sphingolipid metabolism is linked to cancer and drug insensitivity. Owing to these diverse functions and being a potent mediator of tumor growth, S1P signaling might be a suitable candidate for anti-tumor therapy or combination therapy. In this review, with a focus on colorectal cancer we have summarized the interacting partners of S1P signaling pathway, its therapeutic approaches along with the contribution of S1P signaling to various cancer hallmarks.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
20
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
21
|
Li T, Shen K, Li J, Leung SWS, Zhu T, Shi Y. Glomerular Endothelial Cells Are the Coordinator in the Development of Diabetic Nephropathy. Front Med (Lausanne) 2021; 8:655639. [PMID: 34222276 PMCID: PMC8249723 DOI: 10.3389/fmed.2021.655639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/21/2021] [Indexed: 12/22/2022] Open
Abstract
The prevalence of diabetes is consistently rising worldwide. Diabetic nephropathy is a leading cause of chronic renal failure. The present study aimed to explore the crosstalk among the different cell types inside diabetic glomeruli, including glomerular endothelial cells, mesangial cells, podocytes, and immune cells, by analyzing an online single-cell RNA profile (GSE131882) of patients with diabetic nephropathy. Differentially expressed genes in the glomeruli were processed by gene enrichment and protein-protein interactions analysis. Glomerular endothelial cells, as well as podocytes, play a critical role in diabetic nephropathy. A subgroup of glomerular endothelial cells possesses characteristic angiogenesis genes, indicating that angiogenesis takes place in the progress of diabetic nephropathy. Immune cells such as macrophages, T lymphocytes, B lymphocytes, and plasma cells also contribute to the disease progression. By using iTALK, the present study reports complicated cellular crosstalk inside glomeruli. Dysfunction of glomerular endothelial cells and immature angiogenesis result from the activation of both paracrine and autocrine signals. The present study reinforces the importance of glomerular endothelial cells in the development of diabetic nephropathy. The exploration of the signaling pathways involved in aberrant angiogenesis reported in the present study shed light on potential therapeutic target(s) for diabetic nephropathy.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tongyu Zhu
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Bai Q, Guo HX, Su CY, Han QF, Wang T, Tang W. Serum Sphingosine-1-phosphate level and peritonitis in peritoneal dialysis patients. Ren Fail 2021; 42:829-835. [PMID: 32787649 PMCID: PMC7472472 DOI: 10.1080/0886022x.2020.1805763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Given the important role of Sphingosine-1-phosphate (S1P) in maintaining the hemostasis in intestinal barrier function and regulation of inflammation and immune, we hypothesize that S1P might be a biomarker to predict peritonitis in peritoneal dialysis (PD) patients. METHODS In this case-control study, 78 stable, continuous ambulatory peritoneal dialysis patients were enrolled and followed for the episode of PD associated peritonitis. Patients were divided into two groups by whether or not they had peritonitis during follow-up: non-peritonitis (n = 65) and peritonitis (n = 13) group. S1P was analyzed by enzyme-linked immunosorbent assay. Logistic regression analysis was used to assess factors associated with peritonitis. The variables identified by univariable regression models (p < 0.1) were further selected into the multivariable logistic regression model to determine whether they could independently affect peritonitis. RESULTS Patients with peritonitis had a lower level of S1P than that of patients without peritonitis (1.3 ng/mL IQ 0.8, 3.6 ng/mL vs. 2.8 ng/mL IQ 1.5, 5.4 ng/mL, p = 0.018). The peritonitis group had lower serum albumin, lower blood leukocyte, lower hemoglobin and lower platelet count as compared to the non-peritonitis group. Logistic regression analysis showed that S1P (OR = 0.381, 95% CI = 0.171-0.848, p = 0.018), blood leukocyte count (OR = 0.438, 95% CI = 0.207-0.925, p = 0.030), and serum albumin (OR = 0.732, 95% CI = 0.556-0.962, p = 0.025) were independent factors associated with peritonitis in the present PD population. CONCLUSION Our study showed that S1P was an independent determinant of subsequent peritonitis in PD patients. S1P might serve as a biomarker to predict peritonitis in PD patients.
