1
|
Catanese MC, Klingl YE, Gilbert TM, Strebl-Bantillo MG, Hartigan CR, Schenone M, Hooker JM. Chemoproteomics Sheds Light on Epigenetic Targets of [ 11C]Martinostat in the Human Brain. ACS Chem Neurosci 2025; 16:723-731. [PMID: 39912892 DOI: 10.1021/acschemneuro.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Initiation of research programs to investigate binding specificity based on in vivo positron emission tomography (PET) imaging results can provide rich opportunities to improve data interpretation, gain biological insight, and inform hypothesis development. Here, we profile the binding specificity of the neuroepigenetic imaging probe, [11C]Martinostat. In vivo neuroimaging studies using [11C]Martinostat have uncovered differential regional uptake in relation to age and biological sex and in patients with schizophrenia, bipolar disorder, Alzheimer's disease, and low-back pain compared to healthy controls. Previous studies using recombinant proteins and thermal shift assays in postmortem tissue indicate that [11C]Martinostat engages class I and putatively class IIb histone deacetylases (HDACs). While HDACs serve multiple functions, including regulation of chromatin remodeling and gene transcription, it is not known how differences in HDAC expression may arise across brain regions. HDACs functionally interact with a diverse array of multisubunit complexes, and engagement with associated binding partners may contribute to these differences. To further assess target engagement of [11C]Martinostat, we designed a synthetic probe based on the inhibitor structural scaffold for use in competition experiments followed by proteomic analysis in postmortem tissue. The synthetic probe, called Compound 4, appears to interact with the class I HDAC paralog HDAC2 and the class IIb paralog HDAC6 in a robust manner. We also uncovered unique interacting partners, including synaptic proteins from the synaptotagmin (SYT) family of proteins and neuronal pentraxin 2 (NPTX2). Further work to investigate HDAC associations with interacting proteins across regions of the human brain is needed to better understand neuroepigenetic dysregulation in psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Mary C Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yvonne E Klingl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Martin G Strebl-Bantillo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina R Hartigan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Monica Schenone
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
2
|
Ge H, Huang Y, Zhang L, Huang S, Wang G. The Cell States of Sea Urchin During Metamorphosis Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2025; 26:1059. [PMID: 39940825 PMCID: PMC11817407 DOI: 10.3390/ijms26031059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Metamorphosis is a key process in the life history of sea urchin Heliocidaris crassispina. However, the understanding of its molecular mechanisms is still lacking, especially the basic cell biology pre-metamorphosis and post-metamorphosis. Therefore, we employed single-cell RNA sequencing to delineate the cellular states of larvae and juveniles of H. crassispina. Our investigation revealed that the cell composition in sea urchins comprises six primary populations, encompassing nerve cells, skeletogenic cells, immune cells, digestive cells, germ cells, and muscle cells. Subsequently, we identified subpopulations within these cells. Our findings indicated that the larval peripheral nerves were discarded during metamorphosis. A decrease in the number of spicules was observed during this process. Additionally, we examined the differences between larval and adult pigment cells. Meanwhile, cellulase is highlighted as an essential factor for the development of competent juveniles. In summary, this study not only serves as a valuable resource for future research on sea urchins but also deepens our understanding of the intricate metamorphosis process.
Collapse
Affiliation(s)
- Hui Ge
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China
| | - Yongyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Lili Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Shiyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Guodong Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| |
Collapse
|
3
|
Rizo J, Jaczynska K, Rosenmund C. Evaluation of synaptotagmin-1 action models by all-atom molecular dynamics simulations. FEBS Open Bio 2025. [PMID: 39815397 DOI: 10.1002/2211-5463.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Neurotransmitter release is triggered in microseconds by the two C2 domains of the Ca2+ sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 C2B domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca2+-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca2+-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca2+-binding loops away from the fusion site. To test these models, we performed molecular dynamics simulations of SNARE complexes bridging a vesicle and a flat bilayer, including the synaptotagmin-1 C2 domains in various configurations. Our data do not support the notion that insertion of the synaptotagmin-1 Ca2+-binding loops causes substantial membrane curvature or major perturbations of the lipid bilayers that could facilitate membrane fusion. We observed membrane bridging by the synaptotagmin-1 C2 domains, but such bridging or the presence of the C2 domains near the site of fusion hindered the action of the SNAREs in bringing the membranes together. These results argue against models predicting that synaptotagmin-1 triggers neurotransmitter release by inducing membrane curvature, perturbing bilayers or bridging membranes. Instead, our data support the hypothesis that binding via the primary interface keeps the synaptotagmin-1 C2 domains away from the site of fusion, orienting them such that they trigger release through a remote action.
Collapse
Affiliation(s)
- Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
4
|
Weingarten DJ, Shrestha A, Orlin DJ, Le Moing CL, Borchardt LA, Jackman SL. Synaptotagmins 3 and 7 mediate the majority of asynchronous release from synapses in the cerebellum and hippocampus. Cell Rep 2024; 43:114595. [PMID: 39116209 PMCID: PMC11410144 DOI: 10.1016/j.celrep.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Neurotransmitter release consists of rapid synchronous release followed by longer-lasting asynchronous release (AR). Although the presynaptic proteins that trigger synchronous release are well understood, the mechanisms for AR remain unclear. AR is sustained by low concentrations of intracellular Ca2+ and Sr2+, suggesting the involvement of sensors with high affinities for both ions. Synaptotagmin 7 (SYT7) partly mediates AR, but substantial AR persists in the absence of SYT7. The closely related SYT3 binds Ca2+ and Sr2+ with high affinity, making it a promising candidate to mediate AR. Here, we use knockout mice to study the contribution of SYT3 and SYT7 to AR at cerebellar and hippocampal synapses. AR is dramatically reduced when both isoforms are absent, which alters the number and timing of postsynaptic action potentials. Our results confirm the long-standing prediction that SYT3 mediates AR and show that SYT3 and SYT7 act as dominant mechanisms for AR at three central synapses.
