1
|
Chen W, Hu J, Chen J, Guo Y, Hong Y, Xia H. Spatio-temporal analysis of toxigenic genes expression in the growing Bufo gargarizans based on RNA sequencing data. Genomics 2024; 116:110847. [PMID: 38685287 DOI: 10.1016/j.ygeno.2024.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Bufo gargarizans Cantor, a widely distributed amphibian species in Asia, produces and releases toxins through its retroauricular and granular glands. Although various tissues have been sequenced, the molecular mechanisms underlying the toxin production remain unclear. To elucidate these mechanisms, abdominal skin (non-toxic secretory glands) and retroauricular gland (toxic secreting glands) samples were collected at different time points (3, 6, 12, 24, and 36 months) for RNA sequencing (RNA-seq) and analysis. RESULTS In comparison to the S group during the same period, a total of 3053, 3026, 1516, 1028, and 2061 differentially expressed genes (DEGs) were identified across five developmental stages. Gene Ontology (GO) analysis revealed that DEGs were primarily enriched in biological processes including cellular processes, single-organism processes, metabolic processes, and biological regulation. In terms of cellular components, the DEGs were predominantly localized in the cell and cell parts, whereas molecular function indicated significant enrichment in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the metabolism and synthesis of various substances, such as lipid metabolism, cofactor and vitamin metabolism, tryptophan metabolism, steroid biosynthesis, and primary bile acid biosynthesis, were accompanied by the development of toads. Additionally, using trend analysis, we discovered candidate genes that were upregulated in the retroauricular glands during development, and the abundance of these genes in the abdominal skin was extremely low. Finally, we identified 26 genes that are likely to be involved in toxin production and that are likely to be involved in toxin anabolism. CONCLUSION Overall, these results provide new insights into the genes involved in toxin production in B. gargarizans, which will improve our understanding of the molecular mechanisms underlying toxigenic gene expression.
Collapse
Affiliation(s)
- Wenxiao Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinghong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongjian Hong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Houkai Xia
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Kang Yuan Tang Pharmaceutical Co., Ltd, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
2
|
Khajavi L, Nguyen XH, Queriault C, Chabod M, Barateau L, Dauvilliers Y, Zytnicki M, Liblau R. The transcriptomics profiling of blood CD4 and CD8 T-cells in narcolepsy type I. Front Immunol 2023; 14:1249405. [PMID: 38077397 PMCID: PMC10702585 DOI: 10.3389/fimmu.2023.1249405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Background Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.
Collapse
Affiliation(s)
- Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System and College of Health Sciences, VinUniveristy, Hanoi, Vietnam
| | - Clémence Queriault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Marianne Chabod
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Lucie Barateau
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Matthias Zytnicki
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
3
|
Nishida-Tamehiro K, Kimura A, Tsubata T, Takahashi S, Suzuki H. Antioxidative enzyme NAD(P)H quinone oxidoreductase 1 (NQO1) modulates the differentiation of Th17 cells by regulating ROS levels. PLoS One 2022; 17:e0272090. [PMID: 35905076 PMCID: PMC9337673 DOI: 10.1371/journal.pone.0272090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes two-electron reduction of quinone to hydroquinone by using nicotinamide adenine dinucleotide (NADPH), and functions as a scavenger for reactive oxygen species (ROS). The function of NQO1 in the immune response is not well known. In the present study, we demonstrated that Nqo1-deficient T cells exhibited reduced induction of T helper 17 cells (Th17) in vitro during Th17(23)- and Th17(β)- skewing conditions. Nqo1-deficient mice showed ameliorated symptoms in a Th17-dependent autoimmune Experimental autoimmune encephalomyelitis (EAE) model. Impaired Th17-differentiation was caused by overproduction of the immunosuppressive cytokine, IL-10. Increased IL-10 production in Nqo1-deficient Th17 cells was associated with elevated intracellular Reactive oxygen species (ROS) levels. Furthermore, overproduction of IL-10 in Th17 (β) cells was responsible for the ROS-dependent increase of c-avian musculoaponeurotic fibrosarcoma (c-maf) expression, despite the lack of dependency of c-maf in Th17(23) cells. Taken together, the results reveal a novel role of NQO1 in promoting Th17 development through the suppression of ROS mediated IL-10 production.
Collapse
Affiliation(s)
- Kyoko Nishida-Tamehiro
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Akihiro Kimura
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
4
|
Jing HY, Gu W, Tan XY, Ma YR. Ferroptosis-related genes are candidate diagnostic and prognostic biomarkers for skin cutaneous melanoma. Biomark Med 2022; 16:179-196. [DOI: 10.2217/bmm-2021-0998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is a disease with the highest mortality rate among skin cancers. As a new type of programmed cell death, ferroptosis has been confirmed to be related to the occurrence and development of a variety of cancers. At present, the expression and prognostic value of ferroptosis-related genes (FRGs) in SKCM are still unclear. In this study, we selected seven FRGs that were differentially expressed in SKCM and related to the patient’s prognosis through the databases. Further studies have shown that these genes are closely related to immune cell infiltration and immune checkpoints. All in all, these seven FRGs may be potential targets for clinical diagnosis, prognosis and treatment of SKCM patients.
Collapse
Affiliation(s)
- Hao-Yue Jing
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Gu
- Department of Orthopedic, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiao-Yang Tan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
5
|
Voronin MV, Kadnikov IA, Zainullina LF, Logvinov IO, Verbovaya ER, Antipova TA, Vakhitova YV, Seredenin SB. Neuroprotective Properties of Quinone Reductase 2 Inhibitor M-11, a 2-Mercaptobenzimidazole Derivative. Int J Mol Sci 2021; 22:13061. [PMID: 34884863 PMCID: PMC8658107 DOI: 10.3390/ijms222313061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
The ability of NQO2 to increase the production of free radicals under enhanced generation of quinone derivatives of catecholamines is considered to be a component of neurodegenerative disease pathogenesis. The present study aimed to investigate the neuroprotective mechanisms of original NQO2 inhibitor M-11 (2-[2-(3-oxomorpholin-4-il)-ethylthio]-5-ethoxybenzimidazole hydrochloride) in a cellular damage model using NQO2 endogenous substrate adrenochrome (125 µM) and co-substrate BNAH (100 µM). The effects of M-11 (10-100 µM) on the reactive oxygen species (ROS) generation, apoptosis and lesion of nuclear DNA were evaluated using flow cytometry and single-cell gel electrophoresis assay (comet assay). Results were compared with S29434, the reference inhibitor of NQO2. It was found that treatment of HT-22 cells with M-11 results in a decline of ROS production triggered by incubation of cells with NQO2 substrate and co-substrate. Pre-incubation of HT-22 cells with compounds M-11 or S29434 results in a decrease of DNA damage and late apoptotic cell percentage reduction. The obtained results provide a rationale for further development of the M-11 compound as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (L.F.Z.); (I.O.L.); (E.R.V.); (T.A.A.)
| | - Ilya A. Kadnikov
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (L.F.Z.); (I.O.L.); (E.R.V.); (T.A.A.)
| | | | | | | | | | - Yulia V. Vakhitova
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (L.F.Z.); (I.O.L.); (E.R.V.); (T.A.A.)
| | - Sergei B. Seredenin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (L.F.Z.); (I.O.L.); (E.R.V.); (T.A.A.)
| |
Collapse
|
6
|
Liu H, Zhang W, Deng X, Ma Y, Liu Y. Association of NQO1 levels and its genetic polymorphism with susceptibility to methamphetamine dependence. Mol Genet Genomic Med 2021; 9:e1789. [PMID: 34467676 PMCID: PMC8580086 DOI: 10.1002/mgg3.1789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The quinone oxidoreductase 1 (NQO1) gene was involved in the pathophysiological process of illicit drugs abuse, and its polymorphisms might be associated with methamphetamine (METH) dependence susceptibility. The purpose of this study was to examine the NQO1 mRNA and protein levels and to analyze the 609C/T polymorphism (rs1800566) between METH-dependent patients and controls. METHODS A total of 392 METH-dependent patients (cases) and 669 healthy controls (controls) were enrolled in the study. The quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the relative expressions of NQO1 mRNA in PBMCs and protein levels in plasma, respectively. PCR-restriction fragment length polymorphism (RFLP-PCR) and direct-sequencing genotyping were used to detect the alleles and genotypes of NQO1 609C/T polymorphism. RESULTS The levels of NQO1 mRNA in cases (3.2650 ± 2.2943) was significantly higher than in controls (1.0125 ± 0.7959) (p < 0.001), the plasma protein in cases (0.2368 ± 0.1486) was significantly lower than in controls (0.5844 ± 0.1742) (p < 0.001). The T allele of the 609C/T polymorphism significantly increased the risk of METH dependence (p = 0.032, OR = 1.214, 95%CI = 1.017-1.450). The TC and TC/TT genotypes of 609C/T were observed significantly more frequently in cases than in controls, respectively (TC vs CC: p = 0.012, OR = 1.457, 95% CI = 1.087-1.952; TC/TT vs CC: p = 0.008, OR = 1.460, 95% CI = 1.102-1.935). Similar results were obtained after adjusting for age and sex. We failed to find that any genotype of 609C/T polymorphism affected the mRNA or plasma protein levels in controls, respectively (p > 0.05). CONCLUSION The findings suggested that NQO1 might play an important role in the pathophysiological process of METH dependence, and the 609C/T polymorphism might contribute to the susceptibility to METH dependence in a Chinese Han population.
