1
|
Zhang C, Pi X, Li X, Huo J, Wang W. Edible herbal source-derived polysaccharides as potential prebiotics: Composition, structure, gut microbiota regulation, and its related health effects. Food Chem 2024; 458:140267. [PMID: 38968717 DOI: 10.1016/j.foodchem.2024.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Recently, with changes in dietary patterns, there has been increased interest in the concept of food and medicine homology, which can help prevent disease development. This has led to a growing focus on the development of functional health foods derived from edible herbal sources. Polysaccharides, found in many edible herbal sources, are gaining popularity as natural ingredients in the production of functional food products. The gut microbiota can effectively utilize most edible herbal polysaccharides (EHPs) and produce beneficial metabolites; therefore, the prebiotic potential of EHPs is gradually being recognized. In this review, we comprehensively discuss the structural features and characterization of EHPs to promote gut microbiota regulation as well as the structure-activity relationship between EHPs and gut microbiota. As prebiotics, intestinal microbiota can use EHPs to indirectly produce metabolites such as short-chain fatty acids to promote overall health; on the other hand, different EHP structures possess some degree of selectivity on gut microbiota regulation. Moreover, we evaluate the functionality and mechanism underlying EHPs in terms of anticancer activity, antimetabolic diseases, anti-inflammatory activity, and anti-neuropsychiatric diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiuwei Li
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036
| | - Jinhai Huo
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036.
| | - Weiming Wang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036.
| |
Collapse
|
2
|
Zhang ZJ, Cole CG, Coyne MJ, Lin H, Dylla N, Smith RC, Pappas TE, Townson SA, Laliwala N, Waligurski E, Ramaswamy R, Woodson C, Burgo V, Little JC, Moran D, Rose A, McMillin M, McSpadden E, Sundararajan A, Sidebottom AM, Pamer EG, Comstock LE. Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species- and strain-level diversity and evolution. Cell Host Microbe 2024; 32:1853-1867.e5. [PMID: 39293438 PMCID: PMC11466702 DOI: 10.1016/j.chom.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome, with diverse impacts on human health. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, metabolomic, and horizontal gene transfer analyses. Families, genera, and species could be grouped based on many distinctive features. We also observed extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-species diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses represents a valuable resource to facilitate informed selection of strains for microbiome reconstitution.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Cody G Cole
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Michael J Coyne
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Téa E Pappas
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Shannon A Townson
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Nina Laliwala
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Emily Waligurski
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Jessica C Little
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Amber Rose
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA; Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| | - Laurie E Comstock
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Rønne ME, Dybdahl Andersen C, Teze D, Petersen AB, Fredslund F, Stender EGP, Chaberski EK, Holck J, Aachmann FL, Welner DH, Svensson B. Action and cooperation in alginate degradation by three enzymes from the human gut bacterium Bacteroides eggerthii DSM 20697. J Biol Chem 2024; 300:107596. [PMID: 39032652 PMCID: PMC11381880 DOI: 10.1016/j.jbc.2024.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Alginate is a polysaccharide consumed by humans in edible seaweed and different foods where it is applied as a texturizing hydrocolloid or in encapsulations of drugs and probiotics. While gut bacteria are found to utilize and ferment alginate to health-beneficial short-chain fatty acids, knowledge on the details of the molecular reactions is sparse. Alginates are composed of mannuronic acid (M) and its C-5 epimer guluronic acid (G). An alginate-related polysaccharide utilization locus (PUL) has been identified in the gut bacterium Bacteroides eggerthii DSM 20697. The PUL encodes two polysaccharide lyases (PLs) from the PL6 (BePL6) and PL17 (BePL17) families as well as a KdgF-like metalloprotein (BeKdgF) known to catalyze ring-opening of 4,5-unsaturated monouronates yielding 4-deoxy-l-erythro-5-hexoseulose uronate (DEH). B. eggerthii DSM 20697 does not grow on alginate, but readily proliferates with a lag phase of a few hours in the presence of an endo-acting alginate lyase A1-I from the marine bacterium Sphingomonas sp. A1. The B. eggerthii lyases are both exo-acting and while BePL6 is strictly G-block specific, BePL17 prefers M-blocks. BeKdgF retained 10-27% activity in the presence of 0.1-1 mM EDTA. X-ray crystallography was used to investigate the three-dimensional structure of BeKdgF, based on which a catalytic mechanism was proposed to involve Asp102, acting as acid/base having pKa of 5.9 as determined by NMR pH titration. BePL6 and BePL17 cooperate in alginate degradation with BeKdgF linearizing producing 4,5-unsaturated monouronates. Their efficiency of alginate degradation was much enhanced by the addition of the A1-I alginate lyase.
Collapse
Affiliation(s)
- Mette E Rønne
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Dybdahl Andersen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - David Teze
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Agnes Beenfeldt Petersen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Folmer Fredslund
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil G P Stender
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Evan Kirk Chaberski
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ditte Hededam Welner
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Schaus SR, Vasconcelos Pereira G, Luis AS, Madlambayan E, Terrapon N, Ostrowski MP, Jin C, Henrissat B, Hansson GC, Martens EC. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. mBio 2024; 15:e0003924. [PMID: 38975756 PMCID: PMC11323728 DOI: 10.1128/mbio.00039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and β1,4-galactosidase activities. There was a lack of detectable sulfatase and weak β1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.
Collapse
Affiliation(s)
- Sadie R. Schaus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ana S. Luis
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Emily Madlambayan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolas Terrapon
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Marseille, France
| | - Matthew P. Ostrowski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Sreya PK, Hari Naga Papa Rao A, Suresh G, Sasikala C, Venkata Ramana C. Genomic and functional insights of a mucin foraging Rhodopirellula halodulae sp. nov. Syst Appl Microbiol 2024; 47:126523. [PMID: 38897058 DOI: 10.1016/j.syapm.2024.126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Nine novel strains were obtained from various algal and seagrass samples. The analysis of the 16S rRNA gene-based phylogenetic tree revealed monophyletic placement of all novel strains within the Rhodopirellula genus. The type strain was identified as JC737T, which shared 99.1 % 16S rRNA gene sequence identity with Rhodopirellula baltica SH1T, while strain JC740 was designated as an additional strain. The genome sizes of strains JC737T and JC740 were 6.6 and 6.7 Mb, respectively, and the G + C content was 56.2 %. The strains cladded distinctly in the phylogenomic tree, and the ANI and dDDH values of the strain JC737T were 75.8-76.1 % and 20.8-21.3 %, respectively, in comparison to other Rhodopirellula members. The strain demonstrated a versatile degradation capability, exhibiting a diverse array of complex polysaccharides, including mucin which had not been previously identified within the members of the phylum Planctomycetota. The phylogenomic, pan-genomic, morphological, physiological, and genomic characterization of the strain lead to the proposal to describe the strain as Rhodopirellula halodulae sp. nov.
Collapse
Affiliation(s)
- P K Sreya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Atham Hari Naga Papa Rao
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Gandham Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | | | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India.
| |
Collapse
|
6
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
7
|
Macdonald JFH, Pérez-García P, Schneider YKH, Blümke P, Indenbirken D, Andersen JH, Krohn I, Streit WR. Community dynamics and metagenomic analyses reveal Bacteroidota's role in widespread enzymatic Fucus vesiculosus cell wall degradation. Sci Rep 2024; 14:10237. [PMID: 38702505 PMCID: PMC11068906 DOI: 10.1038/s41598-024-60978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.
Collapse
Affiliation(s)
- Jascha F H Macdonald
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Pablo Pérez-García
- Institute for General Microbiology, Molecular Microbiology, Kiel University, Kiel, Germany
| | - Yannik K-H Schneider
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Patrick Blümke
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Jeanette H Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| |
Collapse
|
8
|
Zühlke MK, Ficko-Blean E, Bartosik D, Terrapon N, Jeudy A, Jam M, Wang F, Welsch N, Dürwald A, Martin LT, Larocque R, Jouanneau D, Eisenack T, Thomas F, Trautwein-Schult A, Teeling H, Becher D, Schweder T, Czjzek M. Unveiling the role of novel carbohydrate-binding modules in laminarin interaction of multimodular proteins from marine Bacteroidota during phytoplankton blooms. Environ Microbiol 2024; 26:e16624. [PMID: 38757353 DOI: 10.1111/1462-2920.16624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Laminarin, a β(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.
