1
|
Nishida N, Sugimoto S, Miyagaki S, Cho C, Konishi M, Goda T, Yamaguchi M, Kawabe Y, Morimoto H, Kusuyama J, Okamura T, Hamaguchi M, Mori J, Nakajima H, Fukui M, Iehara T. Anti-inflammatory effect of Angiotensin 1-7 in white adipose tissue. Adipocyte 2025; 14:2449027. [PMID: 39803918 PMCID: PMC11730366 DOI: 10.1080/21623945.2024.2449027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/08/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice. Monocyte chemoattractant protein-1 (MCP-1) produced by white adipocytes and tumour necrosis factor-α (TNF-α) produced by macrophages are pro-inflammatory cytokines and interact to form a pathogenic loop to exacerbate obesity-induced inflammation. We found that Ang 1-7 reduced MCP-1 and TNF-α gene expressions and the number of crown-like structures, which are histological hallmarks of the pro-inflammatory process, in visceral epididymal WAT (eWAT) and reduced circulating MCP-1 and TNF-α levels, accompanied by improvement in insulin resistance, in dietary-induced obese mice. Furthermore, Ang 1-7 reduced MCP-1 and TNF-α secretions in 3T3-L1 white adipocytes and RAW 264.7 macrophages, respectively, which are in vitro experimental models mimicking obesity condition. Our results suggest that Ang 1-7 directly acts on WAT to mitigate obesity-induced inflammation. Thus, this study provides novel insights into the underlying mechanism of anti-obesity effects of Ang 1-7.
Collapse
Affiliation(s)
- Nozomi Nishida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Miyagaki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chiharu Cho
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Madoka Konishi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Goda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mihoko Yamaguchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Kawabe
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Mori
- Division of Pediatric Endocrinology, Metabolism and Nephrology, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
3
|
Choi M, Kwon H, Pak Y. Caveolin-2 in association with nuclear lamina controls adipocyte hypertrophy. FASEB J 2023; 37:e22745. [PMID: 36637913 DOI: 10.1096/fj.202201028rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Here, we identify that Caveolin-2 (Cav-2), an integral membrane protein, controls adipocyte hypertrophy in association with nuclear lamina. In the hypertrophy stage of adipogenesis, pY19-Cav-2 association with lamin A/C facilitated the disengagement of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) from lamin A/C and repressed Cav-2 promoter at the nuclear periphery for epigenetic activation of Cav-2, and thereby promoted C/EBPα and PPARγ-induced adipocyte hypertrophy. Stable expression of Cav-2 was required and retained by phosphorylation, deubiquitination, and association with lamin A/C for the adipocyte hypertrophy. However, obese adipocytes exhibited augmented Cav-2 stability resulting from the up-regulation of lamin A/C over lamin B1, protein tyrosine phosphatase 1B (PTP1B), and nuclear deubiquitinating enzyme (DUB), Uchl5. Our findings show a novel epigenetic regulatory mechanism of adipocyte hypertrophy by Cav-2 at the nuclear periphery.
Collapse
Affiliation(s)
- Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
4
|
Salicylate Sodium Suppresses Monocyte Chemoattractant Protein-1 Production by Directly Inhibiting Phosphodiesterase 3B in TNF-α-Stimulated Adipocytes. Int J Mol Sci 2022; 24:ijms24010320. [PMID: 36613764 PMCID: PMC9820166 DOI: 10.3390/ijms24010320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
As a worldwide health issue, obesity is associated with the infiltration of monocytes/macrophages into the adipose tissue causing unresolved inflammation. Monocyte chemoattractant protein-1 (MCP-1) exerts a crucial effect on obesity-related monocytes/macrophages infiltration. Clinically, aspirin and salsalate are beneficial for the treatment of metabolic diseases in which adipose tissue inflammation plays an essential role. Herein, we investigated the effect and precise mechanism of their active metabolite salicylate on TNF-α-elevated MCP-1 in adipocytes. The results indicated that salicylate sodium (SAS) could lower the level of MCP-1 in TNF-α-stimulated adipocytes, which resulted from a previously unrecognized target phosphodiesterase (PDE), 3B (PDE3B), rather than its known targets IKKβ and AMPK. The SAS directly bound to the PDE3B to inactivate it, thus elevating the intracellular cAMP level and activating PKA. Subsequently, the expression of MKP-1 was increased, which led to the decrease in p-EKR and p-p38. Both PDE3B silencing and the pharmacological inhibition of cAMP/PKA compromised the suppressive effect of SAS on MCP-1. In addition to PDE3B, the PDE3A and PDE4B activity was also inhibited by SAS. Our findings identify a previously unrecognized pathway through which SAS is capable of attenuating the inflammation of adipocytes.
Collapse
|
5
|
Singhal SS, Garg R, Horne D, Singhal S, Awasthi S, Salgia R. RLIP: A necessary transporter protein for translating oxidative stress into pro-obesity and pro-carcinogenic signaling. Biochim Biophys Acta Rev Cancer 2022; 1877:188803. [PMID: 36150564 DOI: 10.1016/j.bbcan.2022.188803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that knockout mice homozygous for deficiency of the mercapturic acid pathway (MAP) transporter protein, RLIP (RLIP-/-), are resistant to chemical carcinogenesis, inflammation, and metabolic syndrome (MetS). We also found that RLIP-/- mice are highly resistant to obesity caused by a high-fat diet (HFD). Interestingly, these studies showed that kinase, cytokine, and adipokine signaling that are characteristics of obesity were blocked despite the presence of increased oxidative stress in RLIP-/- mice. The deficiencies in obesity-inducing kinase, cytokine, and adipokine signaling were attributable to a lack of clathrin-dependent endocytosis (CDE), a process that is severely deficient in RLIP-/- mice. Because CDE is also necessary for carcinogenic signaling through EGF, WNT, TGFβ and other cancer-specific peptide hormones, and because RLIP-/- mice are cancer-resistant, we reasoned that depletion of RLIP by an antisense approach should cause cancer regression in human cancer xenografts. This prediction has been confirmed in studies of xenografts from lung, kidney, prostate, breast, and pancreatic cancers and melanoma. Because these results suggested an essential role for RLIP in carcinogenesis, and because our studies have also revealed a direct interaction between p53 and RLIP, we reasoned that if RLIP played a central role in carcinogenesis, that development of lymphoma in p53-/- mice, which normally occurs by the time these mice are 6 months old, could be delayed or prevented by depleting RLIP. Recent studies described herein have confirmed this hypothesis, showing complete suppression of lymphomagenesis in p53-/- mice treated with anti-RLIP antisense until the age of 8 months. All control mice developed lymphoma in the thymus or testis as expected. These findings lead to a novel paradigm predicting that under conditions of increased oxidative stress, the consequent increased flux of metabolites in the MAP causes a proportional increase in the rate of CDE. Because CDE inhibits insulin and TNF signaling but promotes EGF, TGFβ, and Wnt signaling, our model predicts that chronic stress-induced increases in RLIP (and consequently CDE) will induce insulin-resistance and enhance predisposition to cancer. Alternatively, generalized depletion of RLIP would antagonize the growth of malignant cells, and concomitantly exert therapeutic insulin-sensitizing effects. Therefore, this review focuses on how targeted depletion or inhibition of RLIP could provide a novel target for treating both obesity and cancer.
Collapse
Affiliation(s)
- Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States of America.
| | - Rachana Garg
- Departments of Surgery, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States of America
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States of America
| | - Sulabh Singhal
- College of Medicine, Drexel University, Philadelphia, PA 19129, United States of America
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Cayman Islands
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States of America
| |
Collapse
|
6
|
Palma G, Sorice GP, Genchi VA, Giordano F, Caccioppoli C, D’Oria R, Marrano N, Biondi G, Giorgino F, Perrini S. Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. Int J Mol Sci 2022; 23:ijms23137349. [PMID: 35806353 PMCID: PMC9267094 DOI: 10.3390/ijms23137349] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a chronic disease caused by an excess of adipose tissue that may impair health by altering the functionality of various organs, including the lungs. Excessive deposition of fat in the abdominal area can lead to abnormal positioning of the diaphragm and consequent reduction in lung volume, leading to a heightened demand for ventilation and increased exposure to respiratory diseases, such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnoea. In addition to mechanical ventilatory constraints, excess fat and ectopic deposition in visceral depots can lead to adipose tissue dysfunction, which promotes metabolic disorders. An altered adipokine-secretion profile from dysfunctional adipose tissue in morbid obesity fosters systemic, low-grade inflammation, impairing pulmonary immune response and promoting airway hyperresponsiveness. A potential target of these adipokines could be the NLRP3 inflammasome, a critical component of the innate immune system, the harmful pro-inflammatory effect of which affects both adipose and lung tissue in obesity. In this review, we will investigate the crosstalk between adipose tissue and the lung in obesity, highlighting the main inflammatory mediators and novel therapeutic targets in preventing pulmonary dysfunction.
Collapse
|
7
|
SEKI M, MIWA A, OHSAKA F, KARATSU Y, TSURUTA T, HINO S, MORITA T, SONOYAMA K. Local free fatty acids trigger the expression of lipopolysaccharide-binding protein in murine white adipose tissue. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:54-65. [PMID: 35433160 PMCID: PMC8970656 DOI: 10.12938/bmfh.2021-061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022]
Abstract
Although lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein mainly
produced by hepatocytes, it has also been proposed to be a pro-inflammatory adipokine.
