1
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
2
|
Fujii K, Fujishima Y, Kita S, Kawada K, Fukuoka K, Sakaue TA, Okita T, Kawada-Horitani E, Nagao H, Fukuda S, Maeda N, Nishizawa H, Shimomura I. Pharmacological HIF-1 activation upregulates extracellular vesicle production synergistically with adiponectin through transcriptional induction and protein stabilization of T-cadherin. Sci Rep 2024; 14:3620. [PMID: 38351156 PMCID: PMC10864391 DOI: 10.1038/s41598-024-51935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Pharmacological activation of hypoxia-inducible factor 1 (HIF-1), a hypoxia-responsive transcription factor, has attracted increasing attention due to its efficacy not only in renal anemia but also in various disease models. Our study demonstrated that a HIF-1 activator enhanced extracellular vesicle (EV) production from cultured endothelial cells synergistically with adiponectin, an adipocyte-derived factor, through both transcriptional induction and posttranscriptional stabilization of an adiponectin binding partner, T-cadherin. Increased EV levels were observed in wild-type mice but not in T-cadherin null mice after consecutive administration of roxadustat. Adiponectin- and T-cadherin-dependent increased EV production may be involved in the pleiotropic effects of HIF-1 activators.
Collapse
Affiliation(s)
- Kohei Fujii
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Adipose Management, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Keitaro Kawada
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Keita Fukuoka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tomonori Okita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Emi Kawada-Horitani
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Nagao
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Endocrinology, Metabolism and Diabetes, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Puig-Blasco L, Piotrowski KB, Michaelsen SR, Bager NS, Areškevičiūtiė A, Thorseth ML, Sun XF, Keller UAD, Kristensen BW, Madsen DH, Gnosa SP, Kveiborg M. Loss of cancer cell-derived ADAM15 alters the tumor microenvironment in colorectal tumors. Int J Cancer 2023; 153:2068-2081. [PMID: 37602921 DOI: 10.1002/ijc.34695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Tumor progression and response to treatment are highly affected by interactions between cancer cells and the tumor microenvironment (TME). Many of the soluble factors and signaling receptors involved in this crosstalk are shed by a disintegrin and metalloproteinases (ADAMs). Upregulation of ADAM15 has been linked to worse survival in cancer patients and a tumor-promoting function both in vitro and in murine cancer models. Although ADAM15 has been involved in cell-cell and cell-extracellular matrix interactions, its role in the crosstalk between cancer cells and the TME in vivo remains unexplored. Therefore, we aimed to understand how ADAM15 regulates the cell composition of the TME and how it affects tumor progression. Here, we showed an upregulation of ADAM15 in tumor tissues from rectal cancer patients. Subcutaneous injection of wildtype and ADAM15-knockout CT26 colon cancer cells in syngeneic mice confirmed the protumorigenic role of ADAM15. Profiling of tumors revealed higher immune cell infiltration and cancer cell apoptosis in the ADAM15-deficient tumors. Specifically, loss of ADAM15 led to a reduced number of granulocytes and higher infiltration of antigen-presenting cells, including dendritic cells and macrophages, as well as more T cells. Using in vitro assays, we confirmed the regulatory effect of ADAM15 on macrophage migration and identified ADAM15-derived CYR61 as a potential molecular mediator of this effect. Based on these findings, we speculate that targeting ADAM15 could increase the infiltration of immune cells in colorectal tumors, which is a prerequisite for effective immunotherapy.
Collapse
Affiliation(s)
- Laia Puig-Blasco
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof B Piotrowski
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Signe R Michaelsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai S Bager
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Aušrinė Areškevičiūtiė
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen, Denmark
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bjarne W Kristensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen, Denmark
| | - Sebastian P Gnosa
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Minerva Imaging, Ølstykke, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Wang Z, Li W, Chen S, Tang XX. Role of ADAM and ADAMTS proteases in pathological tissue remodeling. Cell Death Discov 2023; 9:447. [PMID: 38071234 PMCID: PMC10710407 DOI: 10.1038/s41420-023-01744-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 09/10/2024] Open
Abstract
Pathological tissue remodeling is closely associated with the occurrence and aggravation of various diseases. A Disintegrin And Metalloproteinases (ADAM), as well as A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS), belong to zinc-dependent metalloproteinase superfamily, are involved in a range of pathological states, including cancer metastasis, inflammatory disorders, respiratory diseases and cardiovascular diseases. Mounting studies suggest that ADAM and ADAMTS proteases contribute to the development of tissue remodeling in various diseases, mainly through the regulation of cell proliferation, apoptosis, migration and extracellular matrix remodeling. This review focuses on the roles of ADAM and ADAMTS proteinases in diseases with pathological tissue remodeling, with particular emphasis on the molecular mechanisms through which ADAM and ADAMTS proteins mediate tissue remodeling. Some of these reported proteinases have defined protective or contributing roles in indicated diseases, while their underlying regulation is obscure. Future studies are warranted to better understand the catalytic and non-catalytic functions of ADAM and ADAMTS proteins, as well as to evaluate the efficacy of targeting these proteases in pathological tissue remodeling.
Collapse
Affiliation(s)
- Zhaoni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanshan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
5
|
Gibson SV, Madzharova E, Tan AC, Allen MD, Keller UAD, Louise Jones J, Carter EP, Grose RP. ADAMTS3 restricts cancer invasion in models of early breast cancer progression through enhanced fibronectin degradation. Matrix Biol 2023; 121:74-89. [PMID: 37336268 DOI: 10.1016/j.matbio.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Proteases have long been associated with cancer progression, due to their ability to facilitate invasion upon matrix remodelling. However, proteases are not simply degraders of the matrix, but also play fundamental roles in modulating cellular behaviour through the proteolytic processing of specific substrates. Indeed, proteases can elicit both pro- and anti- tumorigenic effects depending on context. Using a heterocellular spheroid model of breast cancer progression, we demonstrate the repressive function of myoepithelial ADAMTS3, with its loss directing myoepithelial-led invasion of luminal cells through a physiologically relevant matrix. Degradomic analysis, using terminal amine isotopic labelling of substrates (TAILS), combined with functional assays, implicate ADAMTS3 as a mediator of fibronectin degradation. We show further that loss of ADAMTS3 enhances levels of fibronectin in the microenvironment, promoting invasion through canonical integrin α5β1 activation. Our data highlight a tumour suppressive role for ADAMTS3 in early stage breast cancer, and contribute to the growing evidence that proteases can restrain cancer progression.
Collapse
Affiliation(s)
- Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Amandine C Tan
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, SE5 8AF, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
6
|
Osman IO, Caputo A, Pinault L, Mege JL, Levasseur A, Devaux CA. Identification and Characterization of an HtrA Sheddase Produced by Coxiella burnetii. Int J Mol Sci 2023; 24:10904. [PMID: 37446087 PMCID: PMC10342153 DOI: 10.3390/ijms241310904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Having previously shown that soluble E-cadherin (sE-cad) is found in sera of Q fever patients and that infection of BeWo cells by C. burnetii leads to modulation of the E-cad/β-cat pathway, our purpose was to identify which sheddase(s) might catalyze the cleavage of E-cad. Here, we searched for a direct mechanism of cleavage initiated by the bacterium itself, assuming the possible synthesis of a sheddase encoded in the genome of C. burnetii or an indirect mechanism based on the activation of a human sheddase. Using a straightforward bioinformatics approach to scan the complete genomes of four laboratory strains of C. burnetii, we demonstrate that C. burnetii encodes a 451 amino acid sheddase (CbHtrA) belonging to the HtrA family that is differently expressed according to the bacterial virulence. An artificial CbHtrA gene (CoxbHtrA) was expressed, and the CoxbHtrA recombinant protein was found to have sheddase activity. We also found evidence that the C. burnetii infection triggers an over-induction of the human HuHtrA gene expression. Finally, we demonstrate that cleavage of E-cad by CoxbHtrA on macrophages-THP-1 cells leads to an M2 polarization of the target cells and the induction of their secretion of IL-10, which "disarms" the target cells and improves C. burnetii replication. Taken together, these results demonstrate that the genome of C. burnetii encodes a functional HtrA sheddase and establishes a link between the HtrA sheddase-induced cleavage of E-cad, the M2 polarization of the target cells and their secretion of IL-10, and the intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Aurelia Caputo
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Lucile Pinault
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Laboratory of Immunology, Assitance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Anthony Levasseur
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Christian A. Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| |
Collapse
|
7
|
Calligaris M, Yang CY, Bonelli S, Spanò DP, Müller SA, Lichtenthaler SF, Troeberg L, Scilabra SD. Identification of membrane proteins regulated by ADAM15 by SUSPECS proteomics. Front Mol Biosci 2023; 10:1162504. [PMID: 37388246 PMCID: PMC10304831 DOI: 10.3389/fmolb.2023.1162504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
ADAM15 is a member of the disintegrin-metalloproteinase family of sheddases, which plays a role in several biological processes including cartilage homeostasis. In contrast with well-characterized ADAMs, such as the canonical sheddases ADAM17 and ADAM10, little is known about substrates of ADAM15 or how the enzyme exerts its biological functions. Herein, we used "surface-spanning enrichment with click-sugars (SUSPECS)" proteomics to identify ADAM15 substrates and/or proteins regulated by the proteinase at the cell surface of chondrocyte-like cells. Silencing of ADAM15 by siRNAs significantly altered membrane levels of 13 proteins, all previously not known to be regulated by ADAM15. We used orthogonal techniques to validate ADAM15 effects on 3 of these proteins which have known roles in cartilage homeostasis. This confirmed that ADAM15-silencing increased cell surface levels of the programmed cell death 1 ligand 2 (PDCD1LG2) and reduced cell surface levels of vasorin and the sulfate transporter SLC26A2 through an unknown post-translational mechanism. The increase of PDCD1LG2 by ADAM15 knockdown, a single-pass type I transmembrane protein, suggested it could be a proteinase substrate. However, shed PDCD1LG2 could not be detected even by a data-independent acquisition mass spectrometry, a highly sensitive method for identification and quantification of proteins in complex protein samples, suggesting that ADAM15 regulates PDCD1LG2 membrane levels by a mechanism different from ectodomain shedding.
