1
|
Salmaso N, Cerasino L, Pindo M, Boscaini A. Taxonomic and functional metagenomic assessment of a Dolichospermum bloom in a large and deep lake south of the Alps. FEMS Microbiol Ecol 2024; 100:fiae117. [PMID: 39227168 PMCID: PMC11412076 DOI: 10.1093/femsec/fiae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024] Open
Abstract
Untargeted genetic approaches can be used to explore the high metabolic versatility of cyanobacteria. In this context, a comprehensive metagenomic shotgun analysis was performed on a population of Dolichospermum lemmermannii collected during a surface bloom in Lake Garda in the summer of 2020. Using a phylogenomic approach, the almost complete metagenome-assembled genome obtained from the analysis allowed to clarify the taxonomic position of the species within the genus Dolichospermum and contributed to frame the taxonomy of this genus within the ADA group (Anabaena/Dolichospermum/Aphanizomenon). In addition to common functional traits represented in the central metabolism of photosynthetic cyanobacteria, the genome annotation uncovered some distinctive and adaptive traits that helped define the factors that promote and maintain bloom-forming heterocytous nitrogen-fixing Nostocales in oligotrophic lakes. In addition, genetic clusters were identified that potentially encode several secondary metabolites that were previously unknown in the populations evolving in the southern Alpine Lake district. These included geosmin, anabaenopetins, and other bioactive compounds. The results expanded the knowledge of the distinctive competitive traits that drive algal blooms and provided guidance for more targeted analyses of cyanobacterial metabolites with implications for human health and water resource use.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
2
|
Rottet S, Rourke LM, Pabuayon ICM, Phua SY, Yee S, Weerasooriya HN, Wang X, Mehra HS, Nguyen ND, Long BM, Moroney JV, Price GD. Engineering the cyanobacterial ATP-driven BCT1 bicarbonate transporter for functional targeting to C3 plant chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4926-4943. [PMID: 38776254 PMCID: PMC11349869 DOI: 10.1093/jxb/erae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
The ATP-driven bicarbonate transporter 1 (BCT1) from Synechococcus is a four-component complex in the cyanobacterial CO2-concentrating mechanism. BCT1 could enhance photosynthetic CO2 assimilation in plant chloroplasts. However, directing its subunits (CmpA, CmpB, CmpC, and CmpD) to three chloroplast sub-compartments is highly complex. Investigating BCT1 integration into Nicotiana benthamiana chloroplasts revealed promising targeting strategies using transit peptides from the intermembrane space protein Tic22 for correct CmpA targeting, while the transit peptide of the chloroplastic ABCD2 transporter effectively targeted CmpB to the inner envelope membrane. CmpC and CmpD were targeted to the stroma by RecA and recruited to the inner envelope membrane by CmpB. Despite successful targeting, expression of this complex in CO2-dependent Escherichia coli failed to demonstrate bicarbonate uptake. We then used rational design and directed evolution to generate new BCT1 forms that were constitutively active. Several mutants were recovered, including a CmpCD fusion. Selected mutants were further characterized and stably expressed in Arabidopsis thaliana, but the transformed plants did not have higher carbon assimilation rates or decreased CO2 compensation points in mature leaves. While further analysis is required, this directed evolution and heterologous testing approach presents potential for iterative modification and assessment of CO2-concentrating mechanism components to improve plant photosynthesis.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Loraine M Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Su Yin Phua
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Suyan Yee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xiaozhuo Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Himanshu S Mehra
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nghiem D Nguyen
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Benedict M Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - G Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| |
Collapse
|
3
|
Salunke SB, Save SN, Roy NJ, Naorem R, Sharma S, Talukdar P. Bisindole-based small molecules as transmembrane anion transporters and potential anticancer agents. Org Biomol Chem 2024; 22:4987-4992. [PMID: 38832875 DOI: 10.1039/d4ob00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Few synthetic ion transporters have been reported incorporating indole as the core moiety. We have developed a novel bisindole-based transporter capable of efficient transmembrane anion antiport. This system induced cytotoxicity in MCF-7 breast cancer cells via chloride ion homeostasis disruption and the associated ROS generation, mitochondrial membrane depolarization, and lysosomal deacidification.
Collapse
Affiliation(s)
- Swati Bansi Salunke
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Shreyada N Save
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, Maharashtra, India
| | - Naveen J Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Ronedy Naorem
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
4
|
Smith OB, Frkic RL, Rahman MG, Jackson CJ, Kaczmarski JA. Identification and Characterization of a Bacterial Periplasmic Solute Binding Protein That Binds l-Amino Acid Amides. Biochemistry 2024; 63:1322-1334. [PMID: 38696389 DOI: 10.1021/acs.biochem.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Periplasmic solute-binding proteins (SBPs) are key ligand recognition components of bacterial ATP-binding cassette (ABC) transporters that allow bacteria to import nutrients and metabolic precursors from the environment. Periplasmic SBPs comprise a large and diverse family of proteins, of which only a small number have been empirically characterized. In this work, we identify a set of 610 unique uncharacterized proteins within the SBP_bac_5 family that are found in conserved operons comprising genes encoding (i) ABC transport systems and (ii) putative amidases from the FmdA_AmdA family. From these uncharacterized SBP_bac_5 proteins, we characterize a representative periplasmic SBP from Mesorhizobium sp. A09 (MeAmi_SBP) and show that MeAmi_SBP binds l-amino acid amides but not the corresponding l-amino acids. An X-ray crystal structure of MeAmi_SBP bound to l-serinamide highlights the residues that impart distinct specificity for l-amino acid amides and reveals a structural Ca2+ binding site within one of the lobes of the protein. We show that the residues involved in ligand and Ca2+ binding are conserved among the 610 SBPs from experimentally uncharacterized FmdA_AmdA amidase-associated ABC transporter systems, suggesting these homologous systems are also likely to be involved in the sensing, uptake, and metabolism of l-amino acid amides across many Gram-negative nitrogen-fixing soil bacteria. We propose that MeAmi_SBP is involved in the uptake of such solutes to supplement pathways such as the citric acid cycle and the glutamine synthetase-glutamate synthase pathway. This work expands our currently limited understanding of microbial interactions with l-amino acid amides and bacterial nitrogen utilization.
Collapse
Affiliation(s)
- Oliver B Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Rebecca L Frkic
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Marina G Rahman
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Joe A Kaczmarski
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Peng Y, Xiao X, Ren B, Zhang Z, Luo J, Yang X, Zhu G. Biological activity and molecular mechanism of inactivation of Microcystis aeruginosa by ultrasound irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133742. [PMID: 38367436 DOI: 10.1016/j.jhazmat.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Harmful algal blooms (HABs) significantly impact on water quality and ecological balance. Ultrasound irradiation has proven to be an effective method for algal control. Nevertheless, the molecular mechanisms underlying the inactivation of M. aeruginosa by ultrasound are still unknown. In this study, the physiological activity and molecular mechanism of algal cells exposed to different frequencies of ultrasound were studied. The results indicated a pronounced inhibition of algal cell growth by high-frequency, high-dose ultrasound. Moreover, with increasing ultrasound dosage, there was a higher percentage of algal cell membrane ruptures. SEM and TEM observed obvious disruptions in membrane structure and internal matrix. Hydroxyl radicals generated by high-frequency ultrasound inflicted substantial cell membrane damage, while increased antioxidant enzyme activities fortified cells against oxidative stress. Following 2 min of ultrasound irradiation at 740 kHz, significant differential gene expression occurred in various aspects, including energy metabolism, carbohydrate metabolism, and environmental information processing pathways. Moreover, ultrasound irradiation influenced DNA repair and cellular apoptosis, suggesting that the algal cells underwent biological stress to counteract the damage caused by ultrasound. These findings reveal that ultrasound irradiation inactivates algae by destroying their cell structures and metabolic pathways, thereby achieving the purpose of algal suppression.
