1
|
Popescu ID, Codrici E, Pop S, Fertig TE, Dudău M, Anghelache IL, Constantin N, Marinescu RM, Voiculescu VM, Badea GI, Diaconu M, Maxim ME, Scurtu M, Zanov K, Enciu AM, Litescu SC, Tanase C. Potential of Newly Synthesized Sea Buckthorn Phytocarriers as Anti-Inflammatory Active Agents. Pharmaceuticals (Basel) 2025; 18:212. [PMID: 40006025 PMCID: PMC11858888 DOI: 10.3390/ph18020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Phytocarriers are advanced drug delivery systems that use biocompatible and biodegradable materials to enhance the efficacy, stability, and bioavailability of natural products. The sea buckthorn (Hippophae rhamnoides L.) berry extract is rich in essential fatty acids and antioxidants, including vitamin C, vitamin E, and anthocyanins, which contribute to its wide-ranging health benefits. In this study, we assessed the morphology, intracellular delivery, and anti-inflammatory effect of sodium cholate (NaC) and sodium deoxycholate (NaDC)-based phytocarriers loaded with ethanolic extract from sea buckthorn berries (sea buckthorn carrier nanostructures, further defined as phytocarriers). Methods: Negative and electron cryo-microscopy were used to analyze hollow and loaded nanocarriers. The cyto-compatibility of nanocarriers was assessed by endpoint (LDH and MTS) and real-time cell assays, on both human fibroblasts (HS27) and human normal monocytes (SC). The anti-inflammatory effect of hollow and loaded nanocarriers was tested by multiplexing. Results: The negative and electron cryo-microscopy analyses showed that NaC-based phytocarriers were spherical, whilst NaDC-based phytocarriers were predominantly polymorphic. Moreover, the NaDC-based phytocarriers frequently formed large lipid networks or "plaques". Although 24 h cytotoxicity testing showed both types of nanocarriers are biocompatible with human fibroblasts and monocytes, based on a long-term real-time assay, NaDC delayed fibroblast proliferation. NaC sea buckthorn phytocarriers did not impair fibroblast proliferation in the long term and they were uptaken by cells, as shown by hyperspectral microscopy. NaC nanocarriers and NaC sea buckthorn phytocarriers induced an anti-inflammatory effect, lowering IL-8 cytokine production in normal human monocytes as soon as 4 h of treatment lapsed. Conclusions: NaC-derived phytocarriers loaded with sea buckthorn alcoholic extract are a cell-compatible delivery system with anti-inflammatory properties.
Collapse
Grants
- POC/1033/1/3/, PTI 2022, SMIS cod 156316 Ministry of Research, Development and Digitalization, Romania
- Core Program within the National Research, Development and Innovation Plan, 2022-2027, with the support of MCID, project no. 10N/01.01.2023, PN 23.16.02.03. Ministry of Research, Development and Digitalization, Romania
Collapse
Affiliation(s)
- Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari, 050047 Bucharest, Romania; (R.M.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
| | - Tudor Emanuel Fertig
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari, 050047 Bucharest, Romania; (R.M.M.)
| | - Maria Dudău
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
| | - Iliuta Laurentiu Anghelache
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
| | - Nicoleta Constantin
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
| | - Radu Marian Marinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari, 050047 Bucharest, Romania; (R.M.M.)
| | - Vlad Mihai Voiculescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari, 050047 Bucharest, Romania; (R.M.M.)
| | - Georgiana Ileana Badea
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 296 Independenței Bd., District 6, 060031 Bucharest, Romania
| | - Mirela Diaconu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 296 Independenței Bd., District 6, 060031 Bucharest, Romania
| | - Monica Elisabeta Maxim
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Mihaela Scurtu
- Cromatec Plus SRL Str. Petre Ispirescu nr. 1, Sat Tancabesti, Comuna Snagov, 077167 Ilfov, Romania
| | - Kliment Zanov
- Cromatec Plus SRL Str. Petre Ispirescu nr. 1, Sat Tancabesti, Comuna Snagov, 077167 Ilfov, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari, 050047 Bucharest, Romania; (R.M.M.)
| | - Simona Carmen Litescu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 296 Independenței Bd., District 6, 060031 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, 050096 Bucharest, Romania (S.P.); (T.E.F.); (I.L.A.); (C.T.)
- Cajal Institute, Titu Maiorescu University, 22 Dâmbovnicului, Sector 4, 040441 Bucharest, Romania
| |
Collapse
|
2
|
Kryska A, Sawic M, Depciuch J, Sosnowski P, Szałaj K, Paja W, Khalavka M, Sroka-Bartnicka A. Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102804. [PMID: 39855441 DOI: 10.1016/j.nano.2025.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/09/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Diabetes mellitus is a chronic metabolic disease that increasingly affects people every year. It is known that with its progression and poor management, metabolic changes can lead to organ dysfunctions, including kidneys. The study aimed to combine Raman spectroscopy and biochemical lipid profiling, complemented by machine learning (ML) techniques to evaluate chemical composition changes in kidneys induced by Type 2 Diabetes mellitus (T2DM). Raman spectroscopy identified significant differences in lipid content and specific molecular vibrations, with the 1777 cm-1 band emerging as a potential spectroscopic marker for diabetic kidney damage. The integration of ML algorithms improved the analysis, providing high accuracy, selectivity, and specificity in detecting these changes. Moreover, lipids metabolic profiling revealed distinct variations in the concentration of 11 phosphatydylocholines and 9 acyl-alkylphosphatidylcholines glycerophospholipids. Importantly, the correlation between Raman data and lipids metabolic profiling differed for control and T2DM groups. This study underscores the combined power of Raman spectroscopy and ML in offering a low-cost, fast, precise, and comprehensive approach to diagnosing and monitoring diabetic nephropathy, paving the way for improved clinical interventions. However, taking into account small number of data related to ethical committee approvals, the study should be verified on a larger number of cases.
Collapse
Affiliation(s)
- Adrianna Kryska
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Sawic
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Walerego Eljasza - Radzikowskiego 152, 31-342 Kraków, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Klaudia Szałaj
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Wiesław Paja
- Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszów, Poland
| | - Maryna Khalavka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
3
|
Wang X, She Z, Zhou H, An T, Teng J, Xia N, Zhu P, Liu W, Dong H, Tang L, You S, Wei L, Li K, Wang L, Huang L, Zhang Q. Characterisation of the phytochemical and bioactivity profiles of raw tea, stale-aroma, and betelnut-aroma type of Liupao tea through GC/LC-MS-based metabolomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:562-575. [PMID: 39668786 DOI: 10.1039/d4ay01672f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Liupao tea (LPT) is a Chinese dark tea known to possess a unique flavour. Microbial fermentation plays a crucial role in flavour development and enrichment. Currently, the phytochemical profiles and bioactivities of LPT with and without fermentation are not fully known. In this study, we compared the chemical composition of raw tea (SF), stale-aroma (SA), and betelnut-aroma (BA) type LPT through the application of GC/LC-MS-based metabolomics, and experimentally investigated their bioactivities via antioxidant, anti-inflammatory, hypolipidemic, and hypoglycemic assays in vitro. The results indicated that fermentation enhanced the flavour of LPT as evidenced by the sweetness-producing substances, decreased bitterness and astringency-related compounds and enriched abundance of aroma-generating compounds. Two and four volatiles were detected to be major contributors to the aroma in SA and BA, respectively. Fatty acids and phosphatidylcholines were the primary lipids, among which the lysing diacylglycerol trimethyl homoserines were found to be a new class of lipids in LPT. Notably, the fermentation resulted in the degradation of compounds, particularly glycerophospholipids and saccharolipids. SF had the highest level of bioactivity, followed by BA and SA. These findings expand the present understanding regarding the development of flavour, nutrition, and medicinal value of LPT. Moreover, they provide a theoretical basis for the identification of BA and SA and serve as a reference value for consumers in their selection of LPT products.
Collapse
Affiliation(s)
- Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Hailin Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingting An
- Urumqi Youai Hospital, Urumqi, Xinjiang 830000, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenhui Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Huanxiao Dong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Limin Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Shulan You
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lu Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Kongying Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lingli Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Wu L, Zhu SC, He Y, Zhu YX, Ou-Yang XL, Zhang D, Li CM. Current perspectives for metabolomics and lipidomics in dyslipidemia of acne vulgaris: a mini review. Front Med (Lausanne) 2025; 11:1538373. [PMID: 39882523 PMCID: PMC11774704 DOI: 10.3389/fmed.2024.1538373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Acne vulgaris (AV) is a common inflammatory disorder involving the pilosebaceous unit. Many studies have reported that people with AV have higher levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) compared to healthy controls. Hence, they concluded that an unhealthy lipid profile is an independent risk factor for AV. Recent research in metabolomics and lipidomics has been propelled by rapid advancements in technologies including computational methods and mass spectrometry. Using metabolomics and lipidomics approach, a broad range of structurally diverse lipid species were detected and important lipid biomarkers were identified that are vital to the pathogenesis of AV. In this review, we will describe the recent progress in dyslipidemia of AV using metabolomics and lipidomics advances. We will begin with a literature overview of dyslipidemia of AV, followed by a short introduction of metabolomics and lipidomics. Finally, we will focus on applying metabolomics and lipidomics in dyslipidemia of AV.
Collapse
Affiliation(s)
- Liang Wu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sheng-Cai Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yang He
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun-Xia Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Liang Ou-Yang
- Department of Plastic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deng Zhang
- Department of Dermatology, The Fifth People's Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Begzati A, Godinez-Macias KP, Long T, Watrous JD, Moranchel R, Kantz ED, Tuomilehto J, Havulinna AS, Niiranen TJ, Jousilahti P, Salomaa V, Yu B, Norby F, Rebholz CM, Selvin E, Winzeler EA, Cheng S, Alotaibi M, Goyal R, Ideker T, Jain M, Majithia AR. Plasma Lipid Metabolites, Clinical Glycemic Predictors, and Incident Type 2 Diabetes. Diabetes Care 2025; 48:dc242266. [PMID: 39761415 PMCID: PMC11870283 DOI: 10.2337/dc24-2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/12/2024] [Indexed: 03/03/2025]
Abstract
OBJECTIVE Plasma metabolite profiling has uncovered several nonglycemic markers of incident type 2 diabetes (T2D). We investigated whether such biomarkers provide information about specific aspects of T2D etiology, such as impaired fasting glucose and impaired glucose tolerance, and whether their association with T2D risk varies by race. RESEARCH DESIGN AND METHODS Untargeted plasma metabolite profiling was performed of participants in the FINRISK 2002 cohort (n = 7,564). Cox regression modeling was conducted to identify metabolites associated with incident T2D during 14 years of follow-up. Metabolites were clustered into pathways using Gaussian graphical modeling. Clusters enriched for T2D biomarkers were further examined for covariation with fasting plasma glucose (FPG), 2-h postchallenge plasma glucose (2hPG), HbA1c, or fasting insulin. Validation analyses and tests of interaction with race were performed in the Atherosclerosis Risk in Communities study. RESULTS Two clusters of metabolites, representing diacylglycerols (DAGs) and phosphatidylcholines (PCs), contained the largest number of metabolite associations with incident T2D. DAGs associated with increased T2D incidence (hazard ratio [HR] 1.22; 95% CI 1.14-1.30) independent of FPG, HbA1c, and fasting insulin, but not 2hPG. PCs were inversely associated with T2D risk (HR 0.78; 95% CI 0.71-0.85) independent of FPG, 2hPG, HbA1c, and fasting insulin. No significant interaction between DAGs or PCs and race was observed. CONCLUSIONS Fasting DAGs may capture information regarding T2D risk similar to that represented by 2hPG; PCs may capture aspects of T2D etiology that differ from those represented by conventional biomarkers. The direction of effect and strength of DAG and PC associations with incident T2D are similar across European and African Americans.
Collapse
Affiliation(s)
- Arjana Begzati
- Department of Medicine, University of California San Diego, La Jolla, CA
| | | | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla, CA
- Sapient Bioanalytics, San Diego, CA
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA
- Sapient Bioanalytics, San Diego, CA
| | - Rafael Moranchel
- Department of Medicine, University of California San Diego, La Jolla, CA
- Sapient Bioanalytics, San Diego, CA
| | - Edward D. Kantz
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jaakko Tuomilehto
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Aki S. Havulinna
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Computing, University of Turku, Turku, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Teemu J. Niiranen
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Pekka Jousilahti
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Bing Yu
- Department of Epidemiology, School of Public Health, University of Texas School of Public Health, Houston, TX
| | - Faye Norby
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mona Alotaibi
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ravi Goyal
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA
- Sapient Bioanalytics, San Diego, CA
| | - Amit R. Majithia
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
6
|
Xia B, Zhao D, Hao Q, Yu J, Han Y, Ling L, Zhao R, Zhao J. Effects of fishing stress on fatty acid and amino acid composition and glycolipid metabolism in triploid rainbow trout. Food Chem 2024; 461:140904. [PMID: 39181054 DOI: 10.1016/j.foodchem.2024.140904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Triploid Oncorhynchus mykiss is an important economic fish worldwide. Fishing stress can affect its growth and meat quality. This study first explored the effects of fishing stress on fatty acid and amino acid in triploid O. mykiss. Results showed fishing stress significantly reduced the content of docosadienoic acid, Gly, Arg, and DAA (P < 0.05). Targeted lipidomics analysis furthered suggested that some lipid molecules belonging to TG, DG, PC, Cer, ChE, and So were significantly up-regulated; while some lipid molecules belonging to Cer, LPE, LPC, PS, PC, and SM were significantly down-regulated, suggesting an accelerated glycolipid metabolism. Eventually, the glycolipid metabolism-related enzyme activity and gene expressions were examined, and the results indicated that O. mykiss was anti-oxidative stress by affecting relevant glycolipid metabolism signaling pathways and participating in cellular redox homeostasis. Findings of this study provide a theoretical foundation for further investigation into the mechanisms through which fishing stress affects O. mykiss.