Collapse
Affiliation(s)
- Matteo Calligaris
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Chun Y. Yang
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Simone Bonelli
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Donatella Pia Spanò
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linda Troeberg
- Norwich Medical School, Bob Champion Research and Education Building, University of East Anglia, Norwich, United Kingdom
| | - Simone D. Scilabra
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| |
Collapse
|
8
|
Chen W, Ye S, Wang X, Qian J, Xia L, Tian Z. Soluble E-cadherin promotes invasiveness of neoplastic cells in salivary gland carcinoma ex pleomorphic adenoma. J Oral Pathol Med 2023; 52:63-71. [PMID: 36445289 DOI: 10.1111/jop.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Soluble E-cadherin (sEcad), a tumor suppressor gene, has pro-oncogenic effects by binding to human epithelial growth factor receptor 2 (HER-2). In our previous study, 1/3 of carcinoma ex pleomorphic adenoma (CXPA) cases had HER-2 amplification, which is associated with tumorigenesis and malignancy. This study examines the role of sEcad in HER-2 amplified CXPA. METHODS Immunohistochemistry was used to examine E-cadherin (Ecad) expression in HER-2-amplified CXPA samples (n = 35). Western blot and ELISA were used to detect sEcad in two samples with Ecad and HER-2 overexpression and CXPA cell line. Lentivirus-mediated transfection was performed to knock down sEcad in CXPA cells. The cell proliferation, wound healing, and transwell assays were used to compare sEcad-knockdown cells with cells pretreated with recombinant human sEcad (rhEcad/Fc). sEcad and HER-2 interaction was determined through co-immunoprecipitation. RNA-sequencing, differential expression analysis, GO and KEGG analysis were used to identify sEcad-related signaling pathways and their protein phosphorylation levels were verified by western blotting. RESULTS Ecad was overexpressed in 77.1% of HER-2-positive CXPA, and sEcad was found in the CXPA cell line and two samples. sEcad promoted CXPA migration and invasion in vitro without sEcad and HER-2 interaction. sEcad-related differentially expressed genes were enriched in the IL-17, cAMP, and MAPK signaling pathways. Furthermore, sEcad activated the phosphorylation of Akt and MAPK/ERK signaling pathways. CONCLUSIONS Most HER-2+ CXPAs express Ecad. sEcad could affect the invasiveness and migration of in vitro CXPA cells without HER-2. sEcad may be a therapeutic biomarker for CXPA patients.
Collapse
Affiliation(s)
- Wanling Chen
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Sai Ye
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoning Wang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiajun Qian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Liang Xia
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
9
|
Sari E, He C, Margaroli C. Plasticity towards Rigidity: A Macrophage Conundrum in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11443. [PMID: 36232756 PMCID: PMC9570276 DOI: 10.3390/ijms231911443] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and ultimately fatal diffuse parenchymal lung disease. The molecular mechanisms of fibrosis in IPF patients are not fully understood and there is a lack of effective treatments. For decades, different types of drugs such as immunosuppressants and antioxidants have been tested, usually with unsuccessful results. Although two antifibrotic drugs (Nintedanib and Pirfenidone) are approved and used for the treatment of IPF, side effects are common, and they only slow down disease progression without improving patients' survival. Macrophages are central to lung homeostasis, wound healing, and injury. Depending on the stimulus in the microenvironment, macrophages may contribute to fibrosis, but also, they may play a role in the amelioration of fibrosis. In this review, we explore the role of macrophages in IPF in relation to the fibrotic processes, epithelial-mesenchymal transition (EMT), and their crosstalk with resident and recruited cells and we emphasized the importance of macrophages in finding new treatments.
Collapse
Affiliation(s)
- Ezgi Sari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Gruba N, Musielak M, Rejmak W, Lesner A. Detection of ADAM15 in urine from patients with bladder cancer. Anal Biochem 2022; 654:114805. [PMID: 35810783 DOI: 10.1016/j.ab.2022.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Cancer is one of the leading causes of death in the United States and Europe. Of the cancers, bladder cancer is the 10th most frequently diagnosed cancer and the 13th most frequently diagnosed cancer in men. There are many studies showing that proteolytic enzymes, e.g. A Disintegrin and Metalloproteinases (ADAMs), play a key role in the development and progression of neoplasms. In this paper, we present the use of chromogenic substrate of ADAM15 for the qualitative determination of specific activity of enzyme in urine of patients with confirmed bladder cancer. In the first step, we optimized the substrate molecule in non-primed positions using combinatorial chemistry. By means of the obtained ABZ-His-Ala-Arg-Gly-ANB-NH2 peptide, we detected ADAM15 activity in urine samples collected from patients diagnosed with bladder cancer. In contrast, we did not observe such activity in urine obtained from healthy volunteers.
Collapse
Affiliation(s)
- Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland.
| | - Monika Musielak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Wiktoria Rejmak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| |
Collapse
|
11
|
Integrin α3/α6 and αV are implicated in ADAM15-activated FAK and EGFR signalling pathway individually and promote non-small-cell lung cancer progression. Cell Death Dis 2022; 13:486. [PMID: 35597804 PMCID: PMC9124216 DOI: 10.1038/s41419-022-04928-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Disintegrin-metalloproteinase 15(ADAM15), a member of disintegrin metalloproteinases (ADAMs), plays important roles in various cancer types. However, the underlying ADAM15 functioning in lung cancer is still unclear. In the present study, we find that ADAM15 regulates the epidermal growth factor receptor/focal adhesion kinase (EGFR/FAK) signalling pathway by interactions with integrins. Integrin αV is involved in ADAM15-mediated FAK signalling. Further, we find that ADAM15 and CD151 were co-expressed, and the presence of ADAM15 affected the integrin α3/α6-related EGFR signalling pathway by cooperating with CD151. In addition, we also prove the effect of ADAM15 on proliferation in nude mice. Finally, we show that ADAM15 is a direct target of miR-204-5p by luciferase reporter assays, qRT-PCR and western blot analyses. Our findings provide molecular and cellular evidence that ADAM15 promotes cell proliferation and metastasis in NSCLC, which might provide a potential target for NSCLC treatment.
Collapse
|
12
|
Osman IO, Garrec C, de Souza GAP, Zarubica A, Belhaouari DB, Baudoin JP, Lepidi H, Mege JL, Malissen B, Scola BL, Devaux CA. Control of CDH1/E-Cadherin Gene Expression and Release of a Soluble Form of E-Cadherin in SARS-CoV-2 Infected Caco-2 Intestinal Cells: Physiopathological Consequences for the Intestinal Forms of COVID-19. Front Cell Infect Microbiol 2022; 12:798767. [PMID: 35601094 PMCID: PMC9114883 DOI: 10.3389/fcimb.2022.798767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
COVID-19 is the biggest pandemic the world has seen this century. Alongside the respiratory damage observed in patients with severe forms of the disease, gastrointestinal symptoms have been frequently reported. These symptoms (e.g., diarrhoea), sometimes precede the development of respiratory tract illnesses, as if the digestive tract was a major target during early SARS-CoV-2 dissemination. We hypothesize that in patients carrying intestinal SARS-CoV-2, the virus may trigger epithelial barrier damage through the disruption of E-cadherin (E-cad) adherens junctions, thereby contributing to the overall gastrointestinal symptoms of COVID-19. Here, we use an intestinal Caco-2 cell line of human origin which expresses the viral receptor/co-receptor as well as the membrane anchored cell surface adhesion protein E-cad to investigate the expression of E-cad after exposure to SARS-CoV-2. We found that the expression of CDH1/E-cad mRNA was significantly lower in cells infected with SARS-CoV-2 at 24 hours post-infection, compared to virus-free Caco-2 cells. The viral receptor ACE2 mRNA expression was specifically down-regulated in SARS-CoV-2-infected Caco-2 cells, while it remained stable in HCoV-OC43-infected Caco-2 cells, a virus which uses HLA class I instead of ACE2 to enter cells. It is worth noting that SARS-CoV-2 induces lower transcription of TMPRSS2 (involved in viral entry) and higher expression of B0AT1 mRNA (that encodes a protein known to co-express with ACE2 on intestinal cells). At 48 hours post-exposure to the virus, we also detected a small but significant increase of soluble E-cad protein (sE-cad) in the culture supernatant of SARS-CoV-2-infected Caco-2 cells. The increase of sE-cad release was also found in the intestinal HT29 cell line when infected by SARS-CoV-2. Beside the dysregulation of E-cad, SARS-CoV-2 infection of Caco-2 cells also leads to the dysregulation of other cell adhesion proteins (occludin, JAMA-A, zonulin, connexin-43 and PECAM-1). Taken together, these results shed light on the fact that infection of Caco-2 cells with SARS-CoV-2 affects tight-, adherens-, and gap-junctions. Moreover, intestinal tissues damage was associated to the intranasal SARS-CoV-2 infection in human ACE2 transgenic mice.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Clémence Garrec
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Gabriel Augusto Pires de Souza
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Ana Zarubica
- Centre d’Immunophénomique (CIPHE), Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), CELPHEDIA, PHENOMIN, Marseille, France
| | - Djamal Brahim Belhaouari
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Jean-Pierre Baudoin
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Hubert Lepidi
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Assitance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
- Assitance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Bernard Malissen
- Centre d’Immunophénomique (CIPHE), Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), CELPHEDIA, PHENOMIN, Marseille, France
| | - Bernard La Scola
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Christian Albert Devaux
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
13
|
HER2-CDH1 Interaction via Wnt/B-Catenin Is Associated with Patients' Survival in HER2-Positive Metastatic Gastric Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14051266. [PMID: 35267574 PMCID: PMC8909509 DOI: 10.3390/cancers14051266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary A deeper understanding of the molecular mechanisms involved in gastric cacner (GC) pathologenesis would help the identification of prognostic biomarkers and the development of new treatments. Human epidermal growth factor receptor 2 (HER2/ErbB2), a membrane-bound receptor of the EGFR family, may be overexpressed in GC. Trastuzumab is a HER2 inhibitor used to treat HER2+ metastatic gastric cancer (mGC). The present study aims to investigate the relationship between CDH1 mRNA expression and HER2-positivity in mGC using a multiplexed gene expression profile in two series of GC patients: 38 HER2+ and HER2- mGC and 36 HER2- GC with and without metastasis. Our results revealed the relationship between CDH1 and HER2 mRNA expression in mGC via the canonical WNT/β-catenin pathway and identified EGF as an independent prognostic biomarker for survival. Abstract Trastuzumab is a human epidermal growth factor receptor 2 (HER2) inhibitor used to treat HER2+ metastatic gastric cancer (mGC). The present study aims to investigate the relationship between CDH1 mRNA expression and HER2-positivity in mGC using a multiplexed gene expression profile in two series of gastric cancer (GC): Series 1 (n = 38): HER2+ and HER2- mGC; Series 2 (n = 36) HER2- GC with and without metastasis. To confirm the results, the same expression profiles were analyzed in 354 GC from The Cancer Genome Atlas (TCGA) dataset. The difference in gene expression connected HER2 overexpression with canonical wingless-type (Wnt)/β-catenin pathway and immunohistochemical (IHC) expression loss of E-cadherin (E-CAD). CDH1 mRNA expression was simultaneously associated with the rs16260-A variant and an increase in E-CAD expression. Differences in retinoic acid receptor alfa (RARA), RPL19 (coding for the 60S ribosomal L19 protein), catenin delta 1 (CTNND1), and epidermal growth factor (EGF) mRNA levels—all included in the Wnt/β-catenin pathway—were found associated with overall survival (OS). RARA, CTNND1, and EGF resulted in independent OS prognostic factors. EGF was confirmed as an independent factor along with TNM stage in HER2-overpressed mGC from TCGA collection. Our study highlighted factors involved in the WNT/β-catenin pathway that interconnected E-CAD with HER2 overexpression and patient survival.