Collapse
Affiliation(s)
- Yazhou Peng
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiang Xiao
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bozhi Ren
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jun Luo
- Changsha Economic and Technical Development Zone Water Purification Engineering Co., Ltd, Changsha 410100, China
| | - Xiuzhen Yang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guocheng Zhu
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
6
|
Ughy B, Nagyapati S, Lajko DB, Letoha T, Prohaszka A, Deeb D, Der A, Pettko-Szandtner A, Szilak L. Reconsidering Dogmas about the Growth of Bacterial Populations. Cells 2023; 12:1430. [PMID: 37408264 PMCID: PMC10217356 DOI: 10.3390/cells12101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
The growth of bacterial populations has been described as a dynamic process of continuous reproduction and cell death. However, this is far from the reality. In a well fed, growing bacterial population, the stationary phase inevitably occurs, and it is not due to accumulated toxins or cell death. A population spends the most time in the stationary phase, where the phenotype of the cells alters from the proliferating ones, and only the colony forming unit (CFU) decreases after a while, not the total cell concentration. A bacterial population can be considered as a virtual tissue as a result of a specific differentiation process, in which the exponential-phase cells develop to stationary-phase cells and eventually reach the unculturable form. The richness of the nutrient had no effect on growth rate or on stationary cell density. The generation time seems not to be a constant value, but it depended on the concentration of the starter cultures. Inoculations with serial dilutions of stationary populations reveal a so-called minimal stationary cell concentration (MSCC) point, up to which the cell concentrations remain constant upon dilutions; that seems to be universal among unicellular organisms.
Collapse
Affiliation(s)
- Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (S.N.); (D.B.L.); (A.P.); (D.D.)
| | - Sarolta Nagyapati
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (S.N.); (D.B.L.); (A.P.); (D.D.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Dezi B. Lajko
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (S.N.); (D.B.L.); (A.P.); (D.D.)
| | | | - Adam Prohaszka
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (S.N.); (D.B.L.); (A.P.); (D.D.)
| | - Dima Deeb
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (S.N.); (D.B.L.); (A.P.); (D.D.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Andras Der
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Aladar Pettko-Szandtner
- Laboratory of Proteomic Research, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary;
| | - Laszlo Szilak
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (S.N.); (D.B.L.); (A.P.); (D.D.)
- Szilak Laboratories Bioinformatics and Molecule-Design Ltd., H-6724 Szeged, Hungary
| |
Collapse
|
7
|
Srivastava A, Kumar A, Biswas S, Kumar R, Srivastava V, Rajaram H, Mishra Y. Gamma (γ)-radiation stress response of the cyanobacterium Anabaena sp. PCC7120: Regulatory role of LexA and photophysiological changes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111529. [PMID: 36332765 DOI: 10.1016/j.plantsci.2022.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
High radioresistance of the cyanobacterium, Anabaena sp. PCC7120 has been attributed to efficient DNA repair, protein recycling, and oxidative stress management. However, the regulatory network involved in these batteries of responses remains unexplored. In the present study, the role of a global regulator, LexA in modulating gamma (γ)-radiation stress response of Anabaena was investigated. Comparison of the cytosolic proteome profiles upon γ-radiation in recombinant Anabaena strains, AnpAM (vector-control) and AnlexA+ (LexA-overexpressing), revealed 41 differentially accumulated proteins, corresponding to 29 distinct proteins. LexA was found to be involved in the regulation of 27 of the corresponding genes based on the presence of AnLexA-Box, EMSA, and/or qRT-PCR studies. The majority of the regulated genes were found to be involved in C-assimilation either through photosynthesis or C-catabolism and oxidative stress alleviation. Photosynthesis, measured in terms of PSII photophysiological parameters and thylakoid membrane proteome was found to be affected by γ-radiation in both AnpAM and AnlexA+ cells, with LexA affecting them even under control growth conditions. Thus, LexA functioned as one of the transcriptional regulators involved in modulating γ-radiation stress response in Anabaena. This study could pave the way for a deeper understanding of the regulation of γ-radiation-responsive genes in cyanobacteria at large.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Extracellular Vesicle-Mediated Secretion of Protochlorophyllide in the Cyanobacterium Leptolyngbya boryana. PLANTS 2022; 11:plants11070910. [PMID: 35406890 PMCID: PMC9003413 DOI: 10.3390/plants11070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022]
Abstract
Protochlorophyllide (Pchlide) reduction in the late stage of chlorophyll a (Chl) biosynthesis is catalyzed by two enzymes: light-dependent Pchlide oxidoreductase (LPOR) and dark-operative Pchlide oxidoreductase (DPOR). The differential operation of LPOR and DPOR enables a stable supply of Chl in response to changes in light conditions and environmental oxygen levels. When a DPOR-deficient mutant (YFC2) of the cyanobacterium Leptolyngbya boryana is grown heterotrophically in the dark, Pchlide accumulates in the cells and is secreted into the culture medium. In this study, we demonstrated the extracellular vesicle-mediated secretion of Pchlide. Pchlide fractions were isolated from the culture medium using sucrose density gradient centrifugation. Mass spectrometry analysis revealed that the Pchlide fractions contained porin isoforms, TolC, and FG-GAP repeat-containing protein, which are localized in the outer membrane. Transmission electron microscopy revealed extracellular vesicle-like structures in the vicinity of YFC2 cells and the Pchlide fractions. These findings suggested that the Pchlide secretion is mediated by extracellular vesicles in dark-grown YFC2 cells.
Collapse
|
9
|
Novel functional insights into a modified sugar-binding protein from Synechococcus MITS9220. Sci Rep 2022; 12:4805. [PMID: 35314715 PMCID: PMC8938411 DOI: 10.1038/s41598-022-08459-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220. Ligand screening of MsBP shows a specific affinity for zinc (KD ~ 1.3 μM) and a preference for phosphate-modified sugars, such as fructose-1,6-biphosphate, in the presence of zinc (KD ~ 5.8 μM). Our crystal structures of apo MsBP (no zinc or substrate-bound) and Zn-MsBP (with zinc-bound) show that the presence of zinc induces structural differences, leading to a partially-closed substrate-binding cavity. The Zn-MsBP structure also sequesters several sulphate ions from the crystallisation condition, including two in the binding cleft, appropriately placed to mimic the orientation of adducts of a biphosphate hexose. Combined with a previously unseen positively charged binding cleft in our two structures and our binding affinity data, these observations highlight novel molecular variations on the sugar-binding SBP scaffold. Our findings lend further evidence to a proposed sugar acquisition mechanism in picocyanobacteria alluding to a mixotrophic strategy within these ubiquitous photosynthetic bacteria.