Collapse
Affiliation(s)
- Huan Liu
- Department of Preventive MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
- Department of Forensic MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
| | - Wei Zhang
- Department of Forensic MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
| | - Xiao‐Dong Deng
- Department of Forensic MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
| | - Ying Ma
- Department of NeurologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yun Liu
- Department of Forensic MedicineNorth Sichuan Medical CollegeNanchongSichuanChina
- Sichuan Key Laboratory of Medical ImagingNorth Sichuan Medical CollegeNanchongSichuanChina
| |
Collapse
|
7
|
Schepers AG, Shan J, Cox AG, Huang A, Evans H, Walesky C, Fleming HE, Goessling W, Bhatia SN. Identification of NQO2 As a Protein Target in Small Molecule Modulation of Hepatocellular Function. ACS Chem Biol 2021; 16:1770-1778. [PMID: 34427427 DOI: 10.1021/acschembio.1c00503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The utility of in vitro human disease models is mainly dependent on the availability and functional maturity of tissue-specific cell types. We have previously screened for and identified small molecules that can enhance hepatocyte function in vitro. Here, we characterize the functional effects of one of the hits, FH1, on primary human hepatocytes in vitro, and also in vivo on primary hepatocytes in a zebrafish model. Furthermore, we conducted an analogue screen to establish the structure-activity relationship of FH1. We performed affinity-purification proteomics that identified NQO2 to be a potential binding target for this small molecule, revealing a possible link between inflammatory signaling and hepatocellular function in zebrafish and human hepatocyte model systems.
Collapse
Affiliation(s)
- Arnout G. Schepers
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Jing Shan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew G. Cox
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ada Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Helen Evans
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Heather E. Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wolfram Goessling
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard−MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard−MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, United States
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Ramani S, Pathak A, Dalal V, Paul A, Biswas S. Oxidative Stress in Autoimmune Diseases: An Under Dealt Malice. Curr Protein Pept Sci 2021; 21:611-621. [PMID: 32056521 DOI: 10.2174/1389203721666200214111816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
Oxidative stress is the off-balance of antioxidants and free radicals. All kinds of diseases and disorders give rise to oxidative damage including autoimmune diseases. An autoimmune disorder is a pathological condition characterized by the breakdown of self-tolerance of the immune system in the body. Immunological processes against tissues and organs lead to enhanced oxidative stress and, in turn, misbalance of oxidative stress aggravates the pathobiology of the disease. Highly reactive nature of free radicals, for example hydroxyl and superoxide ions, alters DNA, protein, and lipids in the body which augment the pathologic processes of diseases. The damaged biomolecules are responsible for systemic complications and secondary disease co-morbidities. In this review, we discuss the role of oxidative stress in some incapacitating autoimmune diseases like Rheumatoid arthritis, Systemic Lupus Erythematosus, Type 1 Diabetes, and Multiple Sclerosis. Oxidative stress plays a central and course defining role in these diseases and it has become a necessity to study the pathological mechanism involved in oxidative stress to better understand and offer treatment holistically. Presently there are no clinically available parameters for measurement and treatment of pathological oxidative stress, therefore it requires intensive research. Probably, in the future, the discovery of easily detectable markers of oxidative stress can aid in the diagnosis, prognosis, and treatment of progressively destructive autoimmune diseases.
Collapse
Affiliation(s)
- Sheetal Ramani
- Department of Integrative and Functional Genomics, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Ayush Pathak
- Department of Integrative and Functional Genomics, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Anamika Paul
- School of Engineering and Technology, Ansal University, Gurugram, Haryana, 122003, India
| | - Sagarika Biswas
- Department of Integrative and Functional Genomics, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| |
Collapse
|
9
|
Voinsky I, Gurwitz D. Smoking and COVID-19: Similar bronchial ACE2 and TMPRSS2 expression and higher TMPRSS4 expression in current versus never smokers. Drug Dev Res 2020; 81:1073-1080. [PMID: 32757420 PMCID: PMC7436865 DOI: 10.1002/ddr.21729] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Uncertainties remain concerning the pathophysiology, epidemiology, and potential therapeutics for COVID-19. Among unsettled controversies is whether tobacco smoking increases or protects from severe COVID-19. Several epidemiological studies reported reduced COVID-19 hospitalizations among smokers, while other studies reported the opposite trend. Some authors assumed that smokers have elevated airway expression of ACE2, the cell recognition site of the SARS-Cov-2 spike protein, but this suggestion remains unverified. We therefore performed data mining of two independent NCBI GEO genome-wide RNA expression files (GSE7894 and GSE994) and report that in both data sets, current smokers and never smokers have, on average, closely similar bronchial epithelial cell mRNA levels of ACE2, as well as TMPRSS2, coding for a serine protease priming SARS-Cov-2 for cell entry, and ADAM17, coding for a protease implicated in ACE2 membrane shedding. In contrast, the expression levels of TMPRSS4, coding for a protease that primes SARS-CoV-2 for cell entry similarly to TMPRSS2, were elevated in bronchial epithelial cells from current smokers compared with never smokers, suggesting that higher bronchial TMPRSS4 levels in smokers might put them at higher SARS-Cov-2 infection risk. The effects of smoking on COVID-19 severity need clarification with larger studies. Additionally, the postulated protective effects of nicotine and nitric oxide, which may presumably reduce the risk of a "cytokine storm" in infected individuals, deserve assessment by controlled clinical trials.
Collapse
Affiliation(s)
- Irena Voinsky
- Department of Human Molecular Genetics and BiochemistrySackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - David Gurwitz
- Department of Human Molecular Genetics and BiochemistrySackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
10
|
An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020; 25:molecules25225474. [PMID: 33238435 PMCID: PMC7700122 DOI: 10.3390/molecules25225474] [Citation(s) in RCA: 680] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a key driver in many pathological conditions such as allergy, cancer, Alzheimer’s disease, and many others, and the current state of available drugs prompted researchers to explore new therapeutic targets. In this context, accumulating evidence indicates that the transcription factor Nrf2 plays a pivotal role controlling the expression of antioxidant genes that ultimately exert anti-inflammatory functions. Nrf2 and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH- associated protein 1 (Keap1), play a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Interestingly, Nrf2 is proved to contribute to the regulation of the heme oxygenase-1 (HO-1) axis, which is a potent anti-inflammatory target. Recent studies showed a connection between the Nrf2/antioxidant response element (ARE) system and the expression of inflammatory mediators, NF-κB pathway and macrophage metabolism. This suggests a new strategy for designing chemical agents as modulators of Nrf2 dependent pathways to target the immune response. Therefore, the present review will examine the relationship between Nrf2 signaling and the inflammation as well as possible approaches for the therapeutic modulation of this pathway.
Collapse
|
11
|
He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020; 41:405-416. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master transcriptional regulator of genes whose products defend our cells for toxic and oxidative insults. Although NRF2 activation may reduce cancer risk by suppressing oxidative stress and tumor-promoting inflammation, many cancers exhibit elevated NRF2 activity either due to mutations that disrupt the negative control of NRF2 activity or other factors. Importantly, NRF2 activation is associated with poor prognosis and NRF2 has turned out to be a key activator of cancer-supportive anabolic metabolism. In this review, we summarize the diverse roles played by NRF2 in cancer focusing on metabolic reprogramming and tumor-promoting inflammation.
Collapse
Affiliation(s)
- Feng He
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Jansons J, Sominskaya I, Petrakova N, Starodubova ES, Smirnova OA, Alekseeva E, Bruvere R, Eliseeva O, Skrastina D, Kashuba E, Mihailova M, Kochetkov SN, Ivanov AV, Isaguliants MG. The Immunogenicity in Mice of HCV Core Delivered as DNA Is Modulated by Its Capacity to Induce Oxidative Stress and Oxidative Stress Response. Cells 2019; 8:cells8030208. [PMID: 30823485 PMCID: PMC6468923 DOI: 10.3390/cells8030208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
HCV core is an attractive HCV vaccine target, however, clinical or preclinical trials of core-based vaccines showed little success. We aimed to delineate what restricts its immunogenicity and improve immunogenic performance in mice. We designed plasmids encoding full-length HCV 1b core and its variants truncated after amino acids (aa) 60, 98, 152, 173, or up to aa 36 using virus-derived or synthetic polynucleotides (core191/60/98/152/173/36_191v or core152s DNA, respectively). We assessed their level of expression, route of degradation, ability to trigger the production of reactive oxygen species/ROS, and to activate the components of the Nrf2/ARE antioxidant defense pathway heme oxygenase 1/HO-1 and NAD(P)H: quinone oxidoreductase/Nqo-1. All core variants with the intact N-terminus induced production of ROS, and up-regulated expression of HO-1 and Nqo-1. The capacity of core variants to induce ROS and up-regulate HO-1 and Nqo-1 expression predetermined their immunogenicity in DNA-immunized BALB/c and C57BL/6 mice. The most immunogenic was core 152s, expressed at a modest level and inducing moderate oxidative stress and oxidative stress response. Thus, immunogenicity of HCV core is shaped by its ability to induce ROS and oxidative stress response. These considerations are important in understanding the mechanisms of viral suppression of cellular immune response and in HCV vaccine design.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Irina Sominskaya
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Natalia Petrakova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Elizaveta S Starodubova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Ekaterina Alekseeva
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Ruta Bruvere
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Olesja Eliseeva
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Dace Skrastina
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- RE Kavetsky Institite of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine.
| | - Marija Mihailova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Maria G Isaguliants
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- MP Chumakov Center for Research and Development of Immune and Biological Preparations of RAS, 108819 Moscow, Russia.
| |
Collapse
|
13
|
den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations. Chem Res Toxicol 2018; 31:116-126. [PMID: 29281794 PMCID: PMC5997408 DOI: 10.1021/acs.chemrestox.7b00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Detoxicating
enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and
NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction
of quinone-like compounds. The protective role of the polymorphic
NQO1 and NQO2 enzymes is especially of interest in the liver as the
major site of drug bioactivation to chemically reactive drug metabolites.