Collapse
Affiliation(s)
| | - Amita Shrestha
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel J Orlin
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Chloé L Le Moing
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luke A Borchardt
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Ortiz EA, Campbell PD, Nelson JC, Granato M. A single base pair substitution in zebrafish distinguishes between innate and acute startle behavior regulation. PLoS One 2024; 19:e0300529. [PMID: 38498506 PMCID: PMC10947677 DOI: 10.1371/journal.pone.0300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Behavioral thresholds define the lowest stimulus intensities sufficient to elicit a behavioral response. Establishment of baseline behavioral thresholds during development is critical for proper responses throughout the animal's life. Despite the relevance of such innate thresholds, the molecular mechanisms critical to establishing behavioral thresholds during development are not well understood. The acoustic startle response is a conserved behavior whose threshold is established during development yet is subsequently acutely regulated. We have previously identified a zebrafish mutant line (escapist) that displays a decreased baseline or innate acoustic startle threshold. Here, we identify a single base pair substitution on Chromosome 25 located within the coding sequence of the synaptotagmin 7a (syt7a) gene that is tightly linked to the escapist acoustic hypersensitivity phenotype. By generating animals in which we deleted the syt7a open reading frame, and subsequent complementation testing with the escapist line, we demonstrate that loss of syt7a function is not the cause of the escapist behavioral phenotype. Nonetheless, escapist mutants provide a powerful tool to decipher the overlap between acute and developmental regulation of behavioral thresholds. Extensive behavioral analyses reveal that in escapist mutants the establishment of the innate acoustic startle threshold is impaired, while regulation of its acute threshold remains intact. Moreover, our behavioral analyses reveal a deficit in baseline responses to visual stimuli, but not in the acute regulation of responses to visual stimuli. Together, this work eliminates loss of syt7a as causative for the escapist phenotype and suggests that mechanisms that regulate the establishment of behavioral thresholds in escapist larvae can operate independently from those regulating acute threshold regulation.
Collapse
Affiliation(s)
- Elelbin A. Ortiz
- Department of Neuroscience, University of Pennsylvania, Pennsylvania, PA, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
| | - Philip D. Campbell
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
- Department of Psychiatry, University of Pennsylvania, Pennsylvania, PA, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Pennsylvania, PA, United States of America
| |
Collapse
|
6
|
Zhang F, Yang D, Li J, Du C, Sun X, Li W, Liu F, Yang Y, Li Y, Fu L, Li R, Zhang CX. Synaptotagmin-11 regulates immune functions of microglia in vivo. J Neurochem 2023; 167:680-695. [PMID: 37924268 DOI: 10.1111/jnc.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson's disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1β, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.
Collapse
Affiliation(s)
- Feifan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Dong Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jingchen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinran Sun
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Wanru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yiwei Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuhong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Fu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rena Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
7
|
Sun Y, Li M, Geng J, Meng S, Tu R, Zhuang Y, Sun M, Rui M, Ou M, Xing G, Johnson TK, Xie W. Neuroligin 2 governs synaptic morphology and function through RACK1-cofilin signaling in Drosophila. Commun Biol 2023; 6:1056. [PMID: 37853189 PMCID: PMC10584876 DOI: 10.1038/s42003-023-05428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Neuroligins are transmembrane cell adhesion proteins well-known for their genetic links to autism spectrum disorders. Neuroligins can function by regulating the actin cytoskeleton, however the factors and mechanisms involved are still largely unknown. Here, using the Drosophila neuromuscular junction as a model, we reveal that F-Actin assembly at the Drosophila NMJ is controlled through Cofilin signaling mediated by an interaction between DNlg2 and RACK1, factors not previously known to work together. The deletion of DNlg2 displays disrupted RACK1-Cofilin signaling pathway with diminished actin cytoskeleton proteo-stasis at the terminal of the NMJ, aberrant NMJ structure, reduced synaptic transmission, and abnormal locomotion at the third-instar larval stage. Overexpression of wildtype and activated Cofilin in muscles are sufficient to rescue the morphological and physiological defects in dnlg2 mutants, while inactivated Cofilin is not. Since the DNlg2 paralog DNlg1 is known to regulate F-actin assembly mainly via a specific interaction with WAVE complex, our present work suggests that the orchestration of F-actin by Neuroligins is a diverse and complex process critical for neural connectivity.
Collapse
Affiliation(s)
- Yichen Sun
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Moyi Li
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Jiangsu Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Junhua Geng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Sibie Meng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Renjun Tu
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Yan Zhuang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Mengzhu Ou
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Guangling Xing
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Chemistry, and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Wei Xie
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Jiangsu Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
9
|
Ortiz EA, Campbell PD, Nelson JC, Granato M. A single base pair substitution on Chromosome 25 in zebrafish distinguishes between development and acute regulation of behavioral thresholds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554673. [PMID: 37662318 PMCID: PMC10473726 DOI: 10.1101/2023.08.25.554673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Behavioral thresholds define the lowest stimulus intensities sufficient to elicit a behavioral response. Establishment of baseline behavioral thresholds during development is critical for proper responses throughout the animal's life. Despite the relevance of such innate thresholds, the molecular mechanisms critical to establishing behavioral thresholds during development are not well understood. The acoustic startle response is a conserved behavior whose threshold is established during development yet is subsequently acutely regulated. We have previously identified a zebrafish mutant line ( escapist ) that displays a decreased baseline or innate acoustic startle threshold. Here, we identify a single base pair substitution on Chromosome 25 located within the coding sequence of the synaptotagmin 7a ( syt7a ) gene that is tightly linked to the escapist acoustic hypersensitivity phenotype. By generating animals in which we deleted the syt7a open reading frame, and subsequent complementation testing with the escapist line, we demonstrate that loss of syt7a function is not the cause of the escapist behavioral phenotype. Nonetheless, escapist mutants provide a powerful tool to decipher the overlap between acute and developmental regulation of behavioral thresholds. Extensive behavioral analyses reveal that in escapist mutants the establishment of the innate acoustic startle threshold is impaired, while regulation of its acute threshold remains intact. Moreover, our behavioral analyses reveal a deficit in baseline responses to visual stimuli, but not in the acute regulation of responses to visual stimuli. Together, this work eliminates loss of syt7a as causative for the escapist phenotype and suggests that mechanisms that regulate the establishment of behavioral thresholds in escapist larvae can operate largely independently from those regulating acute threshold regulation.
Collapse
|
10
|
Leiva C, Pérez-Portela R, Lemer S. Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO 2 seeps. Commun Biol 2023; 6:769. [PMID: 37481685 PMCID: PMC10363134 DOI: 10.1038/s42003-023-05103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Ocean acidification, caused by anthropogenic CO2 emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO2 seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival.
