1
|
Wang Y, Chu J, Zhang H, Ju H, Xie Q, Jiang X. Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency. FRONTIERS IN PLANT SCIENCE 2025; 15:1488281. [PMID: 39877744 PMCID: PMC11772423 DOI: 10.3389/fpls.2024.1488281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025]
Abstract
Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties. This research undertook a comprehensive analysis of cassava seedlings' physiological, gene expression, and metabolite responses under low nitrogen stress. Findings revealed that nitrogen deficiency drastically suppressed seedling growth, significantly reduced nitrate and ammonium transport to aerial parts, and led to a marked increase in carbohydrate, reactive oxygen species, and ammonium ion levels in the leaves. Transcriptomic and metabolomic analyses further demonstrated notable alterations in genes and metabolites linked to carbon and nitrogen metabolism, flavonoid biosynthesis, and the purine metabolic pathway. Additionally, several transcription factors associated with cassava flavonoid biosynthesis under nitrogen-deficient conditions were identified. Overall, this study offers fresh insights and valuable genetic resources for unraveling cassava's adaptive mechanisms to nitrogen deprivation.
Collapse
Affiliation(s)
- Yu Wang
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, China
| | - Jing Chu
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, China
| | - Haoyang Zhang
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Hao Ju
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Qing Xie
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingyu Jiang
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
2
|
Lin S, Zhang Y, Zhang S, Wei Y, Han M, Deng Y, Guo J, Zhu B, Yang T, Xia E, Wan X, Lucas WJ, Zhang Z. Root-specific theanine metabolism and regulation at the single-cell level in tea plants ( Camellia sinensis). eLife 2024; 13:RP95891. [PMID: 39401074 PMCID: PMC11473105 DOI: 10.7554/elife.95891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Root-synthesized secondary metabolites are critical quality-conferring compounds of foods, plant-derived medicines, and beverages. However, information at a single-cell level on root-specific secondary metabolism remains largely unexplored. L-Theanine, an important quality component of tea, is primarily synthesized in roots, from which it is then transported to new shoots of tea plant. In this study, we present a single-cell RNA sequencing (scRNA-seq)-derived map for the tea plant root, which enabled cell-type-specific analysis of glutamate and ethylamine (two precursors of theanine biosynthesis) metabolism, and theanine biosynthesis, storage, and transport. Our findings support a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. This study provides novel insights into theanine metabolism and regulation, at the single-cell level, and offers an example for studying root-specific secondary metabolism in other plant systems.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yiwen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yijie Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yamei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Jiayi Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, DavisDavisUnited States
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| |
Collapse
|
3
|
Singh D, Dwivedi S, Sinha H, Singh N, Trivedi PK. Mutation in shoot-to-root mobile transcription factor, ELONGATED HYPOCOTYL 5, leads to low nicotine levels in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133255. [PMID: 38103287 DOI: 10.1016/j.jhazmat.2023.133255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels. We report the development of CRISPR/Cas9-based knockout mutant plants of tobacco, NtHY5CR, and show down-regulation of the nicotine and phenylpropanoid pathway genes leading to a significant reduction in nicotine and flavonol content, whereas NtHY5 overexpression (NtHY5OX) plants show the opposite effect. Grafting experiments using wild-type, NtHY5CR, and NtHY5OX indicated that NtHY5 moves from shoot-to-root to regulate nicotine biosynthesis in the root tissue. Shoot HY5, directly or through enhancing expression of the root HY5, promotes nicotine biosynthesis by binding to light-responsive G-boxes present in the NtPMT, NtQPT and NtODC promoters. We conclude that the mobility of HY5 from shoot-to-root regulates light-dependent nicotine biosynthesis. The CRISPR/Cas9-based mutants developed, in this study; with low nicotine accumulation in leaves could help people to overcome their nicotine addiction and the risk of death.
Collapse
Affiliation(s)
- Deeksha Singh
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shambhavi Dwivedi
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Hiteshwari Sinha
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nivedita Singh
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.
| |
Collapse
|
4
|
Martins FB, Aono AH, Moraes ADCL, Ferreira RCU, Vilela MDM, Pessoa-Filho M, Rodrigues-Motta M, Simeão RM, de Souza AP. Genome-wide family prediction unveils molecular mechanisms underlying the regulation of agronomic traits in Urochloa ruziziensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303417. [PMID: 38148869 PMCID: PMC10749977 DOI: 10.3389/fpls.2023.1303417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Marco Pessoa-Filho
- Embrapa Cerrados, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | | | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Mato Grosso, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Zumajo-Cardona C, Gabrieli F, Anire J, Albertini E, Ezquer I, Colombo L. Evolutionary studies of the bHLH transcription factors belonging to MBW complex: their role in seed development. ANNALS OF BOTANY 2023; 132:383-400. [PMID: 37467144 PMCID: PMC10667011 DOI: 10.1093/aob/mcad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND AND AIMS The MBW complex consist of proteins belonging to three major families (MYB, bHLH and WDR) involved in various processes throughout plant development: epidermal cell development, mucilage secretory cells and flavonoid biosynthesis. Recently, it has been reported that TT8, encoding a bHLH transcription factor, is involved in the biosynthesis of flavonoids in the seed coat and it also plays a role in bypassing the postzygotic barrier resulting from an unbalance in genetic loads of the parental lines. Here, we focus on the functional evolution, in seed development, of the bHLH proteins that are part of the MBW complex, complemented with a literature review. METHODS Phylogenetic analyses performed across seed plants and expression analyses in the reproductive tissues of four selected angiosperms (Arabidopsis thaliana, Brassica napus, Capsella rubella and Solanum lycopersicum) allow us to hypothesize on the evolution of its functions. KEY RESULTS TT8 expression in the innermost layer of the seed coat is conserved in the selected angiosperms. However, except for Arabidopsis, TT8 is also expressed in ovules, carpels and fruits. The homologues belonging to the sister clade of TT8, EGL3/GL3, involved in trichome development, are expressed in the outermost layer of the seed coat, suggesting potential roles in mucilage. CONCLUSIONS The ancestral function of these genes appears to be flavonoid biosynthesis, and the conservation of TT8 expression patterns in the innermost layer of the seed coat in angiosperms suggests that their function in postzygotic barriers might also be conserved. Moreover, the literature review and the results of the present study suggest a sophisticated association, linking the mechanisms of action of these genes to the cross-communication activity between the different tissues of the seed. Thus, it provides avenues to study the mechanisms of action of TT8 in the postzygotic triploid block, which is crucial because it impacts seed development in unbalanced crosses.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- Department of BioScience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Flavio Gabrieli
- Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, Perugia, Italy
- Dipartimento di Ingegneria Industriale DII, University of Padua, via Gradenigo, 6/a, Padova, Italy
| | - Jovannemar Anire
- Department of BioScience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
- National Coconut Research Center – Visayas, Visayas State University, Baybay City, Leyte, Philippines
| | - Emidio Albertini
- Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, Perugia, Italy
| | - Ignacio Ezquer
- Department of BioScience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Lucia Colombo
- Department of BioScience, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
6
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
7
|
Zhang Q, Gangurde SS, Yang X, Zhao C. Editorial: Roles of flavonoids in crop quality improvement and response to stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1210666. [PMID: 37304711 PMCID: PMC10250692 DOI: 10.3389/fpls.2023.1210666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sunil S. Gangurde
- Crop Protection and Management Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Xinlei Yang
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| |
Collapse
|
8
|
Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. Flavonols modulate plant development, signaling, and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102350. [PMID: 36870100 PMCID: PMC10372886 DOI: 10.1016/j.pbi.2023.102350] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Flavonols are plant-specialized metabolites with important functions in plant growth and development. Isolation and characterization of mutants with reduced flavonol levels, especially the transparent testa mutants in Arabidopsis thaliana, have contributed to our understanding of the flavonol biosynthetic pathway. These mutants have also uncovered the roles of flavonols in controlling development in above- and below-ground tissues, notably in the regulation of root architecture, guard cell signaling, and pollen development. In this review, we present recent progress made towards a mechanistic understanding of flavonol function in plant growth and development. Specifically, we highlight findings that flavonols act as reactive oxygen species (ROS) scavengers and inhibitors of auxin transport in diverse tissues and cell types to modulate plant growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Hana Daryanavard
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anthony E Postiglione
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - Joëlle K Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Gloria K Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
9
|
Thomas M, Soriano A, O'Connor C, Crabos A, Nacry P, Thompson M, Hrabak E, Divol F, Péret B. pin2 mutant agravitropic root phenotype is conditional and nutrient-sensitive. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111606. [PMID: 36706868 DOI: 10.1016/j.plantsci.2023.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Plants have the capacity to sense and adapt to environmental factors using the phytohormone auxin as a major regulator of tropism and development. Among these responses, gravitropism is essential for plant roots to grow downward in the search for nutrients and water. We discovered a new mutant allele of the auxin efflux transporter PIN2 that revealed that pin2 agravitropic root mutants are conditional and nutrient-sensitive. We describe that nutrient composition of the medium, rather than osmolarity, can revert the agravitropic root phenotype of pin2. Indeed, on phosphorus- and nitrogen-deprived media, the agravitropic root defect was restored independently of primary root growth levels. Slow and fast auxin responses were evaluated using DR5 and R2D2 probes, respectively, and revealed a strong modulation by nutrient composition of the culture medium. We evaluated the role of PIN and AUX auxin transporters and demonstrated that neither PIN3 nor AUX1 are involved in this process. However, we observed the ectopic expression of PIN1 in the epidermis in the pin2 mutant background associated with permissive, but not restrictive, conditions. This ectopic expression was associated with a restoration of the asymmetric accumulation of auxin necessary for the reorientation of the root according to gravity. These observations suggest a strong regulation of auxin distribution by nutrients availability, directly impacting root's ability to drive their gravitropic response.