In the current study, we quantified the concentrations of NQO1 and
NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like
drug metabolites. Hepatic NQO1 concentrations ranged from 8 to 213
nM. Using recombinant NQO1, we showed that low nM concentrations of
NQO1 are sufficient to reduce synthetic amodiaquine and carbamazepine
quinone-like metabolites in vitro. Hepatic NQO2 concentrations
ranged from 2 to 31 μM. NQO2 catalyzed the reduction of quinone-like
metabolites derived from acetaminophen, clozapine, 4′-hydroxydiclofenac,
mefenamic acid, amodiaquine, and carbamazepine. The reduction of the
clozapine nitrenium ion supports association studies showing that
NQO2 is a genetic risk factor for clozapine-induced agranulocytosis.
The 5-hydroxydiclofenac quinone imine, which was previously shown
to be reduced by NQO1, was not reduced by NQO2. Tacrine was identified
as a potent NQO2 inhibitor and was applied to further confirm the
catalytic activity of NQO2 in these assays. While the in vivo relevance of NQO2-catalyzed reduction of quinone-like metabolites
remains to be established by identification of the physiologically
relevant co-substrates, our results suggest an additional protective
role of the NQO2 protein by non-enzymatic scavenging of quinone-like
metabolites. Hepatic NQO1 activity in detoxication of quinone-like
metabolites becomes especially important when other detoxication pathways
are exhausted and NQO1 levels are induced.
Collapse
Affiliation(s)
- Shalenie P den Braver-Sewradj
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Michiel W den Braver
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Robin M Toorneman
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stephanie van Leeuwen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Yongjie Zhang
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
14
|
Zhang X, Han K, Yuan DH, Meng CY. Overexpression of NAD(P)H: Quinone Oxidoreductase 1 Inhibits Hepatocellular Carcinoma Cell Proliferation and Induced Apoptosis by Activating AMPK/PGC-1α Pathway. DNA Cell Biol 2017; 36:256-263. [PMID: 28191864 DOI: 10.1089/dna.2016.3588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Xin Zhang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, China
| | - Kun Han
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, China
| | - Dong-hong Yuan
- Department of Gastroenterology, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Cun-ying Meng
- Department of Gastroenterology, Affiliated Hospital of Yan'an University, Yan'an, China
| |
Collapse
|
15
|
Alleviation of Oxidative Damage and Involvement of Nrf2-ARE Pathway in Mesodopaminergic System and Hippocampus of Status Epilepticus Rats Pretreated by Intranasal Pentoxifylline. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7908072. [PMID: 28386312 PMCID: PMC5366206 DOI: 10.1155/2017/7908072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
The current studies were aimed at evaluating the efficacy of intranasal pentoxifylline (Ptx) pretreatment in protecting mesodopaminergic system and hippocampus from oxidative damage of lithium-pilocarpine induced status epilepticus (SE) and the involvement of nuclear factor erythroid 2-related factor 2- (Nrf2-) antioxidant response elements pathway. Pentoxifylline was administered to rats intranasally or intraperitoneally 30 minutes before inducing SE. Our results showed the impaired visuospatial memory, the defected mesodopaminergic system, and the oxidative damage and the transient activation of Nrf2 in SE rats. The transient activation of Nrf2 in SE rats was enhanced by Ptx pretreatment, which was followed by the upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Ptx pretreatment to SE rats significantly suppressed the epileptic seizures, decreased the levels of lipid peroxide and malondialdehyde, and elevated the ratio of reduced glutathione/oxidized glutathione. Compared with intraperitoneal injection, intranasal Ptx delivery completely restored the visuospatial memory and the activity of mesodopaminergic system in SE rats. Intranasal administration of Ptx may hopefully become a noninvasive, painless, and easily administered option for epileptic patients.
Collapse
|
16
|
Ji M, Jin A, Sun J, Cui X, Yang Y, Chen L, Lin Z. Clinicopathological implications of NQO1 overexpression in the prognosis of pancreatic adenocarcinoma. Oncol Lett 2017; 13:2996-3002. [PMID: 28521407 PMCID: PMC5431416 DOI: 10.3892/ol.2017.5821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/21/2016] [Indexed: 01/18/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase 1 (NQO1) protects cells from oxidative damage. NQO1 has been reported to be upregulated in numerous solid tumors, suggesting a role in carcinogenesis and tumor progression. The present study attempted to investigate the clinical prognostic significance of NQO1 overexpression in pancreatic ductal adenocarcinoma (PDAC). A total of 181 tissue specimens were studied, including 126 PDAC and 55 normal pancreas specimens, which were selected for immunohistochemical staining of NQO1 protein. Immunofluorescence staining was additionally performed to identify the subcellular localization of NQO1 protein in pancreatic cancer BxPC-3 cells. The association between NQO1 overexpression and the clinical features of PDAC were evaluated by χ2 and Fisher's exact test. Overall survival of PDAC patients was calculated using Kaplan-Meier analysis. Univariate and multivariate analyses were performed using the Cox proportional hazards regression model. The NQO1 protein was mainly located in the cytoplasm and nucleus of BxPC-3 cells. The strongly positive rate of NQO1 expression in PDAC (65.9%, 83/126) was increased compared with that in normal pancreatic tissues (10.9%, 6/55). The positive rate of NQO1 protein was associated with grading, lymph node stage and tumor-node-metastasis (TNM) stage. Additionally, multivariate analysis suggested that NQO1 was a significant independent prognostic factor along with TNM stage in PDAC. In conclusion, high expression of NQO1 appears to be associated with PDAC progression, and may be an independent prognostic biomarker in PDAC.
Collapse
Affiliation(s)
- Meiying Ji
- Cancer Research Center and Department of Pathology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Aihua Jin
- Department of Internal Medicine, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Jie Sun
- Cancer Research Center and Department of Pathology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Xuelian Cui
- Cancer Research Center and Department of Pathology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Yang Yang
- Cancer Research Center and Department of Pathology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Liyan Chen
- Cancer Research Center and Department of Pathology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China.,Department of Biological Chemistry and Molecular Biology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| | - Zhenhua Lin
- Cancer Research Center and Department of Pathology, Yanbian University Medical College, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
17
|
Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis. Sci Rep 2016; 6:27566. [PMID: 27297123 PMCID: PMC4906352 DOI: 10.1038/srep27566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Chemical regulation of macrophage function is one key strategy for developing host-directed adjuvant therapies for tuberculosis (TB). A critical step to develop these therapies is the identification and characterization of specific macrophage molecules and pathways with a high potential to serve as drug targets. Using a barcoded lentivirus-based pooled short-hairpin RNA (shRNA) library combined with next generation sequencing, we identified 205 silenced host genes highly enriched in mycobacteria-resistant macrophages. Twenty-one of these "hits" belonged to the oxidoreductase functional category. NAD(P)H quinone oxidoreductase 1 (NQO1) was the top oxidoreductase "hit". NQO1 expression was increased after mycobacterial infection, and NQO1 knockdown increased macrophage differentiation, NF-κB activation, and the secretion of pro-inflammatory cytokines TNF-α and IL-1β in response to infection. This suggests that mycobacteria hijacks NQO1 to down-regulate pro-inflammatory and anti-bacterial functions. The competitive inhibitor of NQO1 dicoumarol synergized with rifampin to promote intracellular killing of mycobacteria. Thus, NQO1 is a new host target in mycobacterial infection that could potentially be exploited to increase antibiotic efficacy in vivo. Our findings also suggest that pooled shRNA libraries could be valuable tools for genome-wide screening in the search for novel druggable host targets for adjunctive TB therapies.
Collapse
|
18
|
Roberts DJ, McKeon M, Xu Y, Stankowski LF. Comparison of integrated genotoxicity endpoints in rats after acute and subchronic oral doses of 4-nitroquinoline-1-oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:17-27. [PMID: 26407646 PMCID: PMC7362388 DOI: 10.1002/em.21981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 05/16/2023]
Abstract
During interlaboratory validation trials for the Pig-a gene mutation assay we assessed the genotoxicity of 4-nitroquinoline-1-oxide (4NQO) across endpoints in multiple tissues: induction of Pig-a mutant red blood cells (RBCs) and reticulocytes (RETs); micronucleated RETs (MN RETs); and DNA damage in blood and liver via the alkaline Comet assay (%tail intensity [TI]). In a previous subchronic toxicity study with 28 daily doses, biologically meaningful increases were observed only for Pig-a mutant RBCs/RETs while marginal increases in the frequency of MN RET were observed, and other clastogenic endpoints were negative. Follow up acute studies were performed using the same cumulative doses (0, 35, 70, 105, and 140 mg/kg) administered in a bolus, or split over three equal daily doses, with samples collected up to 1 month after the last dose. Both of the acute dosing regimens produced similar results, in that endpoints were either positive or negative, regardless of 1 or 3 daily doses, but the three consecutive daily dose regimen yielded more potent responses in TI (in liver and blood) and Pig-a mutant frequencies. In these acute studies the same cumulative doses of 4NQO induced positive responses in clastogenic endpoints that were negative or inconclusive using a subchronic study design. Additionally, a positive control group using combination doses of cyclophosphamide and ethyl methanesulfonate was employed to assess assay validity and potentially identify a future positive control treatment for integrated genetic toxicity studies.