Collapse
Affiliation(s)
- Qiong Bai
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Hong-Xia Guo
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Chun-Yan Su
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Qing-Feng Han
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Tao Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wen Tang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
23
|
Pang X, Li W, Chang L, Gautrot JE, Wang W, Azevedo HS. Hyaluronan (HA) Immobilized on Surfaces via Self-Assembled Monolayers of HA-Binding Peptide Modulates Endothelial Cell Spreading and Migration through Focal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25792-25804. [PMID: 34037376 DOI: 10.1021/acsami.1c05574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extracellular matrix (ECM) modulates a multitude of cell functions, and this regulation is provided by key ECM components forming a complex network. Hyaluronic acid (HA) is an abundant component of the ECM that binds to proteins and influences various activities of endothelial cells (ECs). Although the effect of soluble HA on cell spreading has been studied, the impact of peptide-bound HA has not yet been investigated in great detail. We aim to comprehensively study the roles of immobilized HA on the regulation of EC behavior compared to the more conventional use of soluble HA. A 2D model surface formed by self-assembled monolayers (SAMs) of a HA-binding peptide (Pep-1) is used as an anchor for HA immobilization. Mixed SAMs, consisting of thiolated Pep-1 and 1-octanethiol, are prepared and characterized by using ellipsometry and contact angle measurement. Full density Pep-1 SAMs are more hydrophilic and bind more HA than mixed SAMs. Cell spreading and migration are enhanced by immobilized low molecular weight (LMW) HA, which also facilitates cell alignment and elongation under laminar flow conditions and potentially drives directional migration. This effect is not mediated by the expression of CD44, and immobilized LMW HA is found to accelerate the assembly of focal adhesions. Such biomimetic surfaces provide new insights into the role of HA in regulating the spreading and phenotype of endothelial cells.
Collapse
Affiliation(s)
- Xinqing Pang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Weiqi Li
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Lan Chang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Julien E Gautrot
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Wen Wang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
24
|
de Wit NM, Mol K, Rodríguez-Lorenzo S, de Vries HE, Kooij G. The Role of Sphingolipids and Specialized Pro-Resolving Mediators in Alzheimer's Disease. Front Immunol 2021; 11:620348. [PMID: 33633739 PMCID: PMC7902029 DOI: 10.3389/fimmu.2020.620348] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide giving rise to devastating forms of cognitive decline, which impacts patients’ lives and that of their proxies. Pathologically, AD is characterized by extracellular amyloid deposition, neurofibrillary tangles and chronic neuroinflammation. To date, there is no cure that prevents progression of AD. In this review, we elaborate on how bioactive lipids, including sphingolipids (SL) and specialized pro-resolving lipid mediators (SPM), affect ongoing neuroinflammatory processes during AD and how we may exploit them for the development of new biomarker panels and/or therapies. In particular, we here describe how SPM and SL metabolism, ranging from ω-3/6 polyunsaturated fatty acids and their metabolites to ceramides and sphingosine-1-phosphate, initiates pro- and anti-inflammatory signaling cascades in the central nervous system (CNS) and what changes occur therein during AD pathology. Finally, we discuss novel therapeutic approaches to resolve chronic neuroinflammation in AD by modulating the SPM and SL pathways.
Collapse
Affiliation(s)
- Nienke M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kevin Mol
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
D'Aprile C, Prioni S, Mauri L, Prinetti A, Grassi S. Lipid rafts as platforms for sphingosine 1-phosphate metabolism and signalling. Cell Signal 2021; 80:109929. [PMID: 33493577 DOI: 10.1016/j.cellsig.2021.109929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Spontaneous segregation of cholesterol and sphingolipids as a liquid-ordered phase leads to their clustering in selected membrane areas, the lipid rafts. These specialized membrane domains enriched in gangliosides, sphingomyelin, cholesterol and selected proteins involved in signal transduction, organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating cell homeostasis. Sphingosine 1-phosphate, an important biologically active mediator, is involved in several signal transduction processes regulating a plethora of cell functions and, not only several of its downstream effectors tend to localize in lipid rafts, some of the enzymes involved in its pathway, of receptors involved in its signalling and its transporters have been often found in these membrane microdomains. Considering this, in this review we address what is currently known regarding the relationship between sphingosine 1-phosphate metabolism and signalling and plasma membrane lipid rafts.
Collapse
Affiliation(s)
- Chiara D'Aprile
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
26
|
Queisser KA, Mellema RA, Petrey AC. Hyaluronan and Its Receptors as Regulatory Molecules of the Endothelial Interface. J Histochem Cytochem 2021; 69:25-34. [PMID: 32870756 PMCID: PMC7780188 DOI: 10.1369/0022155420954296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
On the surface of endothelial cells (ECs) lies the glycocalyx, a barrier of polysaccharides that isolates the ECs from the blood. The role of the glycocalyx is dynamic and complex, thanks to not only its structure, but its vast number of components, one being hyaluronan (HA). HA is a critical component of the glycocalyx, having been found to have a wide variety of functions depending on its molecular weight, its modification, and receptor-ligand interactions. As HA and viscous blood are in constant contact, HA can transmit mechanosensory information directly to the cytoskeleton of the ECs. The degradation and synthesis of HA directly alters the permeability of the EC barrier; HA modulation not only alters the physical barrier but also can signal the initiation of other pathways. EC proliferation and angiogenesis are in part regulated by HA fragmentation, HA-dependent receptor binding, and downstream signals. The interaction between the CD44 receptor and HA is a driving force behind leukocyte recruitment, but each class of leukocyte still interacts with HA in unique ways during inflammation. HA regulates a diverse repertoire of EC functions.