Collapse
Affiliation(s)
- Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Elizabeth Ficko-Blean
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Daniel Bartosik
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Université (AMU, UMR7257), CNRS, Marseille, France
| | - Alexandra Jeudy
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Murielle Jam
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Fengqing Wang
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Norma Welsch
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Alexandra Dürwald
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Helmholtz Institute for One Health, Helmholtz Centre for Infection Research HZI, Greifswald, Germany
| | - Laura Torres Martin
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - Robert Larocque
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Diane Jouanneau
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Tom Eisenack
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - François Thomas
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Mirjam Czjzek
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| |
Collapse
|
9
|
Moreno Prieto ES, Fjermedal S, Siebenhaar S, Vuillemin M, Holck J, Vincentelli R, Gippert GP, Wilkens C, Morth JP, Henrissat B. Characterization and structural study of a novel β-N-acetylgalactosaminidase from Niabella aurantiaca. FEBS J 2024; 291:1439-1456. [PMID: 38129294 DOI: 10.1111/febs.17042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
We report here the identification, characterization and three-dimensional (3D) structure determination of NaNga, a newly identified β-N-acetylgalactosaminidase from the Gram-negative soil bacterium Niabella aurantiaca DSM 17617. When recombinantly expressed in Escherichia coli, the enzyme selectively cleaved 4-nitrophenyl-N-acetyl-β-d-galactosamine (pNP-β-d-GalpNAc). The X-ray crystal structure of the protein was refined to 2.5 Å and consists of an N-terminal β-sandwich domain and a (β/α)8 barrel catalytic domain. Despite a mere 22% sequence identity, the 3D structure of NaNga is similar to those previously determined for family GH123 members, suggesting it also employs the same substrate-assisted catalytic mechanism. Inhibition by N-acetyl-galactosamine thiazoline (GalNAc-thiazoline) supports the suggested mechanism. A phylogenetic analysis of its proximal sequence space shows significant clustering of unknown sequences around NaNga with sufficient divergence with previously identified GH123 members to subdivide this family into distinct subfamilies. Although the actual biological substrate of our enzyme remains unknown, examination of the active site pocket suggests that it may be a β-N-acetylgalactosaminide substituted by a monosaccharide at O-3. Analysis of the genomic context suggests, in turn, that this substituted β-N-acetylgalactosaminide may be appended to a d-arabinan from an environmental Actinomycete.
Collapse
Affiliation(s)
| | - Sune Fjermedal
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Suzana Siebenhaar
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marlène Vuillemin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, France
| | - Garry P Gippert
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Li S, Chen M, Wang Z, Abudourexiti W, Zhang L, Ding C, Ding L, Gong J. Ant may well destroy a whole dam: glycans of colonic mucus barrier disintegrated by gut bacteria. Microbiol Res 2024; 281:127599. [PMID: 38219635 DOI: 10.1016/j.micres.2023.127599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
The colonic mucus layer plays a critical role in maintaining the integrity of the colonic mucosal barrier, serving as the primary defense against colonic microorganisms. Predominantly composed of mucin 2 (MUC2), a glycosylation-rich protein, the mucus layer forms a gel-like coating that covers the colonic epithelium surface. This layer provides a habitat for intestinal microorganisms, which can utilize mucin glycans present in the mucus layer as a sustainable source of nutrients. Additionally, metabolites produced by the microbiota during the metabolism of mucus glycans have a profound impact on host health. Under normal conditions, the production and consumption of mucus maintain a dynamic balance. However, several studies have demonstrated that certain factors, such as dietary fiber deficiency, can enhance the metabolism of mucus glycans by gut bacteria, thereby disturbing this balance and weakening the mucus barrier function of the mucus layer. To better understand the occurrence and development of colon-related diseases, it is crucial to investigate the complex metabolic patterns of mucus glycosylation by intestinal microorganisms. Our objective was to comprehensively review these patterns in order to clarify the effects of mucus layer glycan metabolism by intestinal microorganisms on the host.
Collapse
Affiliation(s)
- Song Li
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Mingfei Chen
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zhongyuan Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Waresi Abudourexiti
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jianfeng Gong
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Do HE, Ha YB, Kim JS, Suh MK, Kim HS, Eom MK, Lee JH, Park SH, Kang SW, Lee DH, Yoon H, Lee JH, Lee JS. Phocaeicola acetigenes sp. nov., producing acetic acid and iso-butyric acid, isolated faeces from a healthy human. Antonie Van Leeuwenhoek 2024; 117:30. [PMID: 38302626 DOI: 10.1007/s10482-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
An obligately anaerobic, non-motile, Gram-stain-negative, and rod-shaped strain KGMB11183T was isolated from the feces of healthy Koreans. The growth of strain KGMB11183T occurred at 30-45 °C (optimum 37 °C), at pH 6-9 (optimum pH 7), and in the presence of 0-0.5% NaCl (optimum 0%). Strain KGMB11183T showed 16S rRNA gene sequence similarities of 95.4% and 94.2% to the closest recognized species, Phocaeicola plebeius M12T, and Phocaeicola faecicola AGMB03916T. Phylogenetic analysis showed that strain KGMB11183T is a member of the genus Phocaeiocla. The major end products of fermentation are acetic acid and isobutyric acid. The major cellular fatty acids (> 10%) of this isolate were C18:1 cis 9, anteiso-C15:0, and summed feature 11 (iso-C17:0 3-OH and/or C18:2 DMA). The assembled draft genome sequences of strain KGMB11183T consisted of 3,215,271 bp with a DNA G + C content of 41.4%. According to genomic analysis, strain KGMB11183T has a number of genes that produce acetic acid. The genome of strain KGMB11183T encoded the starch utilization system (Sus) operon, SusCDEF suggesting that strain uses many complex polysaccharides that cannot be digested by humans. Based on the physiological, chemotaxonomic, phenotypic, and phylogenetic data, strain KGMB11183T is regarded a novel species of the genus Phocaeicola. The type strain is KGMB11183T (= KCTC 25284T = JCM 35696T).
Collapse
Affiliation(s)
- Hyo Eun Do
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Young Bong Ha
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Min Kuk Suh
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Han Sol Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Mi Kyung Eom
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Se Won Kang
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Dong Ho Lee
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-Gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyuk Yoon
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-Gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Je Hee Lee
- CJ Bioscience, Inc., 14 Sejong-Daero, Jung-gu, Seoul, 04527, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
12
|
Yang J, Zhang L, Lin S, Li W, Liu C, Yan J, Li S, Long L. Structural insights of a SusD-like protein in marine Bacteroidetes bacteria reveal the molecular basis for chitin recognition and acquisition. FEBS J 2024; 291:584-595. [PMID: 37845429 DOI: 10.1111/febs.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Efficient recognition and transportation of chitin oligosaccharides are crucial steps for the utilization of chitin by heterotrophic bacteria. In this study, we employed structural biological and biochemical approaches to investigate the substrate recognition and acquisition mechanism of a novel chitin-binding SusD-like protein, AqSusD, which is derived from the chitin utilization gene cluster of a marine Bacteroides strain (Aquimarina sp. SCSIO 21287). We resolved the crystal structures of the AqSusD apo-protein and its complex with chitin oligosaccharides. Our results revealed that some crucial residues (Gln67, Phe87, and Asp276) underwent significant conformational changes to form tighter substrate binding sites for ligand binding. Moreover, we identified the functions of key amino acid residues and discovered that π-π stacking and hydrogen bonding between AqSusD and the ligand played significant roles in recognition of the protein for chitin oligosaccharide binding. Based on our findings and previous investigations, we put forward a model for the mechanism of chitin oligosaccharide recognition, capture, and transport by AqSusD, in collaboration with the membrane protein AqSusC. Our study deepens the understanding of the molecular-level "selfish" use of polysaccharides such as chitin by Bacteroides.
Collapse
Affiliation(s)
- Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shanshan Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chen Liu
- Guangzhou Quality Supervision and Testing Institute, China
| | - Jingheng Yan
- Guangzhou Quality Supervision and Testing Institute, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Shin JH, Tillotson G, MacKenzie TN, Warren CA, Wexler HM, Goldstein EJC. Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe 2024; 85:102819. [PMID: 38215933 DOI: 10.1016/j.anaerobe.2024.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Microbial communities play a significant role in maintaining ecosystems in a healthy homeostasis. Presently, in the human gastrointestinal tract, there are certain taxonomic groups of importance, though there is no single species that plays a keystone role. Bacteroides spp. are known to be major players in the maintenance of eubiosis in the human gastrointestinal tract. Here we review the critical role that Bacteroides play in the human gut, their potential pathogenic role outside of the gut, and their various methods of adapting to the environment, with a focus on data for B. fragilis and B. thetaiotaomicron. Bacteroides are anaerobic non-sporing Gram negative organisms that are also resistant to bile acids, generally thriving in the gut and having a beneficial relationship with the host. While they are generally commensal organisms, some Bacteroides spp. can be opportunistic pathogens in scenarios of GI disease, trauma, cancer, or GI surgery, and cause infection, most commonly intra-abdominal infection. B. fragilis can develop antimicrobial resistance through multiple mechanisms in large part due to its plasticity and fluid genome. Bacteroidota (formerly, Bacteroidetes) have a very broad metabolic potential in the GI microbiota and can rapidly adapt their carbohydrate metabolism to the available nutrients. Gastrointestinal Bacteroidota species produce short-chain fatty acids such as succinate, acetate, butyrate, and occasionally propionate, as the major end-products, which have wide-ranging and many beneficial influences on the host. Bacteroidota, via bile acid metabolism, also play a role in in colonization-resistance of other organisms, including Clostridioides difficile, and maintenance of gut integrity.
Collapse
Affiliation(s)
- Jae Hyun Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | | | | | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | - Hannah M Wexler
- GLAVAHCS, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
14
|
Schaus SR, Vasconcelos Periera G, Luis AS, Madlambayan E, Terrapon N, Ostrowski MP, Jin C, Hansson GC, Martens EC. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575725. [PMID: 38293123 PMCID: PMC10827045 DOI: 10.1101/2024.01.15.575725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques- a known mucin-degrader that remains poorly studied despite its implication in inflammatory bowel diseases (IBDs)- degrades mucin glycoproteins or their component O -linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong fucosidase, sialidase and β1,4-galactosidase activities. There was a lack of detectable sulfatase and weak β1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron . This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which may contribute to its association with IBD. Importance An important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade different components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate particular species associated with bacterial mucus destruction and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another gut bacterium implicated in IBD, Bacteroides thetaiotaomicron . Our findings underscore the importance of understanding the mucin degradation mechanisms of different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately contribute to defects in mucus protection and could therefore be targets to prevent or treat IBD.