Collapse
|
14
|
Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. Int J Mol Sci 2022; 23:ijms23052419. [PMID: 35269560 PMCID: PMC8910283 DOI: 10.3390/ijms23052419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer is a leading cause of cancer-related death, and a large proportion of cases are inseparably linked to infections with the bacterial pathogen and type I carcinogen Helicobacter pylori. The development of gastric cancer follows a cascade of transformative tissue events in an inflammatory environment. Proteases of host origin as well as H. pylori-derived proteases contribute to disease progression at every stage, from chronic gastritis to gastric cancer. In the present article, we discuss the importance of (metallo-)proteases in colonization, epithelial inflammation, and barrier disruption in tissue transformation, deregulation of cell proliferation and cell death, as well as tumor metastasis and neoangiogenesis. Proteases of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase domain-containing protein (ADAM) families, caspases, calpain, and the H. pylori proteases HtrA, Hp1012, and Hp0169 cleave substrates including extracellular matrix molecules, chemokines, and cytokines, as well as their cognate receptors, and thus shape the pathogenic microenvironment. This review aims to summarize the current understanding of how proteases contribute to disease progression in the gastric compartment.
Collapse
|
15
|
Sullivan B, Light T, Vu V, Kapustka A, Hristova K, Leckband D. Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor-dependent signaling. Proc Natl Acad Sci U S A 2022; 119:e2100679119. [PMID: 35074920 PMCID: PMC8794882 DOI: 10.1073/pnas.2100679119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.
Collapse
Affiliation(s)
- Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Taylor Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Vinh Vu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218;
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Quantitative Biology and Biophysics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
16
|
Chute M, Aujla PK, Li Y, Jana S, Zhabyeyev P, Rasmuson J, Owen CA, Abraham T, Oudit GY, Kassiri Z. ADAM15 is required for optimal collagen cross-linking and scar formation following myocardial infarction. Matrix Biol 2022; 105:127-143. [PMID: 34995785 DOI: 10.1016/j.matbio.2021.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023]
Abstract
Collagen cross-linking is an important step in optimal scar formation. Myocardial infarction (MI) results in loss of cardiomyocytes that are replaced with a scar (infarct) tissue. Disintegrin and metalloproteinases (ADAMs) are membrane-bound proteases that can interact with molecules intra- and extra-cellularly to mediate various cellular functions. ADAM15 is expressed in the myocardium, however its function in heart disease has been poorly explored. We utilized mice lacking ADAM15 (Adam15-/-) and wildtype (WT) mice. MI, induced by ligation of the left anterior descending artery, resulted in a transient but significant rise in ADAM15 protein in the WT myocardium at 3-days. Following MI, Adam15-/- mice exhibited markedly higher rate of left ventricular (LV) rupture compared to WT mice (66% vs. 15%, p<0.05). Echocardiography and strain analyses showed worsened LV dysfunction in Adam15-/- mice at 3days, prior to the onset of LV rupture. Second harmonic generation imaging revealed significant disarray and reduction in fibrillar collagen density in Adam15-/- compared to WT hearts. This was associated with lower insoluble and higher soluble collagen fractions, reduced cross-linking enzyme, lysyl oxidase-1 (LOX-1), and fibronectin which is required for LOX-1 function, in Adam15-/--MI hearts. Post-MI myocardial inflammation was comparable between the genotypes. In vitro, primary adult cardiac fibroblasts from Adam15-/- mice showed suppressed activation in response to ischemia (hypoxia+nutrient depletion) compared to WT fibroblasts. Adam15-deficiency was associated with reduced PAK1(p21-activated kinase-1) levels, a regulator of fibronectin and LOX-1 expression. In female mice, the rate of post-MI LV rupture, PAK1 signaling, LOX-1 and fibronectin protein levels were comparable between Adam15-/- and WT, indicating lack of sex-dependent effects of ADAM15 post- MI. This study reports a novel function for ADAM15 in collagen cross-linking and optimal scar formation post-MI which may also apply to scar formation in other tissues.
Collapse
Affiliation(s)
- Michael Chute
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Preetinder K Aujla
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Yingxi Li
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Sayantan Jana
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Jaslyn Rasmuson
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Caroline A Owen
- Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA, Penn State College of Medicine, Hershey, PA, USA
| | | | - Gavin Y Oudit
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada.
| |
Collapse
|
17
|
OUP accepted manuscript. Mol Hum Reprod 2022; 28:6583214. [DOI: 10.1093/molehr/gaac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/31/2022] [Indexed: 11/13/2022] Open
|
18
|
Abstract
E-cadherin is the main component of epithelial adherens junctions (AJs), which play a crucial role in the maintenance of stable cell-cell adhesion and overall tissue integrity. Down-regulation of E-cadherin expression has been found in many carcinomas, and loss of E-cadherin is generally associated with poor prognosis in patients. During the last decade, however, numerous studies have shown that E-cadherin is essential for several aspects of cancer cell biology that contribute to cancer progression, most importantly, active cell migration. In this review, we summarize the available data about the input of E-cadherin in cancer progression, focusing on the latest advances in the research of the various roles E-cadherin-based AJs play in cancer cell dissemination. The review also touches upon the "cadherin switching" in cancer cells where N- or P-cadherin replace or are co-expressed with E-cadherin and its influence on the migratory properties of cancer cells.
Collapse
Affiliation(s)
- Svetlana N Rubtsova
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| | - Irina Y Zhitnyak
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| | - Natalya A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| |
Collapse
|
19
|
Chen X, Zhang Y, Guan X. Simultaneous detection of multiple proteases using a non-array nanopore platform. NANOSCALE 2021; 13:13658-13664. [PMID: 34477641 PMCID: PMC8485758 DOI: 10.1039/d1nr04085e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiplexing methods which are capable of measurement of multiple analytes in a single assay are of great importance in many fields. The conventional strategy for simultaneous detection of multiple species is to construct a sensor array. Herein, we report an innovative multiplex multi-analyte detection platform in a non-array format for protease measurement. By monitoring protease degradation of a single peptide substrate containing two cleavage sites for a disintegrin and metalloproteinase 10 (ADAM10) and a disintegrin and metalloproteinase 10 (ADAM17) in a single nanopore, simultaneous detection and quantification of these two model proteases in mixture samples could satisfactorily be accomplished. Our developed multiplexing sensing platform has the potential to be coupled with the traditional sensor array to further improve the multiplexing capability of the sensor, which may find useful applications in clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA.