Obesity and the consumption of a high-fat diet (HFD) are reportedly associated with
elevated levels of LPS in plasma and free fatty acids (FFAs) in white adipose tissue
(WAT). We examined whether circulating LPS or local FFAs are responsible for the
HFD-induced increase of LBP in WAT. Male C57BL/6J mice were fed either a normal-fat diet
(NFD) or an HFD. The mRNA levels in the liver and mesenteric WAT (mWAT), total FFA content
in mWAT, and LBP and LPS concentrations in plasma were determined. The
Lbp mRNA level in mWAT was higher in mice fed the HFD than in those fed
the NFD for 3, 7, or 28 days or 14 weeks, whereas the hepatic Lbp mRNA
level did not differ between the groups. The Lbp mRNA level in mWAT was
also increased by the HFD in germ-free mice, which do not have gut microbiota, the source
of LPS. The plasma LPS level did not show a significant correlation with the mWAT
Lbp mRNA level. The total FFA content in mWAT was higher in mice fed
the HFD than in those fed the NFD and positively correlated with the Lbp
mRNA level. Supplementation with palmitic acid increased the Lbp mRNA
level in 3T3-L1 adipocytes. We propose that local FFAs, but not circulating LPS, are the
trigger for increased Lbp expression in mWAT of mice fed the HFD.
Collapse
Affiliation(s)
- Manami SEKI
- Graduate School of Life Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Akiho MIWA
- Graduate School of Life Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Fumina OHSAKA
- Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Yugo KARATSU
- Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Takeshi TSURUTA
- Graduate School of Environmental and Life Science, Okayama University, 2-1-1 Tsushima-Naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Shingo HINO
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka-shi, Shizuoka 422-8529, Japan
| | - Tatsuya MORITA
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka-shi, Shizuoka 422-8529, Japan
| | - Kei SONOYAMA
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
8
|
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192:114723. [PMID: 34364887 DOI: 10.1016/j.bcp.2021.114723] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Both obesity and aging are associated with the development of metabolic diseases such as type 2 diabetes and cardiovascular disease. Chronic low-grade inflammation of adipose tissue is one of the mechanisms implicated in the progression of these diseases. Obesity and aging trigger adipose tissue alterations that ultimately lead to a pro-inflammatory phenotype of the adipose tissue-resident immune cells. Obesity and aging also share other features such as a higher visceral vs. subcutaneous adipose tissue ratio and a decreased lifespan. Here, we review the common characteristics of obesity and aging and the alterations in white adipose tissue and resident immune cells. We focus on the adipose tissue metabolic derangements in obesity and aging such as inflammation and adipose tissue remodeling.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Julia Fos-Domenech
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain; Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), E-28922 Madrid, Spain.
| |
Collapse
|
9
|
Kwon OJ, Noh JW, Lee BC. Mechanisms and Effect of Coptidis Rhizoma on Obesity-Induced Inflammation: In Silico and In Vivo Approaches. Int J Mol Sci 2021; 22:ijms22158075. [PMID: 34360840 PMCID: PMC8347796 DOI: 10.3390/ijms22158075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is characterized as a chronic, low-grade inflammation state accompanied by the infiltration of immune cells into adipose tissue and higher levels of inflammatory cytokines and chemokines. This study aimed to investigate the mechanisms and effects of Coptidis Rhizoma (CR) on obesity and its associated inflammation. First, we applied a network pharmacology strategy to search the target genes and pathways regulated by CR in obesity. Next, we performed in vivo experiments to confirm the antiobesity and anti-inflammatory effects of CR. Mice were assigned to five groups: normal chow (NC), control (high-fat diet (HFD)), HFD + CR 200 mg/kg, HFD + CR 400 mg/kg, and HFD + metformin 200 mg/kg. After 16 weeks of the experimental period, CR administration significantly reduced the weight of the body, epididymal fat, and liver; it also decreased insulin resistance, as well as the area under the curve of glucose in the oral glucose tolerance test and triglyceride in the oral fat tolerance test. We observed a decrease in adipose tissue macrophages (ATMs) and inflammatory M1 ATMs, as well as an increase in anti-inflammatory M2 ATMs. Gene expression levels of inflammatory cytokines and chemokines, including tumor necrosis factor-α, F4/80, and C-C motif chemokine (CCL)-2, CCL4, and CCL5, were suppressed in adipose tissue in the CR groups than levels in the control group. Additionally, histological analyses suggested decreased fat accumulation in the epididymal fat pad and liver in the CR groups than that in the control group. Taken together, these results suggest that CR has a therapeutic effect on obesity-induced inflammation, and it functions through the inhibition of macrophage-mediated inflammation in adipose tissue.
Collapse
|
10
|
Osinski V, Bauknight DK, Dasa SSK, Harms MJ, Kroon T, Marshall MA, Garmey JC, Nguyen AT, Hartman J, Upadhye A, Srikakulapu P, Zhou A, O'Mahony G, Klibanov AL, Kelly KA, Boucher J, McNamara CA. In vivo liposomal delivery of PPARα/γ dual agonist tesaglitazar in a model of obesity enriches macrophage targeting and limits liver and kidney drug effects. Am J Cancer Res 2020; 10:585-601. [PMID: 31903139 PMCID: PMC6929996 DOI: 10.7150/thno.36572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/06/2019] [Indexed: 01/22/2023] Open
Abstract
Macrophages are important regulators of obesity-associated inflammation and PPARα and -γ agonism in macrophages has anti-inflammatory effects. In this study, we tested the efficacy with which liposomal delivery could target the PPARα/γ dual agonist tesaglitazar to macrophages while reducing drug action in common sites of drug toxicity: the liver and kidney, and whether tesaglitazar had anti-inflammatory effects in an in vivo model of obesity-associated dysmetabolism. Methods: Male leptin-deficient (ob/ob) mice were administered tesaglitazar or vehicle for one week in a standard oral formulation or encapsulated in liposomes. Following the end of treatment, circulating metabolic parameters were measured and pro-inflammatory adipose tissue macrophage populations were quantified by flow cytometry. Cellular uptake of liposomes in tissues was assessed using immunofluorescence and a broad panel of cell subset markers by flow cytometry. Finally, PPARα/γ gene target expression levels in the liver, kidney, and sorted macrophages were quantified to determine levels of drug targeting to and drug action in these tissues and cells. Results: Administration of a standard oral formulation of tesaglitazar effectively treated symptoms of obesity-associated dysmetabolism and reduced the number of pro-inflammatory adipose tissue macrophages. Macrophages are the major cell type that took up liposomes with many other immune and stromal cell types taking up liposomes to a lesser extent. Liposome delivery of tesaglitazar did not have effects on inflammatory macrophages nor did it improve metabolic parameters to the extent of a standard oral formulation. Liposomal delivery did, however, attenuate effects on liver weight and liver and kidney expression of PPARα and -γ gene targets compared to oral delivery. Conclusions: These findings reveal for the first time that tesaglitazar has anti-inflammatory effects on adipose tissue macrophage populations in vivo. These data also suggest that while nanoparticle delivery reduced off-target effects, yet the lack of tesaglitazar actions in non-targeted cells such (as hepatocytes and adipocytes) and the uptake of drug-loaded liposomes in many other cell types, albeit to a lesser extent, may have impacted overall therapeutic efficacy. This fulsome analysis of cellular uptake of tesaglitazar-loaded liposomes provides important lessons for future studies of liposome drug delivery.
Collapse
|
11
|
Nakano Y. Adult-Onset Diseases in Low Birth Weight Infants: Association with Adipose Tissue Maldevelopment. J Atheroscler Thromb 2019; 27:397-405. [PMID: 31866623 PMCID: PMC7242223 DOI: 10.5551/jat.rv17039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Low birth weight (LBW) infants have higher risk of developing insulin resistance and its comorbidities later in life. The concept of “developmental origins of health and disease” suggests that intrauterine and postnatal environments have an important role in increasing these risks. The risk of such adult-onset diseases in LBW infants might be associated with adipose tissue maldevelopment including altered body composition and increased amount of visceral fat, which is the same mechanism as that in children and adults with metabolic syndrome. However, LBW infants often have different characteristics: they are not always overweight or obese over their life course. The inconsistency might be associated with the thrifty phenotype, which is produced in response to impaired growth potential and decreased lean body mass. LBW infants tend to be obese within the limits of impaired growth potential. Through our previous investigations evaluating longitudinal changes in adiponectin levels at an early stage of life, we speculated that probably, the intrauterine life of term infants or the period up to term-equivalent age in preterm infants might be the key age for the development of adipose tissues including fat cells. Because of that, we hypothesized that the smaller number of adipocytes in LBW infants might be associated with overloading of single adipocytes and impaired adipose tissue expandability. The possible mechanisms are discussed from the perspective of adipose tissue maldevelopment in LBW infants.
Collapse
Affiliation(s)
- Yuya Nakano
- Department of Pediatrics, Showa University School of Medicine
| |
Collapse
|
12
|
da Silva VJ, Dias SRC, Alves WP, Furtado LFV, Serafim LR, Moreira TB, de Aguiar PHN, de Faria AMC, Rabelo ÉML. Hookworm infection aggravates metabolic disorder in obesity. Mol Biochem Parasitol 2019; 232:111200. [DOI: 10.1016/j.molbiopara.2019.111200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
|
13
|
Kado A, Tsutsumi T, Enooku K, Fujinaga H, Ikeuchi K, Okushin K, Moriya K, Yotsuyanagi H, Koike K. Noninvasive diagnostic criteria for nonalcoholic steatohepatitis based on gene expression levels in peripheral blood mononuclear cells. J Gastroenterol 2019; 54:730-741. [PMID: 30830270 DOI: 10.1007/s00535-019-01565-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) consists of nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH); the latter progresses to liver cirrhosis and hepatocellular carcinoma. Discriminating NASH from NAFL typically involves liver biopsy. The mechanism of NASH progression is unclear but may involve immunological pathways. In this study, we examined expression levels of cytokine- and chemokine-encoding genes in peripheral blood mononuclear cells (PBMCs) from NAFLD patients and established immunological criteria for discriminating NASH from NAFL. METHODS PBMCs were obtained from 54 patients diagnosed histologically with NAFLD (NAFL, 18; NASH, 36). mRNA was extracted from PBMCs, and expression levels of cytokine- and chemokine-encoding genes were determined by quantitative real-time PCR. Statistical analysis was performed by nonparametric test. RESULTS Expression levels of interferon (IFN)γ, interleukin (IL)2, IL15, C-C-motif chemokine ligand (CCL)2, IL10, and C-X-C-motif chemokine ligand (CXCL)11 were significantly upregulated in NASH patients compared with NAFL patients. Moreover, their expression levels were positively correlated with the degree of ballooning of hepatocytes but not of steatosis or lobular inflammation. We focused on those encoding IL10, IFNγ, and CCL2, and developed a scoring system to discriminate NASH from NAFL. The discriminatory power of the criteria was validated in an independent cohort. CONCLUSIONS Expression levels of the cytokine- and chemokine-encoding genes in PBMCs were positively correlated with ballooning, suggesting their utility for the diagnosis of NASH. The data indicate that peripheral as well as intrahepatic immunity is involved in the progression of NASH. Our findings afford new insight into immunological mechanisms of NASH and will facilitate its noninvasive diagnosis.