Collapse
Affiliation(s)
- Daniel J Roberts
- Bristol-Myers Squibb, New Brunswick, NJ, USA
- Joint Graduate Program of Toxicology, Rutgers, NJ, USA
| | | | - Yong Xu
- BioReliance Corporation, Rockville, MD, USA
| | | |
Collapse
|
19
|
Huang Y, Li W, Su ZY, Kong ANT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 2015; 26:1401-13. [PMID: 26419687 DOI: 10.1016/j.jnutbio.2015.08.001] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The NF-E2-related factor 2 (Nrf2)-mediated signalling pathway provides living organisms an efficient and pivotal line of defensive to counteract environmental insults and endogenous stressors. Nrf2 coordinates the basal and inducible expression of antioxidant and Phase II detoxification enzymes to adapt to different stress conditions. The stability and cellular distribution of Nrf2 is tightly controlled by its inhibitory binding protein Kelch-like ECH-associated protein 1. Nrf2 signalling is also regulated by posttranslational, transcriptional, translational and epigenetic mechanisms, as well as by other protein partners, including p62, p21 and IQ motif-containing GTPase activating protein 1. Many studies have demonstrated that Nrf2 is a promising target for preventing carcinogenesis and other chronic diseases, including cardiovascular diseases, neurodegenerative diseases and pulmonary injury. However, constitutive activation of Nrf2 in advanced cancer cells may confer drug resistance. Here, we review the molecular mechanisms of Nrf2 signalling, the diverse classes of Nrf2 activators, including bioactive nutrients and other chemicals, and the cellular functions and disease relevance of Nrf2 and discuss the dual role of Nrf2 in different contexts.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenji Li
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-yuan Su
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri AIII, Coballase-Urrutia E, Cárdenas-Rodríguez N. Overview of Nrf2 as Therapeutic Target in Epilepsy. Int J Mol Sci 2015; 16:18348-67. [PMID: 26262608 PMCID: PMC4581249 DOI: 10.3390/ijms160818348] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.
Collapse
Affiliation(s)
- Liliana Carmona-Aparicio
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Claudia Pérez-Cruz
- Laboratory of Neuroplasticity and Neurodegeneration, Cinvestav, D.F. 07360, Mexico; E-Mail:
| | - Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of the Reticular Formation, National Institute of Neurology and Neurosurgery-MVS, D.F. 14269, Mexico; E-Mail:
| | - Leticia Granados-Rojas
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | | | | | - Jacqueline Hernández-Damián
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Aristides III Sampieri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Elvia Coballase-Urrutia
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Noemí Cárdenas-Rodríguez
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| |
Collapse
|
21
|
Neuroprotective mechanisms activated in non-seizing rats exposed to sarin. Brain Res 2015; 1618:136-48. [PMID: 26049129 DOI: 10.1016/j.brainres.2015.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Exposure to organophosphate (OP) nerve agents, such as sarin, may lead to uncontrolled seizures and irreversible brain injury and neuropathology. In rat studies, a median lethal dose of sarin leads to approximately half of the animals developing seizures. Whereas previous studies analyzed transcriptomic effects associated with seizing sarin-exposed rats, our study focused on the cohort of sarin-exposed rats that did not develop seizures. We analyzed the genomic changes occurring in sarin-exposed, non-seizing rats and compared differentially expressed genes and pathway activation to those of seizing rats. At the earliest time point (0.25 h) and in multiple sarin-sensitive brain regions, defense response genes were commonly expressed in both groups of animals as compared to the control groups. All sarin-exposed animals activated the MAPK signaling pathway, but only the seizing rats activated the apoptotic-associated JNK and p38 MAPK signaling sub-pathway. A unique phenotype of the non-seizing rats was the altered expression levels of genes that generally suppress inflammation or apoptosis. Importantly, the early transcriptional response for inflammation- and apoptosis-related genes in the thalamus showed opposite trends, with significantly down-regulated genes being up-regulated, and vice versa, between the seizing and non-seizing rats. These observations lend support to the hypothesis that regulation of anti-inflammatory genes might be part of an active and sufficient response in the non-seizing group to protect against the onset of seizures. As such, stimulating or activating these responses via pretreatment strategies could boost resilience against nerve agent exposures.
Collapse
|
22
|
Lee H, Oh ET, Choi BH, Park MT, Lee JK, Lee JS, Park HJ. NQO1-induced activation of AMPK contributes to cancer cell death by oxygen-glucose deprivation. Sci Rep 2015; 5:7769. [PMID: 25586669 PMCID: PMC4293602 DOI: 10.1038/srep07769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022] Open
Abstract
Oxygen and glucose deprivation (OGD) due to insufficient blood circulation can decrease cancer cell survival and proliferation in solid tumors. OGD increases the intracellular [AMP]/[ATP] ratio, thereby activating the AMPK. In this study, we have investigated the involvement of NQO1 in OGD-mediated AMPK activation and cancer cell death. We found that OGD activates AMPK in an NQO1-dependent manner, suppressing the mTOR/S6K/4E-BP1 pathway, which is known to control cell survival. Thus, the depletion of NQO1 prevents AMPK-induced cancer cell death in OGD. When we blocked OGD-induced Ca2+/CaMKII signaling, the NQO1-induced activation of AMPK was attenuated. In addition, when we blocked the RyR signaling, the accumulation of intracellular Ca2+ and subsequent activation of CaMKII/AMPK signaling was decreased in NQO1-expressing cells under OGD. Finally, siRNA-mediated knockdown of CD38 abrogated the OGD-induced activation of Ca2+/CaMKII/AMPK signaling. Taken together, we conclude that NQO1 plays a key role in the AMPK-induced cancer cell death in OGD through the CD38/cADPR/RyR/Ca2+/CaMKII signaling pathway.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea
| | - Eun-Taex Oh
- 1] Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea [2] Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, Korea
| | - Bo-Hwa Choi
- 1] Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea [2] Pohang Center for Evaluation of Biomaterials, Pohang Technopark, Pohang, Gyeongbuk, Korea
| | - Moon-Taek Park
- 1] Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea [2] Research Center, Dongnam Institute of Radiological &Medical Sciences (DIRAMS), Busan, Korea
| | - Ja-Kyeong Lee
- 1] Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, Korea [2] Department of Anatomy, College of Medicine, Inha University, Incheon, Korea
| | - Jae-Seon Lee
- 1] Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, Korea [2] Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
| | - Heon Joo Park
- 1] Department of Microbiology, Inha Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon, Korea [2] Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
23
|
Lim JL, Wilhelmus MMM, de Vries HE, Drukarch B, Hoozemans JJM, van Horssen J. Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases. Arch Toxicol 2014; 88:1773-86. [DOI: 10.1007/s00204-014-1338-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
|
24
|
Stöllberger C, Bonner E, Finsterer J. Enterococcus faecalis bacteremia and mitral valve endocarditis under dabigatran for stroke prevention. Int J Cardiol 2014; 174:836-8. [DOI: 10.1016/j.ijcard.2014.04.163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/13/2014] [Indexed: 11/29/2022]
|
25
|
Ortona E, Maselli A, Delunardo F, Colasanti T, Giovannetti A, Pierdominici M. Relationship between redox status and cell fate in immunity and autoimmunity. Antioxid Redox Signal 2014; 21:103-22. [PMID: 24359147 DOI: 10.1089/ars.2013.5752] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The signaling function of redox molecules is essential for an efficient and proper execution of a large number of cellular processes, contributing to the maintenance of cell homeostasis. Excessive oxidative stress is considered as playing an important role in the pathogenesis of autoimmune diseases by enhancing inflammation and breaking down the immunological tolerance through protein structural modifications that induce the appearance of neo/cryptic epitopes. RECENT ADVANCES There is a complex reciprocal relationship between oxidative stress and both apoptosis and autophagy, which is essential to determine cell fate. This is especially relevant in the context of autoimmune disorders in which apoptosis and autophagy play a crucial pathogenic role. CRITICAL ISSUES In this review, we describe the latest developments with regard to the involvement of redox molecules in the initiation and progression of autoimmune disorders, focusing on their role in cell fate regulation. We also discuss new therapeutic approaches that target oxidative stress in the treatment of these disorders. The administration of antioxidants is scarcely studied in autoimmunity, and future analyses are needed to assess its beneficial effects in preventing or ameliorating these diseases. FUTURE DIRECTIONS Deciphering the intricate relationships between oxidative stress and both apoptosis and autophagy in the context of autoimmunity could be critical in elucidating key pathogenic mechanisms and could lead to novel interventions for the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Elena Ortona
- 1 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Life-threatening epistaxis and red blood cell polyagglutination under dabigatran. Blood Coagul Fibrinolysis 2013; 25:384-6. [PMID: 24231693 DOI: 10.1097/mbc.0000000000000018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dabigatran is an oral thrombin inhibitor which has been approved for prevention of stroke or embolism in atrial fibrillation patients as an alternative to vitamin K antagonists. Dabigatran has been introduced into clinical practice, although issues like laboratory monitoring, its use in elderly patients, drug and food interactions, and an antidote have not been completely clarified. Severe epistaxis leading to haemorrhagic shock occurred in an 89-year-old woman with atrial fibrillation and moderate renal insufficiency after 10 months of dabigatran 110 mg/b.i.d. Correction of the anaemia with blood transfusions became difficult because it was impossible to assess her blood group due to polyagglutination. The indirect Coombs test was very highly +++ positive for IgG. Investigations about previous hospital admissions disclosed that in 2011, her blood group was 0 positive. The course was complicated by an erysipela of the right upper extremity, most probably induced by an infection through a venous catheter. An increase in the knowledge about potential side effects of dabigatran-concerning infections and polyagglutination is urgently needed.