| | | | | |
Collapse
|
20
|
Xu JH, Guan YJ, Zhang YC, Qiu ZD, Zhou Y, Chen C, Yu J, Wang WX. ADAM15 correlates with prognosis, immune infiltration and apoptosis in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:20395-20417. [PMID: 34426560 PMCID: PMC8436918 DOI: 10.18632/aging.203425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 01/06/2023]
Abstract
ADAM15 is highly expressed in malignant tumors and is correlated with tumor progression. However, the role of ADAM15 in hepatocellular carcinoma (HCC) remains unclear. In the study, our results indicated that ADAM15 was highly expressed in HCC tissues and cells compared with corresponding tissues and liver cells. Overexpression of ADAM15 was linked to poor prognosis, and was an independent risk factor for HCC prognosis. Besides, analysis of immune infiltration indicated that ADAM15 expression was related to tumor infiltrating lymphocytes based on the TIMER, TISIDB and GEPIA databases. Many immune checkpoint gene expression was associated with ADAM15 expression. Functional enrichment analyses indicated that apoptosis, cell adhesion was enriched. ADAM15 knockdown promoted apoptosis and suppressed proliferation, migration and invasion of liver cancer cells. The findings of western blot showed that ADAM15 knockdown reduced the expression of Bcl-2, Vimentin, N-Cadherin and Snail, and elevated the expression of Bax, E-cadherin and ZO-1. However, overexpression of ADAM15 had the opposite results. Collectively, our findings demonstrated that ADAM15 was connected with poor prognosis of HCC patients, and could be considered as a potential biomarker for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Jun Hui Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Yong Jun Guan
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Chao Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Dong Qiu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Xing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Extraneous E-Cadherin Engages the Deterministic Process of Somatic Reprogramming through Modulating STAT3 and Erk1/2 Activity. Cells 2021; 10:cells10020284. [PMID: 33572536 PMCID: PMC7912071 DOI: 10.3390/cells10020284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Although several modes of reprogramming have been reported in different cell types during iPSC induction, the molecular mechanism regarding the selection of different modes of action is still mostly unknown. The present study examined the molecular events that participate in the selection of such processes at the onset of somatic reprogramming. The activity of STAT3 versus that of Erk1/2 reversibly determines the reprogramming mode entered; a lower activity ratio favors the deterministic process and vice versa. Additionally, extraneous E-cadherin facilitates the early events of somatic reprogramming, potentially by stabilizing the LIF/gp130 and EGFR/ErbB2 complexes to promote entry into the deterministic process. Our current findings demonstrated that manipulating the pSTAT3/pErk1/2 activity ratio in the surrounding milieu can drive different modes of action toward either the deterministic or the stochastic process in the context of OSKM-mediated somatic reprogramming.
Collapse
|
23
|
ADAM15 Participates in Tick-Borne Encephalitis Virus Replication. J Virol 2021; 95:JVI.01926-20. [PMID: 33208450 DOI: 10.1128/jvi.01926-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a major tick-borne viral pathogen of humans, is known to cause neurological diseases such as meningitis, encephalitis, and meningoencephalitis. However, the life cycle and pathogenesis of TBEV are not well understood. Here, we show that the knockdown or knockout of ADAM15 (a disintegrin and metalloproteinase 15), a host protein involved in neuroblastoma diseases, leads to TBEV replication and assembly defects. We characterized the disintegrin domain in ADAM15 and found that the ADAM15 subcellular localization was changed following TBEV infection. RNA interference (RNAi) screen analysis confirmed ADAM's nonredundant functions and identified a specific role for ADAM15 in TBEV infection. An RNA-sequencing analysis was also conducted to understand the causal link between TBEV infection and the cellular endomembrane network, namely, the generation of replication organelles promoting viral genome replication and virus production. Our data demonstrated that TBEV infection changes ADAM15 cellular localization, which contributes to membrane reorganization and viral replication.IMPORTANCE Tick populations are increasing, and their geographic ranges are expanding. Increases in tick-borne disease prevalence and transmission are important public health issues. Tick-borne encephalitis virus (TBEV) often results in meningitis, encephalitis, and meningoencephalitis. TBEV causes clinical disease in more than 20,000 humans in Europe and Asia per year. An increased incidence of TBE has been noted in Europe and Asia, as a consequence of climate and socioeconomic changes. The need to investigate the mechanism(s) of interaction between the virus and the host factors is apparent, as it will help us to understand the roles of host factors in the life cycle of TBEV. The significance of our research is in identifying the ADAM15 for TBEV replication, which will greatly enhance our understanding of TBEV life cycle and highlight a target for pharmaceutical consideration.
Collapse
|
24
|
Wullweber A, Strick R, Lange F, Sikic D, Taubert H, Wach S, Wullich B, Bertz S, Weyerer V, Stoehr R, Breyer J, Burger M, Hartmann A, Strissel PL, Eckstein M. Bladder Tumor Subtype Commitment Occurs in Carcinoma In Situ Driven by Key Signaling Pathways Including ECM Remodeling. Cancer Res 2021; 81:1552-1566. [PMID: 33472889 DOI: 10.1158/0008-5472.can-20-2336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Basal and luminal subtypes of invasive bladder tumors have significant prognostic and predictive impacts for patients. However, it remains unclear whether tumor subtype commitment occurs in noninvasive urothelial lesions or in carcinoma in situ (CIS) and which gene pathways are important for bladder tumor progression. To understand the timing of this commitment, we used gene expression and protein analysis to create a global overview of 36 separate tissues excised from a whole bladder encompassing urothelium, noninvasive urothelial lesions, CIS, and invasive carcinomas. Additionally investigated were matched CIS, noninvasive urothelial lesions, and muscle-invasive bladder cancers (MIBC) from 22 patients. The final stage of subtype commitment to either a luminal or basal MIBC occurred at the CIS transition. For all tissues combined, hierarchical clustering of subtype gene expression revealed three subtypes: "luminal," "basal," and a "luminal p53-/extracellular matrix (ECM)-like" phenotype of ECM-related genes enriched in tumor-associated urothelium, noninvasive urothelial lesions, and CIS, but rarely invasive, carcinomas. A separate cohort of normal urothelium from noncancer patients showed significantly lower expression of ECM-related genes compared with tumor-associated urothelium, noninvasive urothelial lesions, and CIS. A PanCancer Progression Panel of 681 genes unveiled pathways specific for the luminal p53-/ECM-like cluster, for example, ECM remodeling, angiogenesis, epithelial-to-mesenchymal transition, cellular discohesion, cell motility involved in tumor progression, and cell proliferation and oncogenic ERBB2/ERBB3 signaling for invasive carcinomas. In conclusion, this study provides insights into bladder cancer subtype commitment and associated signaling pathways, which could help predict therapy response and enhance our understanding of therapy resistance. SIGNIFICANCE: This study demonstrates that CIS is the stage of commitment for determining MIBC tumor subtype, which is relevant for patient prognosis and therapy response.
Collapse
Affiliation(s)
- Adrian Wullweber
- Department of Internal Medicine, Evangelisches Krankenhaus Düsseldorf, Düsseldorf, Germany.,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Strick
- Translational Research Centre (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabienne Lange
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes Breyer
- Department of Urology, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Translational Research Centre (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
25
|
Shafraz O, Xie B, Yamada S, Sivasankar S. Mapping transmembrane binding partners for E-cadherin ectodomains. Proc Natl Acad Sci U S A 2020; 117:31157-31165. [PMID: 33229577 PMCID: PMC7733791 DOI: 10.1073/pnas.2010209117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We combine proximity labeling and single molecule binding assays to discover transmembrane protein interactions in cells. We first screen for candidate binding partners by tagging the extracellular and cytoplasmic regions of a "bait" protein with BioID biotin ligase and identify proximal proteins that are biotin tagged on both their extracellular and intracellular regions. We then test direct binding interactions between proximal proteins and the bait, using single molecule atomic force microscope binding assays. Using this approach, we identify binding partners for the extracellular region of E-cadherin, an essential cell-cell adhesion protein. We show that the desmosomal proteins desmoglein-2 and desmocollin-3, the focal adhesion protein integrin-α2β1, the receptor tyrosine kinase ligand ephrin-B1, and the classical cadherin P-cadherin, all directly interact with E-cadherin ectodomains. Our data shows that combining extracellular and cytoplasmic proximal tagging with a biophysical binding assay increases the precision with which transmembrane ectodomain interactors can be identified.
Collapse
Affiliation(s)
- Omer Shafraz
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA 95616
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616;
- Biophysics Graduate Group, University of California, Davis, CA 95616
| |
Collapse
|
26
|
Yang CY, Chanalaris A, Bonelli S, McClurg O, Hiles GL, Cates AL, Zarebska JM, Vincent TL, Day ML, Müller SA, Lichtenthaler SF, Nagase H, Scilabra SD, Troeberg L. Interleukin 13 (IL-13)-regulated expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100128. [PMID: 33381768 PMCID: PMC7762825 DOI: 10.1016/j.ocarto.2020.100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Objective The adamalysin metalloproteinase 15 (ADAM15) has been shown to protect against development of osteoarthritis in mice. Here, we have investigated factors that control ADAM15 levels in cartilage. Design Secretomes from wild-type and Adam15−/− chondrocytes were compared by label-free quantitative mass spectrometry. mRNA was isolated from murine knee joints, either with or without surgical induction of osteoarthritis on male C57BL/6 mice, and the expression of Adam15 and other related genes quantified by RT-qPCR. ADAM15 in human normal and osteoarthritic cartilage was investigated similarly and by fluorescent immunohistochemistry. Cultured HTB94 chondrosarcoma cells were treated with various anabolic and catabolic stimuli, and ADAM15 mRNA and protein levels evaluated. Results There were no significant differences in the secretomes of chondrocytes from WT and Adam15−/− cartilage. Expression of ADAM15 was not altered in either human or murine osteoarthritic cartilage relative to disease-free controls. However, expression of ADAM15 was markedly reduced upon aging in both species, to the extent that expression in joints of 18-month-old mice was 45-fold lower than in that 4.5-month-old animals. IL-13 increased expression of ADAM15 in HTB94 cells by 2.5-fold, while modulators of senescence and autophagy pathways had no effect. Expression of Il13 in the joint was reduced with aging, suggesting this cytokine may control ADAM15 levels in the joint. Conclusion Expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging human and murine joints, possibly due to a concomitant reduction in IL-13 expression. We thus propose IL-13 as a novel factor contributing to increased osteoarthritis risk upon aging.