Collapse
Affiliation(s)
- Akira Kado
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hidetaka Fujinaga
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Ikeuchi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Okushin
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
14
|
Yagi T, Toyoshima Y, Tokita R, Taguchi Y, Okamoto Y, Takahashi SI, Kato H, Minami S. Low-protein diet enhances adiponectin secretion in rats. Biosci Biotechnol Biochem 2019; 83:1774-1781. [PMID: 31130066 DOI: 10.1080/09168451.2019.1621153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previous studies including ours have shown that a low-protein diet up-regulates insulin signaling in the liver and muscle and induces fatty liver in rats. Adiponectin is known as an insulin-sensitizing adipocytokine. We, therefore, examined the effect of a low-protein diet on the adiponectin levels in rats. The low-protein diet significantly increased serum adiponectin level. However, mRNA and protein levels of adiponectin in white adipose tissue (WAT) were not changed by the low-protein diet. Since it is known that oligomerization is important to control serum adiponectin level, we examined the population of adiponectin oligomeric forms in WAT and found that low-protein diet did not change it. Despite these events, the amount of its secretion was significantly increased in the adipocytes isolated from WAT of low-protein diet-fed rats. These results indicate that a low-protein diet enhances adiponectin secretion, which is not due to the increased intracellular amount and oligomerization of adiponectin.
Collapse
Affiliation(s)
- Takashi Yagi
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| | - Yuka Toyoshima
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| | - Reiko Tokita
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| | - Yusuke Taguchi
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| | - Yoshihisa Okamoto
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan.,b Department of Medicine, Japan Community Health Care Organization Hodogaya Central Hospital , Yokohama , Kanagawa , Japan
| | - Shin-Ichiro Takahashi
- c Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| | - Hisanori Kato
- d Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Shiro Minami
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| |
Collapse
|
15
|
Miyachi Y, Tsuchiya K, Shiba K, Mori K, Komiya C, Ogasawara N, Ogawa Y. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition. Sci Rep 2018; 8:16113. [PMID: 30382157 PMCID: PMC6208395 DOI: 10.1038/s41598-018-34305-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
The adipose tissue includes various stromal cells, such as preadipocytes, endothelial cells, fibroblasts, and immune cells, which are involved in adipose tissue functions. We previously reported that, in obese mice, the sodium–glucose cotransporter 2 inhibitor ipragliflozin (Ipra) promoted the expansion of the epididymal adipose tissue (Epi) with increase of serum ketone body concentration. The Ipra-induced adipose tissue expansion did not deteriorate adipose inflammation, or systemic glucose/lipid metabolism, referred to as “healthy adipose tissue expansion.” Here we found that Ipra promoted healthy adipose tissue expansion with a reduced ratio of pro-inflammatory M1-like adipose tissue macrophages (ATMs) to anti-inflammatory M2-like ATMs. Ipra downregulated the gene expression of interleukin (IL)−15 (Il15) in stromal cells of Epi. IL-15 inhibited lipogenesis in 3T3-L1 cells associated with downregulation of the lipogenic gene. Ketone body β-hydroxybutyrate suppressed Il15 gene induction in M1-polarized cultured macrophages, and a ketogenic diet reproduced the adipose tissue expansion without deteriorating systemic glucose metabolism in mice. Our data indicate that the phenotypic switch of ATMs could mediate healthy adipose tissue expansion by treatment with Ipra, and it may offer new insights into the pathophysiological mechanisms of adipose tissue expansion.
Collapse
Affiliation(s)
- Yasutaka Miyachi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoichiro Tsuchiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan.
| | - Kumiko Shiba
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Mori
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | - Chikara Komiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naomi Ogasawara
- Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
16
|
Iizuka Y, Kim H, Hirako S, Chiba K, Wada M, Matsumoto A. Benefits of combination low-dose pioglitazone plus fish oil on aged type 2 diabetes mice. J Food Drug Anal 2018; 26:1265-1274. [PMID: 30249325 PMCID: PMC9298570 DOI: 10.1016/j.jfda.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 01/05/2023] Open
Abstract
The elderly patients with type 2 diabetes suffer more adverse drug events than young adults due to pharmacokinetic and pharmacodynamic changes associated with aging. Reducing the risks of these medication-related problems are equally important for the clinical care of older type 2 diabetes patients. Pioglitazone is used for treating type 2 diabetes as an oral antidiabetic drug. Despite pioglitazone is used helpful insulin sensitizers, the accumulation of subcutaneous fat is considered a major adverse effect of pioglitazone therapy. We investigated to reduce the adverse effect of pioglitazone by combination with fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in aged diabetic KK mice. The accumulation of subcutaneous fat associated with high-dose pioglitazone is reduced by fish oil, suppressing lipogenesis and stimulating fatty acid β-oxidation in the liver. Our data suggest that adding fish oil to low-dose pioglitazone results in anti-diabetic efficacy similar to that of the high-dose without concomitant body weight gain.
Collapse
|
17
|
Han W, Utoyoma M, Akieda-Asai S, Hidaka A, Yamada C, Hasegawa K, Nunoi H, Date Y. Influence of food texture on energy metabolism and adiposity in male rats. Exp Physiol 2018; 103:1347-1356. [PMID: 30105882 DOI: 10.1113/ep087072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this manuscript? What is the effect of food texture on fat accumulation, lipogenesis and proinflammatory factors in the adipose tissue and on energy balance in male rats? What is the main finding and its importance? Calorie intake and fat accumulation in rats fed soft pellets ad libitum increased, but their body weight did not. The data suggest that, even when BMI is normal, frequent consumption of soft food may contribute to the development of lifestyle-related diseases. ABSTRACT Dietary factors such as food texture are known to affect feeding behaviour and energy metabolism. We recently found that rats fed soft pellets (SPs) on a 3 h restricted feeding schedule showed glucose intolerance, insulin resistance with disruption of insulin signalling, and hyperplasia of pancreatic β-cells, even though there were no differences in energy intake and body weight between rats fed control pellets (CPs) and rats fed SPs. We investigated the effect of food texture on fat accumulation, lipogenesis and proinflammatory factors in the mesenteric fat, as well as on energy balance in male rats fed CPs or SPs. We used 7-week-old Wistar rats that were randomly divided into two groups, ad libitum fed either CPs or SPs for 27 weeks. Body weight and calorie intake were monitored once a week throughout the experiment. The calorie intake, lipogenesis and fat accumulation of the rats fed SPs increased, whereas their body weight did not. Additionally, SP rats used their fat mainly as a source of energy and increased their energy expenditure. Our data suggest that the habit of frequently eating soft food causes visceral fat accumulation without an increase in body weight. Further investigations using soft-textured foods could lead to the development of appropriate interventions for non-overweight patients with lifestyle-related diseases.
Collapse
Affiliation(s)
- Wanxin Han
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Maiko Utoyoma
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan.,Department of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Ayano Hidaka
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Chihiro Yamada
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Kazuya Hasegawa
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan.,Department of Nutritional Science, Morioka University, Iwate, 020-0694, Japan
| | - Hiroyuki Nunoi
- Department of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yukari Date
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
18
|
Okazaki H, Takeda S, Ishii H, Takemoto Y, Fujita S, Suyama M, Matsumoto K, Shindo M, Aramaki H. A Novel Bongkrekic Acid Analog-Mediated Modulation of the Size of Lipid Droplets: Evidence for the Appearance of Smaller Adipocytes. Biol Pharm Bull 2017; 40:1192-1198. [PMID: 28769000 DOI: 10.1248/bpb.b16-00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiazolidinediones (TZDs) are known as peroxisome proliferator-activated receptor γ (PPARγ) activators, and are used in the treatment of diabetes. Although the usefulness of TZDs has been demonstrated, some of their side effects are becoming an obstacle to their clinical applicability; edema is known to be evoked by the "structural characteristics" of TZD, but not by the PPARγ activation. Thus, novel therapeutic modalities (i.e., non-TZD-type PPARγ activators) having different structures to those of TZDs are desired. We previously identified bongkrekic acid (BKA) as a PPARγ activator using the human breast cancer MCF-7 cell line as a model system. In the present study, we newly synthesized BKA analogs and examined the usefulness of BKA and its analogs as PPARγ activators in differentiated adipocyte cells. Among the chemicals investigated, one of the BKA analogs (BKA-#2) strongly stimulated PPARγ and the differentiation of 3T3-L1 cells similar to pioglitazone, a positive control. Furthermore, BKA-#2 reduced the size of lipid droplets in the mature adipocyte cells. The possible modulation mechanism by BKA-#2 is discussed.