Collapse
Affiliation(s)
- Marion Thomas
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alexandre Soriano
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Claire O'Connor
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Amandine Crabos
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Philippe Nacry
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | | | - Fanchon Divol
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Benjamin Péret
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
10
|
Nishimura T, Makigawa S, Sun J, Kodama K, Sugiyama H, Matsumoto K, Iwata T, Wasano N, Kano A, Morita MT, Fujii Y, Shindo M. Design and synthesis of strong root gravitropism inhibitors with no concomitant growth inhibition. Sci Rep 2023; 13:5173. [PMID: 36997582 PMCID: PMC10063617 DOI: 10.1038/s41598-023-32063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 04/01/2023] Open
Abstract
Herein, we describe a highly potent gravitropic bending inhibitor with no concomitant growth inhibition. Previously, we reported that (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) selectively inhibits root gravitropic bending of lettuce radicles at 5 μM. Based on the structure-activity relationship study of ku-76 as a lead compound, we designed and synthesized various C4-substituted analogs of ku-76. Among the analogs, 4-phenylethynyl analog exhibited the highest potency for gravitropic bending inhibition, which was effective at only 0.01 μM. Remarkably, 4-phenylethynyl analog is much more potent than the known inhibitor, NPA. Substitution in the para position on the aromatic ring of 4-phenylethynyl group was tolerated without diminished activity. In addition, evaluation using Arabidopsis indicated that 4-phenylethynyl analog inhibits gravitropism by affecting auxin distribution in the root tips. Based on the effects on Arabidopsis phenotypes, 4-phenylethynyl analog may be a novel inhibitor that differs in action from the previously reported auxin transport inhibitors.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Saki Makigawa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Jun Sun
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kozue Kodama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Hiromi Sugiyama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
- Department of Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Naoya Wasano
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoshiharu Fujii
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan.
| |
Collapse
|
11
|
Yu H, Gao D, Khashi u Rahman M, Chen S, Wu F. L-phenylalanine in potato onion ( Allium cepa var. aggregatum G. Don) root exudates mediates neighbor detection and trigger physio-morphological root responses of tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1056629. [PMID: 36875620 PMCID: PMC9981155 DOI: 10.3389/fpls.2023.1056629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
INTERACTION Despite numerous recent insights into neighbor detection and belowground plant communication mediated by root exudates, less is known about the specificity and nature of substances within root exudates and the mechanism by which they may act belowground in root-root interactions. METHODS Here, we used a coculture experiment to study the root length density (RLD) of tomato (Solanum lycopersicum L.) grown with potato onion (Allium cepa var. aggregatum G. Don) cultivars with growth-promoting (S-potato onion) or no growth-promoting (N-potato onion) effects. RESULTS AND DISCUSSION Tomato plants grown with growth-promoting potato onion or its root exudates increased root distribution and length density oppositely and grew their roots away as compared to when grown with potato onion of no growth-promoting potential, its root exudates, and control (tomato monoculture/distilled water treatment). Root exudates profiling of two potato onion cultivars by UPLC-Q-TOF/MS showed that L-phenylalanine was only found in root exudates of S-potato onion. The role of L-phenylalanine was further confirmed in a box experiment in which it altered tomato root distribution and forced the roots grow away. In vitro trial revealed that tomato seedlings root exposed to L-phenylalanine changed the auxin distribution, decreased the concentration of amyloplasts in columella cells of roots, and changed the root deviation angle to grow away from the addition side. These results suggest that L-phenylalanine in S-potato onion root exudates may act as an "active compound" and trigger physio-morphological changes in neighboring tomato roots.
Collapse
Affiliation(s)
- Hongjie Yu
- Institute of Agricultural Economy and Scientific Information, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Danmei Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Muhammad Khashi u Rahman
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Shaocan Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Wang X, Chai X, Gao B, Deng C, Günther CS, Wu T, Zhang X, Xu X, Han Z, Wang Y. Multi-omics analysis reveals the mechanism of bHLH130 responding to low-nitrogen stress of apple rootstock. PLANT PHYSIOLOGY 2023; 191:1305-1323. [PMID: 36417197 PMCID: PMC9922409 DOI: 10.1093/plphys/kiac519] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen is critical for plant growth and development. With the increase of nitrogen fertilizer application, nitrogen use efficiency decreases, resulting in wasted resources. In apple (Malus domestica) rootstocks, the potential molecular mechanism for improving nitrogen uptake efficiency to alleviate low-nitrogen stress remains unclear. We utilized multi-omics approaches to investigate the mechanism of nitrogen uptake in two apple rootstocks with different responses to nitrogen stress, Malus hupehensis and Malus sieversii. Under low-nitrogen stress, Malus sieversii showed higher efficiency in nitrogen uptake. Multi-omics analysis revealed substantial differences in the expression of genes involved in flavonoid and lignin synthesis pathways between the two materials, which were related to the corresponding metabolites. We discovered that basic helix-loop-helix 130 (bHLH130) transcription factor was highly negatively associated with the flavonoid biosynthetic pathway. bHLH130 may directly bind to the chalcone synthase gene (CHS) promoter and inhibit its expression. Overexpressing CHS increased flavonoid accumulation and nitrogen uptake. Inhibiting bHLH130 increased flavonoid biosynthesis while decreasing lignin accumulation, thus improving nitrogen uptake efficiency. These findings revealed the molecular mechanism by which bHLH130 regulates flavonoid and lignin biosyntheses in apple rootstocks under low-nitrogen stress.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Beibei Gao
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, 3216 Hamilton, New Zealand
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| |
Collapse
|
13
|
Nong Q, Malviya MK, Solanki MK, Lin L, Xie J, Mo Z, Wang Z, Song X, Huang X, Li C, Li Y. Integrated metabolomic and transcriptomic study unveils the gene regulatory mechanisms of sugarcane growth promotion during interaction with an endophytic nitrogen-fixing bacteria. BMC PLANT BIOLOGY 2023; 23:54. [PMID: 36694111 PMCID: PMC9872334 DOI: 10.1186/s12870-023-04065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sugarcane growth and yield are complex biological processes influenced by endophytic nitrogen-fixing bacteria, for which the molecular mechanisms involved are largely unknown. In this study, integrated metabolomic and RNA-seq were conducted to investigate the interaction between an endophytic bacterial strain, Burkholderia GXS16, and sugarcane tissue culture seedlings. RESULTS During treatment, the colonization of GXS16 in sugarcane roots were determined, along with the enhanced activities of various antioxidant enzymes. Accordingly, 161, 113, and 37 differentially accumulated metabolites (DAMs) were found in the pairwise comparisons of adjacent stages. In addition, transcriptomic analyses obtained 1,371 (IN-vs-CN), 1,457 (KN-vs-IN), and 365 (LN-vs-KN) differentially expressed genes (DEGs), which were mainly involved in the pathways of glutathione metabolism and carbon metabolism. We then assessed the pattern of metabolite accumulation and gene expression in sugarcane during GXS16 colonization. The results showed that both DAMs and DGEs in the upregulated expression profiles were involved in the flavonoid biosynthesis pathway. Overall, p-coumaroyl-CoA in sugarcane roots transferred into homoeriodictyol chalcone and 5-deoxyleucopelargonidin due to the upregulation of the expression of genes shikimate O-hydroxycinnamoyltransferase (HCT), chalcone synthase (CHS), and phlorizin synthase (PGT1). CONCLUSIONS This study provides insights into the gene regulatory mechanisms involved in the interaction between GXS16 and sugarcane roots, which will facilitate future applications of endophytic nitrogen-fixing bacteria to promote crop growth.
Collapse
Affiliation(s)
- Qian Nong
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Jinlan Xie
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zhanghong Mo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zeping Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xiupeng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xin Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Changning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| |
Collapse
|
14
|
Kurepa J, Shull TE, Smalle JA. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. PLANTS (BASEL, SWITZERLAND) 2023; 12:517. [PMID: 36771601 PMCID: PMC9921348 DOI: 10.3390/plants12030517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Land plants survive the challenges of new environments by evolving mechanisms that protect them from excess irradiation, nutrient deficiency, and temperature and water availability fluctuations. One such evolved mechanism is the regulation of the shoot/root growth ratio in response to water and nutrient availability by balancing the actions of the hormones auxin and cytokinin. Plant terrestrialization co-occurred with a dramatic expansion in secondary metabolism, particularly with the evolution and establishment of the flavonoid biosynthetic pathway. Flavonoid biosynthesis is responsive to a wide range of stresses, and the numerous synthesized flavonoid species offer two main evolutionary advantages to land plants. First, flavonoids are antioxidants and thus defend plants against those adverse conditions that lead to the overproduction of reactive oxygen species. Second, flavonoids aid in protecting plants against water and nutrient deficiency by modulating root development and establishing symbiotic relations with beneficial soil fungi and bacteria. Here, we review different aspects of the relationships between the auxin/cytokinin module and flavonoids. The current body of knowledge suggests that whereas both auxin and cytokinin regulate flavonoid biosynthesis, flavonoids act to fine-tune only auxin, which in turn regulates cytokinin action. This conclusion agrees with the established master regulatory function of auxin in controlling the shoot/root growth ratio.