Collapse
Affiliation(s)
| | - Rebecca A Mellema
- Division of Microbiology & Immunology, Department of Pathology, The University of Utah, Salt Lake City, Utah
| | - Aaron C Petrey
- Molecular Medicine Program, The University of Utah, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
27
|
Chen L, Fu C, Zhang Q, He C, Zhang F, Wei Q. The role of CD44 in pathological angiogenesis. FASEB J 2020; 34:13125-13139. [PMID: 32830349 DOI: 10.1096/fj.202000380rr] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required for normal development and occurs as a pathological step in a variety of disease settings, such as cancer, ocular diseases, and ischemia. Recent studies have revealed the role of CD44, a widely expressed cell surface adhesion molecule, in promoting pathological angiogenesis and the development of its associated diseases through its regulation of diverse function of endothelial cells, such as proliferation, migration, adhesion, invasion, and communication with the microenvironment. Conversely, the absence of CD44 expression or inhibition of its function impairs pathological angiogenesis and disease progression. Here, we summarize the current understanding of the roles of CD44 in pathological angiogenesis and the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
28
|
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives. Cells 2020; 9:cells9061515. [PMID: 32580348 PMCID: PMC7349054 DOI: 10.3390/cells9061515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P–S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P–S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.
Collapse
|
29
|
Abstract
Sphingosine-1-phosphate (S1P) can regulate several physiological and pathological processes. S1P signaling via its cell surface receptor S1PR1 has been shown to enhance tumorigenesis and stimulate growth, expansion, angiogenesis, metastasis, and survival of cancer cells. S1PR1-mediated tumorigenesis is supported and amplified by activation of downstream effectors including STAT3, interleukin-6, and NF-κB networks. S1PR1 signaling can also trigger various other signaling pathways involved in carcinogenesis including activation of PI3K/AKT, MAPK/ERK1/2, Rac, and PKC/Ca, as well as suppression of cyclic adenosine monophosphate (cAMP). It also induces immunological tolerance in the tumor microenvironment, while the immunosuppressive function of S1PR1 can also lead to the generation of pre-metastatic niches. Some tumor cells upregulate S1PR1 signaling pathways, which leads to drug resistant cancer cells, mainly through activation of STAT3. This signaling pathway is also implicated in some inflammatory conditions leading to the instigation of inflammation-driven cancers. Furthermore, it can also increase survival via induction of anti-apoptotic pathways, for instance, in breast cancer cells. Therefore, S1PR1 and its signaling pathways can be considered as potential anti-tumor therapeutic targets, alone or in combination therapies. Given the oncogenic nature of S1PR1 and its distribution in a variety of cancer cell types along with its targeting advantages over other molecules of this family, S1PR1 should be considered a favorable target in therapeutic approaches to cancer. This review describes the role of S1PR1 in cancer development and progression, specifically addressing breast cancer, glioma, and hematopoietic malignancies. We also discuss the potential use of S1P signaling modulators as therapeutic targets in cancer therapy.
Collapse
|
30
|
Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res 2020; 156:104793. [PMID: 32278039 DOI: 10.1016/j.phrs.2020.104793] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling lipid, synthetized by sphingosine kinases (SPHK1 and SPHK2), that affects cardiovascular function in various ways. S1P signaling is complex, particularly since its molecular action is reliant on the differential expression of its receptors (S1PR1, S1PR2, S1PR3, S1PR4, S1PR5) within various tissues. Significance of this sphingolipid is manifested early in vertebrate development as certain defects in S1P signaling result in embryonic lethality due to defective vasculo- or cardiogenesis. Similar in the mature organism, S1P orchestrates both physiological and pathological processes occurring in the heart and vasculature of higher eukaryotes. S1P regulates cell fate, vascular tone, endothelial function and integrity as well as lymphocyte trafficking, thus disbalance in its production and signaling has been linked with development of such pathologies as arterial hypertension, atherosclerosis, endothelial dysfunction and aberrant angiogenesis. Number of signaling mechanisms are critical - from endothelial nitric oxide synthase through STAT3, MAPK and Akt pathways to HDL particles involved in redox and inflammatory balance. Moreover, S1P controls both acute cardiac responses (cardiac inotropy and chronotropy), as well as chronic processes (such as apoptosis and hypertrophy), hence numerous studies demonstrate significance of S1P in the pathogenesis of hypertrophic/fibrotic heart disease, myocardial infarction and heart failure. This review presents current knowledge concerning the role of S1P in the cardiovascular system, as well as potential therapeutic approaches to target S1P signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- E Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - T J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - M Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
31
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Wang G, Tiemeier GL, van den Berg BM, Rabelink TJ. Endothelial Glycocalyx Hyaluronan: Regulation and Role in Prevention of Diabetic Complications. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:781-790. [PMID: 32035886 DOI: 10.1016/j.ajpath.2019.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 10/25/2022]
Abstract
The endothelial glycocalyx is critically involved in vascular integrity and homeostasis, by regulating vascular permeability, regulating mechanotransduction, and reducing inflammation and coagulation. The turnover of the glycocalyx is dynamic to fine-tune these processes. This is in particular true for its main structural component, hyaluronan (HA). Degradation and shedding of the glycocalyx by enzymes, such as hyaluronidase 1 and hyaluronidase 2, are responsible for regulation of the glycocalyx thickness and hence access of circulating cells and factors to the endothelial cell membrane and its receptors. This degradation process will at the same time also allow for resynthesis and adaptive chemical modification of the glycocalyx. The (re)synthesis of HA is dependent on the availability of its sugar substrates, thus linking glycocalyx biology directly to cellular glucose metabolism. It is therefore of particular interest to consider the consequences of dysregulated cellular glucose in diabetes for glycocalyx biology and its implications for endothelial function. This review summarizes the metabolic regulation of endothelial glycocalyx HA and its potential as a therapeutic target in diabetic vascular complications.