Collapse
Affiliation(s)
- Banghua Xia
- Northeast Agricultural University, Harbin 150030, China
| | - Dandan Zhao
- Northeast Agricultural University, Harbin 150030, China
| | - Qirui Hao
- Northeast Agricultural University, Harbin 150030, China; Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Junfei Yu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yue Han
- Liaoyang Development and Reform Service Center, Liaoyang 111001, China
| | - Ling Ling
- Northeast Agricultural University, Harbin 150030, China
| | - Rongwei Zhao
- Harbin Agricultural Technology Extension Master station, Harbin 150023, China
| | - Junwei Zhao
- Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Almuraikhy S, Naja K, Anwardeen N, Sellami M, Al-Amri HS, Al-Sulaiti H, Bashraheel SS, Aden AA, Elrayess MA. Metabolic signatures of combined exercise and fasting: an expanded perspective on previous telomere length findings. FRONTIERS IN AGING 2024; 5:1494095. [PMID: 39633874 PMCID: PMC11615071 DOI: 10.3389/fragi.2024.1494095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Introduction Aging is a complex process marked by a gradual decline in physiological function and increased susceptibility to diseases. Telomere length is frequently regarded as one of the primary biomarkers of aging. Metabolic profiles are key features in longevity and have been associated with both age and age-related diseases. We previously reported an increase in the telomere length in healthy female subjects when Ramadan fasting was combined with physical training. This study aims to characterize the metabolic signature differentiating the combined effects of exercise and fasting from exercise alone and explore the correlations with the previously reported telomere length changes. Methods Twenty-nine young, non-obese, and healthy female subjects were previously randomized into two groups: one group followed a 4-week exercise program, while the other group followed the same 4-week exercise program but also fasted during Ramadan. Metabolic profiles were assessed pre- and post-intervention using untargeted metabolomics. Results and Discussion Our results showed a significant decrease in many lipid metabolites in the exercise-while-fasting group, particularly ceramides. Our study sheds light on the dynamic changes in lipid metabolism and its potential role in inflammation and age-related diseases, and contributes to the broader understanding of how lifestyle factors can influence cellular aging and metabolic health.
Collapse
Affiliation(s)
| | - Khaled Naja
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | | | - Maha Sellami
- Sport Coaching Department, College of Sport Sciences, Qatar University, Doha, Qatar
| | - Hadaia Saleh Al-Amri
- Sport Coaching Department, College of Sport Sciences, Qatar University, Doha, Qatar
| | - Haya Al-Sulaiti
- Biomedical Research Centre, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Amina Ali Aden
- Heart hospital, Out-patient Department, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Centre, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University (QU), Doha, Qatar
| |
Collapse
|
8
|
Chen C, Quan J, Chen X, Yang T, Yu C, Ye S, Yang Y, Wu X, Jiang D, Weng Y. Explore key genes of Crohn's disease based on glycerophospholipid metabolism: A comprehensive analysis Utilizing Mendelian Randomization, Multi-Omics integration, Machine Learning, and SHAP methodology. Int Immunopharmacol 2024; 141:112905. [PMID: 39173401 DOI: 10.1016/j.intimp.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is a chronic, complex inflammatory condition with increasing incidence and prevalence worldwide. However, the causes of CD remain incompletely understood. We identified CD-related metabolites, inflammatory factors, and key genes by Mendelian randomization (MR), multi-omics integration, machine learning (ML), and SHAP. METHODS We first performed a mediation MR analysis on 1400 serum metabolites, 91 inflammatory factors, and CD. We found that certain phospholipids are causally related to CD. In the scRNA-seq data, monocytes were categorized into high and low metabolism groups based on their glycerophospholipid metabolism scores. The differentially expressed genes of these two groups of cells were extracted, and transcription factor prediction, cell communication analysis, and GSEA analysis were performed. After further screening of differentially expressed genes (FDR<0.05, log2FC>1), least absolute shrinkage and selection operator (LASSO) regression was performed to obtain hub genes. Models for hub genes were built using the Catboost, XGboost, and NGboost methods. Further, we used the SHAP method to interpret the models and obtain the gene with the highest contribution to each model. Finally, qRT-PCR was used to verify the expression of these genes in the peripheral blood mononuclear cells (PBMC) of CD patients and healthy subjects. RESULT MR results showed 1-palmitoyl-2-stearoyl-gpc (16:0/18:0) levels, 1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) levels, 1-arachidonoyl-gpc (20:4n6) levels, 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6) levels, and 1-arachidonoyl-GPE (20:4n6) levels were significantly associated with CD risk reduction (FDR<0.05), with CXCL9 acting as a mediation between these phospholipids and CD. The analysis identified 19 hub genes, with Catboost, XGboost, and NGboost achieving AUC of 0.91, 0.88, and 0.85, respectively. The SHAP methodology obtained the three genes with the highest model contribution: G0S2, S100A8, and PLAUR. The qRT-PCR results showed that the expression levels of S100A8 (p = 0.0003), G0S2 (p < 0.0001), and PLAUR (p = 0.0141) in the PBMC of CD patients were higher than healthy subjects. CONCLUSION MR findings suggest that certain phospholipids may lower CD risk. G0S2, S100A8, and PLAUR may be potential pathogenic genes in CD. These phospholipids and genes could serve as novel diagnostic and therapeutic targets for CD.
Collapse
Affiliation(s)
- Changan Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xintian Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Tingmei Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yuping Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xiu Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Danxian Jiang
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| | - Yijie Weng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|
9
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
10
|
Kim Y, Kokkinias K, Sabag-Daigle A, Leleiwi I, Borton M, Shaffer M, Baniasad M, Daly R, Ahmer BMM, Wrighton KC, Wysocki VH. Time-Resolved Multiomics Illustrates Host and Gut Microbe Interactions during Salmonella Infection. J Proteome Res 2024; 23:4864-4877. [PMID: 39374136 DOI: 10.1021/acs.jproteome.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Salmonella infection, also known as Salmonellosis, is one of the most common food-borne illnesses. Salmonella infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, Salmonella competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between Salmonella and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a Salmonella infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during Salmonella infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of Salmonella infection (days -2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.
Collapse
Affiliation(s)
- Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ikaia Leleiwi
- Department of Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mikayla Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rebecca Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Carrillo F, Palomba NP, Ghirimoldi M, Didò C, Fortunato G, Khoso S, Giloni T, Santilli M, Bocci T, Priori A, Pietracupa S, Modugno N, Barberis E, Manfredi M, Signorelli P, Esposito T. Multiomics approach discloses lipids and metabolites profiles associated to Parkinson's disease stages and applied therapies. Neurobiol Dis 2024; 202:106698. [PMID: 39427845 DOI: 10.1016/j.nbd.2024.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Profiling circulating lipids and metabolites in Parkinson's disease (PD) patients could be useful not only to highlight new pathways affected in PD condition but also to identify sensitive and effective biomarkers for early disease detection and potentially effective therapeutic interventions. In this study we adopted an untargeted omics approach in three groups of patients (No L-Dopa, L-Dopa and DBS) to disclose whether long-term levodopa treatment with or without deep brain stimulation (DBS) could reflect a characteristic lipidomic and metabolomic signature at circulating level. Our findings disclosed a wide up regulation of the majority of differentially regulated lipid species that increase with disease progression and severity. We found a relevant modulation of triacylglycerols and acyl-carnitines, together with an altered profile in adiponectin and leptin, that can differentiate the DBS treated group from the others PD patients. We found a highly significant increase of exosyl ceramides (Hex2Cer) and sphingoid bases (SPB) in PD patients mainly in DBS group (p < 0.0001), which also resulted in a highly accurate diagnostic performance. At metabolomic level, we found a wide dysregulation of pathways involved in the biosynthesis and metabolism of several amino acids. The most interesting finding was the identification of a specific modulation of L-glutamic acid in the three groups of patients. L-glutamate levels increased slightly in No L-Dopa and highly in L-Dopa patients while decreased in DBS, suggesting that DBS therapy might have a beneficial effect on the glutamatergic cascade. All together, these data provide novel insights into the molecular and metabolic alterations underlying PD therapy and might be relevant for PD prediction, diagnosis and treatment.
Collapse
Affiliation(s)
- Federica Carrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | | | - Marco Ghirimoldi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Camilla Didò
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Shahzaib Khoso
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | | | | | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Sara Pietracupa
- IRCCS INM Neuromed, Pozzilli, IS, Italy; Department of Human Neuroscience, Sapienza University of Rome, Italy
| | | | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy; Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Paola Signorelli
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Biochemistry Laboratory, IRCCS Policlinico San Donato, Milano Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy; IRCCS INM Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
12
|
Fredrickson G, Florczak K, Barrow F, Mahmud S, Dietsche K, Wang H, Parthiban P, Hakeem A, Almutlaq R, Adeyi O, Herman A, Bartolomucci A, Staley C, Dong X, Jahansouz C, Williams JW, Mashek DG, Ikramuddin S, Revelo XS. TREM2 macrophages mediate the beneficial effects of bariatric surgery against MASH. Hepatology 2024:01515467-990000000-01031. [PMID: 39292863 DOI: 10.1097/hep.0000000000001098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS For patients with obesity and metabolic syndrome, bariatric procedures such as vertical sleeve gastrectomy (VSG) have a clear benefit in ameliorating metabolic dysfunction-associated steatohepatitis (MASH). While the effects of bariatric surgeries have been mainly attributed to nutrient restriction and malabsorption, whether immuno-modulatory mechanisms are involved remains unclear. APPROACH AND RESULT Using murine models, we report that VSG ameliorates MASH progression in a weight loss-independent manner. Single-cell RNA sequencing revealed that hepatic lipid-associated macrophages (LAMs) expressing the triggering receptor expressed on myeloid cells 2 (TREM2) repress inflammation and increase their lysosomal activity in response to VSG. Remarkably, TREM2 deficiency in mice ablates the reparative effects of VSG, suggesting that TREM2 is required for MASH resolution. Mechanistically, TREM2 prevents the inflammatory activation of macrophages and is required for their efferocytic function. CONCLUSIONS Overall, our findings indicate that bariatric surgery improves MASH through a reparative process driven by TREM2+ macrophages, providing insights into the mechanisms of disease reversal that may result in new therapies and improved surgical interventions.
Collapse
Affiliation(s)
- Gavin Fredrickson
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kira Florczak
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Fanta Barrow
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shamsed Mahmud
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katrina Dietsche
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Haiguang Wang
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Preethy Parthiban
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Hakeem
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rawan Almutlaq
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oyedele Adeyi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Adam Herman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao Dong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cyrus Jahansouz
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jesse W Williams
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xavier S Revelo
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Qin Y, Wang L, Song J, Quan W, Xu J, Chen J. Plasma lipidome, circulating inflammatory proteins, and Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1424056. [PMID: 39347014 PMCID: PMC11433008 DOI: 10.3389/fnagi.2024.1424056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Background Observational studies have suggested that plasma lipidome play a pivotal role in the occurrence of Parkinson's disease (PD). However, it remains unknown which lipids among plasma lipidome affect PD and how they exert their influence. Clarity is lacking regarding the causal relationship between plasma lipidome and PD, as well as whether circulating inflammatory proteins serve as mediators. Methods Single nucleotide polymorphisms (SNPs) significantly associated with 179 plasma lipidome were selected as instrumental variables to assess their causal impact on PD. PD data, serving as the outcome, were sourced from the International Parkinson's Disease Genomics Consortium, which boasts the largest sample size to date. The inverse variance weighted (IVW), Weighted median method, MR-Egger method, Simple mode method, Weighted mode method and MR-PRESSO were employed to evaluate the influence of the 179 plasma lipidome on PD. Heterogeneity, pleiotropy tests, and reverse causality analyses were conducted accordingly. Additionally, we analyzed the causal relationship between 91 circulating inflammatory proteins and PD, exploring whether these proteins serve as mediators in the pathway from plasma lipidome to PD. Results Among the 179 plasma lipidome, three were found to be associated with a reduced risk of PD: Phosphatidylcholine (14:0_18:2) (IVW, OR = 0.877; 95%CI, 0.787-0.978; p = 0.018), Phosphatidylcholine (16:0_16:1) levels (IVW, OR = 0.835; 95%CI, 0.717-0.973; p = 0.021), and Phosphatidylcholine (O-17:0_17:1) levels (IVW, OR = 0.854; 95%CI, 0.779-0.936; p = 0.001). Meanwhile, Sphingomyelin (d38:1) was linked to an increased risk of PD (IVW, OR = 1.095; 95%CI, 1.027-1.166; p = 0.005). Among the 91 circulating inflammatory proteins, three were associated with a lower PD risk: Fibroblast growth factor 21 levels (IVW, OR = 0.817; 95%CI, 0.674-0.990; p = 0.039), Transforming growth factor-alpha levels (IVW, OR = 0.825; 95%CI, 0.683-0.998; p = 0.048), and Tumor necrosis factor receptor superfamily member 9 levels (IVW, OR = 0.846; 95%CI, 0.744-0.963; p = 0.011). Two were associated with a higher risk of PD: Interleukin-17A levels (IVW, OR = 1.285; 95%CI, 1.051-1.571; p = 0.014) and TNF-beta levels (IVW, OR = 1.088; 95%CI, 1.010-1.171; p = 0.026). Additionally, a positive correlation was observed between Phosphatidylcholine (14:0_18:2) levels and Fibroblast growth factor 21 levels (IVW, OR = 1.125; 95%CI, 1.006-1.257; p = 0.038), suggesting that Fibroblast growth factor 21 levels may serve as a mediating factor in the pathway between Phosphatidylcholine (14.0_18.2) levels and PD. The mediation effect was estimated to be -0.024, accounting for approximately 18% of the total effect. Conclusion Both plasma lipidome and circulating inflammatory proteins demonstrate a causal relationship with PD. Additionally, circulating inflammatory proteins may serve as mediators in the pathway from plasma lipidome to PD. These findings may contribute to the prediction and diagnosis of PD and potentially pave the way for targeted therapies in the future.