Collapse
Affiliation(s)
- C Y Yang
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - A Chanalaris
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - S Bonelli
- Fondazione Ri.MED - ISMETT, Department of Research, Via Ernesto Tricomi 5, 90145, Palermo, Italy
| | - O McClurg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, United Kingdom
| | - G Lorenzatti Hiles
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - A L Cates
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - J Miotla Zarebska
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - T L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - M L Day
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - S A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - S F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - H Nagase
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - S D Scilabra
- Fondazione Ri.MED - ISMETT, Department of Research, Via Ernesto Tricomi 5, 90145, Palermo, Italy.,German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - L Troeberg
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom.,Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, United Kingdom
| |
Collapse
|
27
|
CD82 Suppresses ADAM17-Dependent E-Cadherin Cleavage and Cell Migration in Prostate Cancer. DISEASE MARKERS 2020; 2020:8899924. [PMID: 33204367 PMCID: PMC7654213 DOI: 10.1155/2020/8899924] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023]
Abstract
CD82 acts as a tumor suppressor in a series of steps in malignant progression. Here, we identified a novel function of CD82 on posttranslational regulating E-cadherin in prostate cancer. In our study, the declined expression of CD82 was verified in prostate cancer tissues and cell lines compared with normal tissue and cell lines. Functionally, CD82 inhibited cell migration and E-cadherin cleavage from the cell membrane in prostate cancer cell. Further study proved that a disintegrin and metalloproteinase ADAM17 as an executor of E-cadherin cleavage mediated the inhibitory regulation of CD82 in E-cadherin shedding in prostate cancer. Specifically, CD82 interacted with ADAM17 and inhibited its metalloprotease activity, which led to the descent of E-cadherin shedding. These results show a nuanced but important role of CD82 in nontranscriptional regulation of E-cadherin, which may help to understand the intricate regulation of dysfunctional adhesion molecule in cancer progression.
Collapse
|
28
|
Li C, Luo X, Huang B, Wang X, Deng Y, Zhong Z. ADAMTS12 acts as a cancer promoter in colorectal cancer via activating the Wnt/β-catenin signaling pathway in vitro. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:301. [PMID: 32355745 PMCID: PMC7186627 DOI: 10.21037/atm.2020.02.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background ADAMTS12, a member of the ADAMTS family, is reported to be associated with the clinic outcome of colorectal cancer (CRC) patients. However, the functions and precise mechanism in CRC progression have yet to be fully understood. Methods By analyzing The Cancer Genome Atlas (TCGA) database, we examined the mRNA level of ADAMTS12 and assessed the prognostic value of ADAMTS12 in CRC patients using a tissue microarray containing 41 CRC patient samples. Cell Counting Kit-8 (CCK-8), colony formation, and transwell assays were used to quantify the impact of ADAMTS12 on cell proliferation and migration in ADAMTS12-overexpressing and ADAMTS12-deficient cell lines. The signaling pathways that ADAMTS12 mediated were identified by dual-luciferase reporter assays, and confirmed by western blotting and quantitative teal-time polymerase chain reaction (qRT-PCR). Results The ADAMTS12 mRNA level was upregulated in CRC tissues, and CRC patients with a high level of ADAMTS12 showed worse prognosis when compared with the patients with a low level of ADAMTS12. In vitro functional assays demonstrated that overexpression of ADAMTS12 significantly boosted cell proliferation and migration while ADAMTS12 deficiency remarkably impaired both tumor cell behaviors. Mechanical studies further verified that ADAMTS12 overexpression enhanced the transcriptional activity of β-catenin in the Wnt/β-catenin signaling pathway. In the ADAMTS12-deficient context, the downstream gene expression of myc and cyclin D1 was significantly reduced compared with that in wild-type cancer cells. Conclusions ADAMTS12 fulfills the tumor-promotor role by activating Wnt/β-catenin signaling pathway in colon cells and may represent a new option in CRC target treatment.
Collapse
Affiliation(s)
- Chunxue Li
- Department of General Surgery, Gastric and Colorectal Surgery Division, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuelian Luo
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bin Huang
- Department of General Surgery, Gastric and Colorectal Surgery Division, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiangfeng Wang
- Department of General Surgery, Gastric and Colorectal Surgery Division, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Deng
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
29
|
Mitschke J, Burk UC, Reinheckel T. The role of proteases in epithelial-to-mesenchymal cell transitions in cancer. Cancer Metastasis Rev 2020; 38:431-444. [PMID: 31482486 DOI: 10.1007/s10555-019-09808-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changing the characteristics of cells from epithelial states to mesenchymal properties is a key process involved in developmental and physiological processes as well as in many diseases with cancer as the most prominent example. Nowadays, a great deal of work and literature concerns the understanding of the process of epithelial-to-mesenchymal transition (EMT) in terms of its molecular regulation and its implications for cancer. Similar statements can certainly be made regarding the investigation of the more than 500 proteases typically encoded by a mammalian genome. Specifically, the impact of proteases on tumor biology has been a long-standing topic of interest. However, although EMT actively regulates expression of many proteases and proteolytic enzymes are clearly involved in survival, division, differentiation, and movements of cells, information on the diverse roles of proteases in EMT has been rarely compiled. Here we aim to conceptually connect the scientific areas of "EMT" and "protease" research by describing how several important classes of proteolytic enzymes are regulated by EMT and how they are involved in initiation and execution of the EMT program. To do so, we briefly introduce the evolving key features of EMT and its regulation followed by discussion of protease involvement in this process.
Collapse
Affiliation(s)
- Julia Mitschke
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Ulrike C Burk
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, partner site Freiburg, 79106, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
30
|
Tan X, Broses LJ, Zhou M, Day KC, Liu W, Li Z, Weizer AZ, Munson KA, Khaing Oo MK, Day ML, Fan X. Multiparameter urine analysis for quantitative bladder cancer surveillance of orthotopic xenografted mice. LAB ON A CHIP 2020; 20:634-646. [PMID: 31922156 DOI: 10.1039/c9lc01006h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human-derived orthotopic xenograft mouse model is an effective platform for performing in vivo bladder cancer studies to examine tumor development, metastasis, and therapeutic effects of drugs. To date, the surveillance of tumor progression in real time for orthotopic bladder xenografts is highly dependent on semi-quantitative in vivo imaging technologies such as bioluminescence. While these imaging technologies can estimate tumor progression, they are burdened with requirements such as anesthetics, specialized equipment, and genetic modification of the injected cell line. Thus, a convenient and non-invasive technology to quantitatively monitor the growth of bladder cancer in orthotopic xenografts is highly desired. In this work, using a microfluidic chemiluminescent ELISA platform, we have successfully developed a rapid, multiparameter urine-based and non-invasive biomolecular prognostic technology for orthotopic bladder cancer xenografts. This method consists of two steps. First, the concentrations of a panel of four urinary biomarkers are quantified from the urine of mice bearing orthotopic bladder xenografts. Second, machine learning and principal component analysis (PCA) algorithms are applied to analyze the urinary biomarkers, and subsequently, a score is assigned to indicate the tumor growth. With this methodology, we have quantitatively monitored the orthotopic growth of human bladder cancer that was inoculated with low, medium, and high cancer cell numbers. We also employed this method and performed a proof of principle experiment to examine the in vivo therapeutic efficacy of the EGFR inhibitor, dacomitinib.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Luke J Broses
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Menglian Zhou
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenyi Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ziqi Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Alon Z Weizer
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine A Munson
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Venhuizen JH, Jacobs FJ, Span PN, Zegers MM. P120 and E-cadherin: Double-edged swords in tumor metastasis. Semin Cancer Biol 2020; 60:107-120. [DOI: 10.1016/j.semcancer.2019.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
|
32
|
D'Occhio MJ, Campanile G, Zicarelli L, Visintin JA, Baruselli PS. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol Reprod Dev 2020; 87:206-222. [PMID: 31944459 DOI: 10.1002/mrd.23312] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Cell-cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm-oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain-containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm-oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell-cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
33
|
Jin P, Liu J, Zhou Q, Li S, Liu W, Xi S. Long-term treatment with arsenite activates HER1 and HER2 through upregulating EGF, TGFα, and HSP90 in a human uroepithelial cell line. Cell Biol Toxicol 2019; 36:279-284. [PMID: 31773452 DOI: 10.1007/s10565-019-09500-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Peiyu Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, People's Republic of China
| | - Jieyu Liu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, People's Republic of China
| | - Qing Zhou
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, People's Republic of China
| | - Sihao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, People's Republic of China
| | - Weijue Liu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, People's Republic of China
| | - Shuhua Xi
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, People's Republic of China.
| |
Collapse
|
34
|
Nakajima K, Ono M, Radović U, Dizdarević S, Tomizawa SI, Kuroha K, Nagamatsu G, Hoshi I, Matsunaga R, Shirakawa T, Kurosawa T, Miyazaki Y, Seki M, Suzuki Y, Koseki H, Nakamura M, Suda T, Ohbo K. Lack of whey acidic protein (WAP) four-disulfide core domain protease inhibitor 2 (WFDC2) causes neonatal death from respiratory failure in mice. Dis Model Mech 2019; 12:dmm.040139. [PMID: 31562139 PMCID: PMC6899016 DOI: 10.1242/dmm.040139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Respiratory failure is a life-threatening problem for pre-term and term infants, yet many causes remain unknown. Here, we present evidence that whey acidic protein (WAP) four-disulfide core domain protease inhibitor 2 (Wfdc2), a protease inhibitor previously unrecognized in respiratory disease, may be a causal factor in infant respiratory failure. Wfdc2 transcripts are detected in the embryonic lung and analysis of a Wfdc2-GFP knock-in mouse line shows that both basal and club cells, and type II alveolar epithelial cells (AECIIs), express Wfdc2 neonatally. Wfdc2-null-mutant mice display progressive atelectasis after birth with a lethal phenotype. Mutant lungs have multiple defects, including impaired cilia and the absence of mature club cells from the tracheo-bronchial airways, and malformed lamellar bodies in AECIIs. RNA sequencing shows significant activation of a pro-inflammatory pathway, but with low-quantity infiltration of mononuclear cells in the lung. These data demonstrate that Wfdc2 function is vitally important for lung aeration at birth and that gene deficiency likely causes failure of the lung mucosal barrier.