Collapse
Affiliation(s)
- Gangqi Wang
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Gesa L Tiemeier
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
33
|
Enhanced cutaneous Rock2 expression as a marker of Rho Kinase pathway activation in autoimmune disease and Kohlemeier-Degos disease. Ann Diagn Pathol 2020; 44:151414. [DOI: 10.1016/j.anndiagpath.2019.151414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/22/2022]
|
34
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Mathiesen Janiurek M, Soylu-Kucharz R, Christoffersen C, Kucharz K, Lauritzen M. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. eLife 2019; 8:e49405. [PMID: 31763978 PMCID: PMC6877292 DOI: 10.7554/elife.49405] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells lining cerebral microvessels, but how blood-borne signaling molecules influence permeability is incompletely understood. We here examined how the apolipoprotein M (apoM)-bound sphingosine 1-phosphate (S1P) signaling pathway affects the BBB in different categories of cerebral microvessels using ApoM deficient mice (Apom-/-). We used two-photon microscopy to monitor BBB permeability of sodium fluorescein (376 Da), Alexa Fluor (643 Da), and fluorescent albumin (45 kDA). We show that BBB permeability to small molecules increases in Apom-/- mice. Vesicle-mediated transfer of albumin in arterioles increased 3 to 10-fold in Apom-/- mice, whereas transcytosis in capillaries and venules remained unchanged. The S1P receptor 1 agonist SEW2871 rapidly normalized paracellular BBB permeability in Apom-/- mice, and inhibited transcytosis in penetrating arterioles, but not in pial arterioles. Thus, apoM-bound S1P maintains low paracellular BBB permeability in all cerebral microvessels and low levels of vesicle-mediated transport in penetrating arterioles.
Collapse
Affiliation(s)
| | | | - Christina Christoffersen
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
- Department of Biomedical SciencesCopenhagen UniversityCopenhagenDenmark
| | | | - Martin Lauritzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical NeurophysiologyRigshospitalet-GlostrupCopenhagenDenmark
| |
Collapse
|
36
|
Liu A, Park JH, Zhang X, Sugita S, Naito Y, Lee JH, Kato H, Hao Q, Matthay MA, Lee JW. Therapeutic Effects of Hyaluronic Acid in Bacterial Pneumonia in Ex Vivo Perfused Human Lungs. Am J Respir Crit Care Med 2019; 200:1234-1245. [PMID: 31390880 PMCID: PMC6857490 DOI: 10.1164/rccm.201812-2296oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Rationale: Recent studies have demonstrated that extracellular vesicles (EVs) released during acute lung injury (ALI) were inflammatory.Objectives: The current study was undertaken to test the role of EVs induced and released from severe Escherichia coli pneumonia (E. coli EVs) in the pathogenesis of ALI and to determine whether high-molecular-weight (HMW) hyaluronic acid (HA) administration would suppress lung injury from E. coli EVs or bacterial pneumonia.Methods:E. coli EVs were collected from the perfusate of an ex vivo perfused human lung injured with intrabronchial E. coli bacteria for 6 hours by ultracentrifugation and then given intrabronchially or intravenously to naive human lungs. One hour later, HMW HA was instilled into the perfusate (n = 5-6). In separate experiments, HMW HA was given after E. coli bacterial pneumonia (n = 6-10). In vitro experiments were conducted to evaluate binding of EVs to HMW HA and uptake of EVs by human monocytes.Measurements and Main Results: Administration of HMW HA ameliorated the impairment of alveolar fluid clearance, protein permeability, and acute inflammation from E. coli EVs or pneumonia and reduced total bacteria counts after E. coli pneumonia. HMW HA bound to E. coli EVs, inhibiting the uptake of EVs by human monocytes, an effect associated with reduced TNFα (tumor necrosis factor α) secretion. Surprisingly, HMW HA increased E. coli bacteria phagocytosis by monocytes.Conclusions: EVs induced and released during severe bacterial pneumonia were inflammatory and induced ALI, and HMW HA administration was effective in inhibiting the uptake of EVs by target cells and decreasing lung injury from E. coli EVs or bacterial pneumonia.