Collapse
Affiliation(s)
- Carlos Leiva
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA.
| | - Rocío Pérez-Portela
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Lemer
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA
| |
Collapse
|
11
|
Martinez-Banaclocha MA. Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond. Antioxidants (Basel) 2023; 12:1373. [PMID: 37507913 PMCID: PMC10376658 DOI: 10.3390/antiox12071373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Encouraging recent data on the molecular pathways underlying aging have identified variants and expansions of genes associated with DNA replication and repair, telomere and stem cell maintenance, regulation of the redox microenvironment, and intercellular communication. In addition, cell rejuvenation requires silencing some transcription factors and the activation of pluripotency, indicating that hidden molecular networks must integrate and synchronize all these cellular mechanisms. Therefore, in addition to gene sequence expansions and variations associated with senescence, the optimization of transcriptional regulation and protein crosstalk is essential. The protein cysteinome is crucial in cellular regulation and plays unexpected roles in the aging of complex organisms, which show cumulative somatic mutations, telomere attrition, epigenetic modifications, and oxidative dysregulation, culminating in cellular senescence. The cysteine thiol groups are highly redox-active, allowing high functional versatility as structural disulfides, redox-active disulfides, active-site nucleophiles, proton donors, and metal ligands to participate in multiple regulatory sites in proteins. Also, antioxidant systems control diverse cellular functions, including the transcription machinery, which partially depends on the catalytically active cysteines that can reduce disulfide bonds in numerous target proteins, driving their biological integration. Since we have previously proposed a fundamental role of cysteine-mediated redox deregulation in neurodegeneration, we suggest that cellular rejuvenation of the cysteine redox proteome using GSH precursors, like N-acetyl-cysteine, is an underestimated multitarget therapeutic approach that would be particularly beneficial in Parkinson's disease.
Collapse
|
12
|
Uzay B, Houcek A, Ma ZZ, Konradi C, Monteggia LM, Kavalali ET. Neurotransmitter release progressively desynchronizes in induced human neurons during synapse maturation and aging. Cell Rep 2023; 42:112042. [PMID: 36701235 PMCID: PMC10366341 DOI: 10.1016/j.celrep.2023.112042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Rapid release of neurotransmitters in synchrony with action potentials is considered a key hardwired property of synapses. Here, in glutamatergic synapses formed between induced human neurons, we show that action potential-dependent neurotransmitter release becomes progressively desynchronized as synapses mature and age. In this solely excitatory network, the emergence of NMDAR-mediated transmission elicits endoplasmic reticulum (ER) stress leading to downregulation of key presynaptic molecules, synaptotagmin-1 and cysteine string protein α, that synchronize neurotransmitter release. The emergence of asynchronous release with neuronal maturity and subsequent aging is maintained by the high-affinity Ca2+ sensor synaptotagmin-7 and suppressed by the introduction of GABAergic transmission into the network, inhibition of NMDARs, and ER stress. These results suggest that long-term disruption of excitation-inhibition balance affects the synchrony of excitatory neurotransmission in human synapses.
Collapse
Affiliation(s)
- Burak Uzay
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Aiden Houcek
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Z Zack Ma
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Christine Konradi
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Lisa M Monteggia
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA.
| |
Collapse
|
13
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
14
|
Srikanth K, von Pfeil DJF, Stanley BJ, Griffitts C, Huson HJ. Genome Wide Association Study with Imputed Whole Genome Sequence Data Identifies a 431 kb Risk Haplotype on CFA18 for Congenital Laryngeal Paralysis in Alaskan Sled Dogs. Genes (Basel) 2022; 13:genes13101808. [PMID: 36292693 PMCID: PMC9602090 DOI: 10.3390/genes13101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital laryngeal paralysis (CLP) is an inherited disorder that affects the ability of the dog to exercise and precludes it from functioning as a working sled dog. Though CLP is known to occur in Alaskan sled dogs (ASDs) since 1986, the genetic mutation underlying the disease has not been reported. Using a genome-wide association study (GWAS), we identified a 708 kb region on CFA 18 harboring 226 SNPs to be significantly associated with CLP. The significant SNPs explained 47.06% of the heritability of CLP. We narrowed the region to 431 kb through autozygosity mapping and found 18 of the 20 cases to be homozygous for the risk haplotype. Whole genome sequencing of two cases and a control ASD, and comparison with the genome of 657 dogs from various breeds, confirmed the homozygous status of the risk haplotype to be unique to the CLP cases. Most of the dogs that were homozygous for the risk allele had blue eyes. Gene annotation and a gene-based association study showed that the risk haplotype encompasses genes implicated in developmental and neurodegenerative disorders. Pathway analysis showed enrichment of glycoproteins and glycosaminoglycans biosynthesis, which play a key role in repairing damaged nerves. In conclusion, our results suggest an important role for the identified candidate region in CLP.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Department of Animal Science, College of Agriculture and Life Science, Cornell University, Ithaca, NY 14850, USA
| | | | - Bryden J. Stanley
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | | | - Heather J. Huson
- Department of Animal Science, College of Agriculture and Life Science, Cornell University, Ithaca, NY 14850, USA
- Correspondence:
| |
Collapse
|
15
|
Riggs E, Shakkour Z, Anderson CL, Carney PR. SYT1-Associated Neurodevelopmental Disorder: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1439. [PMID: 36291375 PMCID: PMC9601251 DOI: 10.3390/children9101439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Synaptic dysregulations often result in damaging effects on the central nervous system, resulting in a wide range of brain and neurodevelopment disorders that are caused by mutations disrupting synaptic proteins. SYT1, an identified synaptotagmin protein, plays an essential role in mediating the release of calcium-triggered neurotransmitters (NT) involved in regular synaptic vesicle exocytosis. Considering the significant role of SYT1 in the physiology of synaptic neurotransmission, dysfunction and degeneration of this protein can result in a severe neurological impairment. Genetic variants lead to a newly discovered rare disorder, known as SYT1-associated neurodevelopment disorder. In this review, we will discuss in depth the function of SYT1 in synapse and the underlying molecular mechanisms. We will highlight the genetic basis of SYT1-associated neurodevelopmental disorder along with known phenotypes, with possible interventions and direction of research.