Collapse
|
15
|
Zheng J, Huang L, Yi H, Yan Y, Zhang X, Akresi J, Yin Y. Carbohydrate-active enzyme annotation in microbiomes using dbCAN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575125. [PMID: 38260309 PMCID: PMC10802576 DOI: 10.1101/2024.01.10.575125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
CAZymes or carbohydrate-active enzymes are critically important for human gut health, lignocellulose degradation, global carbon recycling, soil health, and plant disease. We developed dbCAN as a web server in 2012 and actively maintain it for automated CAZyme annotation. Considering data privacy and scalability, we provide run_dbcan as a standalone software package since 2018 to allow users perform more secure and scalable CAZyme annotation on their local servers. Here, we offer a comprehensive computational protocol on automated CAZyme annotation of microbiome sequencing data, covering everything from short read pre-processing to data visualization of CAZyme and glycan substrate occurrence and abundance in multiple samples. Using a real-world metagenomic sequencing dataset, this protocol describes commands for dataset and software preparation, metagenome assembly, gene prediction, CAZyme prediction, CAZyme gene cluster (CGC) prediction, glycan substrate prediction, and data visualization. The expected results include publication-quality plots for the abundance of CAZymes, CGCs, and substrates from multiple CAZyme annotation routes (individual sample assembly, co-assembly, and assembly-free). For the individual sample assembly route, this protocol takes ∼33h on a Linux computer with 40 CPUs, while other routes will be faster. This protocol does not require programming experience from users, but it does assume a familiarity with the Linux command-line interface and the ability to run Python scripts in the terminal. The target audience includes the tens of thousands of microbiome researchers who routinely use our web server. This protocol will encourage them to perform more secure, rapid, and scalable CAZyme annotation on their local computer servers.
Collapse
|
16
|
Kijner S, Ennis D, Shmorak S, Florentin A, Yassour M. CRISPR-Cas-based identification of a sialylated human milk oligosaccharides utilization cluster in the infant gut commensal Bacteroides dorei. Nat Commun 2024; 15:105. [PMID: 38167825 PMCID: PMC10761964 DOI: 10.1038/s41467-023-44437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The infant gut microbiome is impacted by early-life feeding, as human milk oligosaccharides (HMOs) found in breastmilk cannot be digested by infants and serve as nutrients for their gut bacteria. While the vast majority of HMO-utilization research has focused on Bifidobacterium species, recent studies have suggested additional HMO-utilizers, mostly Bacteroides, yet their utilization mechanism is poorly characterized. Here, we investigate Bacteroides dorei isolates from breastfed-infants and identify that polysaccharide utilization locus (PUL) 33 enables B. dorei to utilize sialylated HMOs. We perform transcriptional profiling and identity upregulated genes when growing on sialylated HMOs. Using CRISPR-Cas12 to knock-out four PUL33 genes, combined with complementation assays, we identify GH33 as the critical gene in PUL33 for sialylated HMO-utilization. This demonstration of an HMO-utilization system by Bacteroides species isolated from infants opens the way to further characterization of additional such systems, to better understand HMO-utilization in the infant gut.
Collapse
Affiliation(s)
- Sivan Kijner
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dena Ennis
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimrit Shmorak
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Florentin
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Li J, Peng C, Mao A, Zhong M, Hu Z. An overview of microbial enzymatic approaches for pectin degradation. Int J Biol Macromol 2024; 254:127804. [PMID: 37913880 DOI: 10.1016/j.ijbiomac.2023.127804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Pectin, a complex natural macromolecule present in primary cell walls, exhibits high structural diversity. Pectin is composed of a main chain, which contains a high amount of partly methyl-esterified galacturonic acid (GalA), and numerous types of side chains that contain almost 17 different monosaccharides and over 20 different linkages. Due to this peculiar structure, pectin exhibits special physicochemical properties and a variety of bioactivities. For example, pectin exhibits strong bioactivity only in a low molecular weight range. Many different degrading enzymes, including hydrolases, lyases and esterases, are needed to depolymerize pectin due to its structural complexity. Pectin degradation involves polygalacturonases/rhamnogalacturonases and pectate/pectin lyases, which attack the linkages in the backbone via hydrolytic and β-elimination modes, respectively. Pectin methyl/acetyl esterases involved in the de-esterification of pectin also play crucial roles. Many α-L-rhamnohydrolases, unsaturated rhamnogalacturonyl hydrolases, arabinanases and galactanases also contribute to heterogeneous pectin degradation. Although numerous microbial pectin-degrading enzymes have been described, the mechanisms involved in the coordinated degradation of pectin through these enzymes remain unclear. In recent years, the degradation of pectin by Bacteroides has received increasing attention, as Bacteroides species contain a unique genetic structure, polysaccharide utilization loci (PULs). The specific PULs of pectin degradation in Bacteroides species are a new field to study pectin metabolism in gut microbiota. This paper reviews the scientific information available on pectin structural characteristics, pectin-degrading enzymes, and PULs for the specific degradation of pectin.
Collapse
Affiliation(s)
- Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Aihua Mao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Mingqi Zhong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| |
Collapse
|
18
|
Flores JN, Lubin JB, Silverman MA. The case for microbial intervention at weaning. Gut Microbes 2024; 16:2414798. [PMID: 39468827 DOI: 10.1080/19490976.2024.2414798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Weaning, the transition from a milk-based diet to solid food, coincides with the most significant shift in gut microbiome composition in the lifetime of most mammals. Notably, this period also marks a "window of opportunity" where key components of the immune system develop, and host-microbe interactions shape long-term immune homeostasis thereby influencing the risk of autoimmune and inflammatory diseases. This review provides a comprehensive analysis of the changes in nutrition, microbiota, and host physiology that occur during weaning. We explore how these weaning-associated processes differ across species, lifestyles, and regions of the intestine. Using prinicples of microbial ecology, we propose that the weaning transition is an optimal period for microbiome-targeted therapeutic interventions. Additionally, we suggest that replicating features of the weaning microbiome in adults could promote the successful engraftment of probiotics. Finally, we highlight key research areas that could deepen our understanding of the complex relationships between diet, commensal microbes, and the host, informing the development of more effective microbial therapies.
Collapse
Affiliation(s)
- Julia N Flores
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael A Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Gut Microbes 2023; 15:2249152. [PMID: 37655441 PMCID: PMC10478744 DOI: 10.1080/19490976.2023.2249152] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Prevotella copri is an abundant member of the human gastrointestinal microbiome, whose relative abundance has curiously been associated with positive and negative impacts on diseases, such as Parkinson's disease and rheumatoid arthritis. Yet, the verdict is still out on the definitive role of P. copri in human health, and on the effect of different diets on its relative abundance in the gut microbiome. The puzzling discrepancies among P. copri studies have only recently been attributed to the diversity of its strains, which substantially differ in their encoded metabolic patterns from the commonly used reference strain. However, such strain differences cannot be resolved by common 16S rRNA amplicon profiling methods. Here, we scrutinize P. copri, its versatile metabolic potential, and the hypotheses behind the conflicting observations on its association with diet and human health. We also provide suggestions for designing studies and bioinformatics pipelines to better research P. copri.
Collapse
Affiliation(s)
| | - Shaimaa M. Hegazy
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Gellman RH, Olm MR, Terrapon N, Enam F, Higginbottom SK, Sonnenburg JL, Sonnenburg ED. Hadza Prevotella require diet-derived microbiota-accessible carbohydrates to persist in mice. Cell Rep 2023; 42:113233. [PMID: 38510311 PMCID: PMC10954246 DOI: 10.1016/j.celrep.2023.113233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Industrialization has transformed the gut microbiota, reducing the prevalence of Prevotella relative to Bacteroides. Here, we isolate Bacteroides and Prevotella strains from the microbiota of Hadza hunter-gatherers in Tanzania, a population with high levels of Prevotella. We demonstrate that plant-derived microbiota-accessible carbohydrates (MACs) are required for persistence of Prevotella copri but not Bacteroides thetaiotaomicron in vivo. Differences in carbohydrate metabolism gene content, expression, and in vitro growth reveal that Hadza Prevotella strains specialize in degrading plant carbohydrates, while Hadza Bacteroides isolates use both plant and host-derived carbohydrates, a difference mirrored in Bacteroides from non-Hadza populations. When competing directly, P. copri requires plant-derived MACs to maintain colonization in the presence of B. thetaiotaomicron, as a no-MAC diet eliminates P. copri colonization. Prevotella's reliance on plant-derived MACs and Bacteroides' ability to use host mucus carbohydrates could explain the reduced prevalence of Prevotella in populations consuming a low-MAC, industrialized diet.