Collapse
|
10
|
Ji K, Baek K, Peng W, Alberto KA, Torabifard H, Nielsen SO, Dodani SC. Biophysical and in silico characterization of NrtA: a protein-based host for aqueous nitrate and nitrite recognition. Chem Commun (Camb) 2022; 58:965-968. [PMID: 34937073 PMCID: PMC9197583 DOI: 10.1039/d1cc05879g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitrate and nitrite are key components of the global nitrogen cycle. As such, Nature has evolved proteins as biological supramolecular hosts for the recognition, translocation, and transformation of both nitrate and nitrite. To understand the supramolecular principles that govern these anion-protein interactions, here, we employ a hybrid biophysical and in silico approach to characterize the thermodynamic properties and protein dynamics of NrtA from the cyanobacterium Synechocystis sp. PCC 6803 for the recognition of nitrate and nitrite.
Collapse
Affiliation(s)
- Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Kevin A Alberto
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
11
|
Ford BA, Sullivan GJ, Moore L, Varkey D, Zhu H, Ostrowski M, Mabbutt BC, Paulsen IT, Shah BS. Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria. Biochem Soc Trans 2021; 49:2465-2481. [PMID: 34882230 PMCID: PMC8786288 DOI: 10.1042/bst20200244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/05/2022]
Abstract
Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation.
Collapse
Affiliation(s)
- Benjamin A. Ford
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Lisa Moore
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Hannah Zhu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Martin Ostrowski
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Bridget C. Mabbutt
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
12
|
Structural dynamics in the evolution of a bilobed protein scaffold. Proc Natl Acad Sci U S A 2021; 118:2026165118. [PMID: 34845009 PMCID: PMC8694067 DOI: 10.1073/pnas.2026165118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins conduct numerous complex biological functions by use of tailored structural dynamics. The molecular details of how these emerged from ancestral peptides remains mysterious. How does nature utilize the same repertoire of folds to diversify function? To shed light on this, we analyzed bilobed proteins with a common structural core, which is spread throughout the tree of life and is involved in diverse biological functions such as transcription, enzymatic catalysis, membrane transport, and signaling. We show here that the structural dynamics of the structural core differentiate predominantly via terminal additions during a long-period evolution. This diversifies substrate specificity and, ultimately, biological function. Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein–like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen–Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.
Collapse
|
13
|
Okumura K, Maruyama Y, Takase R, Mikami B, Murata K, Hashimoto W. The role of calcium binding to the EF-hand-like motif in bacterial solute-binding protein for alginate import. Biosci Biotechnol Biochem 2021; 85:2410-2419. [PMID: 34610097 DOI: 10.1093/bbb/zbab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022]
Abstract
Gram-negative Sphingomonas sp. A1 incorporates acidic polysaccharide alginate into the cytoplasm via a cell-surface alginate-binding protein (AlgQ2)-dependent ATP-binding cassette transporter (AlgM1M2SS). We investigated the function of calcium bound to the EF-hand-like motif in AlgQ2 by introducing mutations at the calcium-binding site. The X-ray crystallography of the AlgQ2 mutant (D179A/E180A) demonstrated the absence of calcium binding and significant disorder of the EF-hand-like motif. Distinct from the wild-type AlgQ2, the mutant was quite unstable at temperature of strain A1 growth, although unsaturated alginate oligosaccharides stabilized the mutant by formation of substrate/protein complex. In the assay of ATPase and alginate transport by AlgM1M2SS reconstructed in the liposome, the wild-type and mutant AlgQ2 induced AlgM1M2SS ATPase activity in the presence of unsaturated alginate tetrasaccharide. These results indicate that the calcium bound to EF-hand-like motif stabilizes the substrate-unbound AlgQ2 but is not required for the complexation of substrate-bound AlgQ2 and AlgM1M2SS.
Collapse
Affiliation(s)
- Kenji Okumura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Yukie Maruyama
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Bunzo Mikami
- Laboratory of Metabolic Sciences of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Kousaku Murata
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
14
|
Rottet S, Förster B, Hee WY, Rourke LM, Price GD, Long BM. Engineered Accumulation of Bicarbonate in Plant Chloroplasts: Known Knowns and Known Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:727118. [PMID: 34531888 PMCID: PMC8438413 DOI: 10.3389/fpls.2021.727118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Abstract
Heterologous synthesis of a biophysical CO2-concentrating mechanism (CCM) in plant chloroplasts offers significant potential to improve the photosynthetic efficiency of C3 plants and could translate into substantial increases in crop yield. In organisms utilizing a biophysical CCM, this mechanism efficiently surrounds a high turnover rate Rubisco with elevated CO2 concentrations to maximize carboxylation rates. A critical feature of both native biophysical CCMs and one engineered into a C3 plant chloroplast is functional bicarbonate (HCO3 -) transporters and vectorial CO2-to-HCO3 - converters. Engineering strategies aim to locate these transporters and conversion systems to the C3 chloroplast, enabling elevation of HCO3 - concentrations within the chloroplast stroma. Several CCM components have been identified in proteobacteria, cyanobacteria, and microalgae as likely candidates for this approach, yet their successful functional expression in C3 plant chloroplasts remains elusive. Here, we discuss the challenges in expressing and regulating functional HCO3 - transporter, and CO2-to-HCO3 - converter candidates in chloroplast membranes as an essential step in engineering a biophysical CCM within plant chloroplasts. We highlight the broad technical and physiological concerns which must be considered in proposed engineering strategies, and present our current status of both knowledge and knowledge-gaps which will affect successful engineering outcomes.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Britta Förster
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Wei Yih Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Loraine M. Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - G. Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Benedict M. Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. β-N-Methylamino-L-Alanine (BMAA) Causes Severe Stress in Nostoc sp. PCC 7120 Cells under Diazotrophic Conditions: A Proteomic Study. Toxins (Basel) 2021; 13:325. [PMID: 33946501 PMCID: PMC8147232 DOI: 10.3390/toxins13050325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms' ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA's action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected-due to their notable expression differences-for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and β (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
| | - Vadim M. Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
16
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. Proteomic Insights into Starvation of Nitrogen-Replete Cells of Nostoc sp. PCC 7120 under β-N-Methylamino-L-Alanine (BMAA) Treatment. Toxins (Basel) 2020; 12:toxins12060372. [PMID: 32512731 PMCID: PMC7354497 DOI: 10.3390/toxins12060372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023] Open
Abstract
All cyanobacteria produce a neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually “silent” under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the “starvation” state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA—a global transcriptional regulator—one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-917-534-7543
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
17
|
Kaczmarski JA, Hong NS, Mukherjee B, Wey LT, Rourke L, Förster B, Peat TS, Price GD, Jackson CJ. Structural Basis for the Allosteric Regulation of the SbtA Bicarbonate Transporter by the P II-like Protein, SbtB, from Cyanobium sp. PCC7001. Biochemistry 2019; 58:5030-5039. [PMID: 31746199 DOI: 10.1021/acs.biochem.9b00880] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacteria have evolved a suite of enzymes and inorganic carbon (Ci) transporters that improve photosynthetic performance by increasing the localized concentration of CO2 around the primary CO2-fixating enzyme, Rubisco. This CO2-concentrating mechanism (CCM) is highly regulated, responds to illumination/darkness cycles, and allows cyanobacteria to thrive under limiting Ci conditions. While the transcriptional control of CCM activity is well understood, less is known about how regulatory proteins might allosterically regulate Ci transporters in response to changing conditions. Cyanobacterial sodium-dependent bicarbonate transporters (SbtAs) are inhibited by PII-like regulatory proteins (SbtBs), with the inhibitory effect being modulated by adenylnucleotides. Here, we used isothermal titration calorimetry to show that SbtB from Cyanobium sp. PCC7001 (SbtB7001) binds AMP, ADP, cAMP, and ATP with micromolar-range affinities. X-ray crystal structures of apo and nucleotide-bound SbtB7001 revealed that while AMP, ADP, and cAMP have little effect on the SbtB7001 structure, binding of ATP stabilizes the otherwise flexible T-loop, and that the flexible C-terminal C-loop adopts several distinct conformations. We also show that ATP binding affinity is increased 10-fold in the presence of Ca2+, and we present an X-ray crystal structure of Ca2+ATP:SbtB7001 that shows how this metal ion facilitates additional stabilizing interactions with the apex of the T-loop. We propose that the Ca2+ATP-induced conformational change observed in SbtB7001 is important for allosteric regulation of SbtA activity by SbtB and is consistent with changing adenylnucleotide levels in illumination/darkness cycles.