Collapse
Affiliation(s)
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU)
| | - Hiroyuki Ishii
- Department of Molecular Biology, Daiichi University of Pharmacy
| | - Yukimi Takemoto
- Department of Molecular Biology, Daiichi University of Pharmacy
| | - Satoshi Fujita
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Masaki Suyama
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University
| | | |
Collapse
|
19
|
Inducing maternal inflammation promotes leptin production in offspring but does not improve allergic symptoms in a mouse model of allergic rhinitis. Heliyon 2017; 3:e00327. [PMID: 28707000 PMCID: PMC5484967 DOI: 10.1016/j.heliyon.2017.e00327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/27/2017] [Accepted: 06/09/2017] [Indexed: 01/21/2023] Open
Abstract
AIMS The intrauterine environment is considered to affect immunological development in fetus, leading to an increased risk of developing allergy. In particular, maternal lipopolysaccharides (LPS) administration might regulate the development of allergic disease in offspring. Several studies have shown that being obese relates to a higher prevalence of allergic diseases compared to normal weight. The present study explored the effects of inducing maternal inflammation with LPS before pregnancy on body weight, physical composition including body fat, adipokine production, and pathology of allergic rhinitis in offspring. MAIN METHODS Female mice received a single intraperitoneal injection of LPS (2 μg/g BW). After 5 days of LPS administration, female mice were mated with males, and experimental allergic rhinitis was induced in female offspring. Immunization and nasal challenge with ovalbumin (OVA) were performed at 7 and 8 weeks of age. Allergic rhinitis-like symptoms, OVA-specific IgE and adipokines in sera, body weight, fat pad weight, and cytokine production by splenocytes in these 9-week-old offspring. KEY FINDINGS Maternal LPS administration results in a significant increase in body weight, visceral fat accumulation, and serum leptin concentration, and the dominance of Th1 in Th balance. Nevertheless, there was no statistical difference in OVA-specific IgE titer and allergic-like symptoms between the groups. SIGNIFICANCE In conclusion, maternal LPS promoted leptin production and altered Th balance in mice offspring, but not improved allergic symptoms in a mouse model of allergic rhinitis. It might suggest that inflammation during pregnancy plays a role in the adipose tissue function which could diversely influence allergic inflammation in offspring.
Collapse
|
20
|
Ventura LLA, Fortes NCL, Santiago HC, Caliari MV, Gomes MA, Oliveira DR. Obesity-induced diet leads to weight gain, systemic metabolic alterations, adipose tissue inflammation, hepatic steatosis, and oxidative stress in gerbils ( Meriones unguiculatus). PeerJ 2017; 5:e2967. [PMID: 28265495 PMCID: PMC5337087 DOI: 10.7717/peerj.2967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/08/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Nowadays, the number of obese people in the world has reached alarming proportions. During the expansion of adipose tissue, a number of functions such as activation and release of cytokines and hormones may be affected. This leads the body to a pro-inflammatory pattern, which may affect the proper functioning of many tissues. Thus, studying the mechanisms by which obesity induces physiological disorders is necessary, and may be facilitated by the use of animal models, in particular rodents. We sought to characterize the metabolic and adipose tissue changes resulting from a diet rich in fats and simple sugars in gerbils. METHODS We divided 14 gerbils into two experimental groups that received a diet rich in simple carbohydrates and fats with 5,86 kcal/g (OB, n = 7) or a standard diet with 4.15 kcal/g (CT; n = 7) for 11 weeks. The animals had free access to water and food. The animal weight and food consumption were measured weekly. Blood, adipose tissue and liver of each animal were collected at the end of experiment. The following parameters were determined: cholesterol (COL), triglycerides (TGL) and glycemia (GLI) in the plasma; cytokines (IL-6, IL-10 and TNF-α) and hormones (adiponectin and leptin) in adipose tissue; activity of superoxide dismutase (SOD) and catalase (CAT), extraction and differentiation of fat and histology in liver. RESULTS The consumption of a diet rich in simple carbohydrates and fats led to increased total body weight and increased relative weights of liver and adipose tissue. In addition, we observed increased fasting glucose levels and circulating triglycerides, along with high TNF-α production in adipose tissue and increased total fat, cholesterol and triglyceride contents in the liver, contributing to higher intensity of hepatic steatosis. On the other hand, the animals of this group showed depletion in the enzyme activity of SOD and CAT in the liver, as well as reduction of IL-10 and adiponectin levels in adipose tissue. DISCUSSION High intake of saturated fat and simple carbohydrates establish the gerbil as an experimental model for the study of metabolic and hepatic abnormalities resulting from obesity.
Collapse
Affiliation(s)
- Luciana L A Ventura
- Department of Parasitologia/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Nathália C L Fortes
- Department of Nutrição/Escola de Enfermagem, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Helton C Santiago
- Department of Bioquímica e Imunologia/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Marcelo V Caliari
- Department of Patologia Geral/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Maria A Gomes
- Department of Parasitologia/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Dirce R Oliveira
- Department of Nutrição/Escola de Enfermagem, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
21
|
Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9410954. [PMID: 28168013 PMCID: PMC5266865 DOI: 10.1155/2017/9410954] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/25/2016] [Indexed: 12/15/2022]
Abstract
Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.
Collapse
|
22
|
Urai T, Nakajima Y, Mukai K, Asano K, Okuwa M, Sugama J, Nakatani T. Does Obesity without Hyperglycemia Delay Wound Healing in an Obese Mouse Model Induced by a High-Fat Diet? Health (London) 2017. [DOI: 10.4236/health.2017.912122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Ehrlund A, Mejhert N, Björk C, Andersson R, Kulyté A, Åström G, Itoh M, Kawaji H, Lassmann T, Daub CO, Carninci P, Forrest ARR, Hayashizaki Y, Sandelin A, Ingelsson E, Rydén M, Laurencikiene J, Arner P, Arner E. Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution. Diabetes 2017; 66:218-230. [PMID: 27803022 PMCID: PMC5860264 DOI: 10.2337/db16-0631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
Abstract
White adipose tissue (WAT) can develop into several phenotypes with different pathophysiological impact on type 2 diabetes. To better understand the adipogenic process, the transcriptional events that occur during in vitro differentiation of human adipocytes were investigated and the findings linked to WAT phenotypes. Single-molecule transcriptional profiling provided a detailed map of the expressional changes of genes, enhancers, and long noncoding RNAs, where different types of transcripts share common dynamics during differentiation. Common signatures include early downregulated, transient, and late induced transcripts, all of which are linked to distinct developmental processes during adipogenesis. Enhancers expressed during adipogenesis overlap significantly with genetic variants associated with WAT distribution. Transiently expressed and late induced genes are associated with hypertrophic WAT (few but large fat cells), a phenotype closely linked to insulin resistance and type 2 diabetes. Transcription factors that are expressed early or transiently affect differentiation and adipocyte function and are controlled by several well-known upstream regulators such as glucocorticosteroids, insulin, cAMP, and thyroid hormones. Taken together, our results suggest a complex but highly coordinated regulation of adipogenesis.
Collapse
Affiliation(s)
- Anna Ehrlund
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christel Björk
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, and Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Agné Kulyté
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gaby Åström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Omics Science Center, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Preventive Medicine & Diagnosis Innovation Program, Wakō, Saitama, Japan
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Omics Science Center, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Preventive Medicine & Diagnosis Innovation Program, Wakō, Saitama, Japan
| | - Timo Lassmann
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Omics Science Center, Tsurumi, Yokohama, Kanagawa, Japan
- Telethon Kids Institute and The University of Western Australia, Perth, Western Australia, Australia
| | - Carsten O Daub
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa, Japan
- Department of Biosciences and Nutrition and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Omics Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Alistair R R Forrest
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Omics Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Preventive Medicine & Diagnosis Innovation Program, Wakō, Saitama, Japan
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, and Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erik Ingelsson
- Molecular Epidemiology, Department of Medical Sciences, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Mikael Rydén
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Peter Arner
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Erik Arner
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa, Japan
- RIKEN Omics Science Center, Tsurumi, Yokohama, Kanagawa, Japan
| |
Collapse
|
24
|
Lu JC, Chiang YT, Lin YC, Chang YT, Lu CY, Chen TY, Yeh CS. Disruption of Lipid Raft Function Increases Expression and Secretion of Monocyte Chemoattractant Protein-1 in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0169005. [PMID: 28030645 PMCID: PMC5193455 DOI: 10.1371/journal.pone.0169005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
The adipocyte is unique in its capacity to store lipids. In addition to triglycerides, the adipocyte stores a significant amount of cholesterol. Moreover, obese adipocytes are characterized by a redistribution of cholesterol with depleted cholesterol in the plasma membrane, suggesting that cholesterol perturbation may play a role in adipocyte dysfunction. We used methyl-β-cyclodextrin (MβCD), a molecule with high affinity for cholesterol, to rapidly deplete cholesterol level in differentiated 3T3-L1 adipocytes. We tested whether this perturbation altered adipocyte secretion of monocyte chemoattractant protein-1 (MCP-1), a chemokine that is elevated in obesity and is linked to obesity-associated chronic diseases. Depletion of cholesterol by MβCD increased MCP-1 secretion as well as the mRNA and protein levels, suggesting perturbation at biosynthesis and secretion. Pharmacological inhibition revealed that NF-κB, but not MEK, p38 and JNK, was involved in MβCD-stimulated MCP-1 biosynthesis and secretion in adipocytes. Finally, another cholesterol-binding drug, filipin, also induced MCP-1 secretion without altering membrane cholesterol level. Interestingly, both MβCD and filipin disturbed the integrity of lipid rafts, the membrane microdomains enriched in cholesterol. Thus, the depletion of membrane cholesterol in obese adipocytes may result in dysfunction of lipid rafts, leading to the elevation of proinflammatory signaling and MCP-1 secretion in adipocytes.