Collapse
Affiliation(s)
- Rebecca H. Gellman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew R. Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolé cules Biologiques, INRAE, CNRS, Aix-Marseille Université, Marseille, France
| | - Fatima Enam
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven K. Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
- Lead contact
| |
Collapse
|
21
|
Qi J, Zhou Q, Huang D, Yu Z, Meng F. Construction of synthetic anti-fouling consortia: fouling control effects and polysaccharide degradation mechanisms. Microb Cell Fact 2023; 22:230. [PMID: 37936187 PMCID: PMC10631183 DOI: 10.1186/s12934-023-02235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
The physical states and chemical components of bulk sludge determine the occurrence and development of membrane fouling in membrane bioreactors. Thus, regulation of sludge suspensions can provide new strategies for fouling control. In this study, we used "top-down" enrichment to construct a synthetic anti-fouling consortium (SAC) from bio-cake and evaluate its roles in preventing membrane fouling. The SAC was identified as Massilia-dominated and could almost wholly degrade the alginate solution (1,000 mg/L) within 72 h. Two-dimensional Fourier transformation infrared correlation spectroscopy (2D-FTIR-CoS) analysis demonstrated that the SAC induced the breakage of glycosidic bond in alginates. The co-cultivation of sludge with a low dosage of SAC (ranging from 0 to 1%) led to significant fouling mitigation, increased sludge floc size, and decreased unified membrane fouling index value (0.55 ± 0.06 and 0.11 ± 0.05). FTIR spectra and X-ray spectroscopy analyses demonstrated that the addition of SAC decreased the abundance of the O-acetylation of polysaccharides in extracellular polymeric substances. Secondary derivatives analysis of amide I spectra suggested a strong reduction in the α-helix/(β-sheet + random coil) ratio in the presence of SAC, which was expected to enhance cell aggregation. Additionally, the extracellular secretions of SAC could both inhibit biofilm formation and strongly disperse the existing biofilm strongly during the biofilm incubation tests. In summary, this study illustrates the feasibility and benefits of using SAC for fouling control and provides a new strategy for fouling control.
Collapse
Affiliation(s)
- Ji Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Qicheng Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Danlei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
22
|
Liu B, Garza DR, Gonze D, Krzynowek A, Simoens K, Bernaerts K, Geirnaert A, Faust K. Starvation responses impact interaction dynamics of human gut bacteria Bacteroides thetaiotaomicron and Roseburia intestinalis. THE ISME JOURNAL 2023; 17:1940-1952. [PMID: 37670028 PMCID: PMC10579405 DOI: 10.1038/s41396-023-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Bacterial growth often alters the environment, which in turn can impact interspecies interactions among bacteria. Here, we used an in vitro batch system containing mucin beads to emulate the dynamic host environment and to study its impact on the interactions between two abundant and prevalent human gut bacteria, the primary fermenter Bacteroides thetaiotaomicron and the butyrate producer Roseburia intestinalis. By combining machine learning and flow cytometry, we found that the number of viable B. thetaiotaomicron cells decreases with glucose consumption due to acid production, while R. intestinalis survives post-glucose depletion by entering a slow growth mode. Both species attach to mucin beads, but only viable cell counts of B. thetaiotaomicron increase significantly. The number of viable co-culture cells varies significantly over time compared to those of monocultures. A combination of targeted metabolomics and RNA-seq showed that the slow growth mode of R. intestinalis represents a diauxic shift towards acetate and lactate consumption, whereas B. thetaiotaomicron survives glucose depletion and low pH by foraging on mucin sugars. In addition, most of the mucin monosaccharides we tested inhibited the growth of R. intestinalis but not B. thetaiotaomicron. We encoded these causal relationships in a kinetic model, which reproduced the observed dynamics. In summary, we explored how R. intestinalis and B. thetaiotaomicron respond to nutrient scarcity and how this affects their dynamics. We highlight the importance of understanding bacterial metabolic strategies to effectively modulate microbial dynamics in changing conditions.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Daniel Rios Garza
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP 231, Université Libre de Bruxelles, Bvd du Triomphe, B-1050, Bruxelles, Belgium
| | - Anna Krzynowek
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium
| | - Kenneth Simoens
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, B-3001, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, B-3001, Leuven, Belgium
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
23
|
Rønne ME, Tandrup T, Madsen M, Hunt CJ, Myers PN, Moll JM, Holck J, Brix S, Strube ML, Aachmann FL, Wilkens C, Svensson B. Three alginate lyases provide a new gut Bacteroides ovatus isolate with the ability to grow on alginate. Appl Environ Microbiol 2023; 89:e0118523. [PMID: 37791757 PMCID: PMC10617595 DOI: 10.1128/aem.01185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 10/05/2023] Open
Abstract
Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel β-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.
Collapse
Affiliation(s)
- Mette E. Rønne
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tobias Tandrup
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikkel Madsen
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cameron J. Hunt
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pernille N. Myers
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Janne M. Moll
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael L. Strube
- Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Finn L. Aachmann
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Biotechnology and Biomedicine, Structural Enzymology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Nishida AH, Ochman H. Origins and Evolution of Novel Bacteroides in Captive Apes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563286. [PMID: 37961372 PMCID: PMC10634691 DOI: 10.1101/2023.10.20.563286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bacterial strains evolve in response to the gut environment of their hosts, with genomic changes that influence their interactions with hosts as well as with other members of the gut community. Great apes in captivity have acquired strains of Bacteroides xylanisolvens, which are common within gut microbiome of humans but not typically found other apes, thereby enabling characterization of strain evolution following colonization. Here, we isolate, sequence and reconstruct the history of gene gain and loss events in numerous captive-ape-associated strains since their divergence from their closest human-associated strains. We show that multiple captive-ape-associated B. xylanisolvens lineages have independently acquired gene complexes that encode functions related to host mucin metabolism. Our results support the finding of high genome fluidity in Bacteroides, in that several strains, in moving from humans to captive apes, have rapidly gained large genomic regions that augment metabolic properties not previously present in their relatives.
Collapse
Affiliation(s)
- Alexandra H. Nishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712 USA
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712 USA
| |
Collapse
|
25
|
Poceviciute R, Bogatyrev SR, Romano AE, Dilmore AH, Mondragón-Palomino O, Takko H, Pradhan O, Ismagilov RF. Quantitative whole-tissue 3D imaging reveals bacteria in close association with mouse jejunum mucosa. NPJ Biofilms Microbiomes 2023; 9:64. [PMID: 37679412 PMCID: PMC10485000 DOI: 10.1038/s41522-023-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Because the small intestine (SI) epithelium lacks a thick protective mucus layer, microbes that colonize the thin SI mucosa may exert a substantial effect on the host. For example, bacterial colonization of the human SI may contribute to environmental enteropathy dysfunction (EED) in malnourished children. Thus far, potential bacterial colonization of the mucosal surface of the SI has only been documented in disease states, suggesting mucosal colonization is rare, likely requiring multiple perturbations. Furthermore, conclusive proof of bacterial colonization of the SI mucosal surface is challenging, and the three-dimensional (3D) spatial structure of mucosal colonies remains unknown. Here, we tested whether we could induce dense bacterial association with jejunum mucosa by subjecting mice to a combination of malnutrition and oral co-gavage with a bacterial cocktail (E. coli and Bacteroides spp.) known to induce EED. To visualize these events, we optimized our previously developed whole-tissue 3D imaging tools with third-generation hybridization chain reaction (HCR v3.0) probes. Only in mice that were malnourished and gavaged with the bacterial cocktail did we detect dense bacterial clusters surrounding intestinal villi suggestive of colonization. Furthermore, in these mice we detected villus loss, which may represent one possible consequence that bacterial colonization of the SI mucosa has on the host. Our results suggest that dense bacterial colonization of jejunum mucosa is possible in the presence of multiple perturbations and that whole-tissue 3D imaging tools can enable the study of these rare events.