Collapse
Affiliation(s)
- Joe A Kaczmarski
- Research School of Chemistry , The Australian National University , 137 Sullivans Creek Road , Canberra , ACT 0200 , Australia
| | - Nan-Sook Hong
- Research School of Chemistry , The Australian National University , 137 Sullivans Creek Road , Canberra , ACT 0200 , Australia
| | - Bratati Mukherjee
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Laura T Wey
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Loraine Rourke
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Thomas S Peat
- CSIRO Biomedical Program , 343 Royal Parade , Parkville , VIC 3052 , Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Colin J Jackson
- Research School of Chemistry , The Australian National University , 137 Sullivans Creek Road , Canberra , ACT 0200 , Australia
| |
Collapse
|
18
|
Differential Binding of Tetrel-Bonding Bipodal Receptors to Monatomic and Polyatomic Anions. Molecules 2019; 24:molecules24020227. [PMID: 30634503 PMCID: PMC6358819 DOI: 10.3390/molecules24020227] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 11/22/2022] Open
Abstract
Previous work has demonstrated that a bidentate receptor containing a pair of Sn atoms can engage in very strong interactions with halide ions via tetrel bonds. The question that is addressed here concerns the possibility that a receptor of this type might be designed that would preferentially bind a polyatomic over a monatomic anion since the former might better span the distance between the two Sn atoms. The binding of Cl− was thus compared to that of HCOO−, HSO4−, and H2PO4− with a wide variety of bidentate receptors. A pair of SnFH2 groups, as strong tetrel-binding agents, were first added to a phenyl ring in ortho, meta, and para arrangements. These same groups were also added in 1,3 and 1,4 positions of an aliphatic cyclohexyl ring. The tetrel-bonding groups were placed at the termini of (-C≡C-)n (n = 1,2) extending arms so as to further separate the two Sn atoms. Finally, the Sn atoms were incorporated directly into an eight-membered ring, rather than as appendages. The ordering of the binding energetics follows the HCO2− > Cl− > H2PO4− > HSO4− general pattern, with some variations in selected systems. The tetrel bonding is strong enough that in most cases, it engenders internal deformations within the receptors that allow them to engage in bidentate bonding, even for the monatomic chloride, which mutes any effects of a long Sn···Sn distance within the receptor.
Collapse
|
19
|
Scheiner S. Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding. Molecules 2018; 23:E1147. [PMID: 29751608 PMCID: PMC6100077 DOI: 10.3390/molecules23051147] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/22/2023] Open
Abstract
Tetrel atoms T (T = Si, Ge, Sn, and Pb) can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF₃ group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF₃ group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF₃ groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF₃⁺NH₂(CH₂)nNH₂SnF₃⁺ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH− binds most strongly: OH− > F− > Cl− > Br− > I−. The binding energy of the larger NO₃− and HCO₃− anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K⁺ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
20
|
Poschenrieder C, Fernández JA, Rubio L, Pérez L, Terés J, Barceló J. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. Int J Mol Sci 2018; 19:E1352. [PMID: 29751549 PMCID: PMC5983714 DOI: 10.3390/ijms19051352] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/09/2023] Open
Abstract
Bicarbonate plays a fundamental role in the cell pH status in all organisms. In autotrophs, HCO₃− may further contribute to carbon concentration mechanisms (CCM). This is especially relevant in the CO₂-poor habitats of cyanobacteria, aquatic microalgae, and macrophytes. Photosynthesis of terrestrial plants can also benefit from CCM as evidenced by the evolution of C₄ and Crassulacean Acid Metabolism (CAM). The presence of HCO₃− in all organisms leads to more questions regarding the mechanisms of uptake and membrane transport in these different biological systems. This review aims to provide an overview of the transport and metabolic processes related to HCO₃− in microalgae, macroalgae, seagrasses, and terrestrial plants. HCO₃− transport in cyanobacteria and human cells is much better documented and is included for comparison. We further comment on the metabolic roles of HCO₃− in plants by focusing on the diversity and functions of carbonic anhydrases and PEP carboxylases as well as on the signaling role of CO₂/HCO₃− in stomatal guard cells. Plant responses to excess soil HCO₃− is briefly addressed. In conclusion, there are still considerable gaps in our knowledge of HCO₃− uptake and transport in plants that hamper the development of breeding strategies for both more efficient CCM and better HCO₃− tolerance in crop plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - José Antonio Fernández
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Lourdes Rubio
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Laura Pérez
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Joana Terés
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
21
|
Kóbori TO, Uzumaki T, Kis M, Kovács L, Domonkos I, Itoh S, Krynická V, Kuppusamy SG, Zakar T, Dean J, Szilák L, Komenda J, Gombos Z, Ughy B. Phosphatidylglycerol is implicated in divisome formation and metabolic processes of cyanobacteria. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:96-104. [PMID: 29558689 DOI: 10.1016/j.jplph.2018.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Phosphatidylglycerol is an essential phospholipid for photosynthesis and other cellular processes. We investigated the role of phosphatidylglycerol in cell division and metabolism in a phophatidylglycerol-auxotrophic strain of Synechococcus PCC7942. Here we show that phosphatidylglycerol is essential for the photosynthetic electron transfer and for the oligomerisation of the photosynthetic complexes, notably, we revealed that this lipid is important for non-linear electron transport. Furthermore, we demonstrate that phosphatidylglycerol starvation elevated the expressions of proteins of nitrogen and carbon metabolism. Moreover, we show that phosphatidylglycerol-deficient cells changed the morphology, became elongated, the FtsZ ring did not assemble correctly, and subsequently the division was hindered. However, supplementation with phosphatidylglycerol restored the ring-like structure at the mid-cell region and the normal cell size, demonstrating the phosphatidylglycerol is needed for normal septum formation. Taken together, central roles of phosphatidylglycerol were revealed; it is implicated in the photosynthetic activity, the metabolism and the fission of bacteria.