Collapse
Affiliation(s)
| | | | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
15
|
Ni J, Zhang N, Zhan Y, Ding K, Qi P, Wang X, Ding W, Xu M. Transgenic tobacco plant overexpressing ginkgo dihydroflavonol 4-reductase gene GbDFR6 exhibits multiple developmental defects. FRONTIERS IN PLANT SCIENCE 2022; 13:1066736. [PMID: 36589135 PMCID: PMC9794611 DOI: 10.3389/fpls.2022.1066736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Dihydroflavonol Q 4-reductase (DFR), a key enzyme in the flavonoid biosynthetic pathway in plants, significantly influences plant survival. However, the roles of DFR in the regulation of plant development are largely unknown. In the present study, phenotypes of transgenic tobacco plants overexpressing the Ginkgo biloba DFR gene, GbDFR6, were investigated. Transgenic tobacco seedlings exhibited relatively low fresh weights, long primary roots, decreased lateral root numbers, and impaired root gravitropic responses when compared to wild-type tobacco plants. Adult transgenic tobacco plants exhibited a considerably high percentage of wrinkled leaves when compared to the wild-type tobacco plants. In addition to the auxin-related phenotypic changes, transgenic tobacco plants exhibited delayed flowering phenotypes under short-day conditions. Gene expression analysis revealed that the delayed flowering in transgenic tobacco plants was caused by the low expression levels of NtFT4. Finally, variations in anthocyanin and flavonoid contents in transgenic tobacco plants were evaluated. The results revealed that the levels of most anthocyanins identified in transgenic tobacco leaves increased. Specifically, cyanidin-3,5-O-diglucoside content increased by 9.8-fold in transgenic tobacco plants when compared to the wild-type tobacco plants. Pelargonidin-3-O-(coumaryl)-glucoside was only detected in transgenic tobacco plants. Regarding flavonoid compounds, one flavonoid compound (epicatechin gallate) was upregulated, whereas seven flavonoid compounds (Tamarixetin-3-O-rutinoside; Sexangularetin-3-O-glucoside-7-O-rhamnoside; Kaempferol-3-O-neohesperidoside; Engeletin; 2'-Hydoxy,5-methoxyGenistein-O-rhamnosyl-glucoside; Diosmetin; Hispidulin) were downregulated in both transgenic tobacco leaves and roots. The results indicate novel and multiple roles of GbDFR6 in ginkgo and provide a valuable method to produce a late flowering tobacco variety in tobacco industry.
Collapse
Affiliation(s)
- Jun Ni
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Ning Zhang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yang Zhan
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Kexin Ding
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Peng Qi
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Xuejun Wang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, China
| | - Maojun Xu
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
16
|
Jeon JS, Rybka D, Carreno-Quintero N, De Vos R, Raaijmakers JM, Etalo DW. Metabolic signatures of rhizobacteria-induced plant growth promotion. PLANT, CELL & ENVIRONMENT 2022; 45:3086-3099. [PMID: 35751418 DOI: 10.1111/pce.14385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Various root-colonizing bacterial species can promote plant growth and trigger systemic resistance against aboveground leaf pathogens and herbivore insects. To date, the underlying metabolic signatures of these rhizobacteria-induced plant phenotypes are poorly understood. To identify core metabolic pathways that are targeted by growth-promoting rhizobacteria, we used combinations of three plant species and three rhizobacterial species and interrogated plant shoot chemistry by untargeted metabolomics. A substantial part (50%-64%) of the metabolites detected in plant shoot tissue was differentially affected by the rhizobacteria. Among others, the phenylpropanoid pathway was targeted by the rhizobacteria in each of the three plant species. Differential regulation of the various branches of the phenylpropanoid pathways showed an association with either plant growth promotion or growth reduction. Overall, suppression of flavonoid biosynthesis was associated with growth promotion, while growth reduction showed elevated levels of flavonoids. Subsequent assays with 12 Arabidopsis flavonoid biosynthetic mutants revealed that the proanthocyanidin branch plays an essential role in rhizobacteria-mediated growth promotion. Our study also showed that a number of pharmaceutically and nutritionally relevant metabolites in the plant shoot were significantly increased by rhizobacterial treatment, providing new avenues to use rhizobacteria to tilt plant metabolism towards the biosynthesis of valuable natural plant products.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Dominika Rybka
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - Natalia Carreno-Quintero
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- KeyGene, Wageningen, The Netherlands
| | - Ric De Vos
- Wageningen Plant Research, Bioscience, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
17
|
Zhang Z, Gao L, Ke M, Gao Z, Tu T, Huang L, Chen J, Guan Y, Huang X, Chen X. GmPIN1-mediated auxin asymmetry regulates leaf petiole angle and plant architecture in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1325-1338. [PMID: 35485227 DOI: 10.1111/jipb.13269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Crop breeding during the Green Revolution resulted in high yields largely due to the creation of plants with semi-dwarf architectures that could tolerate high-density planting. Although semi-dwarf varieties have been developed in rice, wheat and maize, none was reported in soybean (Glycine max), and few genes controlling plant architecture have been characterized in soybean. Here, we demonstrate that the auxin efflux transporter PINFORMED1 (GmPIN1), which determines polar auxin transport, regulates the leaf petiole angle in soybean. CRISPR-Cas9-induced Gmpin1abc and Gmpin1bc multiple mutants displayed a compact architecture with a smaller petiole angle than wild-type plants. GmPIN1 transcripts and auxin were distributed asymmetrically in the petiole base, with high levels of GmPIN1a/c transcript and auxin in the lower cells, which resulted in asymmetric cell expansion. By contrast, the (iso)flavonoid content was greater in the upper petiole cells than in the lower cells. Our results suggest that (iso)flavonoids inhibit GmPIN1a/c expression to regulate the petiole angle. Overall, our study demonstrates that a signal cascade that integrates (iso)flavonoid biosynthesis, GmPIN1a/c expression, auxin accumulation, and cell expansion in an asymmetric manner creates a desirable petiole curvature in soybean. This study provides a genetic resource for improving soybean plant architecture.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Le Gao
- Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Gao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianli Tu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuefeng Guan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
18
|
Chen H, Zhang Q, Lv W, Yu X, Zhang Z. Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119063. [PMID: 35248615 DOI: 10.1016/j.envpol.2022.119063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Ethylene regulates plant root growth and resistance to environment stress. However, the role and mechanism of ethylene signaling in response to Cd stress in rice remains unclear. Here, we revealed that ethylene signaling plays a positive role in the resistance of rice to Cd toxicity. Blocking the ethylene signal facilitated root elongation under normal conditions, but resulted in severe oxidative damage and inhibition of root growth under Cd stress. Conversely, ethylene signal enhancement by EIN2 overexpression caused root bending, similar to the response of roots to Cd stress, and displayed higher Cd tolerance than the wildtype (WT) plants. Comparative transcriptome analysis indicated EIN2-mediated upregulation of genes involved in flavonoid biosynthesis and peroxidase activity under Cd stress. The synthesis of phenolic acids and flavonoids were positively regulated by ethylene. Thus, the ein2 (ethylene insensitive 2) mutants displayed lower ROS scavenging capacity than the WT. Moreover, a significant increase in Cd accumulation and relatively increased apoplastic flow were observed in the root apex of the ein2 mutant compared with the WT plants. Overall, EIN2-mediated Cd resistance in rice is mediated by the upregulation of flavonoid biosynthesis and peroxidase activity to induce ROS scavenging, and apoplastic transport barrier formation reduces Cd uptake.
Collapse
Affiliation(s)
- Haifei Chen
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410128, Changsha, China
| | - Wei Lv
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Xiaoyi Yu
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Zhenhua Zhang
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
19
|
Villacampa A, Fañanás‐Pueyo I, Medina FJ, Ciska M. Root growth direction in simulated microgravity is modulated by a light avoidance mechanism mediated by flavonols. PHYSIOLOGIA PLANTARUM 2022; 174:e13722. [PMID: 35606933 PMCID: PMC9327515 DOI: 10.1111/ppl.13722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
In a microgravity environment, without any gravitropic signal, plants are not able to define and establish a longitudinal growth axis. Consequently, absorption of water and nutrients by the root and exposure of leaves to sunlight for efficient photosynthesis is hindered. In these conditions, other external cues can be explored to guide the direction of organ growth. Providing a unilateral light source can guide the shoot growth, but prolonged root exposure to light causes a stress response, affecting growth and development, and also affecting the response to other environmental factors. Here, we have investigated how the protection of the root from light exposure, while the shoot is illuminated, influences the direction of root growth in microgravity. We report that the light avoidance mechanism existing in roots guides their growth towards diminishing light and helps establish the proper longitudinal seedling axis in simulated microgravity conditions. This process is regulated by flavonols, as shown in the flavonoid-accumulating mutant transparent testa 3, which shows an increased correction of the root growth direction in microgravity, when the seedling is grown with the root protected from light. This finding may improve the efficiency of water and nutrient sourcing and photosynthesis under microgravity conditions, as they exist in space, contributing to better plant fitness and biomass production in space farming enterprises, necessary for space exploration by humans.
Collapse
Affiliation(s)
- Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas – CSICMadridSpain
| | | | - F. Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas – CSICMadridSpain
| | - Malgorzata Ciska
- Centro de Investigaciones Biológicas Margarita Salas – CSICMadridSpain
| |
Collapse
|
20
|
Xiong C, Li X, Wang X, Wang J, Lambers H, Vance CP, Shen J, Cheng L. Flavonoids are involved in phosphorus-deficiency-induced cluster-root formation in white lupin. ANNALS OF BOTANY 2022; 129:101-112. [PMID: 34668958 PMCID: PMC8829899 DOI: 10.1093/aob/mcab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/16/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Initiation of cluster roots in white lupin (Lupinus albus) under phosphorus (P) deficiency requires auxin signalling, whereas flavonoids inhibit auxin transport. However, little information is available about the interactions between P deficiency and flavonoids in terms of cluster-root formation in white lupin. METHODS Hydroponic and aeroponic systems were used to investigate the role of flavonoids in cluster-root formation, with or without 75 μm P supply. KEY RESULTS Phosphorus-deficiency-induced flavonoid accumulation in cluster roots depended on developmental stage, based on in situ determination of fluorescence of flavonoids and flavonoid concentration. LaCHS8, which codes for a chalcone synthase isoform, was highly expressed in cluster roots, and silencing LaCHS8 reduced flavonoid production and rootlet density. Exogenous flavonoids suppressed cluster-root formation. Tissue-specific distribution of flavonoids in roots was altered by P deficiency, suggesting that P deficiency induced flavonoid accumulation, thus fine-tuning the effect of flavonoids on cluster-root formation. Furthermore, naringenin inhibited expression of an auxin-responsive DR5:GUS marker, suggesting an interaction of flavonoids and auxin in regulating cluster-root formation. CONCLUSIONS Phosphorus deficiency triggered cluster-root formation through the regulation of flavonoid distribution, which fine-tuned an auxin response in the early stages of cluster-root development. These findings provide valuable insights into the mechanisms of cluster-root formation under P deficiency.