Collapse
Affiliation(s)
- Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Xiao J, Guo X, Li K, Luo W, Lin Y, Lu W, Wang Z. Role of myeloid cells in mediating the effects of lipids on ulcerative colitis. Front Immunol 2024; 15:1416562. [PMID: 39286250 PMCID: PMC11402659 DOI: 10.3389/fimmu.2024.1416562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To evaluate the causal relationship between lipids and ulcerative colitis (UC) through Mendelian Randomization (MR), and to further investigate the involvement of immune cells in mediating this process. Methods Utilizing summary statistics from genome-wide association studies (GWAS) of individuals with European ancestry, we analyzed the causal link between 179 lipid types and UC (2,569 UC cases and 453,779 controls) through Two-sample Mendelian randomization (2SMR) and Bayesian-weighted MR (BWMR). Based on this, a mediation screening of 731 immune cell phenotypes was conducted to identify exposure and mediator factors. Lastly, the role and proportion of immune cells in mediating the causal effects of lipids on UC were assessed via reverse MR (RMR) and two-step MR. Results The results of MR showed that there was a causal relationship between the six genetically predicted lipid types and UC (P <0.05), and the four immune cell phenotypes were identified as mediators of the association between lipids and UC. Notably, Phosphatidylcholine (PC) (16:0_0:0) served as the exposure factor, and myeloid cells CD11b on CD33+ HLA DR+ CD14dim acted as the mediator. Mediation analysis showed that CD11b on CD33+ HLA DR+ CD14dim had a mediation effect of -0.0205 between PC (16:0_0:0) and UC, with the mediation effect ratio at 15.38%. Conclusion Our findings elucidate the causal effect of lipids on UC and identify the significant mediating role of myeloid cells CD11b on CD33+ HLA DR+ CD14dim in regulating UC through PC (16:0_0:0), offering new pathways and strategies for UC clinical treatment.
Collapse
Affiliation(s)
- Jinyin Xiao
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People's Hospital of Xiangtan City, Xiangtan, China
| | - Keya Li
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Wenpeng Luo
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Youwei Lin
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Wenhong Lu
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
15
|
Pelletier AN, Sanchez GP, Izmirly A, Watson M, Di Pucchio T, Carvalho KI, Filali-Mouhim A, Paramithiotis E, Timenetsky MDCST, Precioso AR, Kalil J, Diamond MS, Haddad EK, Kallas EG, Sekaly RP. A pre-vaccination immune metabolic interplay determines the protective antibody response to a dengue virus vaccine. Cell Rep 2024; 43:114370. [PMID: 38900640 PMCID: PMC11404042 DOI: 10.1016/j.celrep.2024.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vaccinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/TV003). Anti-inflammatory pathways, including TGF-β signaling expressed by CD68low monocytes, and the metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly neutralizing antibody responses against DENV. In contrast, expression of pro-inflammatory pathways and cytokines (IFN and IL-1) in CD68hi monocytes and primary and secondary bile acids negatively correlates with broad DENV-specific antibody responses. Induction of TGF-β and IFNs is done respectively by PC/PE and bile acids in CD68low and CD68hi monocytes. The inhibition of viral sensing by PC/PE-induced TGF-β is confirmed in vitro. Our studies show that the balance between metabolites and the pro- or anti-inflammatory state of innate immune cells drives broad and protective B cell response to a live attenuated dengue vaccine.
Collapse
Affiliation(s)
- Adam-Nicolas Pelletier
- RPM Bioinfo Solutions, Sainte-Thérèse, QC, Canada; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gabriela Pacheco Sanchez
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Abdullah Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Tiziana Di Pucchio
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karina Inacio Carvalho
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Abdelali Filali-Mouhim
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | | | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Institute for Investigation in Immunology-Instituto Nacional de Ciência e Tecnologia-iii-INCT, São Paulo, SP, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elias K Haddad
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esper G Kallas
- Instituto Butantan, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, Hospital das Clínicas, School of Medicine, University of Sao Paulo, São Paulo 01246-903, Brazil
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
16
|
Arshad U, Zimpel R, Husnain A, Poindexter MB, Santos JEP. Effect of rumen-protected choline on fat digestibility and lymph metabolome in dairy cows. J Anim Physiol Anim Nutr (Berl) 2024; 108:950-964. [PMID: 38379267 DOI: 10.1111/jpn.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Objectives were to determine the effects of supplementing rumen-protected choline (RPC) from an established source with low (L, 28.8%) or a prototype with less lipid coating protection and high (H, 60.0%) concentrations of choline chloride on digestibility of fat and supra-mammary lymph metabolome in feed-restricted cows. Pregnant, nonlactating Holstein cows (n = 33; 11/treatment) at mean (±standard deviation) 231 ± 4.7 days of gestation were blocked by body condition (4.23 ± 0.47) and assigned to receive 0 (CON) or 25.8 g/d of choline ion from L (L25.8) or H (H25.8). Cows were adapted to the diet and then fed-restricted to 42% of the net energy of lactation required for maintenance and pregnancy for 9 days. Intake of metabolizable methionine was maintained at 19 g/d. On Day 9, cows were fed 450 g of saturated fatty acids (SFA), and feces and blood were sampled continuously for 24 h. Supra-mammary lymph was sampled 6 h after feeding SFA and metabolome was characterized. Feeding RPC increased digestibility of fat (CON = 80.4 vs. RPC = 86.0 ± 1.9%) and reduced the concentration of haptoglobin in serum (CON = 174 vs. RPC = 77 ± 14 µg/ml) independent of source of RPC fed. Feeding RPC increased the concentrations of triacylglycerol in serum (CON = 15.1 vs. RPC = 17.8 ± 1.9 mg/dl) in feed-restricted cows after feeding SFA, and the increment tended to be greater for cows fed H25.8 than L25.8. Supplementing RPC tended to increase the concentrations of triacylglycerol (CON = 11.4 vs. RPC = 15.8 ± 3.4 mg/dl) in supra-mammary lymph. Feeding RPC increased the concentration of choline and affected the concentrations of analytes involved in metabolic pathways associated with amino acid metabolism and biosynthesis of phospholipids in lymph compared with CON. Feeding RPC, independent of source used, increased fat digestibility with some changes in lymph metabolome in cows under negative nutrient balance.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, USA
| | - Roney Zimpel
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, USA
| | - Ali Husnain
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, USA
| | - Michael B Poindexter
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, USA
| | - José E P Santos
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, USA
| |
Collapse
|
17
|
Zhu ZG, Ma JW, Ji DD, Li QQ, Diao XY, Bao J. Mendelian randomization analysis identifies causal associations between serum lipidomic profile, amino acid biomarkers and sepsis. Heliyon 2024; 10:e32779. [PMID: 38975226 PMCID: PMC11226841 DOI: 10.1016/j.heliyon.2024.e32779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background Sepsis is a life-threatening condition marked by a severe systemic response to infection, leading to widespread inflammation, cellular signaling disruption, and metabolic dysregulation. The role of lipid and amino acid metabolism in sepsis is not fully understood, but aberrations in this pathway could contribute to the disease's pathophysiology. Methods To explore the potential of lipid and amino acid compounds as biomarkers for the diagnosis and prognosis of sepsis, a two-sample Mendelian Randomization (MR) study was conducted, examining the relationship between sepsis and 249 serum lipid and amino acid-related markers. Key enzymes involved in synthesis of phosphatidylcholine, including choline/ethanolamine phosphotransferase 1 (CEPT1), choline phosphotransferase 1 (CPT1), and ethanolamine phosphotransferase 1 (EPT1), were also targeted for drug-target Mendelian randomization. Results The study found that phosphatidylcholines (OR IVW: 0.88, 95%CI: 0.80-0.96, p = 0.005) and phospholipids in medium HDL (OR IVW: 0.86, 95%CI: 0.77-0.96, p = 0.007) potentially exhibit a protective effect against sepsis nominally. However, the potential drug target of CEPT1, CPT1, and EPT1 was found to be unrelated to septic outcomes. Conclusion Our findings suggest that increasing levels of phosphatidylcholines and medium HDL phospholipids may reduce the incidence of sepsis. This highlights the potential of lipid-based biomarkers in the diagnosis and management of sepsis, opening avenues for new therapeutic strategies.
Collapse
Affiliation(s)
- Zi-gang Zhu
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Jia-wei Ma
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
- Department of Critical Care Medicine, Aheqi County People's Hospital, Xinjiang, 843599, China
| | - Dan-dan Ji
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Qian-qian Li
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Xin-yu Diao
- Emergency Department, Yixing Traditional Chinese Medicine Hospital, Yixing,214299,China
| | - Jie Bao
- Department of Critical Care Medicine, Jiangnan University Medical Center,Wuxi No.2 People's Hospital, Wuxi, 214002, China
| |
Collapse
|
18
|
Abdel-Mohsen M, Deeks S, Giron L, Hong KY, Goldman A, Zhang L, Huang SSY, Verrill D, Guo S, Selzer L, de Vries CR, Vendrame E, SenGupta D, Wallin JJ, Cai Y. Circulating immune and plasma biomarkers of time to HIV rebound in HIV controllers treated with vesatolimod. Front Immunol 2024; 15:1405348. [PMID: 38979421 PMCID: PMC11229794 DOI: 10.3389/fimmu.2024.1405348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Background Antiretroviral therapy (ART) for HIV-1 treatment has improved lifespan but requires lifelong adherence for people living with HIV (PLWH), highlighting the need for a cure. Evaluation of potential cure strategies requires analytic treatment interruption (ATI) with close monitoring of viral rebound. Predictive biomarkers for HIV-1 rebound and/or duration of control during ATI will facilitate these HIV cure trials while minimizing risks. Available evidence suggests that host immune, glycomic, lipid, and metabolic markers of inflammation may be associated with HIV-1 persistence in PLWH who are treated during chronic HIV-1 infection. Methods We conducted post-hoc analysis of HIV controllers who could maintain low levels of plasma HIV-1 without ART in a phase 1b vesatolimod trial. Baseline and pre-ATI levels of immune, glycomic, lipidomic, and metabolomic markers were tested for association with ATI outcomes (time of HIV-1 rebound to 200 copies/mL and 1,000 copies/mL, duration of HIV-1 RNA ≤400 copies/mL and change in intact proviral HIV-1 DNA during ATI) using Spearman's correlation and Cox proportional hazards model. Results Higher levels of CD69+CD8+ T-cells were consistently associated with shorter time to HIV-1 rebound at baseline and pre-ATI. With few exceptions, baseline fucosylated, non-galactosylated, non-sialylated, bisecting IgG N-glycans were associated with shorter time to HIV rebound and duration of control as with previous studies. Baseline plasma MPA and HPA binding glycans and non-galactosylated/non-sialylated glycans were associated with longer time to HIV rebound, while baseline multiply-galactosylated glycans and sialylated glycans, GNA-binding glycans, NPA-binding glycans, WGA-binding glycans, and bisecting GlcNAc glycans were associated with shorter time to HIV rebound and duration of control. Fourteen bioactive lipids had significant baseline associations with longer time to rebound and duration of control, and larger intact proviral HIV-1 DNA changes; additionally, three baseline bioactive lipids were associated with shorter time to first rebound and duration of control. Conclusion Consistent with studies in HIV non-controllers, proinflammatory glycans, lipids, and metabolites were generally associated with shorter duration of HIV-1 control. Notable differences were observed between HIV controllers vs. non-controllers in some specific markers. For the first time, exploratory biomarkers of ATI viral outcomes in HIV-controllers were investigated but require further validation.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Leila Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kai Ying Hong
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Aaron Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Liao Zhang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susie S. Y. Huang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Donovan Verrill
- Statistical Programming, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susan Guo
- Biostatistics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Lisa Selzer
- Clinical Virology, Gilead Sciences, Inc., Foster City, CA, United States
| | | | - Elena Vendrame
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Devi SenGupta
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Jeffrey J. Wallin
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Yanhui Cai
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| |
Collapse
|
19
|
Mönki J, Mykkänen A. Lipids in Equine Airway Inflammation: An Overview of Current Knowledge. Animals (Basel) 2024; 14:1812. [PMID: 38929431 PMCID: PMC11200544 DOI: 10.3390/ani14121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Mild-moderate and severe equine asthma (MEA and SEA) are prevalent inflammatory airway conditions affecting horses of numerous breeds and disciplines. Despite extensive research, detailed disease pathophysiology and the differences between MEA and SEA are still not completely understood. Bronchoalveolar lavage fluid cytology, broadly used in clinical practice and in equine asthma research, has limited means to represent the inflammatory status in the lower airways. Lipidomics is a field of science that can be utilized in investigating cellular mechanisms and cell-to-cell interactions. Studies in lipidomics have a broad variety of foci, of which fatty acid and lipid mediator profile analyses and global lipidomics have been implemented in veterinary medicine. As many crucial proinflammatory and proresolving mediators are lipids, lipidomic studies offer an interesting yet largely unexplored means to investigate inflammatory reactions in equine airways. The aim of this review article is to collect and summarize the findings of recent lipidomic studies on equine airway inflammation.