Collapse
Affiliation(s)
- Juu-Chin Lu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
- * E-mail:
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chang
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yun Lu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Shan Yeh
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
25
|
Yasunaga S, Domen M, Nishi K, Kadota A, Sugahara T. Nobiletin suppresses monocyte chemoattractant protein-1 (MCP-1) expression by regulating MAPK signaling in 3T3-L1 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
26
|
Nishizuka M, Horinouchi W, Yamada E, Ochiai N, Osada S, Imagawa M. KCNMA1, a pore-forming α-subunit of BK channels, regulates insulin signalling in mature adipocytes. FEBS Lett 2016; 590:4372-4380. [DOI: 10.1002/1873-3468.12465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Makoto Nishizuka
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Wataru Horinouchi
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Eri Yamada
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Natsuki Ochiai
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Shigehiro Osada
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| | - Masayoshi Imagawa
- Department of Molecular Biology; Graduate School of Pharmaceutical Sciences; Nagoya City University; Japan
| |
Collapse
|
27
|
Yeh YS, Goto T, Takahashi N, Egawa K, Takahashi H, Jheng HF, Kim YI, Kawada T. Geranylgeranyl pyrophosphate performs as an endogenous regulator of adipocyte function via suppressing the LXR pathway. Biochem Biophys Res Commun 2016; 478:1317-22. [PMID: 27569282 DOI: 10.1016/j.bbrc.2016.08.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/20/2016] [Indexed: 12/22/2022]
Abstract
Isoprenoids such as geranylgeranyl pyrophosphate (GGPP) influence various biological processes. Here we show that GGPP inhibits adipocyte differentiation via the liver X receptors (LXRs) pathway. Intracellular GGPP levels and GGPP synthase (Ggps) mRNA expression increases during adipocyte differentiation. Ggps expression also increases in white adipose tissue of obese mice. GGPP addition reduces the expression of adipogenic marker genes such as adipocyte fatty acid binding protein, peroxisome proliferator-activated receptor γ, and insulin-stimulated glucose uptake. Similarly, over-expressing Ggps inhibits adipocyte differentiation. In contrast, Ggps knockdown promotes adipocyte differentiation. Inhibition of adipocyte differentiation by GGPP was partially reduced by LXR agonist T0901317. Furthermore, Ggps knockdown up-regulates LXR target genes during adipocyte differentiation. These results suggest that GGPP may act as an endogenous regulator of adipocyte differentiation and maturation through a mechanism partially dependent on the LXR pathway.
Collapse
Affiliation(s)
- Yu-Sheng Yeh
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan; Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan.
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan; Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Kahori Egawa
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Young-Il Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan; Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Ozaki KI, Awazu M, Tamiya M, Iwasaki Y, Harada A, Kugisaki S, Tanimura S, Kohno M. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am J Physiol Endocrinol Metab 2016; 310:E643-E651. [PMID: 26860984 DOI: 10.1152/ajpendo.00445.2015] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022]
Abstract
Extracellular signal-regulated kinase (ERK) has been implicated in the development of insulin resistance associated with obesity and type 2 diabetes mellitus. We have now examined the potential of pharmacological targeting of the ERK pathway with MEK (ERK kinase) inhibitors (PD184352 and PD0325901) for the treatment of obesity-associated insulin resistance. The effects of PD184352 and PD0325901 on the expression of adipocytokines and lipolysis activity were thus examined in 3T3-L1 adipocytes maintained in long-term culture as a model of adipocyte hypertrophy. Leptin receptor-deficient (db/db) mice and high-fat diet-fed KKAy mice, both of which are models of type 2 diabetes, were also treated orally with PD184352 to examine its effects on the diabetic condition. ERK activity was increased in hypertrophic 3T3-L1 adipocytes as well as in adipose tissue of db/db mice and high-fat diet-fed KKAy mice, and this enhanced ERK signaling was associated with dysregulation of adipocytokine expression and increased lipolysis activity. Specific blockade of the ERK pathway in hypertrophic 3T3-L1 adipocytes by MEK inhibitors ameliorated the dysregulation of adipocytokine expression and suppressed the enhanced lipolysis activity. Furthermore, repeated oral administration of PD184352 normalized hyperglycemia and hyperlipidemia and improved insulin sensitivity and glucose tolerance in the diabetic mice. These results suggest that sustained activation of the ERK pathway in adipocytes is associated with the pathogenesis of type 2 diabetes and that selective blockade of this pathway with MEK inhibitors warrants further study as a promising approach to the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Kei-Ichi Ozaki
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| | - Midori Awazu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Mayuko Tamiya
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| | - Yuka Iwasaki
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| | - Aya Harada
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| | - Satomi Kugisaki
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| | - Susumu Tanimura
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| | - Michiaki Kohno
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; and
| |
Collapse
|
29
|
Nakano Y, Itabashi K, Dobashi K, Mizuno K. Longitudinal changes in adiponectin multimer levels in preterm infants. Early Hum Dev 2016; 95:29-33. [PMID: 26925934 DOI: 10.1016/j.earlhumdev.2016.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/23/2016] [Accepted: 01/29/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Preterm infants have altered adiponectin levels at term-equivalent age and have a higher risk of developing components of the metabolic syndrome in later life than term infants. AIMS To investigate the longitudinal changes in adiponectin levels in preterm infants and to compare the levels between term and preterm infants. STUDY DESIGN A cohort study. SUBJECTS The study subjects were 43 term infants and 42 preterm infants born at ≤ 34-week gestation. OUTCOME MEASURES Serum levels of total adiponectin (T-Ad) and high-molecular-weight adiponectin (HMW-Ad) were measured in 42 preterm infants at term-, 6 month-, and 12 month-equivalent ages. Moreover, the levels in 43 term infants investigated previously were reviewed. RESULTS In preterm infants, T-Ad and HMW-Ad levels at the 12 month-equivalent age were lower than at the term- and 6 month-equivalent ages (all values p<0.001), which was consistent with previous results in term infants. The difference in ratios of HMW-Ad to T-Ad between term and preterm infants continued at the 6 month-equivalent age but disappeared at the 12 month-equivalent age. Multiple regression analyses revealed that HMW-Ad levels at term-equivalent age were only a significant determinant of the changes in HMW-Ad between the term- and 12 month-equivalent ages in preterm infants (p<0.001). CONCLUSIONS The HMW-Ad levels decline till the 12 month-equivalent age in both term and preterm infants. The changes in HMW-Ad level during infancy might be determined at least to a certain degree up to term-equivalent age in preterm infants.
Collapse
Affiliation(s)
- Yuya Nakano
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan.
| | - Kazuo Itabashi
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kazushige Dobashi
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Katsumi Mizuno
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Fish oil prevents excessive accumulation of subcutaneous fat caused by an adverse effect of pioglitazone treatment and positively changes adipocytes in KK mice. Toxicol Rep 2015; 3:4-14. [PMID: 28959521 PMCID: PMC5615378 DOI: 10.1016/j.toxrep.2015.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022] Open
Abstract
Pioglitazone, a thiazolidinedione (TZD), is widely used as an insulin sensitizer in the treatment of type 2 diabetes. However, body weight gain is frequently observed in TZD-treated patients. Fish oil improves lipid metabolism dysfunction and obesity. In this study, we demonstrated suppression of body weight gain in response to pioglitazone administration by combination therapy of pioglitazone and fish oil in type 2 diabetic KK mice. Male KK mice were fed experimental diets for 8 weeks. In safflower oil (SO), safflower oil/low-dose pioglitazone (S/PL), and safflower oil/high-dose pioglitazone (S/PH) diets, 20% of calories were provided by safflower oil containing 0%, 0.006%, or 0.012% (wt/wt) pioglitazone, respectively. In fish oil (FO), fish oil/low-dose pioglitazone (F/PL), and fish oil/high-dose pioglitazone (F/PH) diets, 20% of calories were provided by a mixture of fish oil and safflower oil. Increased body weight and subcutaneous fat mass were observed in the S/PL and S/PH groups; however, diets containing fish oil were found to ameliorate these changes. Hepatic mRNA levels of lipogenic enzymes were significantly decreased in fish oil-fed groups. These findings demonstrate that the combination of pioglitazone and fish oil decreases subcutaneous fat accumulation, ameliorating pioglitazone-induced body weight gain, through fish oil-mediated inhibition of hepatic de novo lipogenesis.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- AOX, acyl-CoA oxidase
- ATM, adipose tissue macrophage
- AUC, area under the curve
- Adverse effect
- BAT, brown adipose tissue
- CPT-1, carnitine palmitoyl transferase 1
- CT, computed tomography
- DHA, docosahexaenoic acid
- ELISA, enzyme-linked immunosorbent assay
- EPA, eicosapentaenoic acid
- FAS, fatty acid synthase
- FFA, free fatty acid
- Fish oil
- G6pase, glucose-6-phosphatase
- GPAT, glycerol-3-phosphate acyltransferase
- H&E, hematoxylin and eosin
- HDL-C, high-density lipoprotein cholesterol
- HOMA-IR, homeostasis model assessment of insulin resistance
- IR, insulin resistance
- ITT, insulin tolerance test
- Insig-1, insulin-induced gene 1
- MCAD, medium-chain acyl-CoA dehydrogenase
- MCP-1, monocyte chemoattractant protein-1
- OGTT, oral glucose tolerance test
- PEPCK, phosphoenolpyruvate carboxykinase
- PPARα, peroxisome proliferator-activated receptor alpha
- PPARγ, peroxisome proliferator-activated receptor gamma
- Pioglitazone
- RT-PCR, real-time polymerase chain reaction
- SCD-1, stearoyl-CoA desaturase 1
- SREBP, sterol regulatory element-binding protein
- TLR-4, toll-like receptor-4
- TNF-α, tumor necrosis factor-α
- TZD, thiazolidinedione
- UCP-2, uncoupling protein 2
- VLDL, very low-density lipoprotein
- WAT, white adipose tissue
Collapse
|
31
|
Ezure T, Amano S. Increment of subcutaneous adipose tissue is associated with decrease of elastic fibres in the dermal layer. Exp Dermatol 2015; 24:924-9. [PMID: 26194659 DOI: 10.1111/exd.12816] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/25/2022]
Abstract
Obesity is a significant risk factor for various skin disorders, including pressure ulcer and delayed wound healing. We previously showed that increment of subcutaneous adipose tissue contributes to poor skin condition by decreasing dermal elasticity. Here, we examined the mechanism involved. Histologic observation of abdominal skin from middle-aged females with a wide range of body mass index (BMI), an indicator of subcutaneous fat mass, showed that dermal elastic fibre abundance was significantly decreased with increment of BMI. Concomitantly, adipocytes were significantly enlarged. Adipocyte enlargement was significantly negatively correlated with dermal elastic fibre abundance. We hypothesized that enlarged adipocytes negatively influence dermal elastic fibres, so we investigated elastic fibre-degrading factors in in vitro-cultured enlarged adipocytes. MMP9 gene expression and secretion were significantly increased; further, these changes were blocked by extracellular signal-regulated kinase (ERK) inhibitor. Nuclear translocation (activation) of AP-1, a downstream ERK signalling molecule, was also observed in enlarged adipocytes. MMP9 abundance was significantly increased in skin of subjects with high BMI and enlarged adipocytes. These results suggest that increment of subcutaneous adipose tissue leads to adipocyte enlargement together with increased degradation of dermal elastic fibres, mediated at least in part by an ERK signalling-mediated increase of MMP9 in enlarged adipocytes.