Collapse
Affiliation(s)
- Chuanyong Xiong
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaoqing Li
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jingxin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Hans Lambers
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- School of Biological Sciences and UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Carroll P Vance
- Department of Agronomy and Plant Genetics, University of Minnesota and United States Department of Agriculture Agricultural Research Service, St. Paul, MN, USA
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- For correspondence. E-mail ;
| | - Lingyun Cheng
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- For correspondence. E-mail ;
| |
Collapse
|
21
|
Morales-Quintana L, Ramos P. A Talk between Flavonoids and Hormones to Reorient the Growth of Gymnosperms. Int J Mol Sci 2021; 22:ijms222312630. [PMID: 34884435 PMCID: PMC8657560 DOI: 10.3390/ijms222312630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/05/2022] Open
Abstract
Plants reorient the growth of affected organs in response to the loss of gravity vector. In trees, this phenomenon has received special attention due to its importance for the forestry industry of conifer species. Sustainable management is a key factor in improving wood quality. It is of paramount importance to understand the molecular and genetic mechanisms underlying wood formation, together with the hormonal and environmental factors that affect wood formation and quality. Hormones are related to the modulation of vertical growth rectification. Many studies have resulted in a model that proposes differential growth in the stem due to unequal auxin and jasmonate allocation. Furthermore, many studies have suggested that in auxin distribution, flavonoids act as molecular controllers. It is well known that flavonoids affect auxin flux, and this is a new area of study to understand the intracellular concentrations and how these compounds can control the gravitropic response. In this review, we focused on different molecular aspects related to the hormonal role in flavonoid homeostasis and what has been done in conifer trees to identify molecular players that could take part during the gravitropic response and reduce low-quality wood formation.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile
- Correspondence: (L.M.-Q.); (P.R.); Tel.: +56-71-2735-699 (L.M.-Q.); +56-73-2213-501 (P.R.)
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
- Correspondence: (L.M.-Q.); (P.R.); Tel.: +56-71-2735-699 (L.M.-Q.); +56-73-2213-501 (P.R.)
| |
Collapse
|
22
|
Kan L, Liao Q, Chen Z, Wang S, Ma Y, Su Z, Zhang L. Dynamic Transcriptomic and Metabolomic Analyses of Madhuca pasquieri (Dubard) H. J. Lam During the Post-germination Stages. FRONTIERS IN PLANT SCIENCE 2021; 12:731203. [PMID: 34659296 PMCID: PMC8516028 DOI: 10.3389/fpls.2021.731203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/24/2021] [Indexed: 06/02/2023]
Abstract
The wild population of Madhuca pasquieri (Dubard) H. J. Lam is currently dwindling; its understory seedlings are rare, and there is a lack of molecular studies, which impedes the conservation of this species. This study exploited second-generation sequencing and widely targeted metabolomics analysis to uncover the dynamic changes in differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in five post-germination stages of M. pasquieri whole organism. Notably, the weighted gene co-expression network analysis (WGCNA), transcriptome, and metabolome association analyses all indicated significant enrichment of the flavonoid biosynthesis pathway in stage 4 (two-leaf), and an upregulation of the genes encoding flavonol biosynthesis in this stage. In stage 5 (nine-leaf), the flavonols were significantly accumulated, indicating that the changes in metabolites were driven at the transcript level. According to the significant changes in gene expression encoding auxin transport carriers and their correlation with flavonols during stage 5, the flavonols were speculated to have a direct inhibitory effect on the expression of PIN4 encoding gene, which may inhibit the process of polar auxin transport. The results provided important insights into the molecular network relationships between the transcription and metabolism of this rare and endangered species during the post-germination stages and explained the reasons for the slow growth of its seedlings at the molecular level.
Collapse
|
23
|
Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. GmPIN-dependent polar auxin transport is involved in soybean nodule development. THE PLANT CELL 2021; 33:2981-3003. [PMID: 34240197 PMCID: PMC8462816 DOI: 10.1093/plcell/koab183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/01/2021] [Indexed: 05/27/2023]
Abstract
To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.
Collapse
Affiliation(s)
- Zhen Gao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiwei Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanyuan Cui
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huifang Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinzhen Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hong Zhao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dingquan Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyuan Mai
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tao Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuefeng Guan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
24
|
Panda S, Kazachkova Y, Aharoni A. Catch-22 in specialized metabolism: balancing defense and growth. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6027-6041. [PMID: 34293097 DOI: 10.1093/jxb/erab348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/21/2021] [Indexed: 05/25/2023]
Abstract
Plants are unsurpassed biochemists that synthesize a plethora of molecules in response to an ever-changing environment. The majority of these molecules, considered as specialized metabolites, effectively protect the plant against pathogens and herbivores. However, this defense most probably comes at a great expense, leading to reduction of growth (known as the 'growth-defense trade-off'). Plants employ several strategies to reduce the high metabolic costs associated with chemical defense. Production of specialized metabolites is tightly regulated by a network of transcription factors facilitating its fine-tuning in time and space. Multifunctionality of specialized metabolites-their effective recycling system by re-using carbon, nitrogen, and sulfur, thus re-introducing them back to the primary metabolite pool-allows further cost reduction. Spatial separation of biosynthetic enzymes and their substrates, and sequestration of potentially toxic substances and conversion to less toxic metabolite forms are the plant's solutions to avoid the detrimental effects of metabolites they produce as well as to reduce production costs. Constant fitness pressure from herbivores, pathogens, and abiotic stressors leads to honing of specialized metabolite biosynthesis reactions to be timely, efficient, and metabolically cost-effective. In this review, we assess the costs of production of specialized metabolites for chemical defense and the different plant mechanisms to reduce the cost of such metabolic activity in terms of self-toxicity and growth.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Gilat Research Center, Agricultural Research Organization, Negev, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:10-19. [PMID: 34087741 DOI: 10.1016/j.plaphy.2021.05.023] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is aspecial subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin's role in increasing several physiological and biochemical processes under stress and non-stress environments. Additionally, this review briefly assesses quercetin's role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin's role in plant signaling are also discussed.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 1J Ciolkowskiego St., 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
26
|
Wang M, Zhang Y, Zhu C, Yao X, Zheng Z, Tian Z, Cai X. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. PHYSIOLOGIA PLANTARUM 2021; 172:1966-1982. [PMID: 33774830 DOI: 10.1111/ppl.13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 05/27/2023]
Abstract
Flavonoids with great medicinal value play an important role in plant individual growth and stress resistance. Flavonol synthetase (FLS) is one of the key enzymes to synthesize flavonoids. However, the role of the FLS gene in flavonoid accumulation and tolerance to abiotic stresses, as well as its mechanism has not yet been investigated systematically in plants. The aim of this research is to evaluate the effect of FLS overexpression on the accumulation of active ingredients and stress resistance in Euphorbia kansui Liou. The results showed that when the EkFLS gene was overexpressed in Arabidopsis thaliana, the accumulation of flavonoids was improved. In addition, when the wild-type and EkFLS overexpressed Arabidopsis plants were treated with ABA and MeJA, compared with WT Arabidopsis, EkFLS overexpressed Arabidopsis promoted stomatal aperture to influence photosynthesis of the plants, which in turn can promote stress resistance. Meanwhile, under MeJA, NaCl, and PEG treatment, EkFLS overexpressed in Arabidopsis induced higher accumulation of flavonoids, which significantly enhanced peroxidase (POD) and superoxide dismutase (SOD) activities that can scavenge reactive oxygen species in cells to protect the plant. These results indicated that EkFLS overexpression is strongly correlated to the increase of flavonoid synthesis and therefore the tolerance to abiotic stresses in plants, providing a theoretical basis for further improving the quality of medicinal plants and their resistance to abiotic stresses simultaneously.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Chenyu Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhe Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
27
|
Duan X, Wang X, Jin K, Wang W, Liu H, Liu L, Zhang Y, Hammond JP, White PJ, Ding G, Xu F, Shi L. Genetic Dissection of Root Angle of Brassica napus in Response to Low Phosphorus. FRONTIERS IN PLANT SCIENCE 2021; 12:697872. [PMID: 34394150 PMCID: PMC8358456 DOI: 10.3389/fpls.2021.697872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Plant root angle determines the vertical and horizontal distribution of roots in the soil layer, which further influences the acquisition of phosphorus (P) in topsoil. Large genetic variability for the lateral root angle (root angle) was observed in a linkage mapping population (BnaTNDH population) and an association panel of Brassica napus whether at a low P (LP) or at an optimal P (OP). At LP, the average root angle of both populations became smaller. Nine quantitative trait loci (QTLs) at LP and three QTLs at OP for the root angle and five QTLs for the relative root angle (RRA) were identified by the linkage mapping analysis in the BnaTNDH population. Genome-wide association studies (GWASs) revealed 11 single-nucleotide polymorphisms (SNPs) significantly associated with the root angle at LP (LPRA). The interval of a QTL for LPRA on A06 (qLPRA-A06c) overlapped with the confidence region of the leading SNP (Bn-A06-p14439400) significantly associated with LPRA. In addition, a QTL cluster on chromosome C01 associated with the root angle and the primary root length (PRL) in the "pouch and wick" high-throughput phenotyping (HTP) system, the root P concentration in the agar system, and the seed yield in the field was identified in the BnaTNDH population at LP. A total of 87 genes on A06 and 192 genes on C01 were identified within the confidence interval, and 14 genes related to auxin asymmetric redistribution and root developmental process were predicted to be candidate genes. The identification and functional analyses of these genes affecting LPRA are of benefit to the cultivar selection with optimal root system architecture (RSA) under P deficiency in Brassica napus.