Collapse
Affiliation(s)
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014 Helsinki, Finland;
| |
Collapse
|
20
|
Lin J, Cheng Y, Gu S, Song S, Zhang H, Li J, Ling S. Mendelian randomization study and mediation analysis about the relation of inflammatory bowel disease and diabetic retinopathy: the further exploration of gut-retina axis. Front Endocrinol (Lausanne) 2024; 15:1382777. [PMID: 38948518 PMCID: PMC11211271 DOI: 10.3389/fendo.2024.1382777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Background The concept of the gut-retinal axis proposed by previous scholars primarily focused on the relationship between intestinal microbiota and retinal diseases, and few further expanded the relationship between intestinal diseases and retinal diseases. To further substantiate the concept of the gut-retinal axis, we analyzed inflammatory bowel disease (IBD) and diabetic retinopathy (DR) using Mendelian randomization (MR), and use mediation analysis to further explore the potential substances that influence this causal relationship. Methods The genome-wide association study's (GWAS) summary statistics for genetic variations were utilized in a Mendelian randomization (MR) investigation. GWAS data on IBD (including ulcerative colitis (UC), Crohn's disease (CD), and IBD) for non-Finnish Europeans (NFE) were sourced from published articles. In contrast, data on DR (including DR and diabetic maculopathy (DMP)) were obtained from FinnGen R9. The causal relationship has been investigated using inverse variance weighted (IVW), MR-Egger, and weighted median and sensitivity analysis was applied to verify the stability of the results. In addition, we applied mediation analysis to investigate whether circulating inflammatory proteins and plasma lipids played a mediating role, and calculated its effect ratio. Results The causal relationship between IBD and DR was discovered by employing the inverse variance weighted (IVW) method and weighted median method. In forward MR, UC was significantly associated with lower risk of DR (IVW: OR=0.874; 95%CI= 0.835-0.916; P value= 1.28E-08) (Weighted median: OR=0.893; 95%CI= 0.837-0.954; P value= 7.40E-04). In reverse MR, it was shown that DR (IVW: OR=0.870; 95%CI= 0.828-0.914; P value= 2.79E-08)(Weighted median: OR=0.857; 95%CI= 0.801-0.916; P value= 6.40E-06) and DMP (IVW: OR=0.900; 95%CI= 0.865-0.937; P value= 3.34E-07)(Weighted median: OR=0.882; 95%CI= 0.841-0.924; P value= 1.82E-07) could reduce the risk of CD. What's more, DR is associated with a lower risk of IBD according to genetic prediction (IVW: OR=0.922; 95%CI= 0.873-0.972; P value= 0.002) (Weighted median: OR=0.924; 95%CI= 0.861-0.992; P value= 0.029). Fibroblast growth factor 21 (FGF21), phosphatidylcholine (PC), and triacylglycerol (TG) serve as mediators in these relationships. Conclusions Our research offers novel insights and sources for investigating the gut-retina axis in the genetic relationship between IBD and DR. We discover four mediators and more about the association between the intestine and retinal disorders and provide more evidence for the gut-retinal axis theory.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianbing Li
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Nicolson GL, Ferreira de Mattos G. Membrane Lipid Replacement for reconstituting mitochondrial function and moderating cancer-related fatigue, pain and other symptoms while counteracting the adverse effects of cancer cytotoxic therapy. Clin Exp Metastasis 2024; 41:199-217. [PMID: 38879842 DOI: 10.1007/s10585-024-10290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/25/2024] [Indexed: 06/30/2024]
Abstract
Cancer-related fatigue, pain, gastrointestinal and other symptoms are among the most familiar complaints in practically every type and stage of cancer, especially metastatic cancers. Such symptoms are also related to cancer oxidative stress and the damage instigated by cancer cytotoxic therapies to cellular membranes, especially mitochondrial membranes. Cancer cytotoxic therapies (chemotherapy and radiotherapy) often cause adverse symptoms and induce patients to terminate their anti-neoplastic regimens. Cancer-related fatigue, pain and other symptoms and the adverse effects of cancer cytotoxic therapies can be safely moderated with oral Membrane Lipid Replacement (MLR) glycerolphospholipids and mitochondrial cofactors, such as coenzyme Q10. MLR provides essential membrane lipids and precursors to maintain mitochondrial and other cellular membrane functions and reduces fatigue, pain, gastrointestinal, inflammation and other symptoms. In addition, patients with a variety of chronic symptoms benefit from MLR supplements, and MLR also has the ability to enhance the bioavailability of nutrients and slowly remove toxic, hydrophobic molecules from cells and tissues.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA.
- Department of Molecular Pathology, The Institute for Molecular Medicine, P.O. Box 9355, S. Laguna Beach, CA, 92652, USA.
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| |
Collapse
|
22
|
Mak KM, Shekhar AC. Soybean polyenylphosphatidylcholine (PPC) is beneficial in liver and extrahepatic tissue injury: An update in experimental research. Anat Rec (Hoboken) 2024; 307:2162-2186. [PMID: 37814787 DOI: 10.1002/ar.25333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Polyenylphosphatidylcholine (PPC) is a purified polyunsaturated phosphatidylcholine extract of soybeans. This article updates PPC's beneficial effects on various forms of liver cell injury and other tissues in experimental research. PPC downregulates hepatocyte CYP2E1 expression and associated hepatotoxicity, as well as attenuates oxidative stress, apoptosis, lipoprotein oxidation and steatosis in alcoholic and nonalcoholic liver injury. PPC inhibits pro-inflammatory cytokine production, while stimulating anti-inflammatory cytokine secretion in ethanol or lipopolysaccharide-stimulated Kupffer cells/macrophages. It promotes M2-type macrophage polarization and metabolic reprogramming of glucose and lipid metabolism. PPC mitigates steatosis in NAFLD through inhibiting polarization of pro-inflammatory M1-type Kupffer cells, alleviating metabolic inflammation, remodeling hepatic lipid metabolism, correcting imbalances between lipogenesis and lipolysis and enhancing lipoprotein secretion from hepatocytes. PPC is antifibrotic by preventing progression of alcoholic hepatic fibrosis in baboons and also prevents CCl4-induced fibrosis in rats. PPC supplementation replenishes the phosphatidylcholine content of damaged cell membranes, resulting in increased membrane fluidity and functioning. Phosphatidylcholine repletion prevents increased membrane curvature of the endoplasmic reticulum and Golgi and decreases sterol regulatory element binding protein-1-mediated lipogenesis, reducing steatosis. PPC remodels gut microbiota and affects hepatic lipid metabolism via the gut-hepatic-axis and also alleviates brain inflammatory responses and cognitive impairment via the gut-brain-axis. Additionally, PPC protects extrahepatic tissues from injury caused by various toxic compounds by reducing oxidative stress, inflammation, and membrane damage. It also stimulates liver regeneration, enhances sensitivity of cancer cells to radiotherapy/chemotherapy, and inhibits experimental hepatocarcinogenesis. PPC's beneficial effects justify it as a supportive treatment of liver disease.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Rusnak T, Azarcoya-Barrera J, Makarowski A, Jacobs RL, Richard C. Plant- and Animal-Derived Dietary Sources of Phosphatidylcholine Have Differential Effects on Immune Function in The Context of A High-Fat Diet in Male Wistar Rats. J Nutr 2024; 154:1936-1944. [PMID: 38582387 PMCID: PMC11217025 DOI: 10.1016/j.tjnut.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Phosphatidylcholine (PC) derived from eggs has been shown to beneficially modulate T cell response and intestinal permeability under the context of a high-fat diet. OBJECTIVES The objective of this study was to determine whether there is a differential effect of plant and animal-derived sources of PC on immune function. METHODS Four-week-old male Wistar rats were randomly assigned to consume 1 of 4 diets (n = 10/group) for 12 wk, all containing 1.5 g of total choline/kg of diet but differing in choline forms: 1-Control Low-Fat [CLF, 20% fat, 100% free choline (FC)]; 2-Control High-Fat (CHF, 50% fat, 100% FC); 3-High-Fat Egg-derived PC (EPC, 50% fat, 100% Egg-PC); 4-High-Fat Soy-derived PC (SPC, 50% fat, 100% Soy-PC). Immune cell functions and phenotypes were measured in splenocytes by ex vivo cytokine production after mitogen stimulation and flow cytometry, respectively. RESULTS The SPC diet increased splenocyte IL-2 production after PMA+I stimulation compared with the CHF diet. However, the SPC group had a lower proportion of splenocytes expressing the IL-2 receptor (CD25+, P < 0.05). After PMA+I stimulation, feeding EPC normalized splenocyte production of IL-10 relative to the CLF diet, whereas SPC did not (P < 0.05). In mesenteric lymph node lymphocytes, the SPC diet group produced more IL-2 and TNF-α after PMA+I stimulation than the CHF diet, whereas the EPC diet group did not. CONCLUSIONS Our results suggest that both egg- and soy-derived PC may attenuate high-fat diet-induced T cell dysfunction. However, egg-PC enhances, to a greater extent, IL-10, a cytokine involved in promoting the resolution phase of inflammation, whereas soy-PC appears to elicit a greater effect on gut-associated immune responses.
Collapse
Affiliation(s)
- Tianna Rusnak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Payuhakrit W, Panpinyaporn P, Khumsri W, Yusakul G, Praphasawat R, Nuengchamnong N, Palipoch S. Enhancing chronic wound healing with Thai indigenous rice variety, Kaab Dum: Exploring ER stress and senescence inhibition in HaCaT keratinocyte cell line. PLoS One 2024; 19:e0302662. [PMID: 38748716 PMCID: PMC11095683 DOI: 10.1371/journal.pone.0302662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
Kaab Dum, a prominent indigenous rice variety cultivated in the Pak Phanang Basin of Nakhon Si Thammarat, Thailand, is the focus of our study. We investigate the therapeutic potential of indigenous Kaab Dum rice extract in the context of chronic wounds. Our research encompasses an examination of the nutritional compositions and chemical profiles of Kaab Dum rice extract. Additionally, we assess how the extract affects chronic wounds in TGF-β-induced HaCaT cells. Our evaluation methods include the detection of cellular oxidative stress, the examination of endoplasmic reticulum (ER) stress, wound healing assays, analysis of cell cycle arrest and the study of cellular senescence through senescence-associated β-galactosidase (SA-β-gal) staining. Our research findings demonstrate that TGF-β induces oxidative stress in HaCaT cells, which subsequently triggers ER stress, confirmed by the expression of the PERK protein. This ER stress results in cell cycle arrest in HaCaT cells, characterized by an increase in p21 protein, a cyclin-dependent kinase inhibitor (CDKI). Ultimately, this leads to cellular senescence, as confirmed by SA-β-gal staining. Importantly, our study reveals the effectiveness of Kaab Dum rice extract in promoting wound healing in the chronic wound model. The extract reduces ER stress and senescent cells. These beneficial effects are potentially linked to the antioxidant and anti-inflammatory properties of the rice extract. The findings of our study have the potential to make significant contributions to the development of enhanced products for both the prevention and treatment of chronic wounds.
Collapse
Affiliation(s)
- Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Wilunplus Khumsri
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Gorrawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Ratsada Praphasawat
- Department of Pathology, School of Medicine, University of Phayao, Phayao, Thailand
| | - Nitra Nuengchamnong
- Science Lab Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Sarawoot Palipoch
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
25
|
Bagheri M, Bombin A, Shi M, Murthy VL, Shah R, Mosley JD, Ferguson JF. Genotype-based "virtual" metabolomics in a clinical biobank identifies novel metabolite-disease associations. Front Genet 2024; 15:1392622. [PMID: 38812968 PMCID: PMC11133605 DOI: 10.3389/fgene.2024.1392622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction: Circulating metabolites act as biomarkers of dysregulated metabolism and may inform disease pathophysiology. A portion of the inter-individual variability in circulating metabolites is influenced by common genetic variation. We evaluated whether a genetics-based "virtual" metabolomics approach can identify novel metabolite-disease associations. Methods: We examined the association between polygenic scores for 724 metabolites with 1,247 clinical phenotypes in the BioVU DNA biobank, comprising 57,735 European ancestry and 15,754 African ancestry participants. We applied Mendelian randomization (MR) to probe significant relationships and validated significant MR associations using independent GWAS of candidate phenotypes. Results and Discussion: We found significant associations between 336 metabolites and 168 phenotypes in European ancestry and 107 metabolites and 56 phenotypes in African ancestry. Of these metabolite-disease pairs, MR analyses confirmed associations between 73 metabolites and 53 phenotypes in European ancestry. Of 22 metabolitephenotype pairs evaluated for replication in independent GWAS, 16 were significant (false discovery rate p < 0.05). These included associations between bilirubin and X-21796 with cholelithiasis, phosphatidylcholine (16:0/22:5n3,18:1/20:4) and arachidonate with inflammatory bowel disease and Crohn's disease, and campesterol with coronary artery disease and myocardial infarction. These associations may represent biomarkers or potentially targetable mediators of disease risk.
Collapse
Affiliation(s)
- Minoo Bagheri
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrei Bombin
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Venkatesh L. Murthy
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ravi Shah
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan D. Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
26
|
Li W, Hou Z, Li Y, Zhang X, Bao X, Hou X, Zhang H, Zhang S. Amelioration of metabolic disorders in H9C2 cardiomyocytes induced by PM 2.5 treated with vitamin C. Drug Chem Toxicol 2024; 47:347-355. [PMID: 36815321 DOI: 10.1080/01480545.2023.2181971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) is a public health risk. We investigate PM2.5 on metabolites in cardiomyocytes and the influence of vitamin C on PM2.5 toxicity. MATERIALS AND METHODS For 24 hours, H9C2 were exposed to various concentrations of PM2.5 (0, 100, 200, 400, 800 μg/ml), after which the levels of reactive oxygen species (ROS) and cell viability were measured using the cell counting kit-8 (CCK-8) and 2',7'-dichlorofluoresceindiacetate (DCFH2-DA), respectively. H9C2 were treated with PM2.5 (200 μg/ml) in the presence or absence of vitamin C (40 μmol/L). mRNA levels of interleukin 6(IL-6), caspase-3, fatty acid-binding protein 3 (FABP3), and hemeoxygenase-1 (HO-1) were investigated by quantitative reverse-transcription polymerase chain reaction. Non-targeted metabolomics by LC-MS/MS was applied to evaluate the metabolic profile in the cell. RESULTS Results revealed a concentration-dependent reduction in cell viability, death, ROS, and increased expression of caspase-3, FABP3, and IL-6. In total, 15 metabolites exhibited significant differential expression (FC > 2, p < 0.05) between the control and PM2.5 group. In the PM2.5 group, lysophosphatidylcholines (LysoPC,3/3) were upregulated, whereas amino acids (5/5), amino acid analogues (3/3), and other acids and derivatives (4/4) were downregulated. PM2.5 toxicity was lessened by vitamin C. It reduced PM2.5-induced elevation of LysoPC (16:0), LysoPC (16:1), and LysoPC (18:1). DISCUSSION AND CONCLUSIONS PM2.5 induces metabolic disorders in H9C2 cardiomyocytes that can be ameliorated by treatment with vitamin C.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Ziyuan Hou
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Yang Li
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
- The State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, P.R. China
| | - Xiangping Zhang
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Xiaobing Bao
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Xiaoyan Hou
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Hongjin Zhang
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| | - Shuanhu Zhang
- Department of Clinical Laboratory, Anyang Center for Disease Control and Prevention, Anyang, Henan, P.R. China
| |
Collapse
|
27
|
Guo L, Wu C, Song B, Jin HZ. Exploration of circulating metabolic signature of erythrodermic psoriasis based on LC-MS metabolomics. Exp Dermatol 2024; 33:e15103. [PMID: 38794829 DOI: 10.1111/exd.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Erythrodermic psoriasis (EP) is a rare and life-threatening disease, the pathogenesis of which remains to be largely unknown. Metabolomics analysis can provide global information on disease pathophysiology, candidate biomarkers, and potential intervention strategies. To gain a better understanding of the mechanisms of EP and explore the serum metabolic signature of EP, we conducted an untargeted metabolomics analysis from 20 EP patients and 20 healthy controls. Furthermore, targeted metabolomics for focused metabolites were identified in the serum samples of 30 EP patients and 30 psoriasis vulgaris (PsV) patients. In the untargeted analysis, a total of 2992 molecular features were extracted from each sample, and the peak intensity of each feature was obtained. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed significant difference between groups. After screening, 98 metabolites were found to be significantly dysregulated in EP, including 67 down-regulated and 31 up-regulated. EP patients had lower levels of L-tryptophan, L-isoleucine, retinol, lysophosphatidylcholine (LPC), and higher levels of betaine and uric acid. KEGG analysis showed differential metabolites were enriched in amino acid metabolism and glycerophospholipid metabolism. The targeted metabolomics showed lower L-tryptophan in EP than PsV with significant difference and L-tryptophan levels were negatively correlated with the PASI scores. The serum metabolic signature of EP was discovered. Amino acid and glycerophospholipid metabolism were dysregulated in EP. The metabolite differences provide clues for pathogenesis of EP and they may provide insights for therapeutic interventions.