Collapse
Affiliation(s)
- Tímea O Kóbori
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary; Doctoral School of Biology, University of Szeged, H-6726 Szeged, Hungary
| | - Tatsuya Uzumaki
- Center for Gene Research, Nagoya University, Furocyo, Chikusa, Nagoya 464-8607, Japan
| | - Mihály Kis
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Shigeru Itoh
- Center for Gene Research, Nagoya University, Furocyo, Chikusa, Nagoya 464-8607, Japan
| | - Vendula Krynická
- Institute of Microbiology, Center Algatech, Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Saravanan G Kuppusamy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Tomas Zakar
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Jason Dean
- Institute of Microbiology, Center Algatech, Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - László Szilák
- Institute of Biology, Savaria Campus, Eötvös Lorand University, Szombathely, H-9700, Hungary
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Zoltán Gombos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| |
Collapse
|
22
|
Sampaio A, Pegos VR, Oshiro EE, Balan A. The periplasmic binding protein NrtT affects xantham gum production and pathogenesis in Xanthomonas citri. FEBS Open Bio 2017; 7:1499-1514. [PMID: 28979839 PMCID: PMC5623697 DOI: 10.1002/2211-5463.12281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/05/2022] Open
Abstract
In Xanthomonas citri, the bacterium that causes citrus canker, three ATP-binding cassette (ABC) transporters are known to be dedicated to the uptake of sulfur compounds. In this work, using functional, biophysical and structural methods, we showed that NrtT, a periplasmic component of the ABC transporter NrtCB, is an alkanesulfonate-binding protein and that the deletion of the nrtT gene affected xantham gum synthesis, adhesion and biofilm production, similarly to the phenotype obtained in the X. citri ssuA-knockout strain, in which the alkanesulfonate-binding protein SsuA is absent. Although NrtA and SsuA share similar ligands, the function of these proteins is not complementary. These results emphasize that organic-sulfur sources are directly involved with bacterial infection in vivo and are needed for pathogenesis in X. citri.
Collapse
Affiliation(s)
- Aline Sampaio
- Programa Interunidades em BiotecnologiaInstituto de Ciências BiomédicasUniversidade de São PauloUSPBrazil
- Laboratório Nacional de Biociências (LNBio)Centro de Pesquisas em Energia e Materiais (CNPEM)São PauloBrazil
| | - Vanessa Rodrigues Pegos
- Laboratório Nacional de Biociências (LNBio)Centro de Pesquisas em Energia e Materiais (CNPEM)São PauloBrazil
- Post‐Graduate Program in Genetics and Molecular BiologyInstitute of BiologyUniversity of Campinas UNICAMPCampinasSão PauloBrazil
| | - Elisa Emiko Oshiro
- Departmento de MicrobiologiaInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Andrea Balan
- Departmento de MicrobiologiaInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| |
Collapse
|
23
|
Scheiner S. Assembly of Effective Halide Receptors from Components. Comparing Hydrogen, Halogen, and Tetrel Bonds. J Phys Chem A 2017; 121:3606-3615. [DOI: 10.1021/acs.jpca.7b02305] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and
Biochemistry Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
24
|
Scheiner S. Comparison of halide receptors based on H, halogen, chalcogen, pnicogen, and tetrel bonds. Faraday Discuss 2017; 203:213-226. [DOI: 10.1039/c7fd00043j] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of halide receptors are constructed and the geometries and energetics of their binding to F−, Cl−, and Br−assessed by quantum calculations. The dicationic receptors are based on a pair of imidazolium units, connectedviaa benzene spacer. The imidazoliums each donate a proton to a halide in a pair of H-bonds. Replacement of the two bonding protons by Br leads to bindingviaa pair of halogen bonds. Likewise, chalcogen, pnicogen, and tetrel bonds occur when the protons are replaced, respectively, by Se, As, and Ge. Regardless of the binding group considered, F−is bound much more strongly than are Cl−and Br−. With respect to the latter two halides, the binding energy is not very sensitive to the nature of the binding atom, whether H or some other atom. But there is a great deal of differentiation with respect to F−, where the order varies as tetrel > H ∼ pnicogen > halogen > chalcogen. The replacement of the various binding atoms by their analogues in the next row of the periodic table enhances the fluoride binding energy by 22–56%. The strongest fluoride binding agents utilize the tetrel bonds of the Sn atom, whereas it is I-halogen bonds that are preferred for Cl−and Br−. After incorporation of thermal and entropic effects, the halogen, chalcogen, and pnicogen bonding receptors do not represent much of an improvement over H-bonds with regard to this selectivity for F−, even I which binds quite strongly. In stark contrast, the tetrel-bonding derivatives, both Ge and Sn, show by far the greatest selectivity for F−over the other halides, as much as 1013, an enhancement of six orders of magnitude when compared to the H-bonding receptor.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
25
|
Cao L, Yu Y, DuanMu H, Chen C, Duan X, Zhu P, Chen R, Li Q, Zhu Y, Ding X. A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC PLANT BIOLOGY 2016; 16:184. [PMID: 27553065 PMCID: PMC4995822 DOI: 10.1186/s12870-016-0872-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/15/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Wild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. In soybean genome, there exist about 140 HD-Zip (Homeodomain-leucine Zipper) genes. HD-Zip transcription factor family is one of the largest plant specific superfamilies and plays important roles in response to abiotic stresses. Although HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown. RESULTS From our previous transcriptome profile analysis of wild soybean treated by 50 mM NaHCO3, we identified an HD-Zip gene (Gshdz4) which showed high response to the alkaline stress. Our result of qRT-PCR showed that the expression of Gshdz4 was induced by alkaline stress (NaHCO3) in both leaves and roots of wild soybean. Overexpression of Gshdz4 in Arabidopsis resulted in enhanced tolerance to NaHCO3 and KHCO3 during the process of plant growth and development. However, the growths of transgenic and WT plants were not significantly different on the medium with high pH adjusted by KOH, implicating Gshdz4 is only responsible for resisting HCO3 (-) but not high pH. The transgenic plants had less MDA contents but higher POD activities and chlorophyll contents than the WT plants. Moreover, the transcript levels of stress-related genes, such as NADP-ME, H (+) -Ppase, RD29B and KIN1 were increased with greater extent in the transgenic plants than the wild plants. On the contrary, Gshdz4 overexpression lines were much sensitive to osmotic stress at seed germination and stocking stages compared to the wild plants. CONCLUSIONS We revealed that the important and special roles of Gshdz4 in enhancing bicarbonate tolerance and responding to osmotic stress. It is the first time to elucidate these novel functions of HD-ZIP transcription factors. All the evidences broaden our understanding of functions of HD-Zip family and provide clues for uncovering the mechanisms of high tolerance of wild soybean to saline-alkaline stresses.
Collapse
Affiliation(s)
- Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Pinghui Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Ranran Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
26
|
Dasgupta R, Ganguly HK, Modugula EK, Basu G. Type VIa β-turn-fused helix N-termini: A novel helix N-cap motif containing cis proline. Biopolymers 2016; 108. [PMID: 27428516 DOI: 10.1002/bip.22919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 11/05/2022]
Abstract
Helix N-capping motifs often form hydrogen bonds with terminal amide groups which otherwise would be free. Also, without an amide hydrogen, proline (trans) is over-represented at helix N-termini (N1 position) because this naturally removes the need to hydrogen bond one terminal amide. However, the preference of cisPro, vis-à-vis helix N-termini, is not known. We show that cisPro (αR or PPII ) often appears at the N-cap position (N0) of helices. The N-cap cisPro(αR ) is associated with a six-residue sequence motif - X(-2) -X(-1) -cisPro-X(1) -X(2) -X(3) - with preference for Glu/Gln at X(-1) , Phe/Tyr/Trp at X(1) and Ser/Thr at X(3) . The motif, formed by the fusion of a helix and a type VIa β-turn, contains a hydrogen bond between the side chain of X(-1) and the side chain/backbone of X(3) , a α-helical hydrogen bond between X(-2) and X(2) and stacking interaction between cisPro and an aromatic residue at X(1) . NMR experiments on peptides containing the motif and its variants showed that local interactions associated with the motif, as found in folded proteins, were not enough to significantly tilt the cis/trans equilibrium towards cisPro. This suggests that some other evolutionary pressure must select the cisPro motif (over transPro) at helix N-termini. Database analysis showed that >C = O of the pre-cisPro(αR ) residue at the helix N-cap, directed opposite to the N→C helical axis, participates in long-range interactions. We hypothesize that the cisPro(αR ) motif is preferred at helix N-termini because it allows the helix to participate in long-range interactions that may be structurally and functionally important.