Collapse
Affiliation(s)
- Airan Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Jeong-Hyun Park
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Xiwen Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; and
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Shinji Sugita
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Yoshifumi Naito
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Jae-Hoon Lee
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Hideya Kato
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Qi Hao
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A. Matthay
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Jae-Woo Lee
- Department of Anesthesiology and
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California
| |
Collapse
|
37
|
Kim YH, Oh MG, Bhang DH, Kim BJ, Jung SE, Kim SM, Dohr G, Kim SU, Ryeom S, Ryu BY. Testicular endothelial cells promote self-renewal of spermatogonial stem cells in rats†. Biol Reprod 2019; 101:360-367. [PMID: 31187129 DOI: 10.1093/biolre/ioz105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/01/2019] [Accepted: 06/10/2019] [Indexed: 01/03/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis in male due to their capability to multiply in numbers by self-renewal and subsequent meiotic processes. However, as SSCs are present in a very small proportion in the testis, in vitro proliferation of undifferentiated SSCs will facilitate the study of germ cell biology. In this study, we investigated the effectiveness of various cell lines as a feeder layer for rat SSCs. Germ cells enriched for SSCs were cultured on feeder layers including SIM mouse embryo-derived thioguanine and ouabain-resistant cells, C166 cells, and mouse and rat testicular endothelial cells (TECs) and their stem cell potential for generating donor-derived colonies and offspring was assessed by transplantation into recipient testes. Rat germ cells cultured on TECs showed increased mRNA and protein levels of undifferentiated spermatogonial markers. Rat SSCs derived from these germ cells underwent spermatogenesis and generated offspring when transplanted into recipients. Collectively, TECs can serve as an effective feeder layer that enhances the proliferative and self-renewal capacity of cultured rat SSCs while preserving their stemness properties.
Collapse
Affiliation(s)
- Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Myeong-Geun Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, BK21Plus Program for 21st Century Biomedical Science Leader Development, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Gottfried Dohr
- Institute of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea.,BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
38
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Sun XJ, Chen M, Zhao MH. Thrombin Contributes to Anti-myeloperoxidase Antibody Positive IgG-Mediated Glomerular Endothelial Cells Activation Through SphK1-S1P-S1PR3 Signaling. Front Immunol 2019; 10:237. [PMID: 30891029 PMCID: PMC6413724 DOI: 10.3389/fimmu.2019.00237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Activation of coagulation system plays an important role in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) pathogenesis. Thrombin, generated during coagulation could disrupt endothelial barrier integrity through protease-activated receptor 1 (PAR1). Our previous study found that sphingosine-1-phosphate (S1P) contributed to myeloperoxidase (MPO)-ANCA-positive IgG-induced glomerular endothelial cell (GEnC) activation through a S1P receptor (S1PR)-dependent route. In recent years, S1P signaling was reported to be involved in thrombin effects on endothelial cells. This current study investigated whether the interaction between thrombin-PAR and S1P-S1PR signaling contributed to MPO-ANCA-positive IgG-induced GEnC dysfunction. Methods: The effect of thrombin on GEnC activation was analyzed from three aspects. First, morphological alteration of GEnCs was observed. Second, permeability assay was performed to determine GEnC monolayer activation quantitatively. Third, endothelin-1 (ET-1) levels were measured. Expression levels of sphingosine kinases (SphKs) and S1PRs were detected. In addition, antagonists of PAR1 and S1PR3 were employed to determine their roles. Eventually, PAR1 and tissue factor (TF) expression levels as well as TF procoagulant activity were analyzed. Results: Thrombin induced further damage of tight junction, increase in endothelial monolayer permeability as well as upregulation of ET-1 levels in GEnCs stimulated with MPO-ANCA-positive IgG. Blocking PAR1 downregulated ET-1 levels in the supernatants of GEnCs treated by thrombin plus MPO-ANCA-positive IgG. Expression levels of SphK1, S1PR3 increased significantly in GEnCs treated with thrombin plus MPO-ANCA-positive IgG. S1P upregulated PAR1 and TF expression, and enhanced procoagulant activity of TF in MPO-ANCA-positive IgG-stimulated GEnCs. Conclusion: Thrombin synergized with SphK1-S1P-S1PR3 signaling pathway to enhance MPO-ANCA-positive IgG-mediated GEnC activation.