Collapse
Affiliation(s)
- Lan Guo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Chao Wu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Biao Song
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Hong-Zhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
28
|
Dignass A, Stremmel W, Horyński M, Poyda O, Armerding P, Fellermann K, Langhorst J, Kuehbacher T, Uebel P, Stein J, Novacek G, Avalueva E, Oliinyk O, Hasselblatt P, Dorofeyev A, Heinemann H, Mueller R, Greinwald R, Reinisch W. Modified-Release Phosphatidylcholine (LT-02) for Ulcerative Colitis: Two Double-Blind, Randomized, Placebo-Controlled Trials. Clin Gastroenterol Hepatol 2024; 22:810-820.e7. [PMID: 37806372 DOI: 10.1016/j.cgh.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND & AIMS The aim of this study was to evaluate the efficacy of LT-02, a novel modified-release phosphatidylcholine (PC) formulation, for induction and maintenance of remission in patients with mild to moderate ulcerative colitis (UC) and inadequate response to mesalamine. METHODS LT-02 was evaluated in a multicenter double-blind, randomized, placebo-controlled study comprising a 12-week induction trial (PCG-2), followed by a 48-week maintenance trial (PCG-4). In PCG-2, patients were randomized 1:1:1 to treatment with 0.8 g LT-02 4 times daily (QID), 1.6 g LT-02 twice daily (BID), or placebo, respectively. All patients continued to take a standard dose of oral mesalamine (≥2.4 g/day). The primary end point in PCG-2 was deep remission. Patients achieving remission at week 12 were randomly assigned 2:1:1 to 1.6 g LT-02 BID, placebo, or 500 mg mesalamine (3 times daily), respectively, in PCG-4; the primary end point was remission at 48 weeks. RESULTS PCG-2 was terminated early for futility after a prespecified interim analysis; 466 patients (of 762 planned) were randomized. There was no statistically significant difference in deep remission at week 12 (placebo, 13.5%; LT-02 BID, 14.2%; LT-02 QID, 9.7%). In PCG-4, 150 patients (of approximately 400 planned) were randomized. There was no statistically significant difference in remission rates at week 48 (LT-02 BID, 49.3%; mesalamine, 50.0%; placebo, 43.2%). LT-02 was safe. CONCLUSIONS Despite prior evidence of beneficial effects of PC in phase 2 trials, our induction study with LT-02 in patients with mild to moderate UC was terminated prematurely for futility. Signals of efficacy in maintenance therapy require confirmation in an adequately powered maintenance trial. LT-02 was safe and well-tolerated. CLINICALTRIALS gov: NCT02280629, NCT02142725.
Collapse
Affiliation(s)
- Axel Dignass
- Department of Medicine I, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany.
| | - Wolfgang Stremmel
- Department of Gastroenterology, University Hospital of Heidelberg, Heidelberg, Germany
| | | | - Oleksandr Poyda
- Department of Proctology, O.O. Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Klaus Fellermann
- Division of Gastroenterology, Medical Department I, Campus Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Jost Langhorst
- Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, Essen, Germany
| | - Tanja Kuehbacher
- Internal Medicine/Gastroenterology, Asklepios Westklinikum Hamburg, Hamburg, Germany
| | - Peter Uebel
- Study Center for Internal Medicine, Haus der Gesundheit, Ludwigshafen, Germany
| | - Juergen Stein
- Interdisciplinary Crohn Colitis Centre Rhein-Main, Frankfurt am Main, Germany
| | - Gottfried Novacek
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Elena Avalueva
- North-Western State Medical University named after I. I. Mechnikov of the Ministry of Health of the Russian Federation, St Petersburg, Russia
| | | | - Peter Hasselblatt
- Department of Medicine II and Medical Faculty, Medical Center University of Freiburg, Freiburg, Germany
| | - Andrey Dorofeyev
- Ukrainian-German Anti-ulcer Gastroenterology Centre, Kyiv, Ukraine
| | - Heidrun Heinemann
- Department of Clinical Research, Dr. Falk Pharma GmbH, Freiburg, Germany
| | - Ralph Mueller
- Department of Clinical Research, Dr. Falk Pharma GmbH, Freiburg, Germany
| | - Roland Greinwald
- Department of Clinical Research, Dr. Falk Pharma GmbH, Freiburg, Germany
| | - Walter Reinisch
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Questa M, Weimer BC, Fiehn O, Chow B, Hill SL, Ackermann MR, Lidbury JA, Steiner JM, Suchodolski JS, Marsilio S. Unbiased serum metabolomic analysis in cats with naturally occurring chronic enteropathies before and after medical intervention. Sci Rep 2024; 14:6939. [PMID: 38521833 PMCID: PMC10960826 DOI: 10.1038/s41598-024-57004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Chronic enteropathies (CE) are common disorders in cats and the differentiation between the two main underlying diseases, inflammatory bowel disease (IBD) and low-grade intestinal T-cell lymphoma (LGITL), can be challenging. Characterization of the serum metabolome could provide further information on alterations of disease-associated metabolic pathways and may identify diagnostic or therapeutic targets. Unbiased metabolomics analysis of serum from 28 cats with CE (14 cats with IBD, 14 cats with LGITL) and 14 healthy controls identified 1,007 named metabolites, of which 129 were significantly different in cats with CE compared to healthy controls at baseline. Random Forest analysis revealed a predictive accuracy of 90% for differentiating controls from cats with chronic enteropathy. Metabolic pathways found to be significantly altered included phospholipids, amino acids, thiamine, and tryptophan metabolism. Several metabolites were found to be significantly different between cats with IBD versus LGITL, including several sphingolipids, phosphatidylcholine 40:7, uridine, pinitol, 3,4-dihydroxybenzoic acid, and glucuronic acid. However, random forest analysis revealed a poor group predictive accuracy of 60% for the differentiation of IBD from LGITL. Of 129 compounds found to be significantly different between healthy cats and cats with CE at baseline, 58 remained different following treatment.
Collapse
Affiliation(s)
- Maria Questa
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Betty Chow
- VCA Animal Specialty & Emergency Center, Los Angeles, CA, USA
| | - Steve L Hill
- Veterinary Specialty Hospital, San Diego, CA, USA
| | - Mark R Ackermann
- US Department of Agriculture, National Animal Disease Center, Ames, IA, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, USA
| | - Sina Marsilio
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
30
|
Harewood R, Rothwell JA, Bešević J, Viallon V, Achaintre D, Gicquiau A, Rinaldi S, Wedekind R, Prehn C, Adamski J, Schmidt JA, Jacobs I, Tjønneland A, Olsen A, Severi G, Kaaks R, Katzke V, Schulze MB, Prada M, Masala G, Agnoli C, Panico S, Sacerdote C, Jakszyn PG, Sánchez MJ, Castilla J, Chirlaque MD, Atxega AA, van Guelpen B, Heath AK, Papier K, Tong TYN, Summers SA, Playdon M, Cross AJ, Keski-Rahkonen P, Chajès V, Murphy N, Gunter MJ. Association between pre-diagnostic circulating lipid metabolites and colorectal cancer risk: a nested case-control study in the European Prospective Investigation into Cancer and Nutrition (EPIC). EBioMedicine 2024; 101:105024. [PMID: 38412638 PMCID: PMC10907191 DOI: 10.1016/j.ebiom.2024.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Altered lipid metabolism is a hallmark of cancer development. However, the role of specific lipid metabolites in colorectal cancer development is uncertain. METHODS In a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), we examined associations between pre-diagnostic circulating concentrations of 97 lipid metabolites (acylcarnitines, glycerophospholipids and sphingolipids) and colorectal cancer risk. Circulating lipids were measured using targeted mass spectrometry in 1591 incident colorectal cancer cases (55% women) and 1591 matched controls. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between concentrations of individual lipid metabolites and metabolite patterns with colorectal cancer risk. FINDINGS Of the 97 assayed lipids, 24 were inversely associated (nominally p < 0.05) with colorectal cancer risk. Hydroxysphingomyelin (SM (OH)) C22:2 (ORper doubling 0.60, 95% CI 0.47-0.77) and acylakyl-phosphatidylcholine (PC ae) C34:3 (ORper doubling 0.71, 95% CI 0.59-0.87) remained associated after multiple comparisons correction. These associations were unaltered after excluding the first 5 years of follow-up after blood collection and were consistent according to sex, age at diagnosis, BMI, and colorectal subsite. Two lipid patterns, one including 26 phosphatidylcholines and all sphingolipids, and another 30 phosphatidylcholines, were weakly inversely associated with colorectal cancer. INTERPRETATION Elevated pre-diagnostic circulating levels of SM (OH) C22:2 and PC ae C34:3 and lipid patterns including phosphatidylcholines and sphingolipids were associated with lower colorectal cancer risk. This study may provide insight into potential links between specific lipids and colorectal cancer development. Additional prospective studies are needed to validate the observed associations. FUNDING World Cancer Research Fund (reference: 2013/1002); European Commission (FP7: BBMRI-LPC; reference: 313010).
Collapse
Affiliation(s)
- Rhea Harewood
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France.
| | - Joseph A Rothwell
- Centre for Epidemiology and Population Health (U1018), Exposome and Heredity Team, Faculté de Médecine, Université Paris-Saclay, UVSQ, INSERM, Gustave Roussy, F-94805, Villejuif, France
| | - Jelena Bešević
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Vivian Viallon
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - David Achaintre
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France; School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Audrey Gicquiau
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Roland Wedekind
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jerzy Adamski
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597; Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Julie A Schmidt
- Department of Clinical Medicine, Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Olof Palmes Allé 43-45, 8200 Aarhus N, Denmark
| | - Inarie Jacobs
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Cancer and Health, Strandboulevarden 49, DK-2100, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Diet, Cancer and Health, Strandboulevarden 49, DK-2100, Copenhagen, Denmark; The Department of Public Health, University of Aarhus, Aarhus, Denmark
| | - Gianluca Severi
- Centre for Epidemiology and Population Health (U1018), Exposome and Heredity Team, Faculté de Médecine, Université Paris-Saclay, UVSQ, INSERM, Gustave Roussy, F-94805, Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Verena Katzke
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Marcela Prada
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica E Chirurgia Federico Ii University, Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126, Turin, Italy
| | - Paula Gabriela Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain; Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| | - Jesús Castilla
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain; Instituto de Salud Pública de Navarra - IdiSNA, Pamplona, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Amaia Aizpurua Atxega
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Mary Playdon
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA; Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Véronique Chajès
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Neil Murphy
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
31
|
Zhang K, Ji J, Li N, Yin Z, Fan G. Integrated Metabolomics and Gut Microbiome Analysis Reveals the Efficacy of a Phytochemical Constituent in the Management of Ulcerative Colitis. Mol Nutr Food Res 2024; 68:e2200578. [PMID: 38012477 DOI: 10.1002/mnfr.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/09/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Cinnamaldehyde (CAH), a phytochemical constituent isolated from cinnamon, is gaining attention due to its nutritional and medicinal benefits. This study aimed to investigate the potential role of CAH in the treatment of ulcerative colitis (UC). METHODS AND RESULTS Integrated metabolomics and gut microbiome analysis are performed for 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced UC rats. The effect of CAH on colonic inflammation, lipid peroxidation, metabolic profiles, and gut microbiota is systematically explored. It finds that CAH improves the colitis-related symptoms, decreases disease activity index, increases the colon length and body weight, and alleviates histologic inflammation of UC rats. These therapeutic effects of CAH are due to suppression of inflammation and lipid peroxidation. Moreover, multi-omics analysis reveals that CAH treatment cause changes in plasma metabolome and gut microbiome in UC rats. CAH regulates lipid metabolic processes, especially phosphatidylcholines, lysophosphatidylcholines, and polyunsaturated fatty acids. Meanwhile, CAH modulates the gut microbial structure by restraining pathogenic bacteria (such as Helicobacter) and increasing probiotic bacteria (such as Bifidobacterium and Lactobacillus). CONCLUSIONS These results indicate that CAH exerts a beneficial role in UC by synergistic modulating the balance in gut microbiota and the associated metabolites, and highlights the nutritional and medicinal value of CAH in UC management.