Collapse
Affiliation(s)
- Rubin Dasgupta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Himal K Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - E K Modugula
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| |
Collapse
|
27
|
Walter J, Lynch F, Battchikova N, Aro EM, Gollan PJ. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3997-4008. [PMID: 27012282 PMCID: PMC4915528 DOI: 10.1093/jxb/erw112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Fiona Lynch
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
28
|
Langton MJ, Serpell CJ, Beer PD. Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective. Angew Chem Int Ed Engl 2016; 55:1974-87. [PMID: 26612067 PMCID: PMC4755225 DOI: 10.1002/anie.201506589] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 12/22/2022]
Abstract
The recognition of anions in water remains a key challenge in modern supramolecular chemistry, and is essential if proposed applications in biological, medical, and environmental arenas that typically require aqueous conditions are to be achieved. However, synthetic anion receptors that operate in water have, in general, been the exception rather than the norm to date. Nevertheless, a significant step change towards routinely conducting anion recognition in water has been achieved in the past few years, and this Review highlights these approaches, with particular focus on controlling and using the hydrophobic effect, as well as more exotic interactions such as C-H hydrogen bonding and halogen bonding. We also look beyond the field of small-molecule recognition into the macromolecular domain, covering recent advances in anion recognition based on biomolecules, polymers, and nanoparticles.
Collapse
Affiliation(s)
- Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Serpell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
29
|
Liu PY, Li ST, Shen FF, Ko WH, Yao XQ, Yang D. A small synthetic molecule functions as a chloride–bicarbonate dual-transporter and induces chloride secretion in cells. Chem Commun (Camb) 2016; 52:7380-3. [DOI: 10.1039/c6cc01964a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A C2 symmetric small molecule composed of l-phenylalanine and isophthalamide was found to function as a Cl−/HCO3− dual transporter and self-assemble into chloride channels.
Collapse
Affiliation(s)
- Peng-Yun Liu
- Morningside Laboratory for Chemical Biology
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Shing-To Li
- Morningside Laboratory for Chemical Biology
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Fang-Fang Shen
- Morningside Laboratory for Chemical Biology
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Wing-Hung Ko
- School of Biomedical Sciences
- The Chinese University of Hong Kong
- P. R. China
| | - Xiao-Qiang Yao
- School of Biomedical Sciences
- The Chinese University of Hong Kong
- P. R. China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| |
Collapse
|
30
|
Abstract
The development of solution-based anion receptor molecules which exploit halogen bonding interactions is an emerging area of research. This Feature Article reviews recent advances which have been made in this rapidly developing field, surveying the use of iodoperfluoroarene, haloimidazolium and halotriazole/triazolium halogen-bond-donor motifs in anion receptor design and describing the application of mechanically interlocked rotaxane and catenane frameworks as halogen bonding anion host systems.
Collapse
Affiliation(s)
- Asha Brown
- Chemical Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Paul D. Beer
- Chemical Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
31
|
Langton MJ, Serpell CJ, Beer PD. Anionenerkennung in Wasser: aktuelle Fortschritte aus supramolekularer und makromolarer Sicht. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506589] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthew J. Langton
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
| | - Christopher J. Serpell
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
- School of Physical Sciences, Ingram Building; University of Kent; Canterbury Kent CT2 7NH Vereinigtes Königreich
| | - Paul D. Beer
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
| |
Collapse
|
32
|
DuanMu H, Wang Y, Bai X, Cheng S, Deyholos MK, Wong GKS, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu Y. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Funct Integr Genomics 2015; 15:651-60. [PMID: 25874911 DOI: 10.1007/s10142-015-0439-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/21/2015] [Accepted: 04/06/2015] [Indexed: 01/08/2023]
Abstract
Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.
Collapse
Affiliation(s)
- Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xi Bai
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Shufei Cheng
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, T6G2E9, Canada
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, T6G2E9, Canada
| | - Dan Li
- BGI-Shenzen, Shenzhen, 518083, China
| | - Dan Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Ran Li
- BGI-Shenzen, Shenzhen, 518083, China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
33
|
Gaudana SB, Zarzycki J, Moparthi VK, Kerfeld CA. Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria. PHOTOSYNTHESIS RESEARCH 2015; 126:99-109. [PMID: 25399051 DOI: 10.1007/s11120-014-0059-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: [Formula: see text] and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.
Collapse
Affiliation(s)
- Sandeep B Gaudana
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
| | - Jan Zarzycki
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vamsi K Moparthi
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Cheryl A Kerfeld
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
34
|
Samet M, Fattahi A, Kass SR. Stereoelectronic effects: a simple yet powerful tool to manipulate anion affinity. Org Biomol Chem 2015; 13:2170-6. [PMID: 25535926 DOI: 10.1039/c4ob02470b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stereoelectronic effects on anion binding were examined, IR spectroscopy was used to probe structures, and a well aligned non-interacting group can be more significant than a hydrogen bond donor.
Collapse
Affiliation(s)
- Masoud Samet
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | - Alireza Fattahi
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Steven R. Kass
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
35
|
Tillich UM, Wolter N, Franke P, Dühring U, Frohme M. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution. BMC Biotechnol 2014; 14:66. [PMID: 25029912 PMCID: PMC4110520 DOI: 10.1186/1472-6750-14-66] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Temperature tolerance is an important aspect for commercial scale outdoor cultivation of microalgae and cyanobacteria. While various genes are known to be related to Synechocystis sp. PCC6803's heat shock response, there is very limited published data concerning the specific genes involved in long term thermal tolerance. We have previously used random mutagenesis and adaptive evolution to generate a mixture of strains of Synechocystis sp. PCC6803 with significantly increased thermal tolerance. The genetic modifications leading to the phenotypes of the newly generated strains are the focus of this work. RESULTS We used a custom screening platform, based on 96-deepwell microplate culturing in an in house designed cultivation chamber integrated in a liquid handling robot for screening and selection; in addition we also used a more conventional system. The increased thermal tolerances of the isolated monoclonal strains were validated in larger bioreactors and their whole genomes sequenced. Comparison of the sequence information to the parental wild type identified various mutations responsible for the enhanced phenotypes. Among the affected genes identified are clpC, pnp, pyk2, sigF, nlpD, pyrR, pilJ and cya1. CONCLUSIONS The applied methods (random mutagenesis, in vivo selection, screening, validation, whole genome sequencing) were successfully applied to identify various mutations, some of which are very unlikely to have been identified by other approaches. Several of the identified mutations are found in various strains and (due to their distribution) are likely to have occurred independently. This, coupled with the relatively low number of affected genes underscores the significance of these specific mutations to convey thermal tolerance in Synechocystis.