Collapse
Affiliation(s)
- Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University, First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University, First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University, First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
40
|
Alves NG, Yuan SY, Breslin JW. Sphingosine-1-phosphate protects against brain microvascular endothelial junctional protein disorganization and barrier dysfunction caused by alcohol. Microcirculation 2018; 26:e12506. [PMID: 30281888 DOI: 10.1111/micc.12506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE S1P has known endothelial barrier-protective properties, but whether this extends to the BBB is unclear. We hypothesized that alcohol-induced disruption of brain microvascular endothelial barrier function and junctional protein organization can be ameliorated by S1P treatment. METHODS Cultured primary HBMEC monolayers were used to characterize endothelial-specific mechanisms of BBB regulation. TER and apparent permeability coefficients for albumin, dextran-4 kDa, and sodium fluorescein were used as indices of barrier function. Junctional localization of Claudin-5, VE-cadherin, and β-catenin was determined by immunofluorescence confocal microscopy. S1P was applied following treatment with alcohol. RESULTS Alcohol significantly impaired HBMEC TER. Application of S1P after alcohol treatment resulted in a hastened recovery to the baseline HBMEC TER. Alcohol-treated HBMEC had a significantly higher mean permeability than control that was reversed by S1P. Alcohol caused the formation of gaps between cells. Treatment with S1P (after alcohol) increased junctional localization of VE-Cadherin, Claudin-5, and β-catenin. CONCLUSIONS Alcohol impairs the barrier function and junctional organization of HBMEC monolayers. S1P enhanced barrier function and restored junctions in the presence of alcohol, and thus may be useful for restoring BBB function during alcohol intoxication.
Collapse
Affiliation(s)
- Natascha G Alves
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
41
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
42
|
Zhang X, Sun D, Song JW, Zullo J, Lipphardt M, Coneh-Gould L, Goligorsky MS. Endothelial cell dysfunction and glycocalyx – A vicious circle. Matrix Biol 2018; 71-72:421-431. [DOI: 10.1016/j.matbio.2018.01.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
|
43
|
Sun XJ, Chen M, Zhao MH. Rho GTPases are involved in S1P-enhanced glomerular endothelial cells activation with anti-myeloperoxidase antibody positive IgG. J Cell Mol Med 2018; 22:4550-4554. [PMID: 29993181 PMCID: PMC6111853 DOI: 10.1111/jcmm.13736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Sphingosine‐1‐phosphate (S1P) is a crucial regulator in vascular inflammation. Our recent study found that under pathophysiological concentration in active anti‐neutrophil cytoplasmic antibody (ANCA)‐associated vasculitis (AAV), S1P participated in MPO‐ANCA‐positive IgG‐induced glomerular endothelial cell (GEnC) activation via a S1P receptor (S1PR)‐dependent way. However, the downstream signalling pathways are not fully clear yet. In this study, we demonstrated that Rho guanosine triphosphatases (GTPases) signalling pathways, RhoA and Rac1 in particular, were implicated in MPO‐ANCA‐positive IgG‐mediated GEnCs activation enhanced by pathophysiological concentration of S1P in AAV. These results provide mechanistic insights into vascular barrier dysfunction in AAV, which may facilitate the development of effective therapies.
Collapse
Affiliation(s)
- Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
44
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
45
|
Hou J, Chen Q, Wu X, Zhao D, Reuveni H, Licht T, Xu M, Hu H, Hoeft A, Ben-Sasson SA, Shu Q, Fang X. S1PR3 Signaling Drives Bacterial Killing and Is Required for Survival in Bacterial Sepsis. Am J Respir Crit Care Med 2017; 196:1559-1570. [PMID: 28850247 DOI: 10.1164/rccm.201701-0241oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE Efficient elimination of pathogenic bacteria is a critical determinant in the outcome of sepsis. Sphingosine-1-phosphate receptor 3 (S1PR3) mediates multiple aspects of the inflammatory response during sepsis, but whether S1PR3 signaling is necessary for eliminating the invading pathogens remains unknown. OBJECTIVES To investigate the role of S1PR3 in antibacterial immunity during sepsis. METHODS Loss- and gain-of-function experiments were performed using cell and murine models. S1PR3 levels were determined in patients with sepsis and healthy volunteers. MEASUREMENTS AND MAIN RESULTS S1PR3 protein levels were up-regulated in macrophages upon bacterial stimulation. S1pr3-/- mice showed increased mortality and increased bacterial burden in multiple models of sepsis. The transfer of wild-type bone marrow-derived macrophages rescued S1pr3-/- mice from lethal sepsis. S1PR3-overexpressing macrophages further ameliorated the mortality rate of sepsis. Loss of S1PR3 led to markedly decreased bacterial killing in macrophages. Enhancing endogenous S1PR3 activity using a peptide agonist potentiated the macrophage bactericidal function and improved survival rates in multiple models of sepsis. Mechanically, the reactive oxygen species levels were decreased and phagosome maturation was delayed in S1pr3-/- macrophages due to impaired recruitment of vacuolar protein-sorting 34 to the phagosomes. In addition, S1RP3 expression levels were elevated in monocytes from patients with sepsis. Higher levels of monocytic S1PR3 were associated with efficient intracellular bactericidal activity, better immune status, and preferable outcomes. CONCLUSIONS S1PR3 signaling drives bacterial killing and is essential for survival in bacterial sepsis. Interventions targeting S1PR3 signaling could have translational implications for manipulating the innate immune response to combat pathogens.