Collapse
Affiliation(s)
- Xianjie Duan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiaohua Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Kemo Jin
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Haijiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Ling Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Philip J. White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Dundee, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Microelement Research Centre, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Yan X, Xu Q, Li D, Wang J, Han R. Carbon dots inhibit root growth by disrupting auxin biosynthesis and transport in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112168. [PMID: 33819781 DOI: 10.1016/j.ecoenv.2021.112168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Carbon dots (CDs) possess considerable potentials in fields like biomarker and cell imaging due to its good fluorescence properties. Nevertheless, the molecular mechanism concerning influences of CDs on plant growth still remains unknown. In this study, the subcellular localization of CDs in Arabidopsis and the molecular mechanism of CDs toxicity to plants were investigated. Results demonstrate that CDs tend to accumulate in meristematic nucleus of root tips. CDs can inhibit growth of meristem zone of primary root (PR) of Arabidopsis seedlings significantly. The transcription level of auxin biosynthesis related genes decreases and the abundance of auxin efflux carriers PIN1 and PIN2 declines after 40 mg/L CDs treatment, thus lowering the auxin level in root tips. Moreover, CDs weaken activity of cell division in meristem zone by disturbing expressions of DNA damage repair genes and cell cycle regulation genes, thus enabling to inhibit growth of the meristem zone. To sum up, CDs inhibit growth of Arabidopsis seedlings through above pathways. These results provide useful information to elaborate potential toxicity mechanism of CDs on terrestrial plants.
Collapse
Affiliation(s)
- Xiaoyan Yan
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China
| | - Qiang Xu
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Dongxia Li
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Jianhua Wang
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China
| | - Rong Han
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China.
| |
Collapse
|
29
|
Lopez D, Franchel J, Venisse JS, Drevet JR, Label P, Coutand C, Roeckel-Drevet P. Early transcriptional response to gravistimulation in poplar without phototropic confounding factors. AOB PLANTS 2021; 13:plaa071. [PMID: 33542802 PMCID: PMC7850117 DOI: 10.1093/aobpla/plaa071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 05/30/2023]
Abstract
In response to gravistimulation under anisotropic light, tree stems showing an active cambium produce reaction wood that redirects the axis of the trees. Several studies have described transcriptomic or proteomic models of reaction wood relative to the opposite wood. However, the mechanisms leading to the formation of reaction wood are difficult to decipher because so many environmental factors can induce various signalling pathways leading to this developmental reprogramming. Using an innovative isotropic device where the phototropic response does not interfere with gravistimulation we characterized the early molecular responses occurring in the stem of poplar after gravistimulation in an isotropic environment, and without deformation of the stem. After 30 min tilting at 35° under anisotropic light, we collected the upper and lower xylems from the inclined stems. Controls were collected from vertical stems. We used a microarray approach to identify differentially expressed transcripts. High-throughput real-time PCR allowed a kinetic experiment at 0, 30, 120 and 180 min after tilting at 35°, with candidate genes. We identified 668 differentially expressed transcripts, from which we selected 153 candidates for additional Fluidigm qPCR assessment. Five candidate co-expression gene clusters have been identified after the kinetic monitoring of the expression of candidate genes. Gene ontology analyses indicate that molecular reprogramming of processes such as 'wood cell expansion', 'cell wall reorganization' and 'programmed cell death' occur as early as 30 min after gravistimulation. Of note is that the change in the expression of different genes involves a fine regulation of gibberellin and brassinosteroid pathways as well as flavonoid and phosphoinositide pathways. Our experimental set-up allowed the identification of genes regulated in early gravitropic response without the bias introduced by phototropic and stem bending responses.
Collapse
Affiliation(s)
- David Lopez
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jérôme Franchel
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Joël R Drevet
- Université Clermont Auvergne, GReD INSERM U1103-CNRS UMR 6293, Faculté de Médecine, CRBC (Centre de Recherche Bio-Clinique), Clermont-Ferrand, France
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Catherine Coutand
- INRAE, UR 115 PSH, Centre de recherche PACA, 228, route de l’aérodrome, CS, Avignon Cedex, France
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| |
Collapse
|
30
|
Sharma A, Badola PK, Bhatia C, Sharma D, Trivedi PK. Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. NATURE PLANTS 2020; 6:1262-1274. [PMID: 32958895 DOI: 10.1038/s41477-020-00769-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2020] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) are processed products of primary miRNAs (pri-miRNAs) and regulate the target gene expression. Though the regulatory roles of the several mature plant miRNAs have been studied in detail, the functions of other regions of the pri-miRNAs are still unrecognized. Recent studies suggest that a few pri-miRNAs may encode small peptides, miRNA-encoded peptides (miPEPs); however, the functions of these peptides have not been studied in detail. We report that the pri-miR858a of Arabidopsis thaliana encodes a small peptide, miPEP858a, which regulates the expression of pri-miR858a and associated target genes. miPEP858a-edited and miPEP858a-overexpressing lines showed altered plant development and accumulated modulated levels of flavonoids due to changes in the expression of genes associated with the phenylpropanoid pathway and auxin signalling. The exogenous treatment of the miPEP858a-edited plants with synthetic miPEP858a complemented the phenotypes and the gene function. This study suggests the importance of miPEP858a in exerting control over plant development and the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Ashish Sharma
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Poorwa Kamal Badola
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chitra Bhatia
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Deepika Sharma
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Institute of Plant Genome Research, New Delhi, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.
| |
Collapse
|
31
|
Hao P, Xia J, Liu J, Di Donato M, Pakula K, Bailly A, Jasinski M, Geisler M. Auxin-transporting ABC transporters are defined by a conserved D/E-P motif regulated by a prolylisomerase. J Biol Chem 2020; 295:13094-13105. [PMID: 32699109 PMCID: PMC7489919 DOI: 10.1074/jbc.ra120.014104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
The plant hormone auxin must be transported throughout plants in a cell-to-cell manner to affect its various physiological functions. ABCB transporters are critical for this polar auxin distribution, but the regulatory mechanisms controlling their function is not fully understood. The auxin transport activity of ABCB1 was suggested to be regulated by a physical interaction with FKBP42/Twisted Dwarf1 (TWD1), a peptidylprolyl cis-trans isomerase (PPIase), but all attempts to demonstrate such a PPIase activity by TWD1 have failed so far. By using a structure-based approach, we identified several surface-exposed proline residues in the nucleotide binding domain and linker of Arabidopsis ABCB1, mutations of which do not alter ABCB1 protein stability or location but do affect its transport activity. P1008 is part of a conserved signature D/E-P motif that seems to be specific for auxin-transporting ABCBs, which we now refer to as ATAs. Mutation of the acidic residue also abolishes auxin transport activity by ABCB1. All higher plant ABCBs for which auxin transport has been conclusively proven carry this conserved motif, underlining its predictive potential. Introduction of this D/E-P motif into malate importer, ABCB14, increases both its malate and its background auxin transport activity, suggesting that this motif has an impact on transport capacity. The D/E-P1008 motif is also important for ABCB1-TWD1 interactions and activation of ABCB1-mediated auxin transport by TWD1. In summary, our data imply a new function for TWD1 acting as a putative activator of ABCB-mediated auxin transport by cis-trans isomerization of peptidyl-prolyl bonds.
Collapse
Affiliation(s)
- Pengchao Hao
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jian Xia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Konrad Pakula
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | - Aurélien Bailly
- Institute for Plant and Microbial Biology, Zurich, Switzerland
| | - Michal Jasinski
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
32
|
Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. PLANT PHYSIOLOGY 2020; 184:39-52. [PMID: 32636341 PMCID: PMC7479915 DOI: 10.1104/pp.20.00433] [Citation(s) in RCA: 499] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
The plant kingdom produces hundreds of thousands of low molecular weight organic compounds. Based on the assumed functions of these compounds, the research community has classified them into three overarching groups: primary metabolites, which are directly required for plant growth; secondary (or specialized) metabolites, which mediate plant-environment interactions; and hormones, which regulate organismal processes and metabolism. For decades, this functional trichotomy of plant metabolism has shaped theory and experimentation in plant biology. However, exact biochemical boundaries between these different metabolite classes were never fully established. A new wave of genetic and chemical studies now further blurs these boundaries by demonstrating that secondary metabolites are multifunctional; they can function as potent regulators of plant growth and defense as well as primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multifunctionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current functional classification system for plant metabolites. Viewing secondary metabolites as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.
Collapse
Affiliation(s)
- Matthias Erb
- Department of Plant Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
33
|
Dong W, Song Y. The Significance of Flavonoids in the Process of Biological Nitrogen Fixation. Int J Mol Sci 2020; 21:E5926. [PMID: 32824698 PMCID: PMC7460597 DOI: 10.3390/ijms21165926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a major competitive advantage over those plants unable to do so. The function of certain flavonoids (a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched. However, their significance to biological nitrogen fixation carried out during the actinorhizal and arbuscular mycorrhiza-Rhizobium-legume interaction remains unclear. This review catalogs and contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.