Collapse
Affiliation(s)
- Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Uroš Radović
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Selma Dizdarević
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology, Kyushu University, Faculty of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Risa Matsunaga
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Shirakawa
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeyuki Kurosawa
- Department of Respiratory Medicine, Toho University, School of Medicine, 5-21-16, Ohmorinishi, Ohta-ku, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National Singapore University Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.,International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
35
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
36
|
Yang X, Meegan JE, Jannaway M, Coleman DC, Yuan SY. A disintegrin and metalloproteinase 15-mediated glycocalyx shedding contributes to vascular leakage during inflammation. Cardiovasc Res 2019; 114:1752-1763. [PMID: 29939250 PMCID: PMC6198742 DOI: 10.1093/cvr/cvy167] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/22/2018] [Indexed: 01/25/2023] Open
Abstract
Aims Endothelial hyperpermeability exacerbates multiple organ damage during inflammation or infection. The endothelial glycocalyx, a protective matrix covering the luminal surface of endothelial cells (ECs), undergoes enzymatic shedding during inflammation, contributing to barrier hyperpermeability. A disintegrin and metalloproteinase 15 (ADAM15) is a sheddase capable of cleaving the ectodomains of membrane-bound molecules. Herein, we tested whether and how ADAM15 is involved in glycocalyx shedding and vascular leakage during sepsis. Methods and results Dextran-150kD exclusion assay revealed lipopolysaccharide (LPS) significantly reduced glycocalyx thickness in mouse cremaster microvessels. Consistently, shedding products of glycocalyx constituents, including CD44 ectodomain, were detected with an increased plasma level after cecal ligation and puncture (CLP)-induced sepsis. The direct effects of CD44 ectodomain on endothelial barrier function were evaluated, which revealed CD44 ectodomain dose-dependently reduced transendothelial electrical resistance (TER) and caused cell–cell adherens junction disorganization. Furthermore, we examined the role of ADAM15 in CD44 cleavage and glycocalyx shedding. An in vitro cleavage assay coupled with liquid chromatography-tandem mass spectrometry confirmed ADAM15 cleaved CD44 at His235-Thr236 bond. In ECs with ADAM15 knockdown, LPS-induced CD44 cleavage and TER reduction were greatly attenuated, whereas, ADAM15 overexpression exacerbated CD44 cleavage and TER response to LPS. Consistently, ADAM15 knockout in mice attenuated CLP-induced increase in plasma CD44. Intravital and electron microscopic images revealed ADAM15 deficiency prevented LPS-induced glycocalyx injury in cremaster and pulmonary microvasculatures. Functionally, ADAM15−/− mice with better-preserved glycocalyx exhibited resistance to LPS-induced vascular leakage, as evidenced by reduced albumin extravasation in pulmonary and mesenteric vessels. Importantly, in intact, functionally vital human lungs, perfusion of LPS induced a significant up-regulation of ADAM15, accompanied by elevated CD44 in the effluent and increased vascular permeability to albumin. Conclusion Together, our data support the critical role of ADAM15 in mediating vascular barrier dysfunction during inflammation. Its mechanisms of action involve CD44 shedding and endothelial glycocalyx injury.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA
| | - Jamie E Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA
| | - Danielle C Coleman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA.,Department of Surgery, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, USA
| |
Collapse
|
37
|
Camodeca C, Cuffaro D, Nuti E, Rossello A. ADAM Metalloproteinases as Potential Drug Targets. Curr Med Chem 2019; 26:2661-2689. [PMID: 29589526 DOI: 10.2174/0929867325666180326164104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
The ADAMs, together with ADAMTSs and snake venom metalloproteases (SVMPs), are members of the Adamalysin family. Differences in structural organization, functions and localization are known and their domains, catalytic or non-catalytic, show key roles in the substrate recognition and protease activity. Some ADAMs, as membrane-bound enzymes, show sheddase activity. Sheddases are key to modulation of functional proteins such as the tumor necrosis factor, growth factors, cytokines and their receptors, adhesion proteins, signaling molecules and stress molecules involved in immunity. These activities take part in the regulation of several physiological and pathological processes including inflammation, tumor growth, metastatic progression and infectious diseases. On these bases, some ADAMs are currently investigated as drug targets to develop new alternative therapies in many fields of medicine. This review will be focused on these aspects.
Collapse
Affiliation(s)
- Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| |
Collapse
|
38
|
Mattern J, Roghi CS, Hurtz M, Knäuper V, Edwards DR, Poghosyan Z. ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells. Sci Rep 2019; 9:12540. [PMID: 31467400 PMCID: PMC6715704 DOI: 10.1038/s41598-019-49021-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023] Open
Abstract
A Disintegrin and Metalloproteinase-15 (ADAM15) is a transmembrane protein involved in protein ectodomain shedding, cell adhesion and signalling. We previously cloned and characterised alternatively spliced variants of ADAM15 that differ in their intracellular domains and demonstrated correlation of the expression of specific variants with breast cancer prognosis. In this study we have created isogenic cell panels (MDA-MB-231 and MCF-7) expressing five ADAM15 variants including wild-type and catalytically inactive forms. The expression of ADAM15 isoforms in MDA-MB-231 cells led to cell clustering to varying degree, without changes in EMT markers vimentin, slug and E-cadherin. Analysis of tight junction molecules revealed ADAM15 isoform specific, catalytic function dependent upregulation of Claudin-1. The expression of ADAM15A, and to a lesser degree of C and E isoforms led to an increase in Claudin-1 expression in MDA-MB-231 cells, while ADAM15B had no effect. In MCF-7 cells, ADAM15E was the principal variant inducing Claudin-1 expression. Sh-RNA mediated down-regulation of ADAM15 in ADAM15 over-expressing cells reduced Claudin-1 levels. Additionally, downregulation of endogenous ADAM15 expression in T47D cells by shRNA reduced endogenous Claudin-1 expression confirming a role for ADAM15 in regulating Claudin-1 expression. The PI3K/Akt/mTOR pathway was involved in regulating Claudin-1 expression downstream of ADAM15. Immunofluorescence analysis of MDA-MB-231 ADAM15A expressing cells showed Claudin-1 at cell-cell junctions, in the cytoplasm and nuclei. ADAM15 co-localised with Claudin-1 and ZO1 at cell-cell junctions. Immunoprecipitation analysis demonstrated complex formation between ADAM15 and ZO1/ZO2. These findings highlight the importance of ADAM15 Intra Cellular Domain-mediated interactions in regulating substrate selection and breast cancer cell phenotype.
Collapse
Affiliation(s)
- Jens Mattern
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK
| | - Christian S Roghi
- School of Biological Sciences and Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Melanie Hurtz
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK.,MLM Medical Labs GmbH, Dohrweg 63, 41066, Mönchengladbach, Germany
| | - Vera Knäuper
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK
| | - Dylan R Edwards
- School of Biological Sciences and Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Zaruhi Poghosyan
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
39
|
Yang J, Xiong Y, Zhou L, Huang Y, Chen W, Wang B. Soluble E-cadherin is associated with oxidative stress in patients with chronic HBV infection. J Med Virol 2019; 92:34-44. [PMID: 31429942 DOI: 10.1002/jmv.25571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Abstract
Mounting evidence indicates that serum soluble E-cadherin (sE-cadherin) serves as an important player in various physiological and pathological processes. However, the crosstalk between serum sE-cadherin and oxidative stress in chronic hepatitis B (CHB) remains to be illustrated. The main purpose of this study is to explore the molecular mechanisms underlying the function of sE-cadherin in CHB virus infection. Levels of serum sE-cadherin, total antioxidant capacity (TAC), glutathione (GSH), superoxide dismutase (SOD), total oxidant activity (TOA), NADPH oxidase 2 (NOX2), and malondialdehyde (MDA), from 51 patients with hepatitis B envelope antigen (HBeAg)-negative CHB, 54 patients with HBeAg-positive CHB, and 109 healthy individuals were detected by enzyme-linked immunosorbent assay. In our study, patients with CHB showed significantly higher serum sE-cadherin levels than healthy individuals (P < .01). Furthermore, we also found that the serum sE-cadherin levels were significantly negatively correlated with TAC, antioxidant enzymes (GSH and SOD) in patients with CHB, and that serum sE-cadherin concentrations were significantly positively correlated with liver enzyme markers (alanine transaminase and aspartate aminotransferase) and oxidative markers (TOA, NOX2, and MDA) in patients with CHB. Therefore, serum sE-cadherin may act as a new candidate biomarker for reflecting inflammation and oxidative stress status in the development and progression of hepatitis B virus infection.
Collapse
Affiliation(s)
- Jun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Xiong
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Lijing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yong Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Wang ZR, Chen H, Gao SS, Qiu H, Li HW, Sun ZL, Wang JM. Implications of soluble E-cadherin level of antiviral treatment in patients with chronic hepatitis C virus infection. Int Immunopharmacol 2019; 74:105708. [PMID: 31254956 DOI: 10.1016/j.intimp.2019.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS Soluble E-cadherin (sE-cadherin) has been observed elevated in patients with various diseases, and implicated in the occurrence and development of those diseases. The implications of sE-cadherin in chronic hepatitis C virus (HCV) infection are still unclear. The purpose of this study is to explore the significance of sE-cadherin in chronic hepatitis C infection and the correlation with treatment response. METHODS 87 chronic HCV infected patients and 60 healthy subjects were enrolled in this study. Blood samples from patients receiving the combined treatment of pegylated interferon-a (Peg-IFN-α) with ribavirin (RBV) were collected before treatment, during 4th, 12th therapy weeks, end of the treatment, and 24 weeks post-therapy. Plasma sE-cadherin level was detected by enzyme-linked immunosorbent assay (ELISA) and the relationship between sE-cadherin and antiviral treatment outcome was analyzed. RESULTS Plasma sE-cadherin concentrations of Chronic HCV infected patients were significantly higher than that of healthy controls. A strong correlation between sE-cadherin level and the HCV viral load, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and also glutamyl transpeptidase (GGT) level was detected. Chronic HCV infected patients achieving rapid virological response (RVR) and sustained virological response (SVR) had lower baseline sE-cadherin concentrations compared with the non-RVR and non-SVR groups respectively. Univariate and multivariate regression analyses suggested that baseline plasma sE-cadherin level was predictive of therapeutic effect in patients with chronic HCV infection. CONCLUSION Baseline sE-cadherin level could be considered as an independent predictor of SVR with Peg-IFN-α plus ribavirin therapy in the Chinese Han population chronic HCV infection patients. Effective antiviral therapy might restore sE-cadherin at physiological levels.