Collapse
Affiliation(s)
- Tomonobu Ezure
- Shiseido Research Center, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan
| | - Satoshi Amano
- Shiseido Research Center, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
32
|
A therapeutic role for vitamin D on obesity-associated inflammation and weight-loss intervention. Inflamm Res 2015; 64:565-75. [PMID: 26142253 DOI: 10.1007/s00011-015-0847-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/11/2015] [Accepted: 06/20/2015] [Indexed: 12/14/2022] Open
Abstract
Vitamin D plays an essential role in the regulation of skeletal metabolism as well as calcium and phosphate homeostasis, while vitamin D receptor (VDR) regulates de novo lipid synthesis, thereby contributing to the development of obesity. Furthermore, obese individuals are at a greater risk for vitamin D deficiency which may increase the potential risk for chronic inflammation, insulin resistance, and metabolic syndrome. While acute exercise enhances the activation of inflammatory signaling pathways, chronic exercise training may attenuate elevated pro-inflammatory cytokine production, resulting in the improvement of cardiovascular and metabolic health in obese individuals. Supplementation with vitamin D coupled with exercise or mild caloric restriction has been shown to improve markers of fitness and inflammation as well as cholesterol. Therefore, this review primarily addresses the impact of vitamin D deficiency in obesity-related inflammatory imbalances and how exercise and weight-loss interventions may enhance the beneficial effects on vitamin D-mediated inflammation in obesity.
Collapse
|
33
|
Yamamoto J, Tadaishi M, Yamane T, Oishi Y, Shimizu M, Kobayashi-Hattori K. Hot water extracts of edible Chrysanthemum morifolium Ramat. exert antidiabetic effects in obese diabetic KK-Ay mice. Biosci Biotechnol Biochem 2015; 79:1147-54. [DOI: 10.1080/09168451.2015.1008975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
In this study, the antidiabetic effects of a hot water extract of edible Chrysanthemum morifolium Ramat. (HW-ECM) were investigated in type 2 diabetic mice. HW-ECM improved blood glucose levels and insulin resistance and increased adiponectin mRNA expression in adipose tissues and protein concentrations in the plasma. Moreover, it increased adipose mRNA and protein expressions of peroxisome proliferator-activated receptor γ (PPARγ), a regulator of adiponectin transcription, and mRNA expression of its downstream target genes. It also reduced the adipose cell size and attenuated the mRNA expression of pro-inflammatory adipocytokines in adipose tissues. These data presumably indicate a hypoglycemic mechanism of HW-ECM, involving increased PPARγ expression, decreased the adipocyte sizes, and suppression of chronic inflammation in adipose tissues. Finally, elevated adiponectin levels lead to amelioration of insulin resistance and the corresponding hypoglycemic effects. Therefore, HW-ECM indicates its potential as a functional food for type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Kazuo Kobayashi-Hattori
- Faculty of Applied Bioscience, Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
34
|
Kobayashi S, Fukuhara A, Otsuki M, Suganami T, Ogawa Y, Morii E, Shimomura I. Fat/vessel-derived secretory protein (Favine)/CCDC3 is involved in lipid accumulation. J Biol Chem 2015; 290:7443-51. [PMID: 25605713 DOI: 10.1074/jbc.m114.592493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a novel gene encoding Favine/CCDC3 (NCBI protein entry NP_083080), a possible secretory factor, the mRNA of which is highly expressed in adipose tissue and the aorta. The Favine mRNA levels are increased in the course of differentiation of rat primary adipocytes and are more elevated in the adipose tissue of genetically obese and diet-induced obese mice than in lean mice. However, its biological function has not yet been elucidated until now. Here, we tested the hypothesis that Favine is involved in lipid metabolism in adipocytes. We found that overexpression of Favine promoted 3T3-L1 adipocyte differentiation. To further investigate the function of Favine in vivo, we generated Favine knock-out (KO) mice. Favine KO mice exhibited a lean phenotype as they aged. The weights of white adipose tissue and liver were less, and adipocyte size was smaller in Favine KO mice compared with wild-type littermates (WT). Expression levels of lipogenic genes, such as fatty-acid synthase (FAS), acetyl-CoA carboxylase α (ACC1), and diacylglycerol O-acyltransferase-2 (Dgat2), were decreased in adipose tissue of Favine KO mice. In 1-year-old mice, Favine deficiency decreased the number of inflammatory cells in white adipose tissue and diminished hepatic steatosis. In vitro, deficiency of Favine attenuated differentiation of primary adipocytes. Taken together, these data demonstrate that Favine has adipogenic and lipogenic effects on adipocytes.
Collapse
Affiliation(s)
| | | | | | | | - Yoshihiro Ogawa
- Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-545 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Eiichi Morii
- Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka and
| | | |
Collapse
|
35
|
Park J, Yoon YS, Han HS, Kim YH, Ogawa Y, Park KG, Lee CH, Kim ST, Koo SH. SIK2 is critical in the regulation of lipid homeostasis and adipogenesis in vivo. Diabetes 2014; 63:3659-73. [PMID: 24898145 DOI: 10.2337/db13-1423] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cyclic AMP promotes chronic expression of target genes mainly by protein kinase A-dependent activation of CREB transcription factor machineries in the metabolic tissues. Here, we wanted to elaborate whether CREB-regulated transcription factor (CRTC)2 and its negative regulator salt-inducible kinase (SIK)2 are involved in the transcriptional control of the metabolic pathway in adipocytes. SIK2 knockout (SIK2 KO) mice exhibited higher blood glucose levels that were associated with impaired glucose and insulin tolerance. Hypertriglyceridemia was apparent in SIK2 KO mice, mainly due to the increased lipolysis from white adipocytes and the decreased fatty acid uptake in the peripheral tissues. Investigation of white adipocytes revealed the increases in fat cell size and macrophage infiltration, which could be linked to the metabolic anomaly that is associated in these mice. Interestingly, SIK2 KO promoted the enhancement in the CRTC2-CREB transcriptional pathway in white adipocytes. SIK2 KO mice displayed increased expression of activating transcription factor (ATF)3 and subsequent downregulation of GLUT4 expression and reduction in high-molecular weight adiponectin levels in the plasma, leading to the reduced glucose uptake in the muscle and white adipocytes. The effect of SIK2-dependent regulation of adipocyte metabolism was further confirmed by in vitro cell cultures of 3T3 L1 adipocytes and the differentiated preadipocytes from the SIK2 or CRTC2 KO mice. Collectively, these data suggest that SIK2 is critical in regulating whole-body glucose metabolism primarily by controlling the CRTC2-CREB function of the white adipocytes.
Collapse
Affiliation(s)
- Jinyoung Park
- Department of Life Sciences, Korea University, Seoul, Korea Division of Biochemistry and Molecular Biology, Department of Molecular Cell Biology and Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea
| | - Young-Sil Yoon
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hye-Sook Han
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keun-Gyu Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seong-Tae Kim
- Division of Biochemistry and Molecular Biology, Department of Molecular Cell Biology and Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea
| | - Seung-Hoi Koo
- Department of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
36
|
Ota K, Yamagishi SI, Kim M, Dambaeva S, Gilman-Sachs A, Beaman K, Kwak-Kim J. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in recurrent pregnancy losses (RPL): possible participation of RAGE in RPL. Fertil Steril 2014; 102:782-9. [PMID: 25044082 DOI: 10.1016/j.fertnstert.2014.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To determine whether the soluble receptor for advanced glycation end products (sRAGE) and immune inflammatory markers are associated with recurrent pregnancy losses (RPL). DESIGN Prospective case-control study. SETTING University clinic. PATIENT(S) A total of 93 women (age 35.8±4.6 years) were enrolled including 63 women with three or more recurrent pregnancy losses (RPL), and age-matched fertile controls with a history of at least one live birth and no history of pregnancy losses (n=30). INTERVENTION(S) Peripheral blood collection. MAIN OUTCOME MEASURE(S) Assessment of anthropometric, metabolic, and inflammatory immune variables. RESULT(S) Levels of sRAGE were statistically significantly higher in RPL patients than in control patients (1,528.9±704.5 vs. 1,149.9±447.4 pg/mL). In the multivariate analysis, the levels of insulin, plasminogen activator inhibitor-1, the resistance index of the uterine radial artery, and the ratio of tumor necrosis factor-α/interleukin-10 producing T helper cells were statistically significantly associated with the serum sRAGE level. CONCLUSION(S) Elevated levels of serum sRAGE are associated with RPL. The soluble receptor for advanced glycation end products might contribute to RPL by reducing uterine blood flow and subsequently causing ischemia in the fetus via inflammatory and thrombotic reactions.