Collapse
Affiliation(s)
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
34
|
Dare AP, Tomes S, McGhie TK, van Klink JW, Sandanayaka M, Hallett IC, Atkinson RG. Overexpression of chalcone isomerase in apple reduces phloridzin accumulation and increases susceptibility to herbivory by two-spotted mites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:293-307. [PMID: 32096261 DOI: 10.1111/tpj.14729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 05/19/2023]
Abstract
Apples (Malus spp.) accumulate significant quantities of the dihydrochalcone glycoside, phloridzin, whilst pears (Pyrus spp.) do not. To explain this difference, we hypothesized that a metabolic bottleneck in the phenylpropanoid pathway might exist in apple. Expression analysis indicated that transcript levels of early phenylpropanoid pathway genes in apple and pear leaves were similar, except for chalcone isomerase (CHI), which was much lower in apple. Apples also showed very low CHI activity compared with pear. To relieve the bottleneck at CHI, transgenic apple plants overexpressing the Arabidopsis AtCHI gene were produced. Unlike other transgenic apples where phenylpropanoid flux was manipulated, AtCHI overexpression (CHIox) plants were phenotypically indistinguishable from wild-type, except for an increase in red pigmentation in expanding leaves. CHIox plants accumulated slightly increased levels of flavanols and flavan-3-ols in the leaves, but the major change was a 2.8- to 19-fold drop in phloridzin concentrations compared with wild-type. The impact of these phytochemical changes on insect preference was studied using a two-choice leaf assay with the polyphagous apple pest, the two-spotted spider mite (Tetranychus urticae Koch). Transgenic CHIox leaves were more susceptible to herbivory, an effect that could be reversed (complemented) by application of phloridzin to transgenic leaves. Taken together, these findings shed new light on phenylpropanoid biosynthesis in apple and suggest a new physiological role for phloridzin as an antifeedant in leaves.
Collapse
Affiliation(s)
- Andrew P Dare
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Tony K McGhie
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - John W van Klink
- PFR Department of Chemistry, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Manoharie Sandanayaka
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| |
Collapse
|
35
|
Zhang F, Guo H, Huang J, Yang C, Li Y, Wang X, Qu L, Liu X, Luo J. A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1037-1052. [PMID: 32112268 DOI: 10.1007/s11427-019-1604-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023]
Abstract
Although natural variations in rice flavonoids exist, and biochemical characterization of a few flavonoid glycosyltransferases has been reported, few studies focused on natural variations in tricin-lignan-glycosides and their underlying genetic basis. In this study, we carried out metabolic profiling of tricin-lignan-glycosides and identified a major quantitative gene annotated as a UDP-dependent glycosyltransferase OsUGT706C2 by metabolite-based genome-wide association analysis. The putative flavonoid glycosyltransferase OsUGT706C2 was characterized as a flavonoid 7-O-glycosyltransferas in vitro and in vivo. Although the in vitro enzyme activity of OsUGT706C2 was similar to that of OsUGT706D1, the expression pattern and induced expression profile of OsUGT706C2 were very different from those of OsUGT706D1. Besides, OsUGT706C2 was specifically induced by UV-B. Constitutive expression of OsUGT706C2 in rice may modulate phenylpropanoid metabolism at both the transcript and metabolite levels. Furthermore, overexpressing OsUGT706C2 can enhance UV-B tolerance by promoting ROS scavenging in rice. Our findings might make it possible to use the glycosyltransferase OsUGT706C2 for crop improvement with respect to UV-B adaptation and/or flavonoid accumulation, which may contribute to stable yield.
Collapse
Affiliation(s)
- Feng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Guo
- Institute of Tropical Agriculture and Forestry of Hainan University, Haikou, 570288, China
| | - Jiacheng Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuyang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianqing Liu
- Institute of Tropical Agriculture and Forestry of Hainan University, Haikou, 570288, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. .,Institute of Tropical Agriculture and Forestry of Hainan University, Haikou, 570288, China.
| |
Collapse
|
36
|
Sun L, Wang R, Ju Q, Xu J. Physiological, Metabolic, and Transcriptomic Analyses Reveal the Responses of Arabidopsis Seedlings to Carbon Nanohorns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4409-4420. [PMID: 32182044 DOI: 10.1021/acs.est.9b07133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon-based nanomaterials have potential applications in nanoenabled agriculture. However, the physiological and molecular mechanisms underlying single-walled carbon nanohorn (SWCNH)-mediated plant growth remain unclear. Here, we investigated the effects of SWCNHs on Arabidopsis grown in 1/4-strength Murashige and Skoog medium via physiological, genetic, and molecular analyses. Treatment with 0.1 mg/L SWCNHs promoted primary root (PR) growth and lateral root (LR) formation; 50 and 100 mg/L SWCNHs inhibited PR growth. Treatment with 0.1 mg/L SWCNHs increased the lengths of the meristematic and elongation zones, and transcriptomic and genetic analyses confirmed the positive effects of SWCNHs on root tip stem cell niche activity and meristematic cell division potential. Increased expression of YUC3 and YUC5 and increased PIN2 abundance improved PR growth and LR development in 0.1 mg/L SWCNH-treated seedlings. Metabolomic analyses revealed that SWCNHs altered the levels of sugars, amino acids, and organic acids, suggesting that SWCNHs reprogrammed carbon/nitrogen metabolism in plants. SWCNHs also regulate plant growth and development by increasing the levels of several secondary metabolites; transcriptomic analyses further supported these results. The present results are valuable for continued use of SWCNHs in agri-nanotechnology, and these molecular approaches could serve as examples for studies on the effects of nanomaterials in plants.
Collapse
Affiliation(s)
- Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
| | - Ruting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
| | - Qiong Ju
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
- Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
| |
Collapse
|
37
|
Matsui K, Walker AR. Biosynthesis and regulation of flavonoids in buckwheat. BREEDING SCIENCE 2020; 70:74-84. [PMID: 32351306 PMCID: PMC7180151 DOI: 10.1270/jsbbs.19041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/07/2019] [Indexed: 05/05/2023]
Abstract
Buckwheat contains an abundance of antioxidants such as polyphenols and is considered a functional food. Among polyphenols, flavonoids have multiple functions in various aspects of plant growth and in flower and leaf colors. Flavonoids have antioxidant properties, and are thought to prevent cancer and cardiovascular disease. Here, we summarize the flavonoids present in various organs and their synthesis in buckwheat. We discuss the use of this information to breed highly functional and high value cultivars.
Collapse
Affiliation(s)
- Katsuhiro Matsui
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518, Japan
| | - Amanda R. Walker
- CSIRO Agriculture & Food, Wine Innovation West, Hartley Grove, Waite Campus, SA 5064, Australia
| |
Collapse
|
38
|
Ng JLP, Welvaert A, Wen J, Chen R, Mathesius U. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1562-1573. [PMID: 31738415 DOI: 10.1093/jxb/erz510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The development of root nodules leads to an increased auxin response in early nodule primordia, which is mediated by changes in acropetal auxin transport in some legumes. Here, we investigated the role of root basipetal auxin transport during nodulation. Rhizobia inoculation significantly increased basipetal auxin transport in both Medicago truncatula and Lotus japonicus. In M. truncatula, this increase was dependent on functional Nod factor signalling through NFP, NIN, and NSP2, as well as ethylene signalling through SKL. To test whether increased basipetal auxin transport is required for nodulation, we examined a loss-of-function mutant of the M. truncatula PIN2 gene. The Mtpin2 mutant exhibited a reduction in basipetal auxin transport and an agravitropic phenotype. Inoculation of Mtpin2 roots with rhizobia still led to a moderate increase in basipetal auxin transport, but the mutant nodulated normally. No clear differences in auxin response were observed during nodule development. Interestingly, inoculation of wild-type roots increased lateral root numbers, whereas inoculation of Mtpin2 mutants resulted in reduced lateral root numbers compared with uninoculated roots. We conclude that the MtPIN2 auxin transporter is involved in basipetal auxin transport, that its function is not essential for nodulation, but that it plays an important role in the control of lateral root development.
Collapse
Affiliation(s)
- Jason L P Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Astrid Welvaert
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, USA
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
39
|
Park S, Kim DH, Yang JH, Lee JY, Lim SH. Increased Flavonol Levels in Tobacco Expressing AcFLS Affect Flower Color and Root Growth. Int J Mol Sci 2020; 21:E1011. [PMID: 32033022 PMCID: PMC7037354 DOI: 10.3390/ijms21031011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 11/16/2022] Open
Abstract
The onion (Allium cepa L.) flavonol synthase (AcFLS-HRB) gene, encoding an enzyme responsible for flavonol biosynthesis in yellow onion, was recently identified and enzymatically characterized. Here, we performed an in vivo feeding assay involving bacterial expression of AcFLS-HRB and observed that it exhibited both flavanone 3-hydroxylase (F3H) and FLS activity. Transgenic tobacco (Nicotiana tabacum) expressing AcFLS-HRB produced lighter-pink flowers compared to wild-type plants. In transgenic petals, AcFLS-HRB was highly expressed at the mRNA and protein levels, and most AcFLS-HRB protein accumulated in the insoluble microsomal fractions. High-performance liquid chromatography (HPLC) analysis showed that flavonol levels increased but anthocyanin levels decreased in transgenic petals, indicating that AcFLS-HRB is a functional gene in planta. Gene expression analysis showed the reduced transcript levels of general phenylpropanoid biosynthetic genes and flavonoid biosynthetic genes in AcFLS-HRB overexpressed tobacco petals. Additionally, transgenic tobacco plants at the seedling stages showed increased primary root and root hair length and enhanced quercetin signals in roots. Exogenous supplementation with quercetin 3-O-rutinoside (rutin) led to the same phenotypic changes in root growth, suggesting that rutin is the causal compound that promotes root growth in tobacco. Therefore, augmenting flavonol levels affects both flower color and root growth in tobacco.