Collapse
Affiliation(s)
- Ulrich M Tillich
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
- Institute of Biology, Humboldt-University Berlin, Berlin, Germany
| | - Nick Wolter
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| | - Philipp Franke
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| | - Ulf Dühring
- Algenol Biofuels Germany GmbH, Berlin, Germany
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Bahnhofstraße 1, 16-2001, D-15745 Wildau, Germany
| |
Collapse
|
36
|
Chen L, Zhu Y, Song Z, Wang J, Zhang W. An orphan response regulator Sll0649 involved in cadmium tolerance and metal homeostasis in photosynthetic Synechocystis sp. PCC 6803. J Proteomics 2014; 103:87-102. [DOI: 10.1016/j.jprot.2014.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/07/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
|
37
|
Barnett JP, Scanlan DJ, Blindauer CA. Identification of major zinc-binding proteins from a marine cyanobacterium: insight into metal uptake in oligotrophic environments. Metallomics 2014; 6:1254-68. [DOI: 10.1039/c4mt00048j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The open ocean cyanobacteriumSynechococcussp. WH8102 thrives at extremely low zinc concentrations. Metalloproteomics experiments have identified an outer-membrane bound porin with zinc-binding ability that is upregulated at low zinc levels, suggesting a role for porins in highly efficient zinc uptake.
Collapse
|
38
|
Jiang HB, Cheng HM, Gao KS, Qiu BS. Inactivation of Ca(2+)/H(+) exchanger in Synechocystis sp. strain PCC 6803 promotes cyanobacterial calcification by upregulating CO(2)-concentrating mechanisms. Appl Environ Microbiol 2013; 79:4048-55. [PMID: 23624472 PMCID: PMC3697565 DOI: 10.1128/aem.00681-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/19/2013] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are important players in the global carbon cycle, accounting for approximately 25% of global CO2 fixation. Their CO2-concentrating mechanisms (CCMs) are thought to play a key role in cyanobacterial calcification, but the mechanisms are not completely understood. In Synechocystis sp. strain PCC 6803, a single Ca(2+)/H(+) exchanger (Slr1336) controls the Ca(2+)/H(+) exchange reaction. We knocked out the exchanger and investigated the effects on cyanobacterial calcification and CCMs. Inactivation of slr1336 significantly increased the calcification rate and decreased the zeta potential, indicating a relatively stronger Ca(2+)-binding ability. Some genes encoding CCM-related components showed increased expression levels, including the cmpA gene, which encodes the Ca(2+)-dependent HCO3(-) transporter BCT1. The transcript level of cmpA in the mutant was 30 times that in wild type. A Western blot analysis further confirmed that protein levels of CmpA were higher in the mutant than the wild type. Measurements of inorganic carbon fluxes and O2 evolution proved that both the net HCO3(-) uptake rate and the BCT1 transporter supported photosynthetic rate in the slr1336 mutant were significantly higher than in the wild type. This would cause the mutant cells to liberate more OH(-) ions out of the cell and stimulate CaCO3 precipitation in the microenvironment. We conclude that the mutation of the Ca(2+)/H(+) exchanger in Synechocystis promoted the cyanobacterial calcification process by upregulating CCMs, especially the BCT1 HCO3(-) transporter. These results shed new light on the mechanism by which CCM-facilitated photosynthesis promotes cyanobacterial calcification.
Collapse
Affiliation(s)
- Hai-Bo Jiang
- College of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Hui-Min Cheng
- College of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Kun-Shan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Bao-Sheng Qiu
- College of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
39
|
Holtz LM, Thoms S, Langer G, Wolf-Gladrow DA. Substrate supply for calcite precipitation in Emiliania huxleyi: assessment of different model approaches. JOURNAL OF PHYCOLOGY 2013; 49:417-426. [PMID: 27008527 DOI: 10.1111/jpy.12052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 11/19/2012] [Indexed: 06/05/2023]
Abstract
Over the last four decades, different hypotheses of Ca(2+) and dissolved inorganic carbon transport to the intracellular site of calcite precipitation have been put forth for Emiliania huxleyi (Lohmann) Hay & Mohler. The objective of this study was to assess these hypotheses by means of mathematical models. It is shown that a vesicle-based Ca(2+) transport would require very high intravesicular Ca(2+) concentrations, high vesicle fusion frequencies as well as a fast membrane recycling inside the cell. Furthermore, a kinetic model for the calcification compartment is presented that describes the internal chemical environment in terms of carbonate chemistry including calcite precipitation. Substrates for calcite precipitation are transported with different stoichiometries across the compartment membrane. As a result, the carbonate chemistry inside the compartment changes and hence influences the calcification rate. Moreover, the effect of carbonic anhydrase (CA) activity within the compartment is analyzed. One very promising model version is based on a Ca(2+) /H(+) antiport, CO2 diffusion, and a CA inside the calcification compartment. Another promising model version is based on an import of Ca(2+) and HCO3 (-) and an export of H(+) .
Collapse
Affiliation(s)
- Lena-Maria Holtz
- Alfred Wegener Institute for Polar and Marine Research, Biogeosciences, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Silke Thoms
- Alfred Wegener Institute for Polar and Marine Research, Biogeosciences, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Gerald Langer
- Department of Earth Sciences, Cambridge University, Downing St., Cambridge, CB2 3EQ, UK
| | - Dieter A Wolf-Gladrow
- Alfred Wegener Institute for Polar and Marine Research, Biogeosciences, Am Handelshafen 12, Bremerhaven, 27570, Germany
| |
Collapse
|
40
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
41
|
Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3-GENES GENOMES GENETICS 2012; 2:1475-95. [PMID: 23275872 PMCID: PMC3516471 DOI: 10.1534/g3.112.003863] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/20/2012] [Indexed: 01/02/2023]
Abstract
Iron is an essential cofactor in many metabolic reactions. Mechanisms controlling iron homeostasis need to respond rapidly to changes in extracellular conditions, but they must also keep the concentration of intracellular iron under strict control to avoid the generation of damaging reactive oxygen species. Due to its role as a redox carrier in photosynthesis, the iron quota in cyanobacteria is about 10 times higher than in model enterobacteria. The molecular details of how such a high quota is regulated are obscure. Here we present experiments that shed light on the iron regulatory system in cyanobacteria. We measured time-resolved changes in gene expression after iron depletion in the cyanobacterium Synechocystis sp. PCC 6803 using a comprehensive microarray platform, monitoring both protein-coding and non-coding transcripts. In total, less than a fifth of all protein-coding genes were differentially expressed during the first 72 hr. Many of these proteins are associated with iron transport, photosynthesis, or ATP synthesis. Comparing our data with three previous studies, we identified a core set of 28 genes involved in iron stress response. Among them were genes important for assimilation of inorganic carbon, suggesting a link between the carbon and iron regulatory networks. Nine of the 28 genes have unknown functions and constitute key targets for further functional analysis. Statistical and clustering analyses identified 10 small RNAs, 62 antisense RNAs, four 5′UTRs, and seven intragenic elements as potential novel components of the iron regulatory network in Synechocystis. Hence, our genome-wide expression profiling indicates an unprecedented complexity in the iron regulatory network of cyanobacteria.
Collapse
|
42
|
Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H₂ production. Appl Environ Microbiol 2012. [PMID: 23204418 DOI: 10.1128/aem.02864-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N(2)-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes, and we performed quantitative proteome analysis of Cyanothece sp. strains ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N(2)-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher levels of respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H(2)-producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H(2) production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822 and allow an in-depth comparative analysis of major physiological and biochemical processes that influence H(2) production in both strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large-scale H(2) production.