Collapse
Affiliation(s)
- Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Nana Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, People's Republic of China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| |
Collapse
|
32
|
Hahn S, Kim G, Jin SM, Kim JH. Protective effects of metformin in the pro-inflammatory cytokine induced intestinal organoids injury model. Biochem Biophys Res Commun 2024; 690:149291. [PMID: 38006803 DOI: 10.1016/j.bbrc.2023.149291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Pathogenesis of inflammatory bowel disease (IBD) accompanies disrupted intestinal tight junctions. However, many approaches of therapeutics for IBD are focused only on anti-inflammatory effects and most cellular experiments are based on two-dimensional cell lines which have insufficient circumstances of intestine. Thus, here, we used three-dimensional structure intestinal organoids to investigate effects of metformin in the in vitro IBD condition. In this study, we focused on both tight junctions and the levels of inflammatory cytokines. Metformin enhances the intestinal barrier in injured intestine via upregulation of AMP-activated protein kinase, dysfunction of which contributes to the pathogenesis of intestinal diseases. We aim to investigate the effects of metformin on cytokine-induced injured intestinal organoids. Tumor necrosis factor-alpha (TNF-α) was used to induce intestinal injury in an organoid model, and the effects of metformin were assessed. Cell viability and levels of inflammatory cytokines were quantified in addition to tight junction markers. Furthermore, 4 kDa FITC-dextran was used to assess intestinal permeability. The upregulation of inflammatory cytokine levels was alleviated by metformin, which also restored the intestinal epithelium permeability in TNF-α-treated injury organoids. We confirmed that claudin-2 and claudin-7, representative tight junction markers, were also protected by metformin treatment. This study confirms the protective effects of metformin, which could be used as a therapeutic strategy for inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Soojung Hahn
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Jae Hyeon Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| |
Collapse
|
33
|
Taddeo JR, Wilson N, Kowal A, Beld J, Andres KS, Tükel Ç, Tam VC. PPARα exacerbates Salmonella Typhimurium infection by modulating the immunometabolism and macrophage polarization. Gut Microbes 2024; 16:2419567. [PMID: 39508622 PMCID: PMC11545264 DOI: 10.1080/19490976.2024.2419567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (STm) is a causative pathogen for robust inflammatory gastrointestinal disease and can lead to systemic infection. Eicosanoids, bioactive lipid mediators, play a crucial role in modulating both the induction and resolution of inflammatory responses during an infection. A subset of eicosanoids activates PPARs, nuclear receptor/transcription factors that regulate fatty acid metabolism, lipid body formation, and macrophage function. In this study, we determined that mice lacking PPARα exhibited reduced inflammatory hallmarks of STm infection, including lower inflammatory gene expression, cecal inflammation, and bacterial dissemination, along with a significant increase in cecal eicosanoid metabolism compared to wildtype C57BL/6 mice. In macrophages, STm favored M2b-polarized macrophages for intracellular infection, leading to reduced arachidonic acid and ceramide production. Inhibition of fatty acid oxidation via Etomoxir in STm-infected macrophages reduced bacterial burdens and promoted cell death. In Etomoxir-treated wildtype mice, STm infection increased ceramide production, decreased inflammatory gene expression in the cecum, and increased the number of STm-containing M1 macrophages in mesenteric lymph nodes. These findings revealed a novel role for the lipid-immune signaling axis in Salmonella infections, providing significant insights into the lipid-mediated regulation of inflammation during bacterial infections in the gut.
Collapse
Affiliation(s)
- Jessica R. Taddeo
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Naomi Wilson
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anita Kowal
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Vincent C. Tam
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
34
|
Mönki J, Holopainen M, Ruhanen H, Karikoski N, Käkelä R, Mykkänen A. Lipid species profiling of bronchoalveolar lavage fluid cells of horses housed on two different bedding materials. Sci Rep 2023; 13:21778. [PMID: 38066223 PMCID: PMC10709413 DOI: 10.1038/s41598-023-49032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The lipidome of equine BALF cells has not been described. The objectives of this prospective repeated-measures study were to explore the BALF cells' lipidome in horses and to identify lipids associated with progression or resolution of airway inflammation. BALF cells from 22 horses exposed to two bedding materials (Peat 1-Wood shavings [WS]-Peat 2) were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of bedding on lipid class and species compositions were tested with rmANOVA. Correlations between lipids and cell counts were examined. The BALF cells' lipidome showed bedding-related differences for molar percentage (mol%) of 60 species. Whole phosphatidylcholine (PC) class and its species PC 32:0 (main molecular species 16:0_16:0) had higher mol% after Peat 2 compared with WS. Phosphatidylinositol 38:4 (main molecular species 18:0_20:4) was higher after WS compared with both peat periods. BALF cell count correlated positively with mol% of the lipid classes phosphatidylserine, sphingomyelin, ceramide, hexosylceramide, and triacylglycerol but negatively with PC. BALF cell count correlated positively with phosphatidylinositol 38:4 mol%. In conclusion, equine BALF cells' lipid profiles explored with MS-based lipidomics indicated subclinical inflammatory changes after WS. Inflammatory reactions in the cellular lipid species composition were detected although cytological responses indicating inflammation were weak.
Collapse
Affiliation(s)
- Jenni Mönki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland.
| | - Minna Holopainen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| |
Collapse
|
35
|
Human C, Aucamp M, de Beer D, van der Rijst M, Joubert E. Food-grade phytosome vesicles for nanoencapsulation of labile C-glucosylated xanthones and dihydrochalcones present in a plant extract matrix-Effect of process conditions and stability assessment. Food Sci Nutr 2023; 11:8093-8111. [PMID: 38107118 PMCID: PMC10724603 DOI: 10.1002/fsn3.3730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
Phytosomes consist of a phytochemical bound to the hydrophilic choline head of a phospholipid. Their use in food products is gaining interest. However, literature on the use of food-grade solvents, crude plant extracts as opposed to pure compounds, and unrefined phospholipids to prepare phytosomes is limited. Furthermore, studies on compound stability are lacking. This study aimed to develop nano-phytosome vesicles prepared from inexpensive food-grade ingredients to improve the stability of polyphenolic compounds. Cyclopia subternata extract (CSE) was selected as a source of phenolic compounds. It contains substantial quantities of C-glucosyl xanthones, benzophenones, and dihydrochalcones, compounds largely neglected to date. The effect of process conditions on the complexation of CSE polyphenols with minimally refined food-grade fat-free soybean lecithin (PC) was studied. The PC:CSE ratio, sonication time, and reaction temperature were varied. This resulted in phytosomes ranging in vesicle size (113.7-312.7 nm), polydispersity index (0.31-0.48), and zeta potential (-55.0 to -38.9 mV). Variation was also observed in the yield (93.5%-96.0%), encapsulation efficiency (3.7%-79.0%), and loading capacity (LC, 1.3%-14.7%). Vesicle size and LC could be tailored by adjusting the sonication time and PC:CSE ratio, respectively. Chemical interaction between the lipid and the phenolic compounds was confirmed with nuclear magnetic resonance. Phytosomal formulation protected the compounds against degradation when freeze-dried samples were stored at 25 and 40°C for 6 months at low relative humidity. The study provided valuable information on the importance of specific process parameters in producing food-grade phytosomes with improved phenolic stability.
Collapse
Affiliation(s)
- Chantelle Human
- Plant Bioactives Group, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (Infruitec‐Nietvoorbij)StellenboschSouth Africa
| | - Marique Aucamp
- School of PharmacyUniversity of the Western CapeBellvilleSouth Africa
| | - Dalene de Beer
- Plant Bioactives Group, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (Infruitec‐Nietvoorbij)StellenboschSouth Africa
- Department of Food ScienceStellenbosch UniversityMatieland (Stellenbosch)South Africa
| | | | - Elizabeth Joubert
- Plant Bioactives Group, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (Infruitec‐Nietvoorbij)StellenboschSouth Africa
- Department of Food ScienceStellenbosch UniversityMatieland (Stellenbosch)South Africa
| |
Collapse
|
36
|
Li Y, Mao K, Zang Y, Lu G, Qiu Q, Ouyang K, Zhao X, Song X, Xu L, Liang H, Qu M. Revealing the developmental characterization of rumen microbiome and its host in newly received cattle during receiving period contributes to formulating precise nutritional strategies. MICROBIOME 2023; 11:238. [PMID: 37924150 PMCID: PMC10623857 DOI: 10.1186/s40168-023-01682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/27/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Minimizing mortality losses due to multiple stress and obtaining maximum performance are the production goals for newly received cattle. In recent years, vaccination and metaphylaxis treatment significantly decreased the mortality rate of newly received cattle, while the growth block induced by treatment is still obvious. Assessment of blood metabolites and behavior monitoring offer potential for early identification of morbid animals. Moreover, the ruminal microorganisms' homeostasis is a guarantee of beef steers' growth and health. The most critical period for newly received cattle is the first-month post-transport. Therefore, analyzing rumen metagenomics, rumen metabolomics, host metabolomics, and their interaction during receiving period (1 day before transport and at days 1/4, 16, and 30 after transport) is key to revealing the mechanism of growth retardation, and then to formulating management and nutritional practices for newly received cattle. RESULTS The levels of serum hormones (COR and ACTH), and pro-inflammatory factors (IL-1β, TNF-α, and IL-6) were highest at day 16, and lowest at day 30 after arrival. Meanwhile, the antioxidant capacity (SOD, GSH-Px, and T-AOC) was significantly decreased at day 16 and increased at day 30 after arrival. Metagenomics analysis revealed that rumen microbes, bacteria, archaea, and eukaryota had different trends among the four different time points. At day 16 post-transport, cattle had a higher abundance of ruminal bacteria and archaea than those before transport, but the eukaryote abundance was highest at day 30 post-transport. Before transport, most bacteria were mainly involved in polysaccharides digestion. At day 4 post-transport, the most significantly enriched KEGG pathways were nucleotide metabolism (pyrimidine metabolism and purine metabolism). At day 16 post-transport, the energy metabolism (glycolysis/gluconeogenesis, pyruvate metabolism) and ruminal contents of MCP and VFAs were significantly increased, but at the same time, energy loss induced by methane yields (Methanobrevibacter) together with pathogenic bacteria (Saccharopolyspora rectivirgula) were also significantly increased. At this time, the most upregulated ruminal L-ornithine produces more catabolite polyamines, which cause oxidative stress to rumen microbes and their host; the most downregulated ruminal 2',3'-cAMP provided favorable growth conditions for pathogenic bacteria, and the downregulated ruminal vitamin B6 metabolism and serum PC/LysoPC disrupt immune function and inflammation reaction. At day 30 post-transport, the ruminal L-ornithine and its catabolites (mainly spermidine and 1,3-propanediamine) were decreased, and the serum PC/LysoPC and 2',3'-cNMPs pools were increased. This is also consistent with the changes in redox, inflammation, and immune status of the host. CONCLUSIONS This study provides new ideas for regulating the health and performance of newly received cattle during the receiving period. The key point is to manage the newly received cattle about day 16 post-transport, specifically to inhibit the production of methane and polyamines, and the reproduction of harmful bacteria in the rumen, therefore improving the immunity and performance of newly received cattle. Video Abstract.
Collapse
Affiliation(s)
- Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| | - Kang Mao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yitian Zang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guwei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huan Liang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
37
|
Revelo X, Fredrickson G, Florczak K, Barrow F, Dietsche K, Wang H, Parthiban P, Almutlaq R, Adeyi O, Herman A, Bartolomucci A, Staley C, Jahansouz C, Williams J, Mashek D, Ikramuddin S. Hepatic lipid-associated macrophages mediate the beneficial effects of bariatric surgery against MASH. RESEARCH SQUARE 2023:rs.3.rs-3446960. [PMID: 37961666 PMCID: PMC10635378 DOI: 10.21203/rs.3.rs-3446960/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For patients with obesity and metabolic syndrome, bariatric procedures such as vertical sleeve gastrectomy (VSG) have a clear benefit in ameliorating metabolic dysfunction-associated steatohepatitis (MASH). While the effects of bariatric surgeries have been mainly attributed to nutrient restriction and malabsorption, whether immuno-modulatory mechanisms are involved remains unclear. Here we report that VSG ameliorates MASH progression in a weight loss-independent manner. Single-cell RNA sequencing revealed that hepatic lipid-associated macrophages (LAMs) expressing the triggering receptor expressed on myeloid cells 2 (TREM2) increase their lysosomal activity and repress inflammation in response to VSG. Remarkably, TREM2 deficiency in mice ablates the reparative effects of VSG, suggesting that TREM2 is required for MASH resolution. Mechanistically, TREM2 prevents the inflammatory activation of macrophages and is required for their efferocytotic function. Overall, our findings indicate that bariatric surgery improves MASH through a reparative process driven by hepatic LAMs, providing insights into the mechanisms of disease reversal that may result in new therapies and improved surgical interventions.
Collapse
|
38
|
Snider AP, Gomes RS, Summers AF, Tenley SC, Abedal-Majed MA, McFee RM, Wood JR, Davis JS, Cupp AS. Identification of Lipids and Cytokines in Plasma and Follicular Fluid before and after Follicle-Stimulating Hormone Stimulation as Potential Markers for Follicular Maturation in Cattle. Animals (Basel) 2023; 13:3289. [PMID: 37894013 PMCID: PMC10603728 DOI: 10.3390/ani13203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The process of follicle maturation leading to ovulation is a key milestone in female fertility. It is known that circulating lipids and cytokines play a role in the follicle's ability to go through follicular maturation and the ovulatory processes. However, the specific mechanisms are not well understood. We posit that dysregulation of granulosa cells influences the ovarian environment, which tries to adapt by changing released lipids and cytokines to achieve follicular maturation. Eleven non-lactating adult females underwent estrus synchronization with two injections of PGF2α 14 days apart. Daily blood samples were collected for 28 days to monitor steroid hormone production after the second injection. To understand the potential impacts of lipids and cytokines during ovulation, a low-dose FSH stimulation (FSHLow) was performed after resynchronization of cows, and daily blood samples were collected for 14 days to monitor steroid hormone production until ovariectomies. The lipidomic analysis demonstrated increased circulating diacylglycerides and triacylglycerides during the mid-luteal phase and after FSHLow treatment. Cholesteryl esters decreased in circulation but increased in follicular fluid (FF) after FSHLow. Increased circulating concentrations of TNFα and reduced CXCL9 were observed in response to FSHLow. Therefore, specific circulating lipids and cytokines may serve as markers of normal follicle maturation.