Collapse
|
27
|
Hull RP, Srivastava PK, D’Souza Z, Atanur SS, Mechta-Grigoriou F, Game L, Petretto E, Cook HT, Aitman TJ, Behmoaras J. Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-1β synthesis in macrophages. BMC Genomics 2013; 14:92. [PMID: 23398888 PMCID: PMC3608227 DOI: 10.1186/1471-2164-14-92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/01/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The oxidative burst is one of the major antimicrobial mechanisms adopted by macrophages. The WKY rat strain is uniquely susceptible to experimentally induced macrophage-dependent crescentic glomerulonephritis (Crgn). We previously identified the AP-1 transcription factor JunD as a determinant of macrophage activation in WKY bone marrow-derived macrophages (BMDMs). JunD is over-expressed in WKY BMDMs and its silencing reduces Fc receptor-mediated oxidative burst in these cells. RESULTS Here we combined Jund RNA interference with microarray analyses alongside ChIP-sequencing (ChIP-Seq) analyses in WKY BMDMs to investigate JunD-mediated control of macrophage activation in basal and lipopolysaccharide (LPS) stimulated cells. Microarray analysis following Jund silencing showed that Jund activates and represses gene expression with marked differential expression (>3 fold) for genes linked with oxidative stress and IL-1β expression. These results were complemented by comparing whole genome expression in WKY BMDMs with Jund congenic strain (WKY.LCrgn2) BMDMs which express lower levels of JunD. ChIP-Seq analyses demonstrated that the increased expression of JunD resulted in an increased number of binding events in WKY BMDMs compared to WKY.LCrgn2 BMDMs. Combined ChIP-Seq and microarray analysis revealed a set of primary JunD-targets through which JunD exerts its effect on oxidative stress and IL-1β synthesis in basal and LPS-stimulated macrophages. CONCLUSIONS These findings demonstrate how genetically determined levels of a transcription factor affect its binding sites in primary cells and identify JunD as a key regulator of oxidative stress and IL-1β synthesis in primary macrophages, which may play a role in susceptibility to Crgn.
Collapse
Affiliation(s)
- Richard P Hull
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Prashant K Srivastava
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Zelpha D’Souza
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Santosh S Atanur
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | | | - Laurence Game
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Enrico Petretto
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - H Terence Cook
- Centre of Complement and Inflammation Research, Imperial College London, Du Cane Road W12 0NN, London, UK
| | - Timothy J Aitman
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Jacques Behmoaras
- Centre of Complement and Inflammation Research, Imperial College London, Du Cane Road W12 0NN, London, UK
| |
Collapse
|
28
|
Patrick BA, Das A, Jaiswal AK. NAD(P)H:quinone oxidoreductase 1 protects bladder epithelium against painful bladder syndrome in mice. Free Radic Biol Med 2012; 53:1886-93. [PMID: 22985937 PMCID: PMC3495563 DOI: 10.1016/j.freeradbiomed.2012.08.584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022]
Abstract
Painful bladder syndrome (PBS), or interstitial cystitis, is a poorly understood chronic disease that is characterized by thinning of the bladder epithelium and intense pain. Here we demonstrate that NAD(P)H:quinone oxidoreductase 1(-/-) (NQO1(-/-)) mice developed in our laboratory represent a new animal model of PBS. NQO1 is known to protect against physiological stress as well as protecting transcription factors against proteasomal degradation. In this study we demonstrate that NQO1 is necessary for bladder epithelium integrity and to prevent the development/progression of PBS. We observed downregulation of energy metabolism, adhesion, and apoptotic signaling cascades, which led to mitochondrial aberrations and profound alterations in energy metabolism, increased susceptibility to reactive oxygen species generation, and apoptosis in luminal epithelium in NQO1(-/-) mice that were absent in wild-type mice. These pathophysiological changes led to the incidence of PBS in NQO1(-/-) mice. Altogether, the results demonstrate for the first time that NQO1 is an endogenous factor in protection against PBS.
Collapse
Affiliation(s)
- Brad A Patrick
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
29
|
Scarpa ES, Bonfili L, Eleuteri AM, La Teana A, Brugè F, Bertoli E, Littarru GP, Cacciamani T. ATP independent proteasomal degradation of NQO1 in BL cell lines. Biochimie 2012; 94:1242-9. [PMID: 22586705 DOI: 10.1016/j.biochi.2012.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human NAD(P)H: quinone oxidoreductase 1 (NQO1) catalyzes the obligatory two-electron reduction of quinones. For this peculiar catalytic mechanism, the enzyme is considered an important cytoprotector. The NQO1 gene is expressed in all human tissues, unless a polymorphism due to C609T point mutation is present. This polymorphism produces a null phenotype in the homozygous condition and reduced enzyme activity in the heterozygous one. We previously demonstrated that two cell lines of haematopoietic origin, HL60 and Raji cells, possess the same heterozygous genotype, but different phenotypes; as expected for a heterozygous condition the HL60 cell line showed a low level of enzyme activity, while the Raji cell line appeared as null phenotype. The level of NQO1 mRNA was similar in the two cell lines and the different phenotype was not due to additional mutations or to expression of alternative splicing products. Here we show that in Raji BL cell line with heterozygous genotype the null NQO1 phenotype is due to 20S proteasome degradation of wild type and mutant protein isoforms and is not directly linked to C609T polymorphism. This finding may have important implications in B-cell differentiation, in leukaemia risk evaluation and in chemotherapy based on proteasome inhibitors.
Collapse
Affiliation(s)
- Emanuele S Scarpa
- Università Politecnica delle Marche, Dipartimento di Scienze della Vita e dell’Ambiente, via Brecce Bianche, 60131 Ancona, Italia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Meyer ML, Potts-Kant EN, Ghio AJ, Fischer BM, Foster WM, Voynow JA. NAD(P)H quinone oxidoreductase 1 regulates neutrophil elastase-induced mucous cell metaplasia. Am J Physiol Lung Cell Mol Physiol 2012; 303:L181-8. [PMID: 22659878 PMCID: PMC3423858 DOI: 10.1152/ajplung.00084.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mucous cell metaplasia (MCM) and neutrophil-predominant airway inflammation are pathological features of chronic inflammatory airway diseases. A signature feature of MCM is increased expression of a major respiratory tract mucin, MUC5AC. Neutrophil elastase (NE) upregulates MUC5AC in primary airway epithelial cells by generating reactive oxygen species, and this response is due in part to upregulation of NADPH quinone oxidoreductase 1 (NQO1) activity. Delivery of NE directly to the airway triggers inflammation and MCM and increases synthesis and secretion of MUC5AC protein from airway epithelial cells. We hypothesized that NE-induced MCM is mediated in vivo by NQO1. Male wild-type and Nqo1-null mice (C57BL/6 background) were exposed to human NE (50 μg) or vehicle via oropharyngeal aspiration on days 1, 4, and 7. On days 8 and 11, lung tissues and bronchoalveolar lavage (BAL) samples were obtained and evaluated for MCM, inflammation, and oxidative stress. MCM, inflammation, and production of specific cytokines, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein-2, interleukin-4, and interleukin-5 were diminished in NE-treated Nqo1-null mice compared with NE-treated wild-type mice. However, in contrast to the role of NQO1 in vitro, we demonstrate that NE-treated Nqo1-null mice had greater levels of BAL and lung tissue lipid carbonyls and greater BAL iron on day 11, all consistent with increased oxidative stress. NQO1 is required for NE-induced inflammation and MCM. This model system demonstrates that NE-induced MCM directly correlates with inflammation, but not with oxidative stress.