Collapse
Affiliation(s)
- Ze-Rong Wang
- Department of Hepatology, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, PR China
| | - Hui Chen
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, PR China
| | - Shang-Shang Gao
- Department of Biochemistry and Molecular biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, PR China
| | - Hao Qiu
- Department of Biochemistry and Molecular biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, PR China
| | - Han-Wen Li
- School of Biological and Basic Medical Science, Soochow University, Suzhou, PR China
| | - Zi-Ling Sun
- Department of Biochemistry and Molecular biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, PR China.
| | - Jia-Min Wang
- Department of Biochemistry and Molecular biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, PR China.
| |
Collapse
|
41
|
Singh M, Tian XJ, Donnenberg VS, Watson AM, Zhang J, Stabile LP, Watkins SC, Xing J, Sant S. Targeting the Temporal Dynamics of Hypoxia-Induced Tumor-Secreted Factors Halts Tumor Migration. Cancer Res 2019; 79:2962-2977. [PMID: 30952634 PMCID: PMC6548579 DOI: 10.1158/0008-5472.can-18-3151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/01/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Targeting microenvironmental factors that foster migratory cell phenotypes is a promising strategy for halting tumor migration. However, lack of mechanistic understanding of the emergence of migratory phenotypes impedes pharmaceutical drug development. Using our three-dimensional microtumor model with tight control over tumor size, we recapitulated the tumor size-induced hypoxic microenvironment and emergence of migratory phenotypes in microtumors from epithelial breast cells and patient-derived primary metastatic breast cancer cells, mesothelioma cells, and lung cancer xenograft cells. The microtumor models from various patient-derived tumor cells and patient-derived xenograft cells revealed upregulation of tumor-secreted factors, including matrix metalloproteinase-9 (MMP9), fibronectin (FN), and soluble E-cadherin, consistent with clinically reported elevated levels of FN and MMP9 in patient breast tumors compared with healthy mammary glands. Secreted factors in the conditioned media of large microtumors induced a migratory phenotype in nonhypoxic, nonmigratory small microtumors. Subsequent mathematical analyses identified a two-stage microtumor progression and migration mechanism whereby hypoxia induces a migratory phenotype in the initialization stage, which then becomes self-sustained through a positive feedback loop established among the tumor-secreted factors. Computational and experimental studies showed that inhibition of tumor-secreted factors effectively halts microtumor migration despite tumor-to-tumor variation in migration kinetics, while inhibition of hypoxia is effective only within a time window and is compromised by tumor-to-tumor variation, supporting our notion that hypoxia initiates migratory phenotypes but does not sustain it. In summary, we show that targeting temporal dynamics of evolving microenvironments, especially tumor-secreted factors during tumor progression, can halt tumor migration. SIGNIFICANCE: This study uses state-of-the-art three-dimensional microtumor models and computational approaches to highlight the temporal dynamics of tumor-secreted microenvironmental factors in inducing tumor migration.
Collapse
Affiliation(s)
- Manjulata Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiao-Jun Tian
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Vera S Donnenberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, McGowan Institute for Regenerative Medicine, and UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan M Watson
- Center for Biologic Imaging, Center for Vaccine Research, and Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - JingYu Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, UPMC-Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Center for Biologic Imaging and the Department of Cellular Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianhua Xing
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Tsaur I, Hüsch T, Jüngel E, Schneider F, Schneider M, Haferkamp A, Thomas C, Lieb V, Wach S, Taubert H, Chun FKH, Blaheta RA. sE-cadherin is upregulated in serum of patients with renal cell carcinoma and promotes tumor cell dissemination in vitro. Urol Oncol 2019; 37:355.e1-355.e9. [PMID: 31005422 DOI: 10.1016/j.urolonc.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Cadherin family proteins are involved in the tumorigenesis of several malignancies. However, their significance in renal cell carcinoma (RCC) has not been extensively investigated. The current study investigates the potential of several cadherins to perform as biomarkers for tumor detection and exert functional RCC activity. METHODS Pre- and postoperative concentrations of sE-cadherin, cadherin-6, N-cadherin, cadherin-11, cadherin-17, and cadherin-5 were measured in serum of patients undergoing surgery for RCC and correlated to clinical and histopathological parameters. Control serum was obtained from healthy volunteers. A498 and Caki-1 cells were incubated with sE-cadherin and assessed for cell growth, adhesion, and chemotaxis. RESULTS sE-cadherin was significantly upregulated in RCC patients, as compared to controls, and discriminated them with striking accuracy (area under the curve value 0.83). Serum levels remained stable several days after surgery. Treating A498 and Caki-1 cancer cells with various concentrations of sE-cadherin attenuated cell growth and adhesion, while chemotaxis was augmented. CONCLUSIONS sE-cadherin is overexpressed in serum of RCC patients and provides a functional cellular switch from sessility to aggressive dissemination. While sE-cadherin is not tumor-specific and thus inappropriate for population-based screening, further studies are warranted to investigate its role in monitoring RCC and employing it as a therapeutic target.
Collapse
Affiliation(s)
- Igor Tsaur
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany; University Hospital Frankfurt, Department of Urology, Frankfurt, Germany
| | - Tanja Hüsch
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany; University Hospital Frankfurt, Department of Urology, Frankfurt, Germany.
| | - Eva Jüngel
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany
| | | | - Meike Schneider
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany
| | - Axel Haferkamp
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany
| | - Christian Thomas
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany
| | - Verena Lieb
- University Hospital Erlangen, Department of Urology and Pediatric Urology, Erlangen, Germany
| | - Sven Wach
- University Hospital Erlangen, Department of Urology and Pediatric Urology, Erlangen, Germany
| | - Helge Taubert
- University Hospital Erlangen, Department of Urology and Pediatric Urology, Erlangen, Germany
| | - Felix K-H Chun
- University Hospital Frankfurt, Department of Urology, Frankfurt, Germany
| | - Roman A Blaheta
- University Hospital Frankfurt, Department of Urology, Frankfurt, Germany
| |
Collapse
|
43
|
Zhong S, Khalil RA. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem Pharmacol 2019; 164:188-204. [PMID: 30905657 DOI: 10.1016/j.bcp.2019.03.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
A Disintegrin and Metalloproteinase (ADAM) is a family of proteolytic enzymes that possess sheddase function and regulate shedding of membrane-bound proteins, growth factors, cytokines, ligands and receptors. Typically, ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and a characteristic transmembrane domain. Most ADAMs are activated by proprotein convertases, but can also be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C activators. A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) is a family of secreted enzymes closely related to ADAMs. Like ADAMs, ADAMTS members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but they lack a transmembrane domain and instead have characteristic thrombospondin motifs. Activated ADAMs perform several functions and participate in multiple cardiovascular processes including vascular smooth muscle cell proliferation and migration, angiogenesis, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs may also be involved in pathological conditions and cardiovascular diseases such as atherosclerosis, hypertension, aneurysm, coronary artery disease, myocardial infarction and heart failure. Like ADAMs, ADAMTS have a wide-spectrum role in vascular biology and cardiovascular pathophysiology. ADAMs and ADAMTS activity is naturally controlled by endogenous inhibitors such as tissue inhibitors of metalloproteinases (TIMPs), and their activity can also be suppressed by synthetic small molecule inhibitors. ADAMs and ADAMTS can serve as important diagnostic biomarkers and potential therapeutic targets for cardiovascular disorders. Natural and synthetic inhibitors of ADAMs and ADAMTS could be potential therapeutic tools for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Sheng Zhong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Madarampalli B, Watts GFM, Panipinto PM, Nguygen HN, Brenner MB, Noss EH. Interactions between cadherin-11 and platelet-derived growth factor receptor-alpha signaling link cell adhesion and proliferation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1516-1524. [PMID: 30876808 DOI: 10.1016/j.bbadis.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022]
Abstract
Cadherins are homophilic cell-to-cell adhesion molecules that help cells respond to environmental changes. Newly formed cadherin junctions are associated with increased cell phosphorylation, but the pathways driving this signaling response are largely unknown. Since cadherins have no intrinsic signaling activity, this phosphorylation must occur through interactions with other signaling molecules. We previously reported that cadherin-11 engagement activates joint synovial fibroblasts, promoting inflammatory and degradative pathways important in rheumatoid arthritis (RA) pathogenesis. Our objective in this study was to discover interacting partners that mediate cadherin-11 signaling. Protein array screening showed that cadherin-11 extracellular binding domains linked to an Fc domain (cad11Fc) induced platelet-derived growth factor (PDGFR)-α phosphorylation in synovial fibroblasts and glioblastoma cells. PDGFRs are growth factor receptor tyrosine kinases that promote cell proliferation, survival, and migration in mesodermally derived cells. Increased PDGFR activity is implicated in RA pathology and associates with poor prognosis in several cancers, including sarcoma and glioblastoma. PDGFRα activation by cadherin-11 signaling promoted fibroblast proliferation, a signaling pathway independent from cadherin-11-stimulated IL-6 or matrix metalloproteinase (MMP)-3 release. PDGFRα phosphorylation mediated most of the cad11Fc-induced phosphatidyl-3-kinase (PI3K)/Akt activation, but only part of the mitogen-activated protein kinase (MAPK) response. PDGFRα-dependent signaling did not require cell cadherin-11 expression. Rather, cad11Fc immunoprecipitated PDGFRα, indicating a direct interaction between cadherin-11 and PDGFRα extracellular domains. This study is the first to report an interaction between cadherin-11 and PDGFRα and adds to our growing understanding that cadherin-growth factor receptor interactions help balance the interplay between tissue growth and adhesion.