Collapse
Affiliation(s)
- Roberta Poceviciute
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Said R Bogatyrev
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Medically Associated Science and Technology Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna E Romano
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Amanda H Dilmore
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Biomedical Sciences Program, University of California San Diego, San Diego, CA, USA
| | - Octavio Mondragón-Palomino
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Heli Takko
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ojas Pradhan
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rustem F Ismagilov
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
26
|
Zhu XY, Li Y, Xue CX, Lidbury IDEA, Todd JD, Lea-Smith DJ, Tian J, Zhang XH, Liu J. Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems. MICROBIOME 2023; 11:175. [PMID: 37550707 PMCID: PMC10405439 DOI: 10.1186/s40168-023-01618-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Hadal trenches (>6000 m) are the deepest oceanic regions on Earth and depocenters for organic materials. However, how these enigmatic microbial ecosystems are fueled is largely unknown, particularly the proportional importance of complex polysaccharides introduced through deposition from the photic surface waters above. In surface waters, Bacteroidetes are keystone taxa for the cycling of various algal-derived polysaccharides and the flux of carbon through the photic zone. However, their role in the hadal microbial loop is almost unknown. RESULTS Here, culture-dependent and culture-independent methods were used to study the potential of Bacteroidetes to catabolize diverse polysaccharides in Mariana Trench waters. Compared to surface waters, the bathypelagic (1000-4000 m) and hadal (6000-10,500 m) waters harbored distinct Bacteroidetes communities, with Mesoflavibacter being enriched at ≥ 4000 m and Bacteroides and Provotella being enriched at 10,400-10,500 m. Moreover, these deep-sea communities possessed distinct gene pools encoding for carbohydrate active enzymes (CAZymes), suggesting different polysaccharide sources are utilised in these two zones. Compared to surface counterparts, deep-sea Bacteroidetes showed significant enrichment of CAZyme genes frequently organized into polysaccharide utilization loci (PULs) targeting algal/plant cell wall polysaccharides (i.e., hemicellulose and pectin), that were previously considered an ecological trait associated with terrestrial Bacteroidetes only. Using a hadal Mesoflavibacter isolate (MTRN7), functional validation of this unique genetic potential was demonstrated. MTRN7 could utilize pectic arabinans, typically associated with land plants and phototrophic algae, as the carbon source under simulated deep-sea conditions. Interestingly, a PUL we demonstrate is likely horizontally acquired from coastal/land Bacteroidetes was activated during growth on arabinan and experimentally shown to encode enzymes that hydrolyze arabinan at depth. CONCLUSIONS Our study implies that hadal Bacteroidetes exploit polysaccharides poorly utilized by surface populations via an expanded CAZyme gene pool. We propose that sinking cell wall debris produced in the photic zone can serve as an important carbon source for hadal heterotrophs and play a role in shaping their communities and metabolism. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ian D E A Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
27
|
Kiouptsi K, Pontarollo G, Reinhardt C. Gut Microbiota and the Microvasculature. Cold Spring Harb Perspect Med 2023; 13:a041179. [PMID: 37460157 PMCID: PMC10411863 DOI: 10.1101/cshperspect.a041179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The gut microbiota is increasingly recognized as an actuating variable shaping vascular development and endothelial cell function in the intestinal mucosa but also affecting the microvasculature of remote organs. In the small intestine, colonization with gut microbiota and subsequent activation of innate immune pathways promotes the development of intricate capillary networks and lacteals, influencing the integrity of the gut-vascular barrier as well as nutrient uptake. Since the liver yields most of its blood supply via the portal circulation, the hepatic microcirculation steadily encounters microbiota-derived patterns and active signaling metabolites that induce changes in the organization of the liver sinusoidal endothelium, influencing immune zonation of sinusoids and impacting on metabolic processes. In addition, microbiota-derived signals may affect the vasculature of distant organ systems such as the brain and the eye microvasculature. In recent years, this gut-resident microbial ecosystem was revealed to contribute to the development of several vascular disease phenotypes.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Sartorio MG, Pardue EJ, Scott NE, Feldman MF. Human gut bacteria tailor extracellular vesicle cargo for the breakdown of diet- and host-derived glycans. Proc Natl Acad Sci U S A 2023; 120:e2306314120. [PMID: 37364113 PMCID: PMC10319031 DOI: 10.1073/pnas.2306314120] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Extracellular vesicles are produced in all three domains of life, and their biogenesis has common ancient origins in eukaryotes and archaea. Although bacterial vesicles were discovered several decades ago and multiple roles have been attributed to them, no mechanism has been established for vesicles biogenesis in bacteria. For this reason, there is a significant level of skepticism about the biological relevance of bacterial vesicles. Bacteroides thetaiotaomicron (Bt), a prominent member of the human intestinal microbiota, produces significant amounts of outer membrane vesicles (OMVs) which have been proposed to play key physiological roles. Here, we employed a dual marker system, consisting of outer membrane- and OMV-specific markers fused to fluorescent proteins to visualize OMV biogenesis by time-lapse microscopy. Furthermore, we performed comparative proteomic analyses to show that, in Bt, the OMV cargo is adapted for the optimal utilization of different polysaccharides. We also show that a negatively charged N-terminal motif acts as a signal for protein sorting into OMVs irrespective of the nutrient availability. Our results demonstrate that OMV production is the result of a highly regulated process in Bt.
Collapse
Affiliation(s)
- Mariana G. Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Evan J. Pardue
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC3000, Australia
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
29
|
Panwar D, Shubhashini A, Kapoor M. Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnol Adv 2023; 66:108166. [PMID: 37121556 DOI: 10.1016/j.biotechadv.2023.108166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research. Among various glycans, mannans represent an integral component of the human diet. Apart from their health effects, the diverse and complex mannan structures bears molecular signatures that alter the expression of specific gene clusters in selected Bacteroidota and Bacillota species. Both the phyla possess variable and sophisticated loci of mannan recognition proteins, hydrolytic enzymes, transporters, and other metabolic proteins to sense, capture and utilize mannans as an energy source. The current review summarizes mannan structural diversity, and strategies adopted by select species of the HGM bacteria to forage mannans by focusing primarily on glycoside hydrolases and their effects on host health and metabolism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
30
|
Gharechahi J, Vahidi MF, Sharifi G, Ariaeenejad S, Ding XZ, Han JL, Salekdeh GH. Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses. ENVIRONMENTAL RESEARCH 2023; 229:115925. [PMID: 37086884 DOI: 10.1016/j.envres.2023.115925] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Ruminant animals house a dense and diverse community of microorganisms in their rumen, an enlarged compartment in their stomach, which provides a supportive environment for the storage and microbial fermentation of ingested feeds dominated by plant materials. The rumen microbiota has acquired diverse and functionally overlapped enzymes for the degradation of plant cell wall polysaccharides. In rumen Bacteroidetes, enzymes involved in degradation are clustered into polysaccharide utilization loci to facilitate coordinated expression when target polysaccharides are available. Firmicutes use free enzymes and cellulosomes to degrade the polysaccharides. Fibrobacters either aggregate lignocellulose-degrading enzymes on their cell surface or release them into the extracellular medium in membrane vesicles, a mechanism that has proven extremely effective in the breakdown of recalcitrant cellulose. Based on current metagenomic analyses, rumen Bacteroidetes and Firmicutes are categorized as generalist microbes that can degrade a wide range of polysaccharides, while other members adapted toward specific polysaccharides. Particularly, there is ample evidence that Verrucomicrobia and Spirochaetes have evolved enzyme systems for the breakdown of complex polysaccharides such as xyloglucans, peptidoglycans, and pectin. It is concluded that diversity in degradation mechanisms is required to ensure that every component in feeds is efficiently degraded, which is key to harvesting maximum energy by host animals.
Collapse
Affiliation(s)
- Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhad Vahidi
- Animal Science Research Department, Qom Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Qom, Iran
| | - Golandam Sharifi
- Department of Basic Sciences, Encyclopedia Research Center, Institute for Humanities and Cultural Studies, Tehran, Iran
| | - Shohreh Ariaeenejad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, And Extension Organization, Karaj, Iran
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research, Institute (ILRI), 00100, Nairobi, Kenya; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, And Extension Organization, Karaj, Iran; School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia.
| |
Collapse
|
31
|
Sartorio MG, Pardue EJ, Scott NE, Feldman MF. Human gut bacteria tailor extracellular vesicle cargo for the breakdown of diet- and host-derived glycans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535451. [PMID: 37066189 PMCID: PMC10104005 DOI: 10.1101/2023.04.03.535451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Extracellular vesicles (EV) are produced in all three domains of life, and their biogenesis have common ancient origins in eukaryotes and archaea. Although bacterial vesicles were discovered several decades ago and multiple roles have been attributed to them, no mechanism has been established for vesicles biogenesis in bacteria. For this reason, there is a significant level of skepticism about the biological relevance of bacterial vesicles. In Bacteroides thetaiotaomicron ( Bt ), a prominent member of the human intestinal microbiota, outer membrane vesicles (OMVs) have been proposed to play key physiological roles. By employing outer membrane- and OMV-specific markers fused to fluorescent proteins we visualized OMV biogenesis in live-cells. We performed comparative proteomic analyses to demonstrate that Bt actively tailors its vesicle cargo to optimize the breakdown of diet- and host-derived complex glycans. Surprisingly, our data suggests that OMV are not employed for mucin degradation. We also show that, in Bt , a negatively-charged N-terminal motif acts as a signal for protein sorting into OMVs irrespective of the nutrient availability. We conclude that OMVs are the result of an exquisitely orchestrated mechanism. This work lays the foundation for further investigations into the physiological relevance of OMVs and their roles in gut homeostasis. Furthermore, our work constitutes a roadmap to guide EV biogenesis research in other bacteria.
Collapse
|
32
|
Krypotou E, Townsend GE, Gao X, Tachiyama S, Liu J, Pokorzynski ND, Goodman AL, Groisman EA. Bacteria require phase separation for fitness in the mammalian gut. Science 2023; 379:1149-1156. [PMID: 36927025 PMCID: PMC10148683 DOI: 10.1126/science.abn7229] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Therapeutic manipulation of the gut microbiota holds great potential for human health. The mechanisms bacteria use to colonize the gut therefore present valuable targets for clinical intervention. We now report that bacteria use phase separation to enhance fitness in the mammalian gut. We establish that the intrinsically disordered region (IDR) of the broadly and highly conserved transcription termination factor Rho is necessary and sufficient for phase separation in vivo and in vitro in the human commensal Bacteroides thetaiotaomicron. Phase separation increases transcription termination by Rho in an IDR-dependent manner. Moreover, the IDR is critical for gene regulation in the gut. Our findings expose phase separation as vital for host-commensal bacteria interactions and relevant for novel clinical applications.