Collapse
Affiliation(s)
- Kuniaki Ota
- Reproductive Medicine, Department of Obstetrics and Gynecology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, Vernon Hills, Illinois; Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Michael Kim
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Svetlana Dambaeva
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kenneth Beaman
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Joanne Kwak-Kim
- Reproductive Medicine, Department of Obstetrics and Gynecology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, Vernon Hills, Illinois; Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois.
| |
Collapse
|
37
|
Inflammatory markers and obstructive sleep apnea in obese children: the NANOS study. Mediators Inflamm 2014; 2014:605280. [PMID: 24991089 PMCID: PMC4058796 DOI: 10.1155/2014/605280] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/17/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022] Open
Abstract
Introduction. Obesity and obstructive sleep apnea syndrome (OSA) are common coexisting conditions associated with a chronic low-grade inflammatory state underlying some of the cognitive, metabolic, and cardiovascular morbidities. Aim. To examine the levels of inflammatory markers in obese community-dwelling children with OSA, as compared to no-OSA, and their association with clinical and polysomnographic (PSG) variables. Methods. In this cross-sectional, prospective multicenter study, healthy obese Spanish children (ages 4–15 years) were randomly selected and underwent nocturnal PSG followed by a morning fasting blood draw. Plasma samples were assayed for multiple inflammatory markers. Results. 204 children were enrolled in the study; 75 had OSA, defined by an obstructive respiratory disturbance index (RDI) of 3 events/hour total sleep time (TST). BMI, gender, and age were similar in OSA and no-OSA children. Monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in OSA children, with interleukin-6 concentrations being higher in moderate-severe OSA (i.e., AHI > 5/hrTST; P < 0.01), while MCP-1 levels were associated with more prolonged nocturnal hypercapnia (P < 0.001). Conclusion. IL-6, MCP-1, and PAI-1 are altered in the context of OSA among community-based obese children further reinforcing the proinflammatory effects of sleep disorders such as OSA. This trial is registered with ClinicalTrials.gov NCT01322763.
Collapse
|
38
|
Nakano Y, Itabashi K, Sakurai M, Aizawa M, Dobashi K, Mizuno K. Accumulation of subcutaneous fat, but not visceral fat, is a predictor of adiponectin levels in preterm infants at term-equivalent age. Early Hum Dev 2014; 90:213-7. [PMID: 24641947 DOI: 10.1016/j.earlhumdev.2014.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Preterm infants have altered fat tissue development, including a higher percentage of fat mass and increased volume of visceral fat. They also have altered adiponectin levels, including a lower ratio of high-molecular-weight adiponectin (HMW-Ad) to total adiponectin (T-Ad) at term-equivalent age, compared with term infants. AIMS The objective of this study was to investigate the association between adiponectin levels and fat tissue accumulation or distribution in preterm infants at term-equivalent age. STUDY DESIGN Cross-sectional clinical study. SUBJECTS Study subjects were 53 preterm infants born at ≤34weeks gestation with a mean birth weight of 1592g. OUTCOME MEASURES Serum levels of T-Ad and HMW-Ad were measured and a computed tomography (CT) scan was performed at the level of the umbilicus at term-equivalent age to analyze how fat tissue accumulation or distribution was correlated with adiponectin levels. RESULTS T-Ad (r=0.315, p=0.022) and HMW-Ad levels (r=0.338, p=0.013) were positively associated with subcutaneous fat area evaluated by performing CT scan at term-equivalent age, but were not associated with visceral fat area in simple regression analyses. In addition, T-Ad (β=0.487, p=0.003) and HMW-Ad levels (β=0.602, p<0.001) were positively associated with subcutaneous fat tissue area, but they were not associated with visceral fat area also in multiple regression analyses. CONCLUSION Subcutaneous fat accumulation contributes to increased levels of T-Ad and HMW-Ad, while visceral fat accumulation does not influence adiponectin levels in preterm infants at term-equivalent age.
Collapse
Affiliation(s)
- Yuya Nakano
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan.
| | - Kazuo Itabashi
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Motoichiro Sakurai
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Madoka Aizawa
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kazushige Dobashi
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Katsumi Mizuno
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Masuda T, Fu Y, Eguchi A, Czogalla J, Rose MA, Kuczkowski A, Gerasimova M, Feldstein AE, Scadeng M, Vallon V. Dipeptidyl peptidase IV inhibitor lowers PPARγ agonist-induced body weight gain by affecting food intake, fat mass, and beige/brown fat but not fluid retention. Am J Physiol Endocrinol Metab 2014; 306:E388-98. [PMID: 24347054 PMCID: PMC3923087 DOI: 10.1152/ajpendo.00124.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) agonists like pioglitazone (PGZ) are effective antidiabetic drugs, but they induce fluid retention and body weight (BW) gain. Dipeptidyl peptidase IV (DPP IV) inhibitors are antidiabetic drugs that enhance renal Na(+) and fluid excretion. Therefore, we examined whether the DPP IV inhibitor alogliptin (ALG) ameliorates PGZ-induced BW gain. Male Sv129 mice were treated with vehicle (repelleted diet), PGZ (220 mg/kg diet), ALG (300 mg/kg diet), or a combination of PGZ and ALG (PGZ + ALG) for 14 days. PGZ + ALG prevented the increase in BW observed with PGZ but did not attenuate the increase in body fluid content determined by bioimpedance spectroscopy (BIS). BIS revealed that ALG alone had no effect on fat mass (FM) but enhanced the FM-lowering effect of PGZ; MRI analysis confirmed the latter and showed reductions in visceral and inguinal subcutaneous (sc) white adipose tissue (WAT). ALG but not PGZ decreased food intake and plasma free fatty acid concentrations. Conversely, PGZ but not ALG increased mRNA expression of thermogenesis mediator uncoupling protein 1 in epididymal WAT. Adding ALG to PGZ treatment increased the abundance of multilocular cell islets in sc WAT, and PGZ + ALG increased the expression of brown-fat-like "beige" cell marker TMEM26 in sc WAT and interscapular brown adipose tissue and increased rectal temperature vs. vehicle. In summary, DPP IV inhibition did not attenuate PPARγ agonist-induced fluid retention but prevented BW gain by reducing FM. This involved ALG inhibition of food intake and was associated with food intake-independent synergistic effects of PPARγ agonism and DPP-IV inhibition on beige/brown fat cells and thermogenesis.
Collapse
|
40
|
Inoue K, Maeda N, Mori T, Sekimoto R, Tsushima Y, Matsuda K, Yamaoka M, Suganami T, Nishizawa H, Ogawa Y, Funahashi T, Shimomura I. Possible involvement of Opa-interacting protein 5 in adipose proliferation and obesity. PLoS One 2014; 9:e87661. [PMID: 24516558 PMCID: PMC3916335 DOI: 10.1371/journal.pone.0087661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/27/2013] [Indexed: 12/15/2022] Open
Abstract
Obesity is an epidemic matter increasing risk for cardiovascular diseases and metabolic disorders such as type 2 diabetes. We recently examined the association between visceral fat adiposity and gene expression profile of peripheral blood cells in human subjects. In a series of studies, Opa (Neisseria gonorrhoeae opacity-associated)-interacting protein 5 (OIP5) was nominated as a molecule of unknown function in adipocytes and thus the present study was performed to investigate the role of OIP5 in obesity. Adenovirus overexpressing Oip5 (Ad-Oip5) was generated and infected to 3T3-L1 cells stably expressing Coxsackie-Adenovirus Receptor (CAR-3T3-L1) and to mouse subcutaneous fat. For a knockdown experiment, siRNA against Oip5 (Oip5-siRNA) was introduced into 3T3-L1 cells. Proliferation of adipose cells was measured by BrdU uptake, EdU-staining, and cell count. Significant increase of Oip5 mRNA level was observed in obese white adipose tissues and such increase was detected in both mature adipocytes fraction and stromal vascular cell fraction. Ad-Oip5-infected CAR-3T3-L1 preadipocytes and adipocytes proliferated rapidly, while a significant reduction of proliferation was observed in Oip5-siRNA-introduced 3T3-L1 preadipocytes. Fat weight and number of adipocytes were significantly increased in Ad-Oip5-administered fat tissues. Oip5 promotes proliferation of pre- and mature-adipocytes and contributes adipose hyperplasia. Increase of Oip5 may associate with development of obesity.
Collapse
Affiliation(s)
- Kana Inoue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Takuya Mori
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryohei Sekimoto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yu Tsushima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keisuke Matsuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaya Yamaoka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayoshi Suganami
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tohru Funahashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
41
|
Nguyen A, Tao H, Metrione M, Hajri T. Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction. J Biol Chem 2013; 289:1688-703. [PMID: 24293365 DOI: 10.1074/jbc.m113.515320] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Obesity is associated with adipose tissue remodeling, characterized by adipocyte hypertrophy and macrophage infiltration. Previously, we have shown that very low density lipoprotein receptor (VLDLR) is virtually absent in preadipocytes but is strongly induced during adipogenesis and actively participates in adipocyte hypertrophy. In this study, we investigated the role of VLDLR in adipose tissue inflammation and adipocyte-macrophage interactions in wild type and VLDLR-deficient mice fed a high fat diet. The results show that VLDLR deficiency reduced high fat diet-induced inflammation and endoplasmic reticulum (ER) stress in adipose tissue in conjunction with reduced macrophage infiltration, especially those expressing pro-inflammatory markers. In adipocyte culture, VLDLR deficiency prevented adipocyte hypertrophy and strongly reduced VLDL-induced ER stress and inflammation. Likewise, cultures of primary peritoneal macrophages show that VLDLR deficiency reduced lipid accumulation and inflammation but did not alter chemotactic response of macrophages to adipocyte signals. Moreover, VLDLR deficiency tempered the synergistic inflammatory interactions between adipocytes and macrophages in a co-culture system. Collectively, these results show that VLDLR contributes to adipose tissue inflammation and mediates VLDL-induced lipid accumulation and induction of inflammation and ER stress in adipocytes and macrophages.
Collapse
Affiliation(s)
- Andrew Nguyen
- From the Department of Surgery, Hackensack University Medical Center, Hackensack, New Jersey 07601 and
| | | | | | | |
Collapse
|
42
|
A novel role for adipose ephrin-B1 in inflammatory response. PLoS One 2013; 8:e76199. [PMID: 24098442 PMCID: PMC3787942 DOI: 10.1371/journal.pone.0076199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
Aims Ephrin-B1 (EfnB1) was selected among genes of unknown function in adipocytes or adipose tissue and subjected to thorough analysis to understand its role in the development of obesity. Methods and Results EfnB1 mRNA and protein levels were significantly decreased in adipose tissues of obese mice and such reduction was mainly observed in mature adipocytes. Exposure of 3T3-L1 adipocytes to tumor necrosis factor-α (TNF-α) and their culture with RAW264.7 cells reduced EFNB1 levels. Knockdown of adipose EFNB1 increased monocyte chemoattractant protein-1 (Mcp-1) mRNA level and augmented the TNF-α-mediated THP-1 monocyte adhesion to adipocytes. Adenovirus-mediated adipose EFNB1-overexpression significantly reduced the increase in Mcp-1 mRNA level induced by coculture of 3T3-L1 adipocytes with RAW264.7 cells. Monocyte adherent assay showed that adipose EfnB1-overexpression significantly decreased the increase of monocyte adhesion by coculture with RAW264.7 cells. TNF-α-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) was reduced by EFNB1-overexpression. Conclusions EFNB1 contributes to the suppression of adipose inflammatory response. In obesity, reduction of adipose EFNB1 may accelerate the vicious cycle involved in adipose tissue inflammation.