Collapse
Affiliation(s)
- Edith Riggs
- College of Osteopathic Medicine, Kansas City University School of Medicine, Kansas City, MO 64106, USA
| | - Zaynab Shakkour
- School of Medicine, University of Missouri Child Health, Columbia, MO 65201, USA
| | | | - Paul R. Carney
- School of Medicine, University of Missouri Child Health, Columbia, MO 65201, USA
- Department of Engineering, University of Missouri Biomedical Engineering, Columbia, MO 65201, USA
| |
Collapse
|
16
|
Kobbersmed JRL, Berns MMM, Ditlevsen S, Sørensen JB, Walter AM. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis. eLife 2022; 11:74810. [PMID: 35929728 PMCID: PMC9489213 DOI: 10.7554/elife.74810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic communication relies on the fusion of synaptic vesicles with the plasma membrane, which leads to neurotransmitter release. This exocytosis is triggered by brief and local elevations of intracellular Ca2+ with remarkably high sensitivity. How this is molecularly achieved is unknown. While synaptotagmins confer the Ca2+ sensitivity of neurotransmitter exocytosis, biochemical measurements reported Ca2+ affinities too low to account for synaptic function. However, synaptotagmin’s Ca2+ affinity increases upon binding the plasma membrane phospholipid PI(4,5)P2 and, vice versa, Ca2+ binding increases synaptotagmin’s PI(4,5)P2 affinity, indicating a stabilization of the Ca2+/PI(4,5)P2 dual-bound state. Here, we devise a molecular exocytosis model based on this positive allosteric stabilization and the assumptions that (1.) synaptotagmin Ca2+/PI(4,5)P2 dual binding lowers the energy barrier for vesicle fusion and that (2.) the effect of multiple synaptotagmins on the energy barrier is additive. The model, which relies on biochemically measured Ca2+/PI(4,5)P2 affinities and protein copy numbers, reproduced the steep Ca2+ dependency of neurotransmitter release. Our results indicate that each synaptotagmin engaging in Ca2+/PI(4,5)P2 dual-binding lowers the energy barrier for vesicle fusion by ~5 kBT and that allosteric stabilization of this state enables the synchronized engagement of several (typically three) synaptotagmins for fast exocytosis. Furthermore, we show that mutations altering synaptotagmin’s allosteric properties may show dominant-negative effects, even though synaptotagmins act independently on the energy barrier, and that dynamic changes of local PI(4,5)P2 (e.g. upon vesicle movement) dramatically impact synaptic responses. We conclude that allosterically stabilized Ca2+/PI(4,5)P2 dual binding enables synaptotagmins to exert their coordinated function in neurotransmission. For our brains and nervous systems to work properly, the nerve cells within them must be able to ‘talk’ to each other. They do this by releasing chemical signals called neurotransmitters which other cells can detect and respond to. Neurotransmitters are packaged in tiny membrane-bound spheres called vesicles. When a cell of the nervous system needs to send a signal to its neighbours, the vesicles fuse with the outer membrane of the cell, discharging their chemical contents for other cells to detect. The initial trigger for neurotransmitter release is a short, fast increase in the amount of calcium ions inside the signalling cell. One of the main proteins that helps regulate this process is synaptotagmin which binds to calcium and gives vesicles the signal to start unloading their chemicals. Despite acting as a calcium sensor, synaptotagmin actually has a very low affinity for calcium ions by itself, meaning that it would not be efficient for the protein to respond alone. Synpatotagmin is more likely to bind to calcium if it is attached to a molecule called PIP2, which is found in the membranes of cells The effect also occurs in reverse, as the binding of calcium to synaptotagmin increases the protein’s affinity for PIP2. However, how these three molecules – synaptotagmin, PIP2, and calcium – work together to achieve the physiological release of neurotransmitters is poorly understood. To help answer this question, Kobbersmed, Berns et al. set up a computer simulation of ‘virtual vesicles’ using available experimental data on synaptotagmin’s affinity with calcium and PIP2. In this simulation, synaptotagmin could only trigger the release of neurotransmitters when bound to both calcium and PIP2. The model also showed that each ‘complex’ of synaptotagmin/calcium/PIP2 made the vesicles more likely to fuse with the outer membrane of the cell – to the extent that only a handful of synaptotagmin molecules were needed to start neurotransmitter release from a single vesicle. These results shed new light on a biological process central to the way nerve cells communicate with each other. In the future, Kobbersmed, Berns et al. hope that this insight will help us to understand the cause of diseases where communication in the nervous system is impaired.
Collapse
Affiliation(s)
- Janus R L Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manon M M Berns
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexander M Walter
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Kim BK, Kim DM, Park H, Kim SK, Hwang MA, Lee J, Kang MJ, Byun JE, Im JY, Kang M, Park KC, Yeom YI, Kim SY, Jung H, Kweon DH, Cheong JH, Won M. Synaptotagmin 11 scaffolds MKK7-JNK signaling process to promote stem-like molecular subtype gastric cancer oncogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:212. [PMID: 35768842 PMCID: PMC9241269 DOI: 10.1186/s13046-022-02420-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
Background Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. Methods In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient’s survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. Results SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. Conclusion SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02420-3.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| | - Da-Mi Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyunkyung Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Mi-Aie Hwang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jungwoon Lee
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Environmental Diseases Research Center, KRIBB, Daejeon, South Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jae-Eun Byun
- Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Seon-Young Kim
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Korea Bioinformation Center, KRIBB, Daejeon, South Korea
| | - Haiyoung Jung
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea. .,Serverance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| |
Collapse
|
18
|
Plattner H. Ciliate Research. From Myth to Trendsetting Science. J Eukaryot Microbiol 2022; 69:e12926. [PMID: 35608570 DOI: 10.1111/jeu.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
This special issue of the Journal of Eukaryotic Microbiology (JEM) summarizes achievements obtained by generations of researchers with ciliates in widely different disciplines. In fact, ciliates range among the first cells seen under the microscope centuries ago. Their beauty made them an object of scientia amabilis and their manifold reactions made them attractive for college experiments and finally challenged causal analyses at the cellular level. Some of this work was honored by a Nobel Prize. Some observations yielded a baseline for additional novel discoveries, occasionally facilitated by specific properties of some ciliates. This also offers some advantage in the exploration of closely related parasites (malaria). Articles contributed here by colleagues from all over the world encompass a broad spectrum of ciliate life, from genetics to evolution, from molecular cell biology to ecology, from intercellular signaling to epigenetics etc. This introductory chapter, largely based on my personal perception, aims at integrating work presented in this special issue of JEM into a broader historical context up to current research.
Collapse
|
19
|
Hikima T, Witkovsky P, Khatri L, Chao MV, Rice ME. Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release. J Neurosci 2022; 42:3919-3930. [PMID: 35361702 PMCID: PMC9097777 DOI: 10.1523/jneurosci.2416-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
| | - Moses V Chao
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
20
|
Thomas FB, Omnus DJ, Bader JM, Chung GH, Kono N, Stefan CJ. Tricalbin proteins regulate plasma membrane phospholipid homeostasis. Life Sci Alliance 2022; 5:5/8/e202201430. [PMID: 35440494 PMCID: PMC9018018 DOI: 10.26508/lsa.202201430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.