Collapse
Affiliation(s)
- Alexandria P. Snider
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Renata S. Gomes
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | | | - Sarah C. Tenley
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - Mohamed A. Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Renee M. McFee
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jennifer R. Wood
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - John S. Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198, USA;
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| |
Collapse
|
39
|
Bagheri M, Bombin A, Shi M, Murthy VL, Shah R, Mosley JD, Ferguson JF. Genotype-based "virtual" metabolomics in a clinical biobank identifies novel metabolite-disease associations. RESEARCH SQUARE 2023:rs.3.rs-3222588. [PMID: 37790512 PMCID: PMC10543429 DOI: 10.21203/rs.3.rs-3222588/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Circulating metabolites act as biomarkers of dysregulated metabolism, and may inform disease pathophysiology. A portion of the inter-individual variability in circulating metabolites is influenced by common genetic variation. We evaluated whether a genetics-based "virtual" metabolomics approach can identify novel metabolite-disease associations. We examined the association between polygenic scores for 726 metabolites (derived from OMICSPRED) with 1,247 clinical phenotypes in 57,735 European ancestry and 15,754 African ancestry participants from the BioVU DNA Biobank. We probed significant relationships through Mendelian randomization (MR) using genetic instruments constructed from the METSIM Study, and validated significant MR associations using independent GWAS of candidate phenotypes. We found significant associations between 336 metabolites and 168 phenotypes in European ancestry and 107 metabolites and 56 phenotypes among African ancestry. Of these metabolite-disease pairs, MR analyses confirmed associations between 73 metabolites and 53 phenotypes in European ancestry. Of 22 metabolite-phenotype pairs evaluated for replication in independent GWAS, 16 were significant (false discovery rate p<0.05). Validated findings included the metabolites bilirubin and X-21796 with cholelithiasis, phosphatidylcholine(16:0/22:5n3,18:1/20:4) and arachidonate(20:4n6) with inflammatory bowel disease and Crohn's disease, and campesterol with coronary artery disease and myocardial infarction. These associations may represent biomarkers or potentially targetable mediators of disease risk.
Collapse
Affiliation(s)
| | | | | | | | - Ravi Shah
- Vanderbilt University Medical Center
| | | | | |
Collapse
|
40
|
Bagheri M, Bombin A, Shi M, Murthy VL, Shah R, Mosley JD, Ferguson JF. Genotype-based "virtual" metabolomics in a clinical biobank identifies novel metabolite-disease associations. RESEARCH SQUARE 2023:rs.3.rs-3222588. [PMID: 37790512 PMCID: PMC10543429 DOI: 10.21203/rs.3.rs-3222588/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Circulating metabolites act as biomarkers of dysregulated metabolism, and may inform disease pathophysiology. A portion of the inter-individual variability in circulating metabolites is influenced by common genetic variation. We evaluated whether a genetics-based "virtual" metabolomics approach can identify novel metabolite-disease associations. We examined the association between polygenic scores for 726 metabolites (derived from OMICSPRED) with 1,247 clinical phenotypes in 57,735 European ancestry and 15,754 African ancestry participants from the BioVU DNA Biobank. We probed significant relationships through Mendelian randomization (MR) using genetic instruments constructed from the METSIM Study, and validated significant MR associations using independent GWAS of candidate phenotypes. We found significant associations between 336 metabolites and 168 phenotypes in European ancestry and 107 metabolites and 56 phenotypes among African ancestry. Of these metabolite-disease pairs, MR analyses confirmed associations between 73 metabolites and 53 phenotypes in European ancestry. Of 22 metabolite-phenotype pairs evaluated for replication in independent GWAS, 16 were significant (false discovery rate p<0.05). Validated findings included the metabolites bilirubin and X-21796 with cholelithiasis, phosphatidylcholine(16:0/22:5n3,18:1/20:4) and arachidonate(20:4n6) with inflammatory bowel disease and Crohn's disease, and campesterol with coronary artery disease and myocardial infarction. These associations may represent biomarkers or potentially targetable mediators of disease risk.
Collapse
Affiliation(s)
| | | | | | | | - Ravi Shah
- Vanderbilt University Medical Center
| | | | | |
Collapse
|
41
|
Arshad U, Zenobi MG, Tribulo P, Staples CR, Santos JEP. Dose-dependent effects of rumen-protected choline on hepatic metabolism during induction of fatty liver in dry pregnant dairy cows. PLoS One 2023; 18:e0290562. [PMID: 37796906 PMCID: PMC10553221 DOI: 10.1371/journal.pone.0290562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
Objectives were to determine the effects of supplementing increasing amounts of choline ion on hepatic composition and mRNA abundance in pregnant dry cows subjected to a fatty liver induction protocol. Holstein cows (35 primiparous and 41 multiparous) at mean (± standard deviation) of 211 ± 9.9 days of gestation were blocked by body condition (3.59 ± 0.33) and assigned to receive 0, 6.45, 12.90, 19.35, and 25.80 g/day of choline ion as rumen-protected choline (RPC) as a top-dress for 14 days. Cows were fed for ad libitum intake on days 1 to 5 and restricted to 30% of the required net energy for lactation from days 6 to 14 of the experiment. Hepatic tissue was sampled on days 5 and 14 and analyzed for concentrations of triacylglycerol and glycogen, and mRNA abundance was investigated. Orthogonal contrasts evaluated the effects of supplementing RPC (0 g/day vs. rest), and the linear, quadratic, and cubic effects of increasing intake of choline ion from 6.45 to 25.80 g/day. Results are depicted in sequence of treatments from 0 to 25.8. During feed restriction, RPC reduced the concentration of hepatic triacylglycerol by 28.5% and increased that of glycogen by 26.1%, and the effect of increasing RPC intake on triacylglycerol was linear (6.67 vs. 5.45 vs. 4.68 vs. 5.13 vs. 3.81 ± 0.92% wet-basis). Feeding RPC during feed restriction increased abundance of transcripts involved in choline metabolism (CHKA, PLD1), synthesis of apolipoprotein-B100 (APOB100), and antioxidant activity (GPX3), and decreased the abundance of transcripts involved in hepatic lipogenesis (DGAT2, SREBF1) and acute phase response (SAA3). Most effects were linear with amount of choline fed. Changes in hepatic mRNA abundance followed a pattern of reduced lipogenesis and enhanced lipids export, which help explain the reduced hepatic triacylglycerol content in cows fed RPC. Choline exerts lipotropic effects in dairy cows by altering transcript pathways linked to hepatic lipids metabolism.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Marcos G. Zenobi
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Paula Tribulo
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Charles R. Staples
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - José E. P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
42
|
Arshad U, Husnain A, Poindexter MB, Zimpel R, Perdomo MC, Santos JEP. Effect of source and amount of rumen-protected choline on hepatic metabolism during induction of fatty liver in dairy cows. J Dairy Sci 2023; 106:6860-6879. [PMID: 37210357 DOI: 10.3168/jds.2023-23270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
Objectives were to determine the effect of supplementing increased amounts of rumen-protected choline (RPC) from sources with low (L, 28.8%) or high (H, 60.0%) concentration of choline chloride on hepatic metabolism when cows were subjected to feed restriction to develop fatty liver. It was hypothesized that increased supplementation of RPC reduces hepatic triacylglycerol and enhances glycogen concentrations. Pregnant, nonlactating multiparous Holstein cows (n = 110) at mean (± standard deviation) 232 ± 3.9 d of gestation were blocked by body condition (4.01 ± 0.52) and assigned to receive 0 (CON), 12.9 (L12.9 or H12.9), or 25.8 (L25.8 or H25.8) g/d of choline ion. Cows were fed for ad libitum intake on d 1 to 5 and restricted to 50% of the NEL required for maintenance and pregnancy from d 6 to 13. Intake of metabolizable methionine was maintained at 19 g/d during the feed restriction period by supplying rumen-protected methionine. Hepatic tissue was sampled on d 6 and 13 and analyzed for triacylglycerol, glycogen, and mRNA expression of genes involved in choline, glucose, and fatty acids metabolism, cell signaling, inflammation, autophagy, lipid droplet dynamics, lipophagy, and endoplasmic reticulum stress response. Blood was sampled and analyzed for concentrations of fatty acids, β-hydroxybutyrate (BHB), glucose, triacylglycerol, total cholesterol, and haptoglobin. Orthogonal contrasts evaluated the effect of supplementing RPC [CON vs. (1/4·L12.9 + 1/4·L25.8 + 1/4·H12.9 + 1/4·H25.8)], source of RPC [(1/2·L12.9 + 1/2·L25.8) vs. (1/2·H12.9 + 1/2·H25.8)], amount of RPC [(1/2·L12.9 + 1/2·H12.9) vs. (1/2·L25.8 + 1/2·H25.8)], and interaction between source and amount [(1/2·L12.9 + 1/2·H25.8) vs. (1/2·H12.9 + 1/2·L25.8)]. Least squares means and standard error of the means are presented in sequence as CON, L12.9, L25.8, H12.9, H25.8. Supplementation of RPC reduced hepatic triacylglycerol (9.3 vs. 6.6 vs. 5.1 vs. 6.6 vs. 6.0 ± 0.6% as-is) and increased glycogen contents (1.8 vs. 2.6 vs. 3.6 vs. 3.1 vs. 4.1 ± 0.2% as-is) on d 13 of the experiment. Feeding RPC reduced serum haptoglobin (136.6 vs. 85.6 vs. 80.6 vs. 82.8 vs. 81.2 ± 4.6 µg/mL) during the feed restriction period; however, blood concentrations of fatty acids, BHB, glucose, triacylglycerol, and total cholesterol did not differ among treatments. During feed restriction, supplementation of RPC enhanced the mRNA expression of genes related to choline metabolism (BHMT), uptake of fatty acids (CD36), and autophagy (ATG3), and reduced the expression of a transcript associated with endoplasmic reticulum stress response (ERN1). An increase in the amount of choline ion from 12.9 to 25.8 g/d enhanced the mRNA expression of genes associated with synthesis and assembly of lipoproteins (APOB100), and inflammation (TNFA), whereas it reduced the expression of genes linked to gluconeogenesis (PC), oxidation of fatty acids (ACADM, MMUT), ketogenesis (ACAT1), and synthesis of antioxidants (SOD1) on d 13 of the experiment. Feeding RPC, independent of the product used, promoted lipotropic effects that reduced hepatic lipidosis in dairy cows.
Collapse
Affiliation(s)
- U Arshad
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - A Husnain
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - M B Poindexter
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - R Zimpel
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - M C Perdomo
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - J E P Santos
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
43
|
Varela L, van de Lest CHA, Boere J, Libregts SFWM, Lozano-Andrés E, van Weeren PR, Wauben MHM. Acute joint inflammation induces a sharp increase in the number of synovial fluid EVs and modifies their phospholipid profile. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159367. [PMID: 37473834 DOI: 10.1016/j.bbalip.2023.159367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Inflammation is the hallmark of most joint disorders. However, the precise regulation of induction, perpetuation, and resolution of joint inflammation is not entirely understood. Since extracellular vesicles (EVs) are critical for intercellular communication, we aim to unveil their role in these processes. Here, we investigated the EVs' dynamics and phospholipidome profile from synovial fluid (SF) of healthy equine joints and from horses with lipopolysaccharide (LPS)-induced synovitis. LPS injection triggered a sharp increase of SF-EVs at 5-8 h post-injection, which started to decline at 24 h post-injection. Importantly, we identified significant changes in the lipid profile of SF-EVs after synovitis induction. Compared to healthy joint-derived SF-EVs (0 h), SF-EVs collected at 5, 24, and 48 h post-LPS injection were strongly increased in hexosylceramides. At the same time, phosphatidylserine, phosphatidylcholine, and sphingomyelin were decreased in SF-EVs at 5 h and 24 h post-LPS injection. Based on the lipid changes during acute inflammation, we composed specific lipid profiles associated with healthy and inflammatory state-derived SF-EVs. The sharp increase in SF-EVs during acute synovitis and the correlation of specific lipids with either healthy or inflamed states-derived SF-EVs are findings of potential interest for unveiling the role of SF-EVs in joint inflammation, as well as for the identification of EV-biomarkers of joint inflammation.
Collapse
Affiliation(s)
- Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Chris H A van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janneke Boere
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sten F W M Libregts
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Estefanía Lozano-Andrés
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division of Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - P René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marca H M Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
44
|
Chen H, Zhou H, Liang Y, Huang Z, Yang S, Wang X, She Z, Wei Z, Zhang Q. UHPLC-HRMS-based serum untargeted lipidomics: Phosphatidylcholines and sphingomyelins are the main disturbed lipid markers to distinguish colorectal advanced adenoma from cancer. J Pharm Biomed Anal 2023; 234:115582. [PMID: 37473505 DOI: 10.1016/j.jpba.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Colorectal advanced adenoma (CAA) is a key precancerous lesion of colorectal cancer (CRC), and early diagnosis can lessen CRC morbidity and mortality. Although abnormal lipid metabolism is associated with the development of CRC, there are no studies on the biomarkers and mechanism of lipid metabolism linked to CAA carcinogenesis. Hence, we performed a lipidomics study of serum samples from 46 CAA, and 50 CRC patients by the ultra high-performance liquid chromatography tandem high resolution mass spectrometry (UHPLC-HRMS) in both electrospray ionization (ESI) modes. Differential lipids were selected by univariate and multivariate statistics analysis, and their diagnostic performance was evaluated using a receiver operating characteristic curve (ROC) analysis. Combining P < 0.05 and variable importance in projection (VIP) > 1, 59 differential lipids were obtained totally. Ten of them showed good discriminant ability for CAA and CRC (AUC > 0.900). Especially, the lipid panel consisting of PC 44:5, PC 35:6e, and SM d40:3 showed the highest selection frequency and outperformed (AUC = 0.952). Additionally, phosphatidylcholine (PC) and sphingomyelin (SM) were the main differential and high-performance lipids. In short, this is the first study to explore the biomarkers and mechanism for CAA-CRC sequence with large-scale serum lipidomics. The findings should provide valuable reference and new clues for the development of diagnostic and therapeutic strategies of CRC.