Collapse
Affiliation(s)
- Marisa L Meyer
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
31
|
Sampson HW, Chaput CD, Brannen J, Probe RA, Guleria RS, Pan J, Baker KM, VanBuren V. Alcohol induced epigenetic perturbations during the inflammatory stage of fracture healing. Exp Biol Med (Maywood) 2011; 236:1389-401. [PMID: 22087020 DOI: 10.1258/ebm.2011.011207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is well recognized by orthopedic surgeons that fractures of alcoholics are more difficult to heal successfully and have a higher incidence of non-union, but the mechanism of alcohol's effect on fracture healing is unknown. In order to give direction for the study of the effects of alcohol on fracture healing, we propose to identify gene expression and microRNA changes during the early stages of fracture healing that might be attributable to alcohol consumption. As the inflammatory stage appears to be the most critical for successful fracture healing, this paper focuses on the events at day three following fracture or the stage of inflammation. Sprague-Dawley rats were placed on an ethanol-containing or pair-fed Lieber and DeCarli diet for four weeks prior to surgical fracture. Following insertion of a medullary pin, a closed mid-diaphyseal fracture was induced using a Bonnarens and Einhorn fracture device. At three days' post-fracture, the region of the fracture calluses was harvested from the right hind-limb. RNA was extracted and microarray analysis was conducted against the entire rat genome. There were 35 genes that demonstrated significant increased expression due to alcohol consumption and 20 that decreased due to alcohol. In addition, the expression of 20 microRNAs was increased and six decreased. In summary, while it is recognized that mRNA levels may or may not represent protein levels successfully produced by the cell, these studies reveal changes in gene expression that support the hypothesis that alcohol consumption affects events involved with inflammation. MicroRNAs are known to modulate mRNA and these findings were consistent with much of what was seen with mRNA microarray analysis, especially the involvement of smad4 which was demonstrated by mRNA microarray, microRNA and polymerase chain reaction.
Collapse
Affiliation(s)
- H Wayne Sampson
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cavalcanti BC, Barros FWA, Cabral IO, Ferreira JRO, Magalhães HIF, Júnior HVN, da Silva Júnior EN, de Abreu FC, Costa CO, Goulart MOF, Moraes MO, Pessoa C. Preclinical genotoxicology of nor-β-lapachone in human cultured lymphocytes and Chinese hamster lung fibroblasts. Chem Res Toxicol 2011; 24:1560-74. [PMID: 21830773 DOI: 10.1021/tx200180y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nor-β-lapachone has shown several biological properties. Regarding cytotoxic activity against cancer cell lines, it has been recognized as an important prototype. However, quinonoid drugs present a major challenge because of their toxicity. In this study, we evaluated the cytotoxicity and genetic toxicity of nor-β-lapachone in human lymphocytes and HL-60 leukemia cells and murine V79 fibroblasts, to shed some light on its selectivity toward cancer cells. As measured by MTT test, exposure of V79 cells to nor-β-lapachone resulted in a weak cytotoxicity (IC(50) = 13.41 μM), and at a concentration up to 21.9 μM, no cytotoxic effect was observed in lymphocytes, while in HL-60 cells, nor-β-lapachone elicited significantly greater cytotoxicity (IC(50) = 1.89 μM). Cultures coexposed to GSH-OEt showed an increased viability, which may indicate a neutralization of ROS generated by quinonoid treatment. In fact, only the highest concentrations of nor-β-lapachone (10 or 20 μM) caused an increase in oxidative stress in nontumor levels cells as measured by TBARS and nitrite/nitrate detection. This was accompanied by an alteration in intracellular thiol content. However, NAC pre-exposure restored the redox equilibrium of the cells and the concentration of thiol levels to control values. Nor-β-lapachone at 2.5 and 5 μM failed to induce DNA damage in nontumor cells, but at the highest concentrations tested, it induced single and double DNA strand breaks and increased the frequency of chromosomal aberrations. Interestingly, these damages were prevented by NAC pretreatment or exacerbated by prior exposure to the GSH-depleting agent 1-bromoheptane. In electrochemical experiments, nor-β-lapachone at the same concentrations as those used in genotoxic tests did not damage DNA directly, but at the highest concentration tested (200 μM), it caused a very weak DNA interaction. Corroborating electrochemical data, oxidative modifications of DNA bases were observed, as checked by DNA repair enzymes EndoIII and FPG, which reinforced the indirect actions caused by nor-β-lapachone through ROS generation and not via DNA intercalation. The DNA repair capacities were higher for nontumor cells than for leukemia cells, which may be related to the selective cytoxicity of nor-β-lapachone toward cancer cells. Our data suggest that ROS play an important role in nor-β-lapachone toxicity and that its DNA-damaging effect occurs only at concentrations several times higher than that needed for its antiproliferative effect on cancer cells.
Collapse
Affiliation(s)
- Bruno C Cavalcanti
- National Laboratory of Experimental Oncology, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jamshidi M, Bartkova J, Greco D, Tommiska J, Fagerholm R, Aittomäki K, Mattson J, Villman K, Vrtel R, Lukas J, Heikkilä P, Blomqvist C, Bartek J, Nevanlinna H. NQO1 expression correlates inversely with NFκB activation in human breast cancer. Breast Cancer Res Treat 2011; 132:955-68. [DOI: 10.1007/s10549-011-1629-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/03/2011] [Indexed: 12/17/2022]
|
34
|
Rushworth SA, Shah S, MacEwan DJ. TNF mediates the sustained activation of Nrf2 in human monocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:702-7. [PMID: 21670314 DOI: 10.4049/jimmunol.1004117] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Modulation of monocyte function is a critical factor in the resolution of inflammatory responses. This role is mediated mainly by the production of TNF-α. Investigations of the actions of TNF have mostly focused on acute activation of other cell types such as fibroblasts and endothelial cells. Less is known about the effects of TNF on monocytes themselves, and little is known about the regulation of cell responses to TNF beyond the activation of NF-κB. In this study, we investigated the regulation of NF-E2-related factor 2 (Nrf2) cyctoprotective responses to TNF in human monocytes. We found that in monocytes TNF induces sustained Nrf2 activation and Nrf2 cytoprotective gene induction in a TNFR1-dependent manner. Under TNF activation, monocytes increased their expression of Nrf2-dependent genes, including NAD(P)H:quinone oxidoreductase 1 and glutamyl cysteine ligase modulatory, but not heme oxygenase-1. We also showed that autocrine TNF secretion was responsible for this sustained Nrf2 response and that Nrf2 activation by TNF was mediated by the generation of reactive oxygen species. Moreover, we showed that Nrf2-mediated gene induction can modulate TNF-induced NF-κB activation. These results show for the first time, to our knowledge, that TNF modulates prolonged Nrf2-induced gene expression, which in turn regulates TNF-induced inflammatory responses.
Collapse
Affiliation(s)
- Stuart A Rushworth
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | |
Collapse
|
35
|
Kim SK, Kim J, Ko E, Kim H, Hwang DS, Lee S, Baek Y, Min BI, Nam S, Bae H. Gene Expression Profile of the Hypothalamus in DNP-KLH Immunized Mice Following Electroacupuncture Stimulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:508689. [PMID: 21799680 PMCID: PMC3136536 DOI: 10.1093/ecam/nep222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/25/2009] [Indexed: 12/12/2022]
Abstract
Clinical evidence indicates that electroacupuncture (EA) is effective for allergic disorder. Recent animal studies have shown that EA treatment reduces levels of IgE and Th2 cytokines in BALB/c mice immunized with 2,4-dinitrophenylated keyhole limpet protein (DNP-KLH). The hypothalamus, a brain center of the neural-immune system, is known to be activated by EA stimulation. This study was performed to identify and characterize the differentially expressed genes in the hypothalamus of DNP-KLH immunized mice that were stimulated with EA or only restrained. To this aim, we conducted a microarray analysis to evaluate the global gene expression profiles, using the hypothalamic RNA samples taken from three groups of mice: (i) normal control group (no treatments); (ii) IMH group (DNP-KLH immunization + restraint); and (iii) IMEA group (immunization + EA stimulation). The microarray analysis revealed that total 39 genes were altered in their expression levels by EA treatment. Ten genes, including T-cell receptor alpha variable region family 13 subfamily 1 (Tcra-V13.1), heat shock protein 1B (Hspa1b) and 2′–5′ oligoadenylate synthetase 1F (Oas1f), were up-regulated in the IMEA group when compared with the IMH group. In contrast, 29 genes, including decay accelerating factor 2 (Daf2), NAD(P)H dehydrogenase, quinone 1 (Nqo1) and programmed cell death 1 ligand 2 (Pdcd1lg2) were down-regulated in the IMEA group as compared with the IMH group. These results suggest that EA treatment can modulate immune response in DNP-KLH immunized mice by regulating expression levels of genes that are associated with innate immune, cellular defense and/or other kinds of immune system in the hypothalamus.
Collapse
Affiliation(s)
- Sun Kwang Kim
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ginsberg G, Guyton K, Johns D, Schimek J, Angle K, Sonawane B. Genetic polymorphism in metabolism and host defense enzymes: implications for human health risk assessment. Crit Rev Toxicol 2011; 40:575-619. [PMID: 20662711 DOI: 10.3109/10408441003742895] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic polymorphisms in xenobiotic metabolizing enzymes can have profound influence on enzyme function, with implications for chemical clearance and internal dose. The effects of polymorphisms have been evaluated for certain therapeutic drugs but there has been relatively little investigation with environmental toxicants. Polymorphisms can also affect the function of host defense mechanisms and thus modify the pharmacodynamic response. This review and analysis explores the feasibility of using polymorphism data in human health risk assessment for four enzymes, two involved in conjugation (uridine diphosphoglucuronosyltransferases [UGTs], sulfotransferases [SULTs]), and two involved in detoxification (microsomal epoxide hydrolase [EPHX1], NADPH quinone oxidoreductase I [NQO1]). This set of evaluations complements our previous analyses with oxidative and conjugating enzymes. Of the numerous UGT and SULT enzymes, the greatest likelihood for polymorphism effect on conjugation function are for SULT1A1 (*2 polymorphism), UGT1A1 (*6, *7, *28 polymorphisms), UGT1A7 (*3 polymorphism), UGT2B15 (*2 polymorphism), and UGT2B17 (null polymorphism). The null polymorphism in NQO1 has the potential to impair host defense. These highlighted polymorphisms are of sufficient frequency to be prioritized for consideration in chemical risk assessments. In contrast, SNPs in EPHX1 are not sufficiently influential or defined for inclusion in risk models. The current analysis is an important first step in bringing the highlighted polymorphisms into a physiologically based pharmacokinetic (PBPK) modeling framework.