Collapse
Affiliation(s)
- Ffion B Thomas
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Deike J Omnus
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jakob M Bader
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gary Hc Chung
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Christopher J Stefan
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
21
|
Henry D, Joselevitch C, Matthews GG, Wollmuth LP. Expression and distribution of synaptotagmin family members in the zebrafish retina. J Comp Neurol 2022; 530:705-728. [PMID: 34468021 PMCID: PMC8792163 DOI: 10.1002/cne.25238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.
Collapse
Affiliation(s)
- Diane Henry
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Christina Joselevitch
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Gary G. Matthews
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Lonnie P. Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| |
Collapse
|
22
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
23
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
24
|
Yang H, Yue B, Yang Y, Tang J, Yang S, Qi A, Qu K, Lan X, Lei C, Wei Z, Huang B, Chen H. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. BIOLOGY 2022; 11:biology11020223. [PMID: 35205089 PMCID: PMC8869484 DOI: 10.3390/biology11020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary It is known that many different breeds of cattle are widely distributed in China. However, due to a lengthy selection of draught direction, there are obvious shortcomings in Chinese cattle, such as less meat production, slow weight gain, poor meat quality, and a lack of specialized beef cattle breeds. Animal breeding heavily benefits from molecular technologies, among which molecular genetic markers were widely used to improve the economic traits of beef cattle. Because the copy number variation (CNV) involves a longer DNA sequence or even the entire functional gene, it may have a greater impact on the phenotype. Recent studies have indicated that CNVs are widespread in the Chinese cattle genome. By investigating the effects of CNVs on gene expression and cattle traits, we aim to find those genomic variations which could significantly affect cattle traits, and which could provide a basis for genetic selection and molecular breeding of local Chinese cattle. Abstract Currently, studies of the SYT11 gene mainly focus on neurological diseases such as schizophrenia and Parkinson’s disease. However, some studies have shown that the C2B domain of SYT11 can interact with RISC components and affect the gene regulation of miRNA, which is important for cell differentiation, proliferation, and apoptosis, and therefore has an impact on muscle growth and development in animals. The whole-genome resequencing data detected a CNV in the SYT11 gene, and this may affect cattle growth traits. In this study, CNV distribution of 672 individuals from four cattle breeds, Yunling, Pinan, Xianan, and Qinchuan, were detected by qPCR. The relationship between CNV, gene expression and growth traits was further investigated. The results showed that the proportion of multiple copy types was the largest in all cattle breeds, but there were some differences among different breeds. The normal type had higher gene expression than the abnormal copy type. The CNVs of the SYT11 gene were significantly correlated with body length, cannon circumference, chest depth, rump length, and forehead size of Yunling cattle, and was significantly correlated with the bodyweight of Xianan cattle, respectively. These data improve our understanding of the effects of CNV on cattle growth traits. Our results suggest that the CNV of SYT11 gene is a protentional molecular marker, which may be used to improve growth traits in Chinese cattle.
Collapse
Affiliation(s)
- Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Zehui Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| |
Collapse
|
25
|
Szule JA. Hypothesis Relating the Structure, Biochemistry and Function of Active Zone Material Macromolecules at a Neuromuscular Junction. Front Synaptic Neurosci 2022; 13:798225. [PMID: 35069169 PMCID: PMC8766674 DOI: 10.3389/fnsyn.2021.798225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
This report integrates knowledge of in situ macromolecular structures and synaptic protein biochemistry to propose a unified hypothesis for the regulation of certain vesicle trafficking events (i.e., docking, priming, Ca2+-triggering, and membrane fusion) that lead to neurotransmitter secretion from specialized “active zones” of presynaptic axon terminals. Advancements in electron tomography, to image tissue sections in 3D at nanometer scale resolution, have led to structural characterizations of a network of different classes of macromolecules at the active zone, called “Active Zone Material’. At frog neuromuscular junctions, the classes of Active Zone Material macromolecules “top-masts”, “booms”, “spars”, “ribs” and “pins” direct synaptic vesicle docking while “pins”, “ribs” and “pegs” regulate priming to influence Ca2+-triggering and membrane fusion. Other classes, “beams”, “steps”, “masts”, and “synaptic vesicle luminal filaments’ likely help organize and maintain the structural integrity of active zones. Extensive studies on the biochemistry that regulates secretion have led to comprehensive characterizations of the many conserved proteins universally involved in these trafficking events. Here, a hypothesis including a partial proteomic atlas of Active Zone Material is presented which considers the common roles, binding partners, physical features/structure, and relative positioning in the axon terminal of both the proteins and classes of macromolecules involved in the vesicle trafficking events. The hypothesis designates voltage-gated Ca2+ channels and Ca2+-gated K+ channels to ribs and pegs that are connected to macromolecules that span the presynaptic membrane at the active zone. SNARE proteins (Syntaxin, SNAP25, and Synaptobrevin), SNARE-interacting proteins Synaptotagmin, Munc13, Munc18, Complexin, and NSF are designated to ribs and/or pins. Rab3A and Rabphillin-3A are designated to top-masts and/or booms and/or spars. RIM, Bassoon, and Piccolo are designated to beams, steps, masts, ribs, spars, booms, and top-masts. Spectrin is designated to beams. Lastly, the luminal portions of SV2 are thought to form the bulk of the observed synaptic vesicle luminal filaments. The goal here is to help direct future studies that aim to bridge Active Zone Material structure, biochemistry, and function to ultimately determine how it regulates the trafficking events in vivo that lead to neurotransmitter secretion.