Collapse
Affiliation(s)
| | | | | | | | - Sun-Hyung Lim
- National Institute of Agricultural Sciences, Rural Development Administration, JeonJu 54874, Korea; (S.P.); (D.-H.K.); (J.-H.Y.); (J.-Y.L.)
| |
Collapse
|
40
|
Li H, Li Y, Yu J, Wu T, Zhang J, Tian J, Yao Y. MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple. HORTICULTURE RESEARCH 2020; 7:19. [PMID: 32025322 PMCID: PMC6994661 DOI: 10.1038/s41438-020-0238-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/10/2019] [Indexed: 05/20/2023]
Abstract
Flavonols are polyphenolic compounds that play important roles in plant stress resistance and development. They are also valuable components of the human diet. The Malus crabapple cultivar 'Flame' provides an excellent model for studying flavonol biosynthesis due to the high flavonol content of its fruit peel. To obtain a more detailed understanding of the flavonol regulatory network involved in fruit development, the transcriptomes of the fruit of the Malus cv. 'Flame' from five continuous developmental stages were analyzed using RNA sequencing. A flavonol-related gene module was identified through weighted gene coexpression network analysis (WGCNA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that phytohormones are involved in regulating flavonol biosynthesis during fruit development. A putative transcription factor, MdMYB8, was selected for further study through hub gene correlation network analysis and yeast one-hybrid assays. Stable overexpression or RNAi knockdown of MdMYB8 in transgenic 'Orin' apple calli resulted in a higher or lower flavonol content, respectively, suggesting that MdMYB8 is a regulator of flavonol biosynthesis. This transcriptome analysis provides valuable data for future studies of flavonol synthesis and regulation.
Collapse
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
41
|
Vanhaelewyn L, Viczián A, Prinsen E, Bernula P, Serrano AM, Arana MV, Ballaré CL, Nagy F, Van Der Straeten D, Vandenbussche F. Differential UVR8 Signal across the Stem Controls UV-B-Induced Inflorescence Phototropism. THE PLANT CELL 2019; 31:2070-2088. [PMID: 31289115 PMCID: PMC6751110 DOI: 10.1105/tpc.18.00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/10/2023]
Abstract
In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Péter Bernula
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Alejandro Miguel Serrano
- IADIZA, Av. Ruiz Leal s/n Parque Gral. San Martín, Casilla de Correo 507, Mendoza, 5500, Argentina (CONICET)
| | - Maria Veronica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche, (CONICET-INTA), Modesta Victoria 4450, San Carlos de Bariloche Rio Negro R8403DVZ, Argentina
| | - Carlos L Ballaré
- IFEVA Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIBIO-INTECH, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
42
|
A Transcriptomic Analysis Reveals Diverse Regulatory Networks That Respond to Cold Stress in Strawberry ( Fragaria× ananassa). Int J Genomics 2019; 2019:7106092. [PMID: 31467865 PMCID: PMC6701341 DOI: 10.1155/2019/7106092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 11/25/2022] Open
Abstract
Strawberry is often subjected to cold stress in temperate regions when insulation measures are not strictly applied in protected cultivation. Cold stress adversely influences plant growth and development by triggering a massive change to the transcriptome. To provide the potential strategies in improving strawberry cold tolerance and give a glimpse into the understanding of the complex cold signaling pathways in plants, this study identified attractive candidate genes and revealed diverse regulatory networks that responded to cold stress in strawberry (Fragaria×ananassa) by a transcriptomic analysis. Totally, there were 2397 differentially expressed genes (DEGs) under cold stress treatment (T1) vs. normal treatment (CK). Of these, 1180 DEGs were upregulated, while 1217 DEGs were downregulated. Functional enrichment analysis showed that DEGs were significantly (adjusted P value < 0.05) overrepresented in six pathways including plant hormone signal transduction, flavonoid biosynthesis, mitogen-activated protein kinase (MAPK) signaling, starch and sucrose metabolism, circadian rhythm, and alpha-linolenic acid metabolism. The cold signaling initiated expression of downstream cold-responsive (COR) genes with cis-acting element ABRE or CRT/DRE in the ABA-independent or ABA-dependent pathway to impel plant defense against the stress. Strikingly, GIGANTEA (gene id 101308922), two-component response regulator-like PRR95 (gene id 101295449), and ethylene-responsive transcription factor ERF105-like (gene id 101295082) were dramatically induced under low-temperature treatment, indicating that they played an important role in response to cold stress in strawberry.
Collapse
|
43
|
Conrad AO, Yu J, Staton ME, Audergon JM, Roch G, Decroocq V, Knagge K, Chen H, Zhebentyayeva T, Liu Z, Dardick C, Nelson CD, Abbott AG. Association of the phenylpropanoid pathway with dormancy and adaptive trait variation in apricot (Prunus armeniaca). TREE PHYSIOLOGY 2019; 39:1136-1148. [PMID: 31070767 DOI: 10.1093/treephys/tpz053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 05/13/2023]
Abstract
Trees use many mechanisms to adapt and respond to stressful conditions. The phenylpropanoid pathway in particular is known to be associated with a diverse suite of plant stress responses. In this study, we explored the relationship between the phenylpropanoid pathway metabolite production, gene expression and adaptive trait variation associated with floral bud reactivation during and following dormancy in Prunus armeniaca L. (apricot). Concentrations of eight phenylpropanoid metabolites were measured during chill accumulation and at developmental stages corresponding to the emergence of sepals and petals in floral buds of varieties that differ phenotypically in bloom date (BD). A significant interaction effect of chill hours and BD phenotype on the concentration of each of the compounds was observed (mixed analysis of variance, P < 0.05), with the concentration of most phenylpropanoid metabolites dropping precipitously when sepals and petals emerged. While phenylpropanoid biosynthetic gene expression patterns were more variable in general, expression changed over time and was impacted, although to a lesser degree, by BD phenotype. Furthermore, separation of BD phenotypic groups was most pronounced when early and late BD varieties were at different developmental stages, i.e., 800 chill hours. Taken together, these results suggest that the phenylpropanoid pathway is associated with floral bud reactivation in apricot. Furthermore, we show that the phenylpropanoid pathway is also impacted by phenological trait variation associated with dormancy. A better understanding of how apricot and other perennial tree species respond and adapt to environmental perturbations will be critical for improvement programs aimed at identifying and breeding trees more suitable for rapidly changing environments.
Collapse
Affiliation(s)
- Anna O Conrad
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY 40546, USA
| | - Jiali Yu
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jean-Marc Audergon
- UR1052 GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Domaine St Maurice, 67 allée des chênes, CS60094, 84143 Montfavet Cedex, France
| | - Guillaume Roch
- CEP Innovation, 23 rue Jean Baldassini, 69364 Lyon Cedex 07, France
| | - Veronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, 71 Av. E. Bourlaux, CS 20032, 33883 Villenave d'Ornon Cedex, France
| | - Kevin Knagge
- David H. Murdock Research Institute, Kannapolis, NC 28081, USA
| | - Huadong Chen
- David H. Murdock Research Institute, Kannapolis, NC 28081, USA
| | - Tetyana Zhebentyayeva
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV 25430, USA
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV 25430, USA
| | - C Dana Nelson
- Forest Health Research and Education Center, Southern Research Station, United States Department of Agriculture-Forest Service, Lexington, KY 40546, USA
- Southern Institute of Forest Genetics, Southern Research Station, United States Department of Agriculture-Forest Service, Saucier, MS 39574, USA
| | - Albert G Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
44
|
|
45
|
Duan L, Pei J, Ren Y, Li H, Zhou X, Zhu H, Duanmu D, Wen J, Mysore KS, Cao Y, Zhang Z. A Dihydroflavonol-4-Reductase-Like Protein Interacts with NFR5 and Regulates Rhizobial Infection in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:401-412. [PMID: 30295579 DOI: 10.1094/mpmi-04-18-0104-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In almost all symbiotic interactions between rhizobia and leguminous plants, host flavonoid-induced synthesis of Nod factors in rhizobia is required to initiate symbiotic response in plants. In this study, we found that Lotus japonicus Nod factor receptor 5 (LjNFR5) might directly regulate flavonoid biosynthesis during symbiotic interaction with rhizobia. A yeast two-hybrid analysis revealed that a dihydroflavonol-4-reductase-like protein (LjDFL1) interacts with LjNFR5. The interaction between MtDFL1 and MtNFP, two Medicago truncatula proteins with homology to LjDFL1 and LjNFR5, respectively, was also shown, suggesting that interaction between these two proteins might be conserved in different legumes. LjDFL1 was highly expressed in root hairs and epidermal cells of root tips. Lotus ljdfl1 mutants and Medicago mtdfl1 mutants produced significantly fewer infection threads (ITs) than the wild-type control plants following rhizobial treatment. Furthermore, the roots of stable transgenic L. japonicus plants overexpressing LjDFL1 formed more ITs than control roots after exposure to rhizobia. These data indicated that LjDFL1 is a positive regulator of symbiotic signaling. However, the expression of LjDFL1 was suppressed by rhizobial treatment, suggesting that a negative feedback loop might be involved in regulation of the symbiotic response in L. japonicus.