Collapse
|
43
|
Cameron EA, Maynard MA, Smith CJ, Smith TJ, Koropatkin NM, Martens EC. Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism. J Biol Chem 2012; 287:34614-25. [PMID: 22910908 PMCID: PMC3464567 DOI: 10.1074/jbc.m112.397380] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/10/2012] [Indexed: 12/18/2022] Open
Abstract
Human colonic bacteria are necessary for the digestion of many dietary polysaccharides. The intestinal symbiont Bacteroides thetaiotaomicron uses five outer membrane proteins to bind and degrade starch. Here, we report the x-ray crystallographic structures of SusE and SusF, two outer membrane proteins composed of tandem starch specific carbohydrate-binding modules (CBMs) with no enzymatic activity. Examination of the two CBMs in SusE and three CBMs in SusF reveals subtle differences in the way each binds starch and is reflected in their K(d) values for both high molecular weight starch and small maltooligosaccharides. Thus, each site seems to have a unique starch preference that may enable these proteins to interact with different regions of starch or its breakdown products. Proteins similar to SusE and SusF are encoded in many other polysaccharide utilization loci that are possessed by human gut bacteria in the phylum Bacteroidetes. Thus, these proteins are likely to play an important role in carbohydrate metabolism in these abundant symbiotic species. Understanding structural changes that diversify and adapt related proteins in the human gut microbial community will be critical to understanding the detailed mechanistic roles that they perform in the complex digestive ecosystem.
Collapse
Affiliation(s)
- Elizabeth A. Cameron
- From the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Mallory A. Maynard
- From the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Christopher J. Smith
- From the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Thomas J. Smith
- the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Nicole M. Koropatkin
- From the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
- the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Eric C. Martens
- From the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| |
Collapse
|
44
|
Pobeguts OV, Smolova TN, Klimov VV. Bicarbonate stabilizes isolated D1/D2/cytochrome b559 complex of photosystem 2 against thermoinactivation. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:171-9. [PMID: 22348477 DOI: 10.1134/s0006297912020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It has been shown that thermoinactivation of the isolated D1/D2/cytochrome b(559) complex (RC) of photosystem 2 (PS-2) from pea under anaerobic conditions at 35°C in 20 mM Tris-HCl buffer (pH 7.2) depleted of HCO(3)(-), with 35 mM NaCl and 0.05% n-dodecyl-β-maltoside, results in a decrease in photochemical activity measured by photoreduction of the PS-2 primary electron acceptor, pheophytin (by 50% after 3 min of heating), which is accompanied by aggregation of the D1 and D2 proteins. Bicarbonate, formate, and acetate anions added to the sample under these conditions differently influence the maintenance of photochemical activity: a 50% loss of photochemical activity occurs in 11.5 min of heating in the presence of bicarbonate and in 4 and 4.6 min in the presence of formate and acetate, respectively. The addition of bicarbonate completely prevents aggregation of the D1 and D2 proteins as opposed to formate and acetate (their presence has no effect on the aggregation during thermoinactivation). Since the isolated RCs have neither inorganic Mn/Ca-containing core of the water-oxidizing complex nor nonheme Fe(2+), it is supposed that bicarbonate specifically interacts with the hydrophilic domains of the D1 and D2 proteins, which prevents their structural modification that is a signal for aggregation of these proteins and the loss of photochemical activity.
Collapse
Affiliation(s)
- O V Pobeguts
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
45
|
Fukuzawa H, Ogawa T, Kaplan A. The Uptake of CO2 by Cyanobacteria and Microalgae. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Moore SJ, Wenzel M, Light ME, Morley R, Bradberry SJ, Gómez-Iglesias P, Soto-Cerrato V, Pérez-Tomás R, Gale PA. Towards “drug-like” indole-based transmembrane anion transporters. Chem Sci 2012. [DOI: 10.1039/c2sc20551c] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Aryal UK, Stöckel J, Krovvidi RK, Gritsenko MA, Monroe ME, Moore RJ, Koppenaal DW, Smith RD, Pakrasi HB, Jacobs JM. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles. BMC SYSTEMS BIOLOGY 2011; 5:194. [PMID: 22133144 PMCID: PMC3261843 DOI: 10.1186/1752-0509-5-194] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/01/2011] [Indexed: 01/22/2023]
Abstract
Background Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions. Results To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. Conclusion This study provides a deeper systems level insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.
Collapse
Affiliation(s)
- Uma K Aryal
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jančula D, Maršálek B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. CHEMOSPHERE 2011; 85:1415-1422. [PMID: 21925702 DOI: 10.1016/j.chemosphere.2011.08.036] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
Cyanobacteria proliferation is among the most threatening consequences of freshwater pollution. Health risks from human and other-organism exposure to cyanobacteria have led to an effort to find practical methods for cyanobacterial water-bloom reduction. Hence, methods and techniques have been developed in order to reduce the amount of phosphorus or to decrease the abundance of nuisance phytoplankton species directly in the water bodies (in-lake measures). Although these "acute" methods do not solve the problem of catchment area eutrophication, they are cheaper, easier to manage, and for some areas they are the only way to protect human and environmental health against massive cyanobacterial proliferation. This review summarizes the extent of knowledge and published data about the management using metals (Al, Fe, Cu, Ag, Ca), photosensitizers (hydrogen peroxide, phthalocyanines, TiO(2)), herbicides and chemicals derived from natural compounds as fast and efficient removal agents of cyanobacteria. This review concludes that some compounds, when non-persistent and ecotoxicologically acceptable may help to manage cyanobacterial blooms in an efficient way compared to previous methods (e.g. copper sulfate).
Collapse
Affiliation(s)
- Daniel Jančula
- Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, Brno, Czech Republic.
| | | |
Collapse
|
49
|
Price GD. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. PHOTOSYNTHESIS RESEARCH 2011; 109:47-57. [PMID: 21359551 DOI: 10.1007/s11120-010-9608-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/14/2010] [Indexed: 05/04/2023]
Abstract
Cyanobacteria possess an environmental adaptation known as a CO(2) concentrating mechanism (CCM) that evolved to improve photosynthetic performance, particularly under CO(2)-limiting conditions. The CCM functions to actively transport dissolved inorganic carbon species (Ci; HCO(3)(-) and CO(2)) resulting in accumulation of a pool of HCO(3)(-) within the cell that is then utilised to provide an elevated CO(2) concentration around the primary CO(2) fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). Rubisco is encapsulated in unique micro-compartments known as carboxysomes and also provides the location for elevated CO(2) levels in the cell. Five distinct transport systems for active Ci uptake are known, including two types of Na(+)-dependent HCO(3)(-) transporters (BicA and SbtA), one traffic ATPase (BCT1) for HCO(3)(-) uptake and two CO(2) uptake systems based on modified NADPH dehydrogenase complexes (NDH-I(3) and NDH-I(4)). The genes for a number of these transporters are genetically induced under Ci limitation via transcriptional regulatory processes. The in-membrane topology structures of the BicA and SbtA HCO(3)(-) transporters are now known and this may aid in determining processes related to transporter activation during dark to light transitions or under severe Ci limitation.
Collapse
Affiliation(s)
- G Dean Price
- Molecular Plant Physiology Cluster, Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
50
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|