Collapse
Affiliation(s)
- Emilia Krypotou
- Department of Microbial Pathogenesis, Yale School of Medicine; 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute; P.O. Box 27389, West Haven, CT, 06516, USA
| | - Guy E. Townsend
- Department of Microbial Pathogenesis, Yale School of Medicine; 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute; P.O. Box 27389, West Haven, CT, 06516, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 700 HMC Crescent Road, Hershey, PA 17033
| | - Xiaohui Gao
- Department of Microbial Pathogenesis, Yale School of Medicine; 295 Congress Avenue, New Haven, CT 06536, USA
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine; 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute; P.O. Box 27389, West Haven, CT, 06516, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine; 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute; P.O. Box 27389, West Haven, CT, 06516, USA
| | - Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine; 295 Congress Avenue, New Haven, CT 06536, USA
| | - Andrew L. Goodman
- Department of Microbial Pathogenesis, Yale School of Medicine; 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute; P.O. Box 27389, West Haven, CT, 06516, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine; 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute; P.O. Box 27389, West Haven, CT, 06516, USA
| |
Collapse
|
33
|
Carbohydrate esterases involved in deacetylation of food components by the human gut microbiota. Essays Biochem 2023; 67:443-454. [PMID: 36912209 PMCID: PMC10154613 DOI: 10.1042/ebc20220161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Non-carbohydrate modifications such as acetylations are widespread in food stuffs as well as they play important roles in diverse biological processes. These modifications meet the gut environment and are removed from their carbohydrate substrates by the resident microbiota. Among the most abundant modifications are O-acetylations, contributing to polysaccharides physico-chemical properties such as viscosity and gelling ability, as well as reducing accessibility for glycosyl hydrolases, and thus hindering polysaccharide degradation. Of particular note, O-acetylations increase the overall complexity of a polymer, thus requiring a more advanced degrading machinery for microbes to utilize it. This minireview describes acetylesterases from the gut microbiota that deacetylate various food polysaccharides, either as natural components of food, ingredients, stabilizers of microbial origin, or as part of microbes for food and beverage preparations. These enzymes include members belonging to at least 8 families in the CAZy database, as well as a large number of biochemically characterized esterases that have not been classified yet. Despite different structural folds, most of these acetylesterases have a common acid-base mechanism and belong to the SGNH hydrolase superfamily. We highlight examples of acetylesterases that are highly specific to one substrate and to the position of the acetyl group on the glycosyl residue of the carbohydrate, while other members that have more broad substrate specificity. Current research aimed at unveiling the functions and regioselectivity of acetylesterases will help providing fundamental mechanistic understanding on how dietary components are utilized in the human gut and will aid developing applications of these enzymes to manufacture novel industrial products.
Collapse
|
34
|
Gellman RH, Olm MR, Terrapon N, Enam F, Higginbottom SK, Sonnenburg JL, Sonnenburg ED. Hadza Prevotella Require Diet-derived Microbiota Accessible Carbohydrates to Persist in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531063. [PMID: 36945614 PMCID: PMC10028851 DOI: 10.1101/2023.03.08.531063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Industrialization has transformed the gut microbiota, reducing the prevalence of Prevotella relative to Bacteroides. Here, we isolate Bacteroides and Prevotella strains from the microbiota of Hadza hunter-gatherers of Tanzania, a population with high levels of Prevotella. We demonstrate that plant-derived microbiota-accessible carbohydrates (MACs) are required for persistence of Prevotella copri but not Bacteroides thetaiotaomicron in vivo. Differences in carbohydrate metabolism gene content, expression, and in vitro growth reveal that Hadza Prevotella strains specialize in degrading plant carbohydrates, while Hadza Bacteroides isolates use both plant and host-derived carbohydrates, a difference mirrored in Bacteroides from non-Hadza populations. When competing directly, P. copri requires plant-derived MACs to maintain colonization in the presence of B. thetaiotaomicron, as a no MAC diet eliminates P. copri colonization. Prevotella's reliance on plant-derived MACs and Bacteroides' ability to use host mucus carbohydrates could explain the reduced prevalence of Prevotella in populations consuming a low-MAC, industrialized diet.
Collapse
Affiliation(s)
- Rebecca H Gellman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew R Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, INRAE, CNRS, Aix-Marseille Université, Marseille, France
| | - Fatima Enam
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| | - Erica D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
35
|
Development of the Anaerobic Microbiome in the Infant Gut. Pediatr Infect Dis J 2023:00006454-990000000-00384. [PMID: 36917032 DOI: 10.1097/inf.0000000000003905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Ninety-five percent of gut microbiota are anaerobes and vary according to age and diet. Complex carbohydrates in human milk enhance the growth of Bifidobacterium and Bacteroides in the first year. Complex carbohydrates in solid foods enhance the growth of Bacteroides and Clostridium in the second year. Short-chain fatty acids produced by Akkermansia and Faecalibacterium may reduce obesity, diabetes and IBD.
Collapse
|
36
|
Effect of multimodularity and spatial organization of glycoside hydrolases on catalysis. Essays Biochem 2023; 67:629-638. [PMID: 36866571 DOI: 10.1042/ebc20220167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
The wide diversity among the carbohydrate-active enzymes (CAZymes) reflects the equally broad versatility in terms of composition and chemicals bonds found in the plant cell wall polymers on which they are active. This diversity is also expressed through the various strategies developed to circumvent the recalcitrance of these substrates to biological degradation. Glycoside hydrolases (GHs) are the most abundant of the CAZymes and are expressed as isolated catalytic modules or in association with carbohydrate-binding module (CBM), acting in synergism within complex arrays of enzymes. This multimodularity can be even more complex. The cellulosome presents a scaffold protein immobilized to the outer membrane of some microorganisms on which enzymes are grafted to prevent their dispersion and increase catalytic synergism. In polysaccharide utilization loci (PUL), GHs are also distributed across the membranes of some bacteria to co-ordinate the deconstruction of polysaccharides and the internalization of metabolizable carbohydrates. Although the study and characterization of these enzymatic activities need to take into account the entirety of this complex organization-in particular because of the dynamics involved in it-technical problems limit the present study to isolated enzymes. However, these enzymatic complexes also have a spatiotemporal organization, whose still neglected aspect must be considered. In the present review, the different levels of multimodularity that can occur in GHs will be reviewed, from its simplest forms to the most complex. In addition, attempts to characterize or study the effect on catalytic activity of the spatial organization within GHs will be addressed.
Collapse
|
37
|
Ryan D, Bornet E, Prezza G, Alampalli SV, de Carvalho TF, Felchle H, Ebbecke T, Hayward R, Deutschbauer AM, Barquist L, Westermann AJ. An integrated transcriptomics-functional genomics approach reveals a small RNA that modulates Bacteroides thetaiotaomicron sensitivity to tetracyclines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528795. [PMID: 36824877 PMCID: PMC9949090 DOI: 10.1101/2023.02.16.528795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Gene expression plasticity allows bacteria to adapt to diverse environments, tie their metabolism to available nutrients, and cope with stress. This is particularly relevant in a niche as dynamic and hostile as the human intestinal tract, yet transcriptional networks remain largely unknown in gut Bacteroides spp. Here, we map transcriptional units and profile their expression levels in Bacteroides thetaiotaomicron over a suite of 15 defined experimental conditions that are relevant in vivo , such as variation of temperature, pH, and oxygen tension, exposure to antibiotic stress, and growth on simple carbohydrates or on host mucin-derived glycans. Thereby, we infer stress- and carbon source-specific transcriptional regulons, including conditional expression of capsular polysaccharides and polysaccharide utilization loci, and expand the annotation of small regulatory RNAs (sRNAs) in this organism. Integrating this comprehensive expression atlas with transposon mutant fitness data, we identify conditionally important sRNAs. One example is MasB, whose inactivation led to increased bacterial tolerance of tetracyclines. Using MS2 affinity purification coupled with RNA sequencing, we predict targets of this sRNA and discuss their potential role in the context of the MasB-associated phenotype. Together, this transcriptomic compendium in combination with functional sRNA genomics-publicly available through a new iteration of the 'Theta-Base' web browser (www.helmholtz-hiri.de/en/datasets/bacteroides-v2)-constitutes a valuable resource for the microbiome and sRNA research communities alike.
Collapse
|
38
|
Cordeiro RL, Santos CR, Domingues MN, Lima TB, Pirolla RAS, Morais MAB, Colombari FM, Miyamoto RY, Persinoti GF, Borges AC, de Farias MA, Stoffel F, Li C, Gozzo FC, van Heel M, Guerin ME, Sundberg EJ, Wang LX, Portugal RV, Giuseppe PO, Murakami MT. Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum. Nat Chem Biol 2023; 19:218-229. [PMID: 36443572 PMCID: PMC10367113 DOI: 10.1038/s41589-022-01202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-β-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.