Collapse
Affiliation(s)
- Gary Ginsberg
- Connecticut Department of Public Health, Hartford, Connecticut 06106, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Koh K, Kim J, Jang YJ, Yoon K, Cha Y, Lee HJ, Kim J. Transcription factor Nrf2 suppresses LPS-induced hyperactivation of BV-2 microglial cells. J Neuroimmunol 2011; 233:160-7. [PMID: 21349591 DOI: 10.1016/j.jneuroim.2011.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 11/29/2022]
Abstract
Microglial hyperactivation is a hallmark of neurodegenerative diseases and the suppression of microglial hyperactivation is being investigated as a means to treat inflammation-mediated neurodegenerative disorders. Here we report that transcription factor Nrf2 in BV-2 microglia, which regulates the expression of phase II antioxidant enzyme genes, decreased the levels of LPS-induced inflammatory cytokines and mediators. These anti-inflammatory effects were not due to Nrf2-mediated up-regulation of phase II enzymes, since over-expression of these enzymes failed to suppress LPS-mediated microglial hyperactivation. However, Nrf2 inhibited LPS-derived increases in p38 MAPK phosphorylation and NF-κB activation. This suggests that Nrf2 inhibits microglial hyperactivation by suppressing p38 MAPK and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Kyungmi Koh
- School of Biological Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Park EJ, Min HY, Park HJ, Chung HJ, Ahn YH, Pyee JH, Lee SK. Nuclear Factor E2–Related Factor 2–Mediated Induction of NAD(P)H:Quinone Oxidoreductase 1 by 3,5-Dimethoxy-trans-stilbene. J Pharmacol Sci 2011; 116:89-96. [DOI: 10.1254/jphs.11024fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
39
|
Abstract
Activation of the KEAP1-NRF2 signaling pathway is an adaptive response to environmental and endogenous stresses and serves to render animals resistant to chemical carcinogenesis and other forms of toxicity, whereas disruption of the pathway exacerbates these outcomes. This pathway, which can be activated by sulfhydryl-reactive, small-molecule pharmacologic agents, regulates the inducible expression of an extended battery of cytoprotective genes, often by direct binding of the transcription factor to antioxidant response elements in the promoter regions of target genes. However, it is becoming evident that some of the protective effects may be mediated indirectly through cross talk with additional pathways affecting cell survival and other aspects of cell fate. These interactions provide a multi-tiered, integrated response to chemical stresses. This review highlights recent observations on the molecular interactions and their functional consequences between NRF2 and the arylhydrocarbon receptor (AhR), NF-κB, p53, and Notch1 signaling pathways.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
40
|
Imidazoacridin-6-ones as novel inhibitors of the quinone oxidoreductase NQO2. Bioorg Med Chem Lett 2010; 20:2832-6. [DOI: 10.1016/j.bmcl.2010.03.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 11/21/2022]
|
41
|
Kim J, Surh YJ. The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury. Toxicol Res 2009; 25:159-173. [PMID: 32038834 PMCID: PMC7006253 DOI: 10.5487/tr.2009.25.4.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immuneediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of CD4+ and CD8+ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-KB, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloprotein-ases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of proinflammatory mediators.
Collapse
Affiliation(s)
- Jiyoung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 599 Kwanak-ro, Kwanak-gu, Seoul, 151-742 Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 599 Kwanak-ro, Kwanak-gu, Seoul, 151-742 Korea
| |
Collapse
|
42
|
Ritz SA. Air pollution as a potential contributor to the 'epidemic' of autoimmune disease. Med Hypotheses 2009; 74:110-7. [PMID: 19665849 DOI: 10.1016/j.mehy.2009.07.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 12/14/2022]
Abstract
There has been remarkable progress over the past 20 years in pushing forward our understanding of many facets of autoimmune disease. Indeed, knowledge of the genetic basis of autoimmunity and the molecular and cellular pathways involved in its pathogenesis has reached an unprecedented level. Yet this knowledge has not served to prevent autoimmune disease nor to curtail the dramatic rise in its incidence over the same interval. Population-level genetic changes cannot explain this trend; thus, environmental factors are strongly implicated. Among the possible environmental contributors to autoimmune disease, air pollution exposure has received very little attention. Although there is only a small amount of published data directly examining a possible causal relationship between air pollution exposure and autoimmunity, data from related fields suggests that it could facilitate autoimmunity as well. If correct, this hypothesis could prove to have sizeable public health implications.
Collapse
Affiliation(s)
- Stacey A Ritz
- Medical Sciences Division, Northern Ontario School of Medicine, East Campus - Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada.
| |
Collapse
|
43
|
Induction of antioxidant enzymes by curcumin and its analogues in human islets: implications in transplantation. Pancreas 2009; 38:454-60. [PMID: 19188863 DOI: 10.1097/mpa.0b013e318196c3e7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The survival of transplanted human islets is hampered by the quality of islets, which is affected by oxidative stress during isolation. The objective of this study was to determine if curcumin and its analogues could induce antioxidant enzymes in beta cells of human islets. METHODS The expression of antioxidant enzymes in isolated human islets exposed to curcuminoids was determined at the messenger RNA levels by real-time quantitative reverse transcription-polymerase chain reaction using Taqman probes and at the protein level by Western blot analysis. Double immunofluorescent staining of islets was carried out to determine the induction of antioxidant enzymes in beta cells. RESULTS Curcuminoids induced the expression of heme oxygenase 1; modulatory subunit of gamma-glutamyl-cysteine ligase; and NAD(P)H:quinone oxidoreductase 1 at the messenger RNA levels by 2- to 12-fold and at the protein levels by 2- to 6-fold in human islets. Increased expression of antioxidant enzymes was seen in beta cells of islets as shown by immunofluorescent staining. Curcuminoids also increased the islet content of glutathione (a product of the modulatory subunit of gamma-glutamyl-cysteine ligase) and the basal insulin secretion and protected them from oxidative stress. CONCLUSIONS Our observations suggest that curcumin or its analogues could be used to induce cellular defense against oxidative stress and improve islet transplantation outcomes.
Collapse
|
44
|
Iskander K, Barrios RJ, Jaiswal AK. NRH:quinone oxidoreductase 2-deficient mice are highly susceptible to radiation-induced B-cell lymphomas. Clin Cancer Res 2009; 15:1534-42. [PMID: 19223498 DOI: 10.1158/1078-0432.ccr-08-1783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE NRH:quinone oxidoreductase 2 (NQO2) is known to protect against myelogenous hyperplasia. However, the role of NQO2 in prevention of hematologic malignancies remains unknown. Present studies investigated in vivo role of NQO2 in prevention of myeloproliferative disease and lymphomas. EXPERIMENTAL DESIGN Wild-type and NQO2-null mice were exposed to 0, 1, and 3 Gy gamma-radiation. One year later, the mice were analyzed for the development of myeloproliferative disease and lymphomas. Immunohistochemistry analysis determined the B- and T-cell origin of lymphomas. The mice were also sacrificed at 6 and 48 h after radiation exposure and bone marrow was collected and analyzed for p53, Bax, and B-cell apoptosis. Bone marrow cells were cultured and the rate of degradation of p53 was analyzed. RESULTS Seventy-two percent NQO2-null mice showed development of B-cell lymphomas in multiple tissues compared with 11% in wild-type mice exposed to 3 Gy gamma-radiation. In contrast, only 22% NQO2-null mice showed myeloproliferation compared with none in wild-type mice. Further analysis revealed that bone marrow from NQO2-null mice contained lower levels of p53 compared with wild-type mice due to rapid degradation of p53. In addition, the exposure to radiation resulted in lower induction of p53 and Bax and decreased B-cell apoptosis in NQO2-null mice. CONCLUSION NQO2-null mice are highly susceptible to develop radiation-induced B-cell lymphomas. The lack of significant induction of p53 and Bax and decrease in B-cell apoptosis presumably contributed to the development of lymphomas. NQO2 functions as endogenous factor in prevention against radiation-induced B-cell lymphomas.