Collapse
|
43
|
Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes. PLoS One 2013. [PMID: 23951179 DOI: 10.1371//journal.pone.0071517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects on lipolysis. These studies suggest that TSA, through down-regulating PPARγ, attenuates TZD-mediated suppression of TNFα-induced ERK phosphorylation and lipolysis in adipocytes.
Collapse
|
44
|
Lu JC, Chang YT, Wang CT, Lin YC, Lin CK, Wu ZS. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes. PLoS One 2013; 8:e71517. [PMID: 23951179 PMCID: PMC3739734 DOI: 10.1371/journal.pone.0071517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/01/2013] [Indexed: 12/11/2022] Open
Abstract
In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects on lipolysis. These studies suggest that TSA, through down-regulating PPARγ, attenuates TZD-mediated suppression of TNFα-induced ERK phosphorylation and lipolysis in adipocytes.
Collapse
Affiliation(s)
- Juu-Chin Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
45
|
Singhal SS, Figarola J, Singhal J, Reddy MA, Liu X, Berz D, Natarajan R, Awasthi S. RLIP76 protein knockdown attenuates obesity due to a high-fat diet. J Biol Chem 2013; 288:23394-406. [PMID: 23821548 DOI: 10.1074/jbc.m113.480194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Feeding a Western high-fat diet (HFD) to C57BL/6 mice induces obesity, associated with a chronic inflammatory state, lipid transport, and metabolic derangements, and organ system effects that particularly prominent in the kidneys. Here, we report that RLIP76 homozygous knock-out (RLIP76(-/-)) mice are highly resistant to obesity as well as these other features of metabolic syndrome caused by HFD. The normal increase in pro-inflammatory and fibrotic markers associated with HFD induced obesity in wild-type C57B mice was broadly and nearly completely abrogated in RLIP76(-/-) mice. This is a particularly striking finding because chemical markers of oxidative stress including lipid hydroperoxides and alkenals were significantly higher in RLIP76(-/-) mice. Whereas HFD caused marked suppression of AMPK in wild-type C57B mice, RLIP76(-/-) mice had baseline activation of AMP-activated protein kinase, which was not further affected by HFD. The baseline renal function was reduced in RLIP76(-/-) mice as compared with wild-type, but was unaffected by HFD, in marked contrast to severe renal impairment and glomerulopathy in the wild-type mice given HFD. Our findings confirm a fundamental role of RLIP76 in regulating the function of obesity-promoting pro-inflammatory cytokines, and provide a novel mechanism for targeted therapy of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
vinh quốc Lu'o'ng K, Nguyễn LTH. The beneficial role of vitamin D in obesity: possible genetic and cell signaling mechanisms. Nutr J 2013; 12:89. [PMID: 23800102 PMCID: PMC3702462 DOI: 10.1186/1475-2891-12-89] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023] Open
Abstract
The prevalence rates of overweight and obesity are considered an important public issue in the United States, and both of these conditions are increasing among both children and adults. There is evidence of aberrations in the vitamin D-endocrine system in obese subjects. Vitamin D deficiency is highly prevalent in patients with obesity, and many studies have demonstrated the significant effect of calcitriol on adipocytes. Genetic studies have provided an opportunity to determine which proteins link vitamin D to obesity pathology, including the vitamin D receptor, toll-like receptors, the renin-angiotensin system, apolipoprotein E, vascular endothelial growth factor, and poly (ADP-ribose) polymerase-1. Vitamin D also exerts its effect on obesity through cell-signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the reduced form of nicotinamide adenine dinucleotide phosphate, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D may have a role in obesity. The best form of vitamin D for use in the obese individuals is calcitriol because it is the active form of the vitamin D3 metabolite, its receptors are present in adipocytes, and modulates inflammatory cytokine expression.
Collapse
Affiliation(s)
- Khanh vinh quốc Lu'o'ng
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA.
| | | |
Collapse
|
47
|
Shibata T, Takaguri A, Ichihara K, Satoh K. Inhibition of the TNF-α-induced serine phosphorylation of IRS-1 at 636/639 by AICAR. J Pharmacol Sci 2013; 122:93-102. [PMID: 23698110 DOI: 10.1254/jphs.12270fp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
AMP-activated protein kinase (AMPK) contributes to the acceleration of insulin signaling. However, the mechanism by which AMPK regulates insulin signaling remains unclear. Serine phosphorylation of insulin receptor substrate (IRS)-1 negatively regulates insulin signaling. Here we investigated the role of AMPK in serine phosphorylation of IRS-1 at 636/639 and 307, which is induced by tumor necrosis factor (TNF)-α in 3T3L1 adipocytes. We demonstrated that the AMPK activator 5-aminoimidazole-4-carboxamide-1-d-ribofuranoside (AICAR) significantly inhibited the TNF-α-induced serine phosphorylation of IRS-1 at 636/639 and 307 by suppression of extracellular signal-regulated kinase (ERK) phosphorylation but not c-Jun-NH2-terminal kinase (JNK) phosphorylation. In addition, AICAR stimulation resulted in enhanced interaction between ERK and MAP kinase phosphatase-4 (DUSP9/MKP-4) without affecting DUSP9/MPK4 mRNA synthesis. Moreover, intraperitoneal administration (0.25 g/kg) of AICAR to db/db mice improved blood glucose levels and inhibited the phosphorylation of ERK in adipose tissue. In conclusion, we propose a new mechanism in which AICAR suppresses TNF-α-induced serine phosphorylation of IRS-1 at 636/639 and 307 by enhancing the interaction between ERK and DUSP9/MKP-4. Taken together, these findings provide evidence that AMPK plays a crucial role in improving of type 2 diabetes.
Collapse
Affiliation(s)
- Tomohito Shibata
- Division of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, Otaru, Japan
| | | | | | | |
Collapse
|
48
|
Carvacrol Protects against Hepatic Steatosis in Mice Fed a High-Fat Diet by Enhancing SIRT1-AMPK Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:290104. [PMID: 23533470 PMCID: PMC3590501 DOI: 10.1155/2013/290104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/10/2013] [Indexed: 11/25/2022]
Abstract
We investigated the protective effect of carvacrol against high-fat-diet-induced hepatic steatosis in mice and the potential underlying molecular mechanisms. Mice were fed a normal diet, high-fat diet, or carvacrol-supplemented high-fat diet for 10 weeks. Compared to mice fed the high-fat diet, those fed the carvacrol-supplemented diet showed significantly lower hepatic lipid levels and reduced plasma activities of alanine aminotransferase and aspartate aminotransferase and plasma concentrations of monocyte chemoattractant protein 1 and tumor necrosis factor α. Carvacrol decreased the expression of LXRα, SREBP1c, FAS, leptin, and CD36 genes and phosphorylation of S6 kinase 1 protein involved in lipogenesis, whereas it increased the expression of SIRT1 and CPT1 genes and phosphorylation of liver kinase B1, AMP-activated protein kinase, and acetyl-CoA carboxylase proteins involved in fatty acid oxidation in the liver of mice fed the high-fat diet. These results suggest that carvacrol prevents HFD-induced hepatic steatosis by activating SIRT1-AMPK signaling.
Collapse
|
49
|
Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne) 2013; 4:93. [PMID: 23964268 PMCID: PMC3737462 DOI: 10.3389/fendo.2013.00093] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022] Open
Abstract
It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation.
Collapse
Affiliation(s)
- Sanshiro Tateya
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Francis Kim
- Department of Medicine, University of Washington, Seattle, WA, USA
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA, USA
| | - Yoshikazu Tamori
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Department of Internal Medicine, Diabetes Center, Chibune Hospital, Osaka, Japan
- *Correspondence: Yoshikazu Tamori, Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan e-mail:
| |
Collapse
|
50
|
Yogosawa S, Mizutani S, Ogawa Y, Izumi T. Activin receptor-like kinase 7 suppresses lipolysis to accumulate fat in obesity through downregulation of peroxisome proliferator-activated receptor γ and C/EBPα. Diabetes 2013; 62:115-23. [PMID: 22933117 PMCID: PMC3526038 DOI: 10.2337/db12-0295] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We previously identified a quantitative trait locus for adiposity, non-insulin-dependent diabetes 5 (Nidd5), on mouse chromosome 2. In the current study, we identified the actual genetic alteration at Nidd5 as a nonsense mutation of the Acvr1c gene encoding activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors, which results in a COOH-terminal deletion of the kinase domain. We further showed that the ALK7 dysfunction causes increased lipolysis in adipocytes and leads to decreased fat accumulation. Conversely, ALK7 activation inhibits lipolysis by suppressing the expression of adipose lipases. ALK7 and activated Smads repress those lipases by downregulating peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBP) α. Although PPARγ and C/EBPα act as adipogenic transcription factors during adipocyte differentiation, they are lipolytic in sum in differentiated adipocytes and are downregulated by ALK7 in obesity to accumulate fat. Under the obese state, ALK7 deficiency improves glucose tolerance and insulin sensitivity by preferentially increasing fat combustion in mice. These findings have uncovered a net lipolytic function of PPARγ and C/EBPα in differentiated adipocytes and point to the ALK7-signaling pathway that is activated in obesity as a potential target of medical intervention.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Shin Mizutani
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Corresponding author: Tetsuro Izumi,
| |
Collapse
|