Collapse
Affiliation(s)
- JinChao Hou
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | | | - XiaoLiang Wu
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | - DongYan Zhao
- 3 Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany; and
| | - Hadas Reuveni
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tamar Licht
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - MengLong Xu
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | - Hu Hu
- 5 Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Andreas Hoeft
- 3 Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany; and
| | - Shmuel A Ben-Sasson
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - XiangMing Fang
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| |
Collapse
|
46
|
Birukov KG, Karki P. Injured lung endothelium: mechanisms of self-repair and agonist-assisted recovery (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752660. [PMID: 29261029 PMCID: PMC6022073 DOI: 10.1177/2045893217752660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lung endothelium is vulnerable to both exogenous and endogenous insults, so a properly coordinated efficient repair system is essential for the timely recovery of the lung after injury. The agents that cause endothelial injury and dysfunction fall into a broad range from mechanical forces such as pathological cyclic stretch and shear stress to bacterial pathogens and their virulent components, vasoactive agonists including thrombin and histamine, metabolic causes including high glucose and oxidized low-density lipoprotein (OxLDL), circulating microparticles, and inflammatory cytokines. The repair mechanisms employed by endothelial cells (EC) can be broadly categorized into three groups: (1) intrinsic mechanism of recovery regulated by the cross-talk between small GTPases as exemplified by Rap1-mediated EC barrier recovery from Rho-mediated thrombin-induced EC hyperpermeability; (2) agonist-assisted recovery facilitated by the activation of Rac and Rap1 with subsequent inhibition of Rho signaling as observed with many barrier protective agonists including oxidized phospholipids, sphingosine 1-phosphate, prostacyclins, and hepatocyte growth factor; and (3) self-recovery of EC by the secretion of growth factors and other pro-survival bioactive compounds including anti-inflammatory molecules such as lipoxins during the resolution of inflammation. In this review, we will discuss the molecular and cellular mechanisms of pulmonary endothelium repair that is critical for the recovery from various forms of lung injuries.
Collapse
Affiliation(s)
- Konstantin G. Birukov
- Department of Anesthesiology, University of
Maryland Baltimore, School of Medicine, Baltimore, MD, USA,Konstantin G. Birukov, Department of Anesthesiology,
University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145 Baltimore, MD
21201, USA.
| | - Pratap Karki
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
47
|
Effects of S-Nitroso-N-Acetyl-Penicillamine (SNAP) on Inflammation, Lung Tissue Apoptosis and iNOS Activity in a Rabbit Model of Acute Lung Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 935:13-23. [PMID: 27334732 DOI: 10.1007/5584_2016_34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute lung injury is characterized by lung edema, surfactant dysfunction, and inflammation. The main goal of our study was to evaluate effects of S-nitroso-N-acetyl-penicillamine (SNAP) on migration of cells into the lung and their activation, inducible NO synthase (iNOS) activity, and apoptosis in experimental acute lung injury (ALI) in rabbits. ALI was induced by repetitive lung lavage with saline. The animals were divided into the following groups: (1) ALI without therapy, (2) lung injury treated with SNAP (ALI + SNAP), and (3) healthy animals (Control). After 5 h of ventilation, total and differential counts of cells in the bronchoalveolar lavage fluid (BALF) were assessed. Concentrations of interleukins (IL)-1ß, IL-6, and IL-8, endogenous secretory receptor for advanced glycation endproducts (esRAGE), sphingosine-1-phosphate receptor (S1PR)3, caspase-3, and mRNA expression of inducible NO synthase (iNOS) in lung tissue and nitrite/nitrate in plasma were analyzed. In the right lung, apoptotic cells were evaluated by TUNEL assay. In the animals with ALI, higher counts of cells, mainly neutrophils, in BALF and increased production of pro-inflammatory substances were observed compared with controls. SNAP therapy reduced a leak of cells into the lung and decreased concentrations of pro-inflammatory and apoptotic markers, reduced mRNA expression of iNOS, and decreased apoptotic index in the lung.