Collapse
Affiliation(s)
- Bhanupriya Madarampalli
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98019, USA.
| | - Gerald F M Watts
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Paul M Panipinto
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98019, USA.
| | - Hung N Nguygen
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Erika H Noss
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98019, USA; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Yulis M, Kusters DHM, Nusrat A. Cadherins: cellular adhesive molecules serving as signalling mediators. J Physiol 2018; 596:3883-3898. [PMID: 29968384 PMCID: PMC6117591 DOI: 10.1113/jp275328] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
The single pass, transmembrane proteins of the cadherin family have been appreciated as important proteins that regulate intercellular adhesion. In addition to this critical function, cadherins contribute to important signalling events that control cellular homeostasis. Many examples exist of classical, desmosomal and atypical cadherins participating in the regulation of signalling events that control homeostatic functions in cells. Much of the work on cadherin mediated signalling focuses on classical cadherins or on specific disease states such as pemphigus vulgaris. Cadherin mediated signalling has been shown to play critical roles during development, in proliferation, apoptosis, disease pathobiology and beyond. It is becoming increasingly clear that cadherins operate through a range of molecular mechanisms. The diversity of pathways and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of the roles that these versatile proteins play in signalling and cellular function.
Collapse
Affiliation(s)
- Mark Yulis
- Department of PathologyThe University of MichiganAnn ArborMI 48109USA
| | | | - Asma Nusrat
- Department of PathologyThe University of MichiganAnn ArborMI 48109USA
| |
Collapse
|
46
|
Jin P, Liu J, Wang X, Yang L, Zhou Q, Lin X, Xi S. HER2 Activation Factors in Arsenite-Exposed Bladder Epithelial Cells. Toxicol Sci 2018; 166:354-369. [DOI: 10.1093/toxsci/kfy202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Peiyu Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Jieyu Liu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaoyan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Li Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Qing Zhou
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaoli Lin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Shuhua Xi
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| |
Collapse
|
47
|
Liu J, Jin P, Liu S, Wang F, Wang X, Yang L, Xi S. sEcad and EGF Levels Increased in Urine of Non-ferrous Metal Workers and Medium of Uroepithelial Cell Line Treated by Arsenic. Biol Trace Elem Res 2018; 183:32-39. [PMID: 28819764 DOI: 10.1007/s12011-017-1124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
Abstract
Inorganic arsenic (iAs) is a carcinogen and could increase the risks of bladder, lung, and skin cancer. Mining and smelting of non-ferrous metals are common occupational arsenic exposures. In this study, 125 individuals working in non-ferrous metal smelting plants were separated into two groups according to urinary total arsenic (TAs) levels: group 1, TAs < 100 μg/g Cr; group 2, TAs ≥ 100 μg/g Cr. Demographic characteristics of participants were obtained by questionnaire interview. Levels of E-cadherin soluble ectodomain fragment (sEcad) and epidermal growth factor (EGF) in workers urine were determined by ELISA test. We found that concentrations of sEcad and EGF present in urine were significantly elevated in the high urinary arsenic group 2 compared with the low urinary arsenic group 1. Urinary levels of the shedding of E-cadherin soluble ectodomain fragment (sEcad) and epidermal growth factor (EGF) were positively related to the concentrations of iAs in urine after adjusting for the confounding effects. A positive correlation between sEcad and EGF concentrations in urine was also observed. In order to verify the effects of iAs on sEcad and EGF, the human uroepithelial cell line (SV-HUC-1) was treated with NaAsO2 for 24 h in vitro. sEcad and EGF levels in the 4 μM NaAsO2-treated SV-HUC-1 cell medium significantly increased compared to the control group. In conclusion, urinary levels of sEcad and EGF increased in higher urinary arsenic workers of non-ferrous metal plants and are closely associated with urinary iAs concentration. The results suggested that sEcad and EGF may potentially be preclinical prognostic factors of bladder injury and early detection in arsenic exposure individuals.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Peiyu Jin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shengnan Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Fei Wang
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Xiaoyan Wang
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Li Yang
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
48
|
Liu Y, Sun X, Feng J, Deng LL, Liu Y, Li B, Zhu M, Lu C, Zhou L. MT2-MMP induces proteolysis and leads to EMT in carcinomas. Oncotarget 2018; 7:48193-48205. [PMID: 27374080 PMCID: PMC5217011 DOI: 10.18632/oncotarget.10194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is critical for carcinoma invasiveness and metastasis. To investigate the role of membrane-type-2 matrix metalloproteinase (MT2-MMP) in EMT, we generated lentiviral constructs of wild-type (WT) and an inactive Glu260Ala (E260A) mutant MT2-MMP and derived stably transfected HCT116 and A549 cell lines. WT-transfected cells appeared mesenchymal-like, whereas cells transfected with the E260A mutant were epithelial-like, as were cells treated with an MMP inhibitor (GM6001). Expression of E-cadherin, β-catenin, and zonula occludens-1 was lower in cells transfected with WT MT2-MMP compared to vector controls, cells treated with GM6001, or cells transfected with the E260A mutant. An 80-kD N-terminal fragment of E-cadherin was immunoprecipitated in conditioned medium from WT MT2-MMP cells, but not in the medium from vector controls, cells treated with GM6001, or E260A mutant cells. When endogenous expression of MT2-MMP in A2780 human ovarian cancer cells was inhibited using GM6001 or MT2-MMP-specific siRNA, levels of the 80-kD E-cadherin fragment in conditioned medium were decreased. Chick embryo chorioallantoic membrane invasion assays demonstrated that cells transfected with WT MT2-MMP were more invasive than cells transfected with control vector, treated with GM6001, or transfected with the E260A mutant. These results suggest that MT2-MMP degrades adherens and tight junction proteins and results in EMT, making it a potential mediator of EMT in carcinomas.
Collapse
Affiliation(s)
- Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaojiao Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinfa Feng
- Department of General Surgery, Heilongjiang Province Hospital, Harbin, China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yihao Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bokang Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyue Zhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyun Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Huang CY, Hsieh MJ, Liu TC, Chiang WL, Liu MC, Yang SF, Tsao TCY. Correlation of E-cadherin gene polymorphisms and epidermal growth factor receptor mutation in lung adenocarcinoma. Int J Med Sci 2018; 15:765-770. [PMID: 30008585 PMCID: PMC6036082 DOI: 10.7150/ijms.24051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) was recently discovered related to the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in NSCLC patients and cell lines. In this study, we aimed to explore the association among the E-cadherin gene (CDH1) genetic variants, TK-domain mutations of EGFR, and clinicopathologic characteristics in patients with lung adenocarcinoma. A total of 280 patients with lung adenocarcinoma were recruited between years 2012 and 2015. All subjects underwent the analysis of CDH1 genetic variants (rs16260 and rs9929218) by real-time polymerase chain reaction (PCR) genotyping. The results showed that CA and CA + AA genotypes of CDH1 single nucleotide polymorphism (SNP) rs16260 were significantly reverse associated with EGFR mutation type (Adjusted odds ratio (AOR) = 0.43, 95% CI = 0.20-0.92 and AOR = 0.46, 95% CI = 0.22-0.96, respectively) in female lung adenocarcinoma patients. Moreover, the significantly reverse associations between CA and CA + AA genotypes of CDH1 rs16260 and EGFR hotspot mutations, namely L858R mutation and exon 19 in-frame deletion, were also demonstrated among female patients. Besides, CA + AA genotype of CDH1 rs16260 was noted significantly reverse associated with the tumor sizes (OR = 0.31, 95% CI = 0.12-0.80; p = 0.012). In conclusion, our results suggested that CDH1 variants are significantly reverse associated with mutation of EGFR tyrosine kinase, especially among the female patients with lung adenocarcinoma. The CDH1 variants might contribute to pathological development in lung adenocarcinoma.
Collapse
Affiliation(s)
- Chun-Yao Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pulmonary Medicine, Buddhist Tzu Chi General Hospital, Taipei Branch, New Taipei City, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tu-Chen Liu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Chest Medicine, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Whei-Ling Chiang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Thomas Chang-Yao Tsao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Chest, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
50
|
Lei C, Dong Z, Wan J, Xiao X, Lu F, Wang B. Transferring the exudate in the tissue engineering chamber as a trigger to incubate large amount adipose tissue in remote area. J Tissue Eng Regen Med 2017; 12:e1549-e1558. [DOI: 10.1002/term.2580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 08/21/2017] [Accepted: 09/23/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Chen Lei
- Department of Plastic and Cosmetic Surgery, Nanfang HospitalSouthern Medical University Guang Zhou Guang Dong P.R. China
- Department of Plastic and Cosmetic SurgeryThe First Affiliated Hospital of Fujian Medical University Fuzhou Fujian P.R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang HospitalSouthern Medical University Guang Zhou Guang Dong P.R. China
| | - Jinlin Wan
- Department of Plastic and Cosmetic Surgery, Nanfang HospitalSouthern Medical University Guang Zhou Guang Dong P.R. China
| | - Xiaolian Xiao
- Department of Plastic and Cosmetic Surgery, Nanfang HospitalSouthern Medical University Guang Zhou Guang Dong P.R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang HospitalSouthern Medical University Guang Zhou Guang Dong P.R. China
| | - Biao Wang
- Department of Plastic and Cosmetic SurgeryThe First Affiliated Hospital of Fujian Medical University Fuzhou Fujian P.R. China
| |
Collapse
|