Collapse
|
26
|
Ran L, Yan T, Zhang Y, Niu Z, Kan Z, Song Z. The recycling regulation of sodium-hydrogen exchanger isoform 3(NHE3) in epithelial cells. Cell Cycle 2021; 20:2565-2582. [PMID: 34822321 DOI: 10.1080/15384101.2021.2005274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
As the main exchanger of electroneutral NaCl absorption, sodium-hydrogen exchanger isoform 3 (NHE3) circulates in the epithelial brush border (BB) and intracellular compartments in a multi-protein complex. The size of the NHE3 complex changes during rapid regulation events. Recycling regulation of NHE3 in epithelial cells can be roughly divided into three stages. First, when stimulated by Ca2+, cGMP, and cAMP-dependent signaling pathways, NHE3 is converted from an immobile complex found at the apical microvilli (MV) into an easily internalized and mobile form that relocates to a compartment near the base of the MV. Second, NHE3 is internalized by clathrin and albumin-dependent pathways into cytoplasmic endosomal compartments, where the complex is reprocessed and reassembled. Finally, NHE3 is translocated from the recycling endosomes (REs) to the apex of epithelial cells, a process that can be stimulated by an increase in sodium-glucose cotransporter 1 (SGLT1) activity, epidermal growth factor receptor (EGFR) signaling, Ca2+ signaling, and binding to βPix and SH3 and multiple ankyrin repeat domains 2 (Shank2) proteins. This review describes the molecular steps and protein interactions involved in the recycling movement of NHE3 from the apex of epithelial cells, into vesicles, where it is reprocessed and reassembled, and returned to its original location on the plasma membrane, where it exerts its physiological function.
Collapse
Affiliation(s)
- Ling Ran
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Tao Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yiling Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zheng Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zifei Kan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zhenhui Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| |
Collapse
|
27
|
Tarquis-Medina M, Scheibner K, González-García I, Bastidas-Ponce A, Sterr M, Jaki J, Schirge S, García-Cáceres C, Lickert H, Bakhti M. Synaptotagmin-13 Is a Neuroendocrine Marker in Brain, Intestine and Pancreas. Int J Mol Sci 2021; 22:ijms222212526. [PMID: 34830411 PMCID: PMC8620464 DOI: 10.3390/ijms222212526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Synaptotagmin-13 (Syt13) is an atypical member of the vesicle trafficking synaptotagmin protein family. The expression pattern and the biological function of this Ca2+-independent protein are not well resolved. Here, we have generated a novel Syt13-Venus fusion (Syt13-VF) fluorescence reporter allele to track and isolate tissues and cells expressing Syt13 protein. The reporter allele is regulated by endogenous cis-regulatory elements of Syt13 and the fusion protein follows an identical expression pattern of the endogenous Syt13 protein. The homozygous reporter mice are viable and fertile. We identify the expression of the Syt13-VF reporter in different regions of the brain with high expression in tyrosine hydroxylase (TH)-expressing and oxytocin-producing neuroendocrine cells. Moreover, Syt13-VF is highly restricted to all enteroendocrine cells in the adult intestine that can be traced in live imaging. Finally, Syt13-VF protein is expressed in the pancreatic endocrine lineage, allowing their specific isolation by flow sorting. These findings demonstrate high expression levels of Syt13 in the endocrine lineages in three major organs harboring these secretory cells. Collectively, the Syt13-VF reporter mouse line provides a unique and reliable tool to dissect the spatio-temporal expression pattern of Syt13 and enables isolation of Syt13-expressing cells that will aid in deciphering the molecular functions of this protein in the neuroendocrine system.
Collapse
Affiliation(s)
- Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- School of Medicine, Technische Universität München, 81675 München, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Ismael González-García
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Jessica Jaki
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- School of Medicine, Technische Universität München, 81675 München, Germany
- Correspondence: (H.L.); (M.B.)
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- Correspondence: (H.L.); (M.B.)
| |
Collapse
|
28
|
Vevea JD, Kusick GF, Courtney KC, Chen E, Watanabe S, Chapman ER. Synaptotagmin 7 is targeted to the axonal plasma membrane through γ-secretase processing to promote synaptic vesicle docking in mouse hippocampal neurons. eLife 2021; 10:e67261. [PMID: 34543184 PMCID: PMC8452306 DOI: 10.7554/elife.67261] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Synaptotagmin 7 (SYT7) has emerged as a key regulator of presynaptic function, but its localization and precise role in the synaptic vesicle cycle remain the subject of debate. Here, we used iGluSnFR to optically interrogate glutamate release, at the single-bouton level, in SYT7KO-dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired-pulse facilitation, and synaptic vesicle replenishment and found that SYT7 contributes to each of these processes to different degrees. 'Zap-and-freeze' electron microscopy revealed that a loss of SYT7 diminishes docking of synaptic vesicles after a stimulus and inhibits the recovery of depleted synaptic vesicles after a stimulus train. SYT7 supports these functions from the axonal plasma membrane, where its localization and stability require both γ-secretase-mediated cleavage and palmitoylation. In summary, SYT7 is a peripheral membrane protein that controls multiple modes of synaptic vesicle (SV) exocytosis and plasticity, in part, through enhancing activity-dependent docking of SVs.
Collapse
Affiliation(s)
- Jason D Vevea
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Kevin C Courtney
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Erin Chen
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| |
Collapse
|
29
|
Hu R, Zhu X, Yuan M, Ho KH, Kaverina I, Gu G. Microtubules and Gαo-signaling modulate the preferential secretion of young insulin secretory granules in islet β cells via independent pathways. PLoS One 2021; 16:e0241939. [PMID: 34292976 PMCID: PMC8297875 DOI: 10.1371/journal.pone.0241939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
For sustainable function, each pancreatic islet β cell maintains thousands of insulin secretory granules (SGs) at all times. Glucose stimulation induces the secretion of a small portion of these SGs and simultaneously boosts SG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes. Intriguingly, young insulin SGs are more likely secreted during glucose-stimulated insulin secretion (GSIS) for unknown reasons, while older SGs tend to lose releasability and be degraded. Here, we examine the roles of microtubule (MT) and Gαo-signaling in regulating the preferential secretion of young versus old SGs. We show that both MT-destabilization and Gαo inactivation results in more SGs localization near plasma membrane (PM) despite higher levels of GSIS and reduced SG biosynthesis. Intriguingly, MT-destabilization or Gαo-inactivation results in higher secretion probabilities of older SGs, while combining both having additive effects on boosting GSIS. Lastly, Gαo inactivation does not detectably destabilize the β-cell MT network. These findings suggest that Gαo and MT can modulate the preferential release of younger insulin SGs via largely parallel pathways.