Collapse
Affiliation(s)
- Liujian Duan
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Junqing Pei
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Yaping Ren
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Hao Li
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Xiangzhen Zhou
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Hui Zhu
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Deqiang Duanmu
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Jiangqi Wen
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Kirankumar S Mysore
- 2 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, U.S.A
| | - Yangrong Cao
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| | - Zhongming Zhang
- 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and
| |
Collapse
|
46
|
Tan H, Man C, Xie Y, Yan J, Chu J, Huang J. A Crucial Role of GA-Regulated Flavonol Biosynthesis in Root Growth of Arabidopsis. MOLECULAR PLANT 2019; 12:521-537. [PMID: 30630075 DOI: 10.1016/j.molp.2018.12.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 05/03/2023]
Abstract
Flavonols have been demonstrated to play many important roles in plant growth, development, and communication with other organisms. Flavonol biosynthesis is spatiotemporally regulated by the subgroup 7 R2R3-MYB (SG7 MYB) transcription factors including MYB11/MYB12/MYB111. However, whether SG7-MYB activity is subject to post-translational regulation remains unclear. Here, we show that gibberellic acid (GA) inhibits flavonol biosynthesis via DELLA proteins in Arabidopsis. Protein-protein interaction analyses revealed that DELLAs (RGA and GAI) interacted with SG7 MYBs (MYB12 and MYB111) both in vitro and in vivo, leading to enhanced affinity of MYB binding to the promoter regions of key genes for flavonol biosynthesis and thus increasing their transcriptional levels. We observed that the level of auxin in the root tip was negatively correlated with root flavonol content. Furthermore, genetic assays showed that loss-of-function mutations in MYB12, which is predominantly expressed in roots, partially rescued the short-root phenotype of the GA-deficient mutant ga1-3 by increasing root meristem size and mature cell size. Consistent with these observations, exogenous application of the flavonol quercetin restored the root meristem size of myb12 ga1-3 to that of ga1-3. Taken together, our data elucidate a molecular mechanism by which GA promotes root growth by directly reducing flavonol biosynthesis.
Collapse
Affiliation(s)
- Huijuan Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Man
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
47
|
Xu Y, Zou J, Zheng H, Xu M, Zong X, Wang L. RNA-Seq Transcriptome Analysis of Rice Primary Roots Reveals the Role of Flavonoids in Regulating the Rice Primary Root Growth. Genes (Basel) 2019; 10:genes10030213. [PMID: 30871177 PMCID: PMC6470995 DOI: 10.3390/genes10030213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/02/2023] Open
Abstract
Flavonoids play important roles in root development and in its tropic responses, whereas the flavonoids-mediated changes of the global transcription levels during root growth remain unclear. Here, the global transcription changes in quercetin-treated rice primary roots were analyzed. Quercetin treatment significantly induced the inhibition of root growth and the reduction of H2O2 and O2− levels. In addition, the RNA-seq analysis revealed that there are 1243 differentially expressed genes (DEGs) identified in quercetin-treated roots, including 1032 up-regulated and 211 down-regulated genes. A gene ontology (GO) enrichment analysis showed that the enriched GO terms are mainly associated with the cell wall organization, response to oxidative stress, and response to hormone stimulus. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis showed that the enriched DEGs are involved in phenylpropanoid biosynthesis, glutathione metabolism, and plant hormone signal transduction. Moreover, the quercetin treatment led to an increase of the antioxidant enzyme activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in rice roots. Also, the quercetin treatment altered the DR5:GUS expression pattern in the root tips. All of these data indicated that the flavonoids-mediated transcription changes of genes are related to the genes involved in cell wall remodeling, redox homeostasis, and auxin signaling, leading to a reduced cell division in the meristem zone and cell elongation in the elongation zone of roots.
Collapse
Affiliation(s)
- Yu Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Junjie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongyan Zheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xuefeng Zong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
48
|
Borghi L, Kang J, de Brito Francisco R. Filling the Gap: Functional Clustering of ABC Proteins for the Investigation of Hormonal Transport in planta. FRONTIERS IN PLANT SCIENCE 2019; 10:422. [PMID: 31057565 PMCID: PMC6479136 DOI: 10.3389/fpls.2019.00422] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/20/2019] [Indexed: 05/09/2023]
Abstract
Plant hormones regulate a myriad of plant processes, from seed germination to reproduction, from complex organ development to microelement uptake. Much has been discovered on the factors regulating the activity of phytohormones, yet there are gaps in knowledge about their metabolism, signaling as well as transport. In this review we analyze the potential of the characterized phytohormonal transporters belonging to the ATP-Binding Cassette family (ABC proteins), thus to identify new candidate orthologs in model plants and species important for human health and food production. Previous attempts with phylogenetic analyses on transporters belonging to the ABC family suggested that sequence homology per se is not a powerful tool for functional characterization. However, we show here that sequence homology might indeed support functional conservation of characterized members of different classes of ABC proteins in several plant species, e.g., in the case of ABC class G transporters of strigolactones and ABC class B transporters of auxinic compounds. Also for the low-affinity, vacuolar abscisic acid (ABA) transporters belonging to the ABCC class we show that localization-, rather than functional-clustering occurs, possibly because of sequence conservation for targeting the tonoplast. The ABC proteins involved in pathogen defense are phylogenetically neighboring despite the different substrate identities, suggesting that sequence conservation might play a role in their activation/induction after pathogen attack. Last but not least, in case of the multiple lipid transporters belong to different ABC classes, we focused on ABC class D proteins, reported to transport/affect the synthesis of hormonal precursors. Based on these results, we propose that phylogenetic approaches followed by transport bioassays and in vivo investigations might accelerate the discovery of new hormonal transport routes and allow the designing of transgenic and genome editing approaches, aimed to improve our knowledge on plant development, plant-microbe symbioses, plant nutrient uptake and plant stress resistance.
Collapse
|
49
|
Ojangu EL, Ilau B, Tanner K, Talts K, Ihoma E, Dolja VV, Paves H, Truve E. Class XI Myosins Contribute to Auxin Response and Senescence-Induced Cell Death in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1570. [PMID: 30538710 PMCID: PMC6277483 DOI: 10.3389/fpls.2018.01570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/08/2018] [Indexed: 05/24/2023]
Abstract
The integrity and dynamics of actin cytoskeleton is necessary not only for plant cell architecture but also for membrane trafficking-mediated processes such as polar auxin transport, senescence, and cell death. In Arabidopsis, the inactivation of actin-based molecular motors, class XI myosins, affects the membrane trafficking and integrity of actin cytoskeleton, and thus causes defective plant growth and morphology, altered lifespan and reduced fertility. To evaluate the potential contribution of class XI myosins to the auxin response, senescence and cell death, we followed the flower and leaf development in the triple gene knockout mutant xi1 xi2 xik (3KO) and in rescued line stably expressing myosin XI-K:YFP (3KOR). Assessing the development of primary inflorescence shoots we found that the 3KO plants produced more axillary branches. Exploiting the auxin-dependent reporters DR5::GUS and IAA2::GUS, a significant reduction in auxin responsiveness was found throughout the development of the 3KO plants. Examination of the flower development of the plants stably expressing the auxin transporter PIN1::PIN1-GFP revealed partial loss of PIN1 polarization in developing 3KO pistils. Surprisingly, the stable expression of PIN1::PIN1-GFP significantly enhanced the semi-sterile phenotype of the 3KO plants. Further we investigated the localization of myosin XI-K:YFP in the 3KOR floral organs and revealed its expression pattern in floral primordia, developing pistils, and anther filaments. Interestingly, the XI-K:YFP and PIN1::PIN1-GFP shared partially overlapping but distinct expression patterns throughout floral development. Assessing the foliar development of the 3KO plants revealed increased rosette leaf production with signs of premature yellowing. Symptoms of the premature senescence correlated with massive loss of chlorophyll, increased cell death, early plasmolysis of epidermal cells, and strong up-regulation of the stress-inducible senescence-associated gene SAG13 in 3KO plants. Simultaneously, the reduced auxin responsiveness and premature leaf senescence were accompanied by significant anthocyanin accumulation in 3KO tissues. Collectively, our results provide genetic evidences that Arabidopsis class XI myosins arrange the flower morphogenesis and leaf longevity via contributing to auxin responses, leaf senescence, and cell death.
Collapse
Affiliation(s)
- Eve-Ly Ojangu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Birger Ilau
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Krista Tanner
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristiina Talts
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Eliis Ihoma
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Heiti Paves
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Erkki Truve
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
50
|
Jiang X, Shi Y, Dai X, Zhuang J, Fu Z, Zhao X, Liu Y, Gao L, Xia T. Four flavonoid glycosyltransferases present in tea overexpressed in model plants Arabidopsis thaliana and Nicotiana tabacum for functional identification. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:148-157. [PMID: 30317153 DOI: 10.1016/j.jchromb.2018.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 08/26/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
Abstract
Tea possesses a distinctive flavor profile and can have health benefits owing to the high levels of flavonoids in its leaves. However, the mechanism of the flavonoid glycosylation hasn't been well studied in tea plants, especially glycosylation at the 7-OH site has rarely been reported. In this study, four UGT genes CsUGT73A20, CsUGT75L12, CsUGT78A14 and CsUGT78A15 were isolated from tea leaves and overexpressed in the model plants Arabidopsis thaliana and Nicotiana tabacum for the functional identification of genes in vivo. In order to characterize the CsUGT functions in model plants, flavonoids in seeds of Arabidopsis and the flowers of tobacco were identified first. In CsUGT73A20-overexpressing Arabidopsis and tobacco, the level of certain flavonol glycosides involved in glycosylation reactions at the 3-OH and 7-OH sites increased considerably, but the level of flavan-3-ols decreased. In CsUGT75L12 transgenic Arabidopsis, the level of flavonol glycosides exhibiting glucosyltransferase activity at the 7-OH position increased markedly, but the concentrations of quercetin and kaempferol and flavan-3-ols decreased. In both transgenic Arabidopsis and tobacco, CsUGT78A14 promoted the synthesis of more flavonol glucosides with UDP-glucose as a sugar donor at the 3-OH glycosylation site. In CsUGT78A15 transgenic plants, flavonol galactosides at the 3-OH glycosylation site with UDP-galactose as a sugar donor were increased. In the tea plant, the corresponding flavonoid glycosides such as kaempferol‑3‑O‑β‑d‑glucosides, kaempferol‑3‑O‑β‑d‑galactosides, kaempferol‑7‑O‑β‑d‑glucoside, and luteolin‑7‑O‑β‑d‑glucoside were identified. And it could be possible that they were products of CsUGT78A14, CsUGT78A15, CsUGT73A20 and CsUGT75L12, respectively.
Collapse
Affiliation(s)
- Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianqian Zhao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|