Collapse
Affiliation(s)
- Karim Iskander
- Department of Pharmacology, Baylor College of Medicine, and Department of Pathology, Methodist Hospital, Houston, TX, USA
| | | | | |
Collapse
|
45
|
de Vries HE, Witte M, Hondius D, Rozemuller AJM, Drukarch B, Hoozemans J, van Horssen J. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 2008; 45:1375-83. [PMID: 18824091 DOI: 10.1016/j.freeradbiomed.2008.09.001] [Citation(s) in RCA: 349] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 01/17/2023]
Abstract
Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and subsequent damage to essential molecules, such as lipids, proteins, and DNA. Hence, enhanced ROS production and oxidative injury play a cardinal role in the onset and progression of neurodegenerative disorders. To maintain a proper redox balance, the central nervous system is endowed with an antioxidant defense mechanism consisting of endogenous antioxidant enzymes. Expression of most antioxidant enzymes is tightly controlled by the antioxidant response element (ARE) and is activated by nuclear factor E2-related factor 2 (Nrf2). In past years reports have highlighted the protective effects of Nrf2 activation in reducing oxidative stress in both in vitro and in vivo models of neurodegenerative disorders. Here we provide an overview of the involvement of ROS-induced oxidative damage in Alzheimer's disease, Parkinson's disease, and Huntington's disease and we discuss the potential therapeutic effects of antioxidant enzymes and compounds that activate the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Rushworth SA, MacEwan DJ, O'Connell MA. Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6730-7. [PMID: 18981090 PMCID: PMC2923058 DOI: 10.4049/jimmunol.181.10.6730] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocytes play a central role in the immunopathological effects of sepsis. This role is mediated by production of the cytokines TNF-alpha and IL-1beta. The transcription factor NF-E2-related factor 2 (Nrf2) regulates innate immune responses in various experimental disease models. Presently, the role of Nrf2-regulated genes in LPS-treated human monocytes is not well defined. Herein we show that Nrf2 mediates a significant regulation of LPS-induced inflammatory responses. Analysis of Nrf2-regulated gene expression in human monocytes showed that LPS induced the expression of the phase II detoxification gene NAD(P)H:quinone oxidoreductase 1 (NQO1). Furthermore, NQO1 mRNA or protein expression in response to LPS was regulated by Nrf2. Silencing Nrf2 expression in human monocytes inhibited LPS-induced NQO1 expression; however, in contrast, it significantly increased TNF and IL-1beta production. Silencing expression of NQO1 alone, or in combination with heme oxygenase-1 (HO-1) silencing, markedly increased LPS-induced TNF and IL-1beta expression. Additionally, overexpression of NQO1 and/or HO-1 inhibited LPS-induced TNF and IL-1beta expression. These results show for the first time that LPS induces NQO1 and HO-1 expression in human monocytes via Nrf2 to modulate their inflammatory responsiveness, thus providing novel potential therapeutic strategies for the treatment of sepsis.
Collapse
Affiliation(s)
- Stuart A Rushworth
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, United Kingdom
| | | | | |
Collapse
|
47
|
Goodrich GG, Goodman PH, Budhecha SK, Pritsos CA. Functional polymorphism of detoxification gene NQO1 predicts intensity of empirical treatment of childhood asthma. Mutat Res 2008; 674:55-61. [PMID: 19027876 DOI: 10.1016/j.mrgentox.2008.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 11/26/2022]
Abstract
The management of moderate to severe childhood asthma remains empirical. Genotypic variation has been proposed as a way to tailor specific pharmaceutical regimens to individual patients. The objective of this study was to determine the factors associated with asthma treatment progression, including functional polymorphisms of phase II detoxification enzymes, demographics, and environmental factors. In a study of 120 asthmatic children cared for in a single pediatric pulmonary practice, intensity of medical treatment over the year prior was modeled as a function of null mutations of glutathione S transferase (GST) M1 and T1, ile105val variant of GSTP1, and pro187ser variant of NAD(P)H:quinone oxidoreductase 1 (NQO1). The model included demographics, medical information, and environmental factors obtained via questionnaire analyzed with multivariate logistic regression and artificial neural networks. Multivariate logistic regression with bootstrapped validation identified a polymorphic variant of NQO1 as significantly contributing to increasing the odds of receiving more aggressive medical therapy (odds ratio, 11.56; p=0.0001). Parent income and education inversely correlated with medical treatment (odds ratio, 1.50; p=0.001 and odds ratio, 0.375; p=0.002, respectively). Age and reporting restricted physical activity due to asthma also impacted medical treatment (odds ratio, 0.63; p=0.0001 and odds ratio, 5.90; p=0.004, respectively). The optimism-adjusted discriminative ability (c-index) of the model was 0.881 (close to Bayes optimum of 0.902) with 80% overall classification accuracy. Our study supports the role of NQO1 polymorphism as an important factor determining the intensity of medical therapy in asthmatic children after adjusting for significance relating to parental income and education level, age, and restricted physical activity. Asthmatic children with a functional polymorphism of NQO1 may require more intensive pharmaceutical treatment to effectively control their asthma.
Collapse
|
48
|
Fu Y, Buryanovskyy L, Zhang Z. Quinone reductase 2 is a catechol quinone reductase. J Biol Chem 2008; 283:23829-35. [PMID: 18579530 DOI: 10.1074/jbc.m801371200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.
Collapse
Affiliation(s)
- Yue Fu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
49
|
Zhu H, Zhang L, Amin AR, Li Y. Coordinated upregulation of a series of endogenous antioxidants and phase 2 enzymes as a novel strategy for protecting renal tubular cells from oxidative and electrophilic stress. Exp Biol Med (Maywood) 2008; 233:753-65. [PMID: 18408143 DOI: 10.3181/0801-rm-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In view of the crucial involvement of oxidative and electrophilic stress in various kidney disorders, this study was undertaken to test the hypothesis that pharmacologically-mediated coordinated upregulation of endogenous renal antioxidants and phase 2 enzymes is an effective strategy for renal protection. Notably, studies on the pharmacological inducibility of a series of antioxidants and phase 2 enzymes in renal tubular cells are lacking. Here we reported that incubation of normal rat kidney (NRK-52E) proximal tubular cells with low micromolar concentrations (10-50 microM) of the cruciferous nutraceutical, 1,2-dithiole-3-thione (D3T), led to a significant concentration-dependent induction of a wide spectrum of antioxidants and phase 2 enzymes, including catalase (CAT), reduced form of glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1), and heme oxygenase (HO). We further observed that D3T treatment also increased the protein and mRNA expression for CAT, gamma-glutamylcysteine ligase, GR, GST-A, GST-M, NQO1, and HO-1. Incubation of the renal tubular cells with H(2)O(2), SIN-1-derived peroxynitrite, or 4-hydroxy-2-nonenal led to concentration-dependent decreases in cell viability. Pretreatment of the renal tubular cells with 10-50 microM D3T afforded remarkable protection against the nephrocytotoxicity elicited by the above oxidative and electrophilic species. The D3T-mediated cytoprotection showed a concentration-dependent relationship. Taken together, this study for the first time comprehensively characterized the inducibility by a unique nutraceutical of a wide spectrum of antioxidative and phase 2 defenses in renal tubular cells at the levels of enzyme activity as well as protein and mRNA expression, and demonstrated that such a coordinated upregulation of cellular defenses led to remarkable protection of renal tubular cell from oxidative and electrophilic stress. Because of the crucial role of oxidative and electrophilic stress in inflammatory injury, D3T-mediated coordinated induction of endogenous antioxidative and phase 2 defenses may also serve as an important anti-inflammatory mechanism in kidneys.
Collapse
Affiliation(s)
- Hong Zhu
- Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia 24060, USA
| | | | | | | |
Collapse
|
50
|
Bruge F, Virgili S, Cacciamani T, Principi F, Tiano L, Littarru GP. NAD(P)H:quinone oxidoreductase (NQO1) loss of function in Burkitt's lymphoma cell lines. Biofactors 2008; 32:71-81. [PMID: 19096102 DOI: 10.1002/biof.5520320109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two-electron reduction of quinones catalyzed by NAD(P)H:quinone oxidoreductase (NQO1) protects cells against oxidative stress and toxic quinones. In fact, low level of NQO1 activity is often associated with increased risk of developing different types of tumours and with toxic effects linked to environmental quinones. In a previous report we analyzed the relationship between the oxidative stress induced by UV radiation and CoQ10 content in Burkitt's lymphoma cell lines compared to HL-60. The basal content of CoQ10 in Raji cells was slightly higher compared to HL-60. Moreover, after irradiation or ubiquinone supplementation in the medium, reduced CoQ10 levels were higher in Raji and Daudi cells compared to HL-60. In the present work, in order to inquire if NQO1 plays a role in the CoQ reducing capacity observed in the lymphoblastoid cell lines, we analyzed the transcription and translation products of this gene in Raji and Daudi cells, compared to cell lines possessing low and high NQO1 activity. The amount of transcripts of this gene in lymphoblastoid cells was comparable to that observed in HL-60 cells (low activity), as well as the level of two alternatively spliced mRNAs; one of which is described for the first time in this work. From the genotype analysis of polymorphisms C609T and C465T we observed that HL-60, Raji and Daudi cells were all heterozygous. Furthermore, NQO1 enzyme activity and protein synthesis in the cytosol of Raji and Daudi cells were undetectable. Therefore in Burkitt's lymphoma cell lines the NQO1 gene is not efficiently translated and this effect is not related to (C609T) polymorphism. Further studies will be necessary to find the enzyme responsible for CoQ10 reducing activity observed in lymphoma cell lines. On the other hand, this result suggests a careful re-evaluation of data concerning loss of NQO1 activity and polymorphisms in tumour cells.
Collapse
Affiliation(s)
- Francesca Bruge
- Institute of Biochemistry, Polytechnic University of the Marche, Ancona, Italy.
| | | | | | | | | | | |
Collapse
|