Collapse
Affiliation(s)
- Ruiying Hu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Mingyang Yuan
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Irina Kaverina
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
30
|
Zhang A, Fang J, Hu W, Calhoun VD, Wang YP. A Latent Gaussian Copula Model for Mixed Data Analysis in Brain Imaging Genetics. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1350-1360. [PMID: 31689199 PMCID: PMC7756188 DOI: 10.1109/tcbb.2019.2950904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in imaging genetics make it possible to combine different types of data including medical images like functional magnetic resonance imaging (fMRI) and genetic data like single nucleotide polymorphisms (SNPs) for comprehensive diagnosis of mental disorders. Understanding complex interactions among these heterogeneous data may give rise to a new perspective, while at the same time demand statistical models for their integration. Various graphical models have been proposed for the study of interaction or association networks with continuous, binary, and count data as well as the mixture of them. However, limited efforts have been made for the multinomial case, for instance, SNP data. Our goal is therefore to fill the void by developing a graphical model for the integration of fMRI image and SNP data, which can provide deeper understanding of the unknown neurogenetic mechanism. In this article, we propose a latent Gaussian copula model for mixed data containing multinomial components. We assume that the discrete variable is obtained by discretizing a latent (unobserved) continuous variable and then create a semi-rank based estimator of the graph structure. The simulation results demonstrate that the proposed latent correlation has more steady and accurate performance than several existing methods in detecting graph structure. When applying to a real schizophrenia data consisting of SNP array and fMRI image collected by the Mind Clinical Imaging Consortium (MCIC), the proposed method reveals a set of distinct SNP-brain associations, which are verified to be biologically significant. The proposed model is statistically promising in handling mixed types of data including multinomial components, which can find widespread applications. To promote reproducible research, the R code is available at https://github.com/Aiying0512/LGCM.
Collapse
|
31
|
Bourgeois-Jaarsma Q, Miaja Hernandez P, Groffen AJ. Ca 2+ sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol Cell Neurosci 2021; 112:103613. [PMID: 33753311 DOI: 10.1016/j.mcn.2021.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Collapse
Affiliation(s)
- Quentin Bourgeois-Jaarsma
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Pablo Miaja Hernandez
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Alexander J Groffen
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Shin OH, Kavalali ET. Evolutionary diversity of the dual Ca 2+ sensor system for neurotransmitter release. Cell Calcium 2021; 96:102402. [PMID: 33813181 DOI: 10.1016/j.ceca.2021.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Several proteins containing C2 domains have been identified as Ca2+ sensors for neurotransmitter release. In several cases, multiple C2 domain containing proteins function together to sustain evoked synchronous and asynchronous release as well as Ca2+-dependent forms of spontaneous release. Most recent publication by Li and colleagues have identified a novel Ca2+ sensor at the C. elegans neuromuscular junction [8] that complements the fast Ca2+ sensor synaptotagmin-1 in mediating a slower form of evoked release. Here, we discuss these results as well as earlier work suggesting an evolutionarily conserved diversity of Ca2+ sensors mediating distinct forms of neurotransmitter release.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
33
|
Tawfik B, Martins JS, Houy S, Imig C, Pinheiro PS, Wojcik SM, Brose N, Cooper BH, Sørensen JB. Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca 2+-dependent priming. eLife 2021; 10:64527. [PMID: 33749593 PMCID: PMC8012061 DOI: 10.7554/elife.64527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca2+-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca2+-dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20-40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca2+-dependent priming as a prelude to fast and slow exocytosis triggering.
Collapse
Affiliation(s)
- Bassam Tawfik
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Joana S Martins
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Paulo S Pinheiro
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
34
|
Goode C, Voeun M, Ncube D, Eisen J, Washbourne P, Tallafuss A. Late onset of Synaptotagmin 2a expression at synapses relevant to social behavior. J Comp Neurol 2021; 529:2176-2188. [PMID: 33491202 DOI: 10.1002/cne.25084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
As they form, synapses go through various stages of maturation and refinement. These steps are linked to significant changes in synaptic function, potentially resulting in emergence and maturation of behavioral outputs. Synaptotagmins are calcium-sensing proteins of the synaptic vesicle exocytosis machinery, and changes in Synaptotagmin proteins at synapses have significant effects on vesicle release and synaptic function. Here, we examined the distribution of the synaptic vesicle protein Synaptotagmin 2a (Syt2a) during development of the zebrafish nervous system. Syt2a is widely distributed throughout the midbrain and hindbrain early during larval development but very weakly expressed in the forebrain. Later in development, Syt2a expression levels in the forebrain increase, particularly in regions associated with social behavior, and most intriguingly, around the time social behavior becomes apparent. We provide evidence that Syt2a localizes to synapses onto neurons implicated in social behavior in the ventral forebrain and show that Syt2a is colocalized with tyrosine hydroxylase, a biosynthetic enzyme in the dopamine pathway. Our results suggest a developmentally important role for Syt2a in maturing synapses in the forebrain, coinciding with the emergence of social behavior.
Collapse
Affiliation(s)
- Collette Goode
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Denver Ncube
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | | | | |
Collapse
|
35
|
Hirano AA, Vuong HE, Kornmann HL, Schietroma C, Stella SL, Barnes S, Brecha NC. Vesicular Release of GABA by Mammalian Horizontal Cells Mediates Inhibitory Output to Photoreceptors. Front Cell Neurosci 2020; 14:600777. [PMID: 33335476 PMCID: PMC7735995 DOI: 10.3389/fncel.2020.600777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Helen E. Vuong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen L. Kornmann
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cataldo Schietroma
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Salvatore L. Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
36
|
Zhou M, Melin MD, Xu W, Südhof TC. Dysfunction of parvalbumin neurons in the cerebellar nuclei produces an action tremor. J Clin Invest 2020; 130:5142-5156. [PMID: 32634124 PMCID: PMC7524475 DOI: 10.1172/jci135802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Essential tremor is a common brain disorder affecting millions of people, yet the neuronal mechanisms underlying this prevalent disease remain elusive. Here, we showed that conditional deletion of synaptotagmin-2, the fastest Ca2+ sensor for synaptic neurotransmitter release, from parvalbumin neurons in mice caused an action tremor syndrome resembling the core symptom of essential tremor patients. Combining brain region-specific and cell type-specific genetic manipulation methods, we found that deletion of synaptotagmin-2 from excitatory parvalbumin-positive neurons in cerebellar nuclei was sufficient to generate an action tremor. The synaptotagmin-2 deletion converted synchronous into asynchronous neurotransmitter release in projections from cerebellar nuclei neurons onto gigantocellular reticular nucleus neurons, which might produce an action tremor by causing signal oscillations during movement. The tremor was rescued by completely blocking synaptic transmission with tetanus toxin in cerebellar nuclei, which also reversed the tremor phenotype in the traditional harmaline-induced essential tremor model. Using a promising animal model for action tremor, our results thus characterized a synaptic circuit mechanism that may underlie the prevalent essential tremor disorder.