Collapse
Affiliation(s)
- Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila R Santos
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiani B Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan Y Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio C Borges
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo A de Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Fabiane Stoffel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Marin van Heel
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Priscila O Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| |
Collapse
|
39
|
Zhao C, Sun C, Yuan J, Tsopmejio ISN, Li Y, Jiang Y, Song H. Hericium caput-medusae (Bull.:Fr.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115721. [PMID: 36115601 DOI: 10.1016/j.jep.2022.115721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional edible fungus in China and many other Asian countries, Hericium caput-medusae (Bull. Fr.) Pers. is widely used to improve the health of the gastrointestinal tract. For example, the drug "Weilexin Granules" is mainly composed of H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate. However, the mechanism of action remains to be elucidated. AIMS OF THE STUDY The purpose of this study was to assess whether polysaccharides from H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate (HFP) exerts a gut protective effect and a regulatory effect on the intestinal microbiota through the chloride channels and mucus secretion. MATERIALS AND METHODS HFP was extracted, characterized and different concentrations of HFP (100, 200, 400 mg/kg) were administered to mice for 14 days. The changes in gut microbiota were observed via 16S high throughput sequencing. Short-chain fatty acids (SCFAs) was detected by GC-MS. AB-PAS staining was used to observe the secretion of mucus. The chloride channel activity and protein expression were verified by short-circuit current measurement and Western blot. RESULTS HFP regulated the abundance of gut microbiota in mice, with increased levels of Ruminococcaceae and Lachnospiraceae and reduced proportions of Staphylococcus and Enterobacter. HFP enhanced mucus volume as well as increased intestinal fluid secretion by activating the chloride channels. In addition, short-circuit current experiments also proved that HFP activates Cl⁻ currents targeting cystic fibrosis transmembrane conductance regulator (CFTR) and Anoamin1 (ANO1). CONCLUSION In conclusion, HFP might increase intestinal fluid secretion by promoting Cl⁻ secretion, which in turn advanced mucus hydration as well as regulated gut microbiota to improve intestinal health. Therefore, H. caput-medusae (Bull. Fr.) Pers. could be potentially used in the regulation of intestinal secretion and microbes.
Collapse
Affiliation(s)
- Cong Zhao
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Chang Sun
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Jing Yuan
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | | | - Yuting Li
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Yu Jiang
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China.
| | - Hui Song
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, 130118, Changchun, China.
| |
Collapse
|
40
|
Pearce VH, Groisman EA, Townsend GE. Dietary sugars silence the master regulator of carbohydrate utilization in human gut Bacteroides species. Gut Microbes 2023; 15:2221484. [PMID: 37358144 PMCID: PMC10294740 DOI: 10.1080/19490976.2023.2221484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/08/2023] [Indexed: 06/27/2023] Open
Abstract
The mammalian gut microbiota is a critical human health determinant with therapeutic potential for remediation of many diseases. The host diet is a key factor governing the gut microbiota composition by altering nutrient availability and supporting the expansion of distinct microbial populations. Diets rich in simple sugars modify the abundance of microbial subsets, enriching for microbiotas that elicit pathogenic outcomes. We previously demonstrated that diets rich in fructose and glucose can reduce the fitness and abundance of a human gut symbiont, Bacteroides thetaiotaomicron, by silencing the production of a critical intestinal colonization protein, called Roc, via its mRNA leader through an unknown mechanism. We have now determined that dietary sugars silence Roc by reducing the activity of BT4338, a master regulator of carbohydrate utilization. Here, we demonstrate that BT4338 is required for Roc synthesis, and that BT4338 activity is silenced by glucose or fructose. We show that the consequences of glucose and fructose on orthologous transcription factors are conserved across human intestinal Bacteroides species. This work identifies a molecular pathway by which a common dietary additive alters microbial gene expression in the gut that could be harnessed to modulate targeted microbial populations for future therapeutic interventions.
Collapse
Affiliation(s)
- Victoria H. Pearce
- Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Eduardo A. Groisman
- Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Guy E. Townsend
- Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
41
|
Zhong T, Wang Y, Wang X, Freitas-de-Melo A, Li H, Zhan S, Wang L, Cao J, Dai D, Guo J, Li L, Zhang H, Liu J, Niu L. Diarrhea in suckling lambs is associated with changes in gut microbiota, serum immunological and biochemical parameters in an intensive production system. Front Microbiol 2022; 13:1020657. [PMID: 36466638 PMCID: PMC9712182 DOI: 10.3389/fmicb.2022.1020657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
The incidence of diarrhea in lambs is frequent in large-scale sheep farms, which greatly impacts the growth and health of lambs. The aim of this study was to assess the changes in serum biochemical and immunological parameters and gut microbiome composition in suckling lambs suffering from diarrhea or not, reared on an intensive commercial farm. We found a reduced diversity of intestinal bacteria in suckling lambs suffering from diarrhea. Firmicutes and Bacteroidetes were the dominant flora in both groups of lambs, while the Bacteroidetes decreased in diarrheic lambs, no changes were reported in Firmicutes. Compared with healthy lambs, the proportion of aerobic bacteria, facultative anaerobic bacteria, and stress tolerant bacteria increased in lambs suffering from diarrhea, while that of anaerobic bacteria and potentially pathogenic bacteria decreased slightly. In addition, the contents of total cholesterol, immunoglobulins (Ig) G, and IgM in the serum of lambs suffering from diarrhea were lower than those of healthy lambs. This study explored the association between diarrhea occurrence, intestinal microbial community structure, and metabolic and immunological status in Hu lambs.
Collapse
Affiliation(s)
- Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yaxuan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinlu Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dinghui Dai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinwang Liu
- Yulin Sannong Breeding Service Co., Ltd, Yulin, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
42
|
Hayase E, Hayase T, Jamal MA, Miyama T, Chang CC, Ortega MR, Ahmed SS, Karmouch JL, Sanchez CA, Brown AN, El-Himri RK, Flores II, McDaniel LK, Pham D, Halsey T, Frenk AC, Chapa VA, Heckel BE, Jin Y, Tsai WB, Prasad R, Tan L, Veillon L, Ajami NJ, Wargo JA, Galloway-Peña J, Shelburne S, Chemaly RF, Davey L, Glowacki RWP, Liu C, Rondon G, Alousi AM, Molldrem JJ, Champlin RE, Shpall EJ, Valdivia RH, Martens EC, Lorenzi PL, Jenq RR. Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease. Cell 2022; 185:3705-3719.e14. [PMID: 36179667 PMCID: PMC9542352 DOI: 10.1016/j.cell.2022.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/15/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.
Collapse
Affiliation(s)
- Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Mohamed A Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Takahiko Miyama
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Miriam R Ortega
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Saira S Ahmed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jennifer L Karmouch
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Christopher A Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexandria N Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rawan K El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ivonne I Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lauren K McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Taylor Halsey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Annette C Frenk
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Valerie A Chapa
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Brooke E Heckel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yimei Jin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wen-Bin Tsai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lucas Veillon
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jessica Galloway-Peña
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Veterinary Pathobiology, Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Samuel Shelburne
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren Davey
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Robert W P Glowacki
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amin M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; CPRIT Scholar in Cancer Research, Houston, TX, USA.
| |
Collapse
|
43
|
Le HH, Lee MT, Besler KR, Comrie JMC, Johnson EL. Characterization of interactions of dietary cholesterol with the murine and human gut microbiome. Nat Microbiol 2022; 7:1390-1403. [PMID: 35982311 PMCID: PMC9417993 DOI: 10.1038/s41564-022-01195-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/04/2022] [Indexed: 12/18/2022]
Abstract
Consumption of dietary lipids, such as cholesterol, modulates the gut microbiome with consequences for host health through the production of microbiome-derived metabolites. Despite the implications for host metabolism, a limited number of specific interactions of the gut microbiome with diet-derived lipids have been characterized. This is partially because obtaining species-level resolution of the responsible taxa can be challenging and additional approaches are needed to identify health-relevant metabolites produced from cholesterol-microbiome interactions. Here we performed bio-orthogonal labelling sort sequence spectrometry, a click chemistry based workflow, to profile cholesterol-specific host-microbe interactions. Mice were exposed to an alkyne-functionalized variant of cholesterol and 16S ribosomal RNA gene amplicon sequencing of faecal samples identified diet-derived cholesterol-interacting microbes from the genera Bacteroides, Bifidobacterium, Enterococcus and Parabacteroides. Shotgun metagenomic analysis provided species-level resolution of diet-derived cholesterol-interacting microbes with enrichment of bile acid-like and sulfotransferase-like activities. Using untargeted metabolomics, we identify that cholesterol is converted to cholesterol sulfate in a Bacteroides-specific manner via the enzyme BT_0416. Mice monocolonized with Bacteroides thetaiotaomicron lacking Bt_0416 showed altered host cholesterol and cholesterol sulfate compared with wild-type mice, identifying a previously uncharacterized microbiome-transformation of cholesterol and a mechanism for microbiome-dependent contributions to host phenotype. Moreover, identification of a cholesterol-responsive sulfotransferase in Bacteroides suggests diet-dependent mechanisms for altering microbiome-specific cholesterol metabolism. Overall, our work identifies numerous cholesterol-interacting microbes with implications for more precise microbiome-conscious regulation of host cholesterol homeostasis.