Collapse
|
48
|
Sun XJ, Chen M, Zhao MH. Sphingosine-1-phosphate (S1P) enhances glomerular endothelial cells activation mediated by anti-myeloperoxidase antibody-positive IgG. J Cell Mol Med 2017; 22:1769-1777. [PMID: 29168342 PMCID: PMC5824416 DOI: 10.1111/jcmm.13458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Cumulating evidences suggested an important role of sphingosine-1-phosphate (S1P) and its receptors in regulating endothelial barrier integrity. Our previous study revealed that the circulating S1P levels and renal expression of S1PRs correlated with disease activity and renal damage in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). This study investigated the role of S1P and its receptors in myeloperoxidase (MPO)-ANCA-positive IgG-mediated glomerular endothelial cell (GEnC) activation. The effect of S1P on morphological alteration of GEnCs in the presence of MPO-ANCA-positive IgG was observed. Permeability assay was performed to determine endothelial monolayer activation in quantity. Both membrane-bound and soluble ICAM-1 and VCAM-1 levels were measured. Furthermore, antagonists and/or agonists of various S1PRs were employed to determine the role of different S1PRs. S1P enhanced MPO-ANCA-positive IgG-induced disruption of tight junction and disorganization of cytoskeleton in GEnCs. S1P induced further increase in monolayer permeability of GEnC monolayers in the presence of MPO-ANCA-positive IgG. S1P enhanced MPO-ANCA-positive IgG-induced membrane-bound and soluble ICAM-1/VCAM-1 up-regulation of GEnCs. Soluble ICAM-1 levels in the supernatants of GEnCs stimulated by S1P and MPO-ANCA-positive IgG increased upon pre-incubation of S1PR1 antagonist, while pre-incubation of GEnCs with the S1PR1 agonist down-regulated sICAM-1 level. Blocking S1PR2-4 reduced sICAM-1 levels in the supernatants of GEnCs stimulated by S1P and MPO-ANCA-positive IgG. Pre-incubation with S1PR5 agonist could increase sICAM-1 level in the supernatants of GEnC stimulated by S1P and MPO-ANCA-positive IgG. S1P can enhance MPO-ANCA-positive IgG-mediated GEnC activation through S1PR2-5.
Collapse
Affiliation(s)
- Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
49
|
Abstract
Acute lung injury in the preterm newborns can originate from prematurity of the lung and insufficient synthesis of pulmonary surfactant. This situation is known as respiratory distress syndrome (RDS). In the term neonates, the respiratory insufficiency is related to a secondary inactivation of the pulmonary surfactant, for instance, by action of endotoxins in bacterial pneumonia or by effects of aspirated meconium. The use of experimental models of the mentioned situations provides new information on the pathophysiology of these disorders and offers unique possibility to test novel therapeutic approaches in the conditions which are very similar to the clinical syndromes. Herewith we review the advantages and limitations of the use of experimental models of RDS and meconium aspiration syndrome (MAS) and their value for clinics.
Collapse
Affiliation(s)
- D. MOKRA
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | | |
Collapse
|
50
|
Kosutova P, Mikolka P, Balentova S, Adamkov M, Kolomaznik M, Calkovska A, Mokra D. Intravenous dexamethasone attenuated inflammation and influenced apoptosis of lung cells in an experimental model of acute lung injury. Physiol Res 2017; 65:S663-S672. [PMID: 28006948 DOI: 10.33549/physiolres.933531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acute lung injury (ALI) is characterized by diffuse alveolar damage, inflammation, and transmigration and activation of inflammatory cells. This study evaluated if intravenous dexamethasone can influence lung inflammation and apoptosis in lavage-induced ALI. ALI was induced in rabbits by repetitive saline lung lavage (30 ml/kg, 9+/-3-times). Animals were divided into 3 groups: ALI without therapy (ALI), ALI treated with dexamethasone i.v. (0.5 mg/kg, Dexamed; ALI+DEX), and healthy non-ventilated controls (Control). After following 5 h of ventilation, ALI animals were overdosed by anesthetics. Total and differential counts of cells in bronchoalveolar lavage fluid (BAL) were estimated. Lung edema was expressed as wet/dry weight ratio. Concentrations of IL-1beta, IL-8, esRAGE, S1PR3 in the lung were analyzed by ELISA methods. In right lung, apoptotic cells were evaluated by TUNEL assay and caspase-3 immunohistochemically. Dexamethasone showed a trend to improve lung functions and histopathological changes, reduced leak of neutrophils (P<0.001) into the lung, decreased concentrations of pro-inflammatory IL-1beta (P<0.05) and marker of lung injury esRAGE (P<0.05), lung edema formation (P<0.05), and lung apoptotic index (P<0.01), but increased immunoreactivity of caspase-3 in the lung (P<0.001). Considering the action of dexamethasone on respiratory parameters and lung injury, the results indicate potential of this therapy in ALI.
Collapse
Affiliation(s)
- P Kosutova
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|