Collapse
Affiliation(s)
- Hongwei Chen
- Medical College, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Hailin Zhou
- Medical College, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yunxiao Liang
- Department of Gastroenterology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Zongsheng Huang
- Department of Gastroenterology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Shanyi Yang
- Medical College, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xuancheng Wang
- Medical College, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Zhiyong She
- Medical College, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Zhijuan Wei
- Medical College, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qisong Zhang
- Medical College, Guangxi University, Nanning, Guangxi 530004, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, Hubei 44500, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
45
|
Wang Q, Wang P, Yuan M, Zhang M, Zhang S, Sun X, Shang L, Liu Y, Zhao Y, Jiang N, Gao X. Efficacy and mechanism of Baicao Fuyanqing suppository on mixed vaginitis based on 16S rRNA and metabolomics. Front Cell Infect Microbiol 2023; 13:1166366. [PMID: 37780858 PMCID: PMC10538640 DOI: 10.3389/fcimb.2023.1166366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Background Mixed vaginitis is the infection of the vagina by at least two different pathogens at the same time, both of which contribute to an abnormal vaginal environment leading to signs and symptoms. Baicao Fuyanqing suppository (BCFYQ) is a Miao ethnomedicine, used to treat various vaginitis. The aim of this study was to investigate the efficacy and possible mechanism of BCFYQ in the treatment of mixed vaginitis based on 16S rRNA high-throughput sequencing and metabonomics. Methods Escherichia coli and Candida albicans were used to establish mixed vaginitis model in SD rats. Three groups of low, medium and high doses (0.18/0.36/0.64 g.kg-1) were established, and administered vaginally once a day for 6 consecutive days. After the last administration, vaginal pH and IL-1β, IL-2, IL-13 and IgA levels were measured, and the vaginal tissue was examined pathologically. In addition, the vaginal flora was characterised by 16S rRNA, and endogenous metabolites in the vaginal tissue were detected by UHPLC-Q-Exactive MS. Results Compared with the model group, BCFYQ can reduce the vaginal pH of rats, make it close to the normal group and improve the damaged vaginal epithelial tissue. The results of ELISA showed that BCFYQ decreased the levels of IL-1 β and IL-2 and increased the levels of IL-13 and IgA (P<0.05). In addition, BCFYQ may increase the abundance of vaginal flora, especially Lactobacillus. The differential metabolite enrichment pathway suggests that the therapeutic mechanism of BCFYQ is mainly related to lipid metabolism and amino acid metabolism. Conclusion Our research shows that BCFYQ has a good therapeutic effect on mixed vaginitis. It repairs the damaged vaginal mucosa by regulating the vaginal flora and lipid metabolism disorders to improve the local immune function of the vagina and inhibit the growth and reproduction of pathogens.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Minyan Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Shuo Zhang
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
- Experimental Animal Center, Guizhou Medical University, Guiyang, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Leyuan Shang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Yujie Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Yanni Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Nan Jiang
- Research and Development Department, Changsheng Pharmaceutical Co. Ltd., Guizhou, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
46
|
Yadav I, Sharma N, Velayudhan R, Fatima Z, Maras JS. Ocimum sanctum Alters the Lipid Landscape of the Brain Cortex and Plasma to Ameliorate the Effect of Photothrombotic Stroke in a Mouse Model. Life (Basel) 2023; 13:1877. [PMID: 37763282 PMCID: PMC10533110 DOI: 10.3390/life13091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Stroke-like injuries in the brain result in not only cell death at the site of the injury but also other detrimental structural and molecular changes in regions around the stroke. A stroke-induced alteration in the lipid profile interferes with neuronal functions such as neurotransmission. Preventing these unfavorable changes is important for recovery. Ocimum sanctum (Tulsi extract) is known to have anti-inflammatory and neuroprotective properties. It is possible that Tulsi imparts a neuroprotective effect through the lipophilic transfer of active ingredients into the brain. Hence, we examined alterations in the lipid profile in the cerebral cortex as well as the plasma of mice with a photothrombotic-ischemic-stroke-like injury following the administration of a Tulsi extract. It is also possible that the lipids present in the Tulsi extract could contribute to the lipophilic transfer of active ingredients into the brain. Therefore, to identify the major lipid species in the Tulsi extract, we performed metabolomic and untargeted lipidomic analyses on the Tulsi extract. The presence of 39 molecular lipid species was detected in the Tulsi extract. We then examined the effect of a treatment using the Tulsi extract on the untargeted lipidomic profile of the brain and plasma following photothrombotic ischemic stroke in a mouse model. Mice of the C57Bl/6j strain, aged 2-3 months, were randomly divided into four groups: (i) Sham, (ii) Lesion, (iii) Lesion plus Tulsi, and (iv) Lesion plus Ibuprofen. The cerebral cortex of the lesioned hemisphere of the brain and plasma samples were collected for untargeted lipidomic profiling using a Q-Exactive Mass Spectrometer. Our results documented significant alterations in major lipid groups, including PE, PC, neutral glycerolipids, PS, and P-glycerol, in the brain and plasma samples from the photothrombotic stroke mice following their treatment with Tulsi. Upon further comparison between the different study groups of mice, levels of MGDG (36:4), which may assist in recovery, were found to be increased in the brain cortexes of the mice treated with Tulsi when compared to the other groups (p < 0.05). Lipid species such as PS, PE, LPG, and PI were commonly altered in the Sham and Lesion plus Tulsi groups. The brain samples from the Sham group were specifically enriched in many species of glycerol lipids and had reduced PE species, while their plasma samples showed altered PE and PS species when compared to the Lesion group. LPC (16:1) was found in the Tulsi extract and was significantly increased in the brains of the PTL-plus-Tulsi-treated group. Our results suggest that the neuroprotective effect of Tulsi on cerebral ischemia may be partially associated with its ability to regulate brain and plasma lipids, and these results may help provide critical insights into therapeutic options for cerebral ischemia or brain lesions.
Collapse
Affiliation(s)
- Inderjeet Yadav
- National Brain Research Centre, Gurugram 122052, India; (I.Y.); (R.V.)
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Nupur Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India;
| | - Rema Velayudhan
- National Brain Research Centre, Gurugram 122052, India; (I.Y.); (R.V.)
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India;
| |
Collapse
|
47
|
Chen B, Wang Y, Wang Q, Li D, Huang X, Kuang X, Wang S, Hu Z. Untargeted metabolomics identifies potential serum biomarkers associated with Crohn's disease. Clin Exp Med 2023; 23:1751-1761. [PMID: 36329220 DOI: 10.1007/s10238-022-00931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Crohn's disease (CD) is well characterized by chronic inflammation of the gastrointestinal tract. The diagnose of CD relays on the comprehensive evaluation of patient symptoms, laboratory examination, radiology, and endoscopy. There is lack of biomarkers or simple test for CD detection. Serum samples from healthy subjects (n = 16) and CD patients (n = 16) were collected and prepared for untargeted metabolomics analysis using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method. The alterations of serum metabolites and the potential biomarkers were profiled by statistical analysis. And the associated metabolic pathway was analyzed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The performance of potential biomarkers was assessed by receiver operating characteristic (ROC) analysis. A complete separation between HS and CD groups was seen in OPLS-DA. A total of 108 and 131 significantly altered metabolites in positive and negative ion mode, respectively, were identified, and most of them belong to several pathways ranging from lipid metabolism to amino acid metabolism and energy homeostasis. KEGG analysis revealed that lipid metabolism enriched most significantly. Further, ceramide, phosphatidylethanolamine (PE), and taurochenodeoxycholic acid (TCDCA) presented the highest predictive accuracy of the patients with CD as analyzed by ROC. The current study demonstrated that lipid metabolism is mostly related to CD pathogenesis. Further investigations are indicated to examine the use of lipid-related metabolites of ceramide, PE, and TCDCA as potential biomarkers for CD diagnosis.
Collapse
Affiliation(s)
- Bo Chen
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Qing Wang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Dingqi Li
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaotan Huang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Xiaojin Kuang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Shuzhong Wang
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Zhaotun Hu
- College of Biology and Food Engineering, Huaihua University, Huaihua, 418008, China.
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| |
Collapse
|
48
|
Wilson SMG, Peach JT, Fausset H, Miller ZT, Walk ST, Yeoman CJ, Bothner B, Miles MP. Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Front Nutr 2023; 10:1244692. [PMID: 37727634 PMCID: PMC10505616 DOI: 10.3389/fnut.2023.1244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background The Aronia melanocarpa fruit is emerging as a health food owing to its high polyphenolic content and associated antioxidant activity. Antioxidant-rich foods, such as Aronia fruit, may counter inflammatory stimuli and positively modulate the gut microbiome. However, a comprehensive study characterizing the impact of Aronia fruit supplementation has not been completed. Therefore, we completed analyses measuring the metabolic, microbial, and inflammatory effects of a diet supplemented with Aronia fruit juice. Method Humanized mice were generated by colonizing gnotobiotic mice with microbiomes from human donors presenting disparate inflammation levels. Blood and fecal samples were collected throughout the course of an 8-week dietary intervention with either Aronia juice or a carbohydrate-matched beverage alone (2 weeks) or in combination with a high-fat diet to induce inflammation (6 weeks). Samples were analyzed using 16S rRNA gene sequencing (stool) and liquid chromatography-mass spectrometry (serum). Results We demonstrated transfer of microbiome composition and diversity and metabolic characteristics from humans with low and high inflammation levels to second-generation humanized mice. Aronia supplementation provided robust protection against high-fat diet induced metabolic and microbiome changes that were dependent in part on microbiome donor. Aronia induced increases in bacteria of the Eggerthellaceae genus (7-fold) which aligns with its known ability to metabolize (poly)phenols and in phosphatidylcholine metabolites which are consistent with improved gut barrier function. The gut microbiome from a low inflammation phenotype donor provided protection against high-fat diet induced loss of microbiome β-diversity and global metabolomic shifts compared to that from the high inflammation donor. Conclusion These metabolic changes elucidate pathway-specific drivers of reduced inflammation stemming from both Aronia and the gut microbiota.
Collapse
Affiliation(s)
- Stephanie M. G. Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| | - Jesse T. Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Zachary T. Miller
- Department of Research Centers, Montana State University, Bozeman, MT, United States
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Carl J. Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
49
|
Abu-Farha M, Joseph S, Mohammad A, Channanath A, Taher I, Al-Mulla F, Mujammami M, Thanaraj TA, Abubaker J, Abdel Rahman AM. Targeted Metabolomics Analysis of Individuals Carrying the ANGPTL8 R59W Variant. Metabolites 2023; 13:972. [PMID: 37755252 PMCID: PMC10536441 DOI: 10.3390/metabo13090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
ANGPTL8 is recognized as a regulator of lipid metabolism through its role in inhibiting lipoprotein lipase activity. ANGPTL8 gene variants, particularly rs2278426 leading to the R59W variant in the protein, have been associated with lipid traits in various ethnicities. We aimed to use metabolomics to understand the impact of the ANGPTL8 R59W variant on metabolites in humans. We used the Biocrates-p400 kit to quantify 408 plasma metabolites in 60 adult male Arab individuals from Kuwait and identify differences in metabolite levels between individuals carrying reference genotypes and those with carrier genotypes at ANGPTL8 rs2278426. Individuals with carrier genotypes (CT+TT) compared to those carrying the reference genotype (CC) showed statistically significant differences in the following metabolites: acylcarnitine (perturbs metabolic pathways), phosphatidylcholine (supports liver function and cholesterol levels), cholesteryl ester (brings chronic inflammatory response to lipoprotein depositions in arteries), α-aminoadipic acid (modulates glucose homeostasis), histamine (regulates glucose/lipid metabolism), sarcosine (links amino acid and lipid metabolism), diacylglycerol 42:1 (regulates homeostasis of cellular lipid stores), and lysophosphatidylcholine (regulates oxidative stress and inflammatory response). Functional aspects attributed to these metabolites indicate that the ANGPTL8 R59W variant influences the concentrations of lipid- and inflammation-related metabolites. This observation further highlights the role of ANGPTL8 in lipid metabolism.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Shibu Joseph
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Ibrahim Taher
- Microbiology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Muhammad Mujammami
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11421, Saudi Arabia;
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11421, Saudi Arabia
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Centre for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, College of Science, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
50
|
Huang M, Dong J, Tan X, Yang S, Xiao M, Wang D. Integration of Metabolomic and Transcriptomic Provides Insights into Anti-Inflammatory Response to trans-10-Hydroxy-2-decenoic Acid on LPS-Stimulated RAW 264.7 Cells. Int J Mol Sci 2023; 24:12666. [PMID: 37628846 PMCID: PMC10454193 DOI: 10.3390/ijms241612666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Trans-10-hydroxy-2-decenoic acid (10-HDA) is a unique fatty acid found in royal jelly that possesses potential health benefits such as anti-inflammatory. However, further research is needed to fully understand its mechanisms of action and therapeutic potential for inflammation-associated diseases. In this present study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and RNA-seq analyses were conducted to comprehensively analyze the in vitro anti-inflammatory effects of 10-HDA on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our results demonstrated that 128 differentially expressed metabolites and 1721 differentially expressed genes were identified in the 10-HDA-treated groups compared to the LPS groups. Metabolites were significantly enriched in amino acid metabolism pathways, including methionine metabolism, glycine and serine metabolism, and tryptophan metabolism. The differentially expressed genes enrichment analysis indicated that antigen processing and presentation, NOD-like receptor signaling pathway, and arginine biosynthesis were enriched with the administration of 10-had. The correlation analysis revealed that glycerophospholipid metabolism and s-adenosylmethionine-dependent methylation processes might be involved in the response to the 10-HDA treatment. Overall, the findings from this study showed that 10-HDA might involve the modulation of certain signaling pathways involved in the inflammatory response, but further research is needed to determine the safety and efficacy as a therapeutic agent.
Collapse
Affiliation(s)
- Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|