Collapse
Affiliation(s)
- Henry H Le
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Min-Ting Lee
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Kevin R Besler
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Janine M C Comrie
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | | |
Collapse
|
44
|
Dietary Utilization Drives the Differentiation of Gut Bacterial Communities between Specialist and Generalist Drosophilid Flies. Microbiol Spectr 2022; 10:e0141822. [PMID: 35863034 PMCID: PMC9431182 DOI: 10.1128/spectrum.01418-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gut bacteria play vital roles in the dietary detoxification, digestion, and nutrient supplementation of hosts during dietary specialization. The roles of gut bacteria in the host can be unveiled by comparing communities of specialist and generalist bacterial species. However, these species usually have a long evolutionary history, making it difficult to determine whether bacterial community differentiation is due to host dietary adaptation or phylogenetic divergence. In this regard, we investigated the bacterial communities from two Araceae-feeding Colocasiomyia species and further performed a meta-analysis by incorporating the published data from Drosophila bacterial community studies. The compositional and functional differentiation of bacterial communities was uncovered by comparing three (Araceae-feeding, mycophagous, and cactophilic) specialists with generalist flies. The compositional differentiation showed that Bacteroidetes and Firmicutes inhabited specialists, while more Proteobacteria lived in generalists. The functional prediction based on the bacterial community compositions suggested that amino acid metabolism and energy metabolism are overrepresented pathways in specialists and generalists, respectively. The differences were mainly associated with the higher utilization of structural complex carbohydrates, protein utilization, vitamin B12 acquisition, and demand for detoxification in specialists than in generalists. The complementary roles of bacteria reveal a connection between gut bacterial communities and fly dietary specialization. IMPORTANCE Gut bacteria may play roles in the dietary utilization of hosts, especially in specialist animals, during long-term host-microbe interaction. By comparing the gut bacterial communities between specialist and generalist drosophilid flies, we found that specialists harbor more bacteria linked to complex carbohydrate degradation, amino acid metabolism, vitamin B12 formation, and detoxification than do generalists. This study reveals the roles of gut bacteria in drosophilid species in dietary utilization.
Collapse
|
45
|
Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp. Hel_I_6 consumes alpha-mannan from fungi. THE ISME JOURNAL 2022; 16:1818-1830. [PMID: 35414716 PMCID: PMC9213526 DOI: 10.1038/s41396-022-01223-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
AbstractMicrobial glycan degradation is essential to global carbon cycling. The marine bacterium Salegentibacter sp. Hel_I_6 (Bacteroidota) isolated from seawater off Helgoland island (North Sea) contains an α-mannan inducible gene cluster with a GH76 family endo-α-1,6-mannanase (ShGH76). This cluster is related to genetic loci employed by human gut bacteria to digest fungal α-mannan. Metagenomes from the Hel_I_6 isolation site revealed increasing GH76 gene frequencies in free-living bacteria during microalgae blooms, suggesting degradation of α-1,6-mannans from fungi. Recombinant ShGH76 protein activity assays with yeast α-mannan and synthetic oligomannans showed endo-α-1,6-mannanase activity. Resolved structures of apo-ShGH76 (2.0 Å) and of mutants co-crystalized with fungal mannan-mimicking α-1,6-mannotetrose (1.90 Å) and α-1,6-mannotriose (1.47 Å) retained the canonical (α/α)6 fold, despite low identities with sequences of known GH76 structures (GH76s from gut bacteria: <27%). The apo-form active site differed from those known from gut bacteria, and co-crystallizations revealed a kinked oligomannan conformation. Co-crystallizations also revealed precise molecular-scale interactions of ShGH76 with fungal mannan-mimicking oligomannans, indicating adaptation to this particular type of substrate. Our data hence suggest presence of yet unknown fungal α-1,6-mannans in marine ecosystems, in particular during microalgal blooms.
Collapse
|
46
|
Catlett JL, Carr S, Cashman M, Smith MD, Walter M, Sakkaff Z, Kelley C, Pierobon M, Cohen MB, Buan NR. Metabolic Synergy between Human Symbionts Bacteroides and Methanobrevibacter. Microbiol Spectr 2022; 10:e0106722. [PMID: 35536023 PMCID: PMC9241691 DOI: 10.1128/spectrum.01067-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Trophic interactions between microbes are postulated to determine whether a host microbiome is healthy or causes predisposition to disease. Two abundant taxa, the Gram-negative heterotrophic bacterium Bacteroides thetaiotaomicron and the methanogenic archaeon Methanobrevibacter smithii, are proposed to have a synergistic metabolic relationship. Both organisms play vital roles in human gut health; B. thetaiotaomicron assists the host by fermenting dietary polysaccharides, whereas M. smithii consumes end-stage fermentation products and is hypothesized to relieve feedback inhibition of upstream microbes such as B. thetaiotaomicron. To study their metabolic interactions, we defined and optimized a coculture system and used software testing techniques to analyze growth under a range of conditions representing the nutrient environment of the host. We verify that B. thetaiotaomicron fermentation products are sufficient for M. smithii growth and that accumulation of fermentation products alters secretion of metabolites by B. thetaiotaomicron to benefit M. smithii. Studies suggest that B. thetaiotaomicron metabolic efficiency is greater in the absence of fermentation products or in the presence of M. smithii. Under certain conditions, B. thetaiotaomicron and M. smithii form interspecies granules consistent with behavior observed for syntrophic partnerships between microbes in soil or sediment enrichments and anaerobic digesters. Furthermore, when vitamin B12, hematin, and hydrogen gas are abundant, coculture growth is greater than the sum of growth observed for monocultures, suggesting that both organisms benefit from a synergistic mutual metabolic relationship. IMPORTANCE The human gut functions through a complex system of interactions between the host human tissue and the microbes which inhabit it. These diverse interactions are difficult to model or examine under controlled laboratory conditions. We studied the interactions between two dominant human gut microbes, B. thetaiotaomicron and M. smithii, using a seven-component culturing approach that allows the systematic examination of the metabolic complexity of this binary microbial system. By combining high-throughput methods with machine learning techniques, we were able to investigate the interactions between two dominant genera of the gut microbiome in a wide variety of environmental conditions. Our approach can be broadly applied to studying microbial interactions and may be extended to evaluate and curate computational metabolic models. The software tools developed for this study are available as user-friendly tutorials in the Department of Energy KBase.
Collapse
Affiliation(s)
- Jennie L. Catlett
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sean Carr
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mikaela Cashman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Megan D. Smith
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mary Walter
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zahmeeth Sakkaff
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Christine Kelley
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Massimiliano Pierobon
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Myra B. Cohen
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Computer Science, Iowa State University, Ames, Iowa, USA
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
47
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
48
|
Bacteroides humanifaecis sp. nov., isolated from faeces of healthy Korean. Arch Microbiol 2022; 204:357. [DOI: 10.1007/s00203-022-02967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
|
49
|
Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group. THE ISME JOURNAL 2022; 16:1570-1582. [PMID: 35169264 PMCID: PMC9122927 DOI: 10.1038/s41396-022-01209-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Abstract
Niche concept is a core tenet of ecology that has recently been applied in marine microbial research to describe the partitioning of taxa based either on adaptations to specific conditions across environments or on adaptations to specialised substrates. In this study, we combine spatiotemporal dynamics and predicted substrate utilisation to describe species-level niche partitioning within the NS5 Marine Group. Despite NS5 representing one of the most abundant marine flavobacterial clades from across the world’s oceans, our knowledge on their phylogenetic diversity and ecological functions is limited. Using novel and database-derived 16S rRNA gene and ribosomal protein sequences, we delineate the NS5 into 35 distinct species-level clusters, contained within four novel candidate genera. One candidate species, “Arcticimaribacter forsetii AHE01FL”, includes a novel cultured isolate, for which we provide a complete genome sequence—the first of an NS5—along with morphological insights using transmission electron microscopy. Assessing species’ spatial distribution dynamics across the Tara Oceans dataset, we identify depth as a key influencing factor, with 32 species preferring surface waters, as well as distinct patterns in relation to temperature, oxygen and salinity. Each species harbours a unique substrate-degradation potential along with predicted substrates conserved at the genus-level, e.g. alginate in NS5_F. Successional dynamics were observed for three species in a time-series dataset, likely driven by specialised substrate adaptations. We propose that the ecological niche partitioning of NS5 species is mainly based on specific abiotic factors, which define the niche space, and substrate availability that drive the species-specific temporal dynamics.
Collapse
|
50
|
Glover JS, Ticer TD, Engevik MA. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci Rep 2022; 12:8456. [PMID: 35589783 PMCID: PMC9120202 DOI: 10.1038/s41598-022-11819-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Mucin-degrading microbes are known to harbor glycosyl hydrolases (GHs) which cleave specific glycan linkages. Although several microbial species have been identified as mucin degraders, there are likely many other members of the healthy gut community with the capacity to degrade mucins. The aim of the present study was to systematically examine the CAZyme mucin-degrading profiles of the human gut microbiota. Within the Verrucomicrobia phylum, all Akkermansia glycaniphila and muciniphila genomes harbored multiple gene copies of mucin-degrading GHs. The only representative of the Lentisphaerae phylum, Victivallales, harbored a GH profile that closely mirrored Akkermansia. In the Actinobacteria phylum, we found several Actinomadura, Actinomyces, Bifidobacterium, Streptacidiphilus and Streptomyces species with mucin-degrading GHs. Within the Bacteroidetes phylum, Alistipes, Alloprevotella, Bacteroides, Fermenitomonas Parabacteroides, Prevotella and Phocaeicola species had mucin degrading GHs. Firmicutes contained Abiotrophia, Blautia, Enterococcus, Paenibacillus, Ruminococcus, Streptococcus, and Viridibacillus species with mucin-degrading GHs. Interestingly, far fewer mucin-degrading GHs were observed in the Proteobacteria phylum and were found in Klebsiella, Mixta, Serratia and Enterobacter species. We confirmed the mucin-degrading capability of 23 representative gut microbes using a chemically defined media lacking glucose supplemented with porcine intestinal mucus. These data greatly expand our knowledge of microbial-mediated mucin degradation within the human gut microbiota.
Collapse
Affiliation(s)
- Janiece S Glover
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Taylor D Ticer
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|