Collapse
Affiliation(s)
- Mu Zhou
- Department of Molecular and Cellular Physiology and
| | | | - Wei Xu
- Department of Molecular and Cellular Physiology and
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
37
|
Montes-Fernández MA, Pérez-Villegas EM, Garcia-Gonzalo FR, Pedrazza L, Rosa JL, de Toledo GA, Armengol JA. The HERC1 ubiquitin ligase regulates presynaptic membrane dynamics of central synapses. Sci Rep 2020; 10:12057. [PMID: 32694577 PMCID: PMC7374096 DOI: 10.1038/s41598-020-68970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
HERC1 is a ubiquitin ligase protein, which, when mutated, induces several malformations and intellectual disability in humans. The animal model of HERC1 mutation is the mouse tambaleante characterized by: (1) overproduction of the protein; (2) cerebellar Purkinje cells death by autophagy; (3) dysregulation of autophagy in spinal cord motor neurons, and CA3 and neocortical pyramidal neurons; (4) impairment of associative learning, linked to altered spinogenesis and absence of LTP in the lateral amygdala; and, (5) motor impairment due to delayed action potential transmission, decrease synaptic transmission efficiency and altered myelination in the peripheral nervous system. To investigate the putative role of HERC1 in the presynaptic dynamics we have performed a series of experiments in cultured tambaleante hippocampal neurons by using transmission electron microscopy, FM1-43 destaining and immunocytochemistry. Our results show: (1) a decrease in the number of synaptic vesicles; (2) reduced active zones; (3) less clathrin immunoreactivity and less presynaptic endings over the hippocampal main dendritic trees; which contrast with (4) a greater number of endosomes and autophagosomes in the presynaptic endings of the tambaleante neurons relative to control ones. Altogether these results show an important role of HERC1 in the regulation of presynaptic membrane dynamics.
Collapse
Affiliation(s)
| | - Eva Mª Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | | | - Leonardo Pedrazza
- Department of Physiological Sciences, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, IDIBELL, University of Barcelona, Barcelona, Spain
| | | | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| |
Collapse
|
38
|
Spaiardi P, Marcotti W, Masetto S, Johnson SL. Exocytosis in mouse vestibular Type II hair cells shows a high-order Ca 2+ dependence that is independent of synaptotagmin-4. Physiol Rep 2020; 8:e14509. [PMID: 32691536 PMCID: PMC7371649 DOI: 10.14814/phy2.14509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
Mature hair cells transduce information over a wide range of stimulus intensities and frequencies for prolonged periods of time. The efficiency of such a demanding task is reflected in the characteristics of exocytosis at their specialized presynaptic ribbons. Ribbons are electron-dense structures able to tether a large number of releasable vesicles allowing them to maintain high rates of vesicle release. Calcium entry through rapidly activating, non-inactivating CaV 1.3 (L-type) Ca2+ channels in response to cell depolarization causes a local increase in Ca2+ at the ribbon synapses, which is detected by the exocytotic Ca2+ sensors. The Ca2+ dependence of vesicle exocytosis at mammalian vestibular hair cell (VHC) ribbon synapses is believed to be linear, similar to that observed in mature cochlear inner hair cells (IHCs). The linear relation has been shown to correlate with the presence of the Ca2+ sensor synaptotagmin-4 (Syt-4). Therefore, we studied the exocytotic Ca2+ dependence, and the release kinetics of different vesicle pool populations, in Type II VHCs of control and Syt-4 knockout mice using patch-clamp capacitance measurements, under physiological recording conditions. We found that exocytosis in mature control and knockout Type II VHCs displayed a high-order dependence on Ca2+ entry, rather than the linear relation previously observed. Consistent with this finding, the Ca2+ dependence and release kinetics of the ready releasable pool (RRP) of vesicles were not affected by an absence of Syt-4. However, we did find that Syt-4 could play a role in regulating the release of the secondary releasable pool (SRP) in these cells. Our findings show that the coupling between Ca2+ influx and neurotransmitter release at mature Type II VHC ribbon synapses is faithfully described by a nonlinear relation that is likely to be more appropriate for the accurate encoding of low-frequency vestibular information, consistent with that observed at low-frequency mammalian auditory receptors.
Collapse
Affiliation(s)
- Paolo Spaiardi
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Sergio Masetto
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | | |
Collapse
|
39
|
Nizzardo M, Taiana M, Rizzo F, Aguila Benitez J, Nijssen J, Allodi I, Melzi V, Bresolin N, Comi GP, Hedlund E, Corti S. Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathol 2020; 139:837-853. [PMID: 32065260 PMCID: PMC7181443 DOI: 10.1007/s00401-020-02133-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
In amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), spinal and lower brainstem motor neurons degenerate, but some motor neuron subtypes are spared, including oculomotor neurons (OMNs). The mechanisms responsible for this selective degeneration are largely unknown, but the molecular signatures of resistant and vulnerable motor neurons are distinct and offer clues to neuronal resilience and susceptibility. Here, we demonstrate that healthy OMNs preferentially express Synaptotagmin 13 (SYT13) compared to spinal motor neurons. In end-stage ALS patients, SYT13 is enriched in both OMNs and the remaining relatively resilient spinal motor neurons compared to controls. Overexpression of SYT13 in ALS and SMA patient motor neurons in vitro improves their survival and increases axon lengths. Gene therapy with Syt13 prolongs the lifespan of ALS mice by 14% and SMA mice by 50% by preserving motor neurons and delaying muscle denervation. SYT13 decreases endoplasmic reticulum stress and apoptosis of motor neurons, both in vitro and in vivo. Thus, SYT13 is a resilience factor that can protect motor neurons and a candidate therapeutic target across motor neuron diseases.
Collapse
|
40
|
Bowers MR, Reist NE. Synaptotagmin: Mechanisms of an electrostatic switch. Neurosci Lett 2020; 722:134834. [DOI: 10.1016/j.neulet.2020.134834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 02/09/2023]
|
41
|
Synaptotagmin 1 Is Involved in Neuropathic Pain and Electroacupuncture-Mediated Analgesic Effect. Int J Mol Sci 2020; 21:ijms21030968. [PMID: 32024024 PMCID: PMC7037106 DOI: 10.3390/ijms21030968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have verified that electroacupuncture (EA) can relieve neuropathic pain through a variety of mechanisms. Synaptotagmin 1 (Syt-1), a synaptic vesicle protein for regulating exocytosis of neurotransmitters, was found to be affected by EA stimulation. However, the roles of Syt-1 in neuropathic pain and EA-induced analgesic effect remain unclear. Here, the effect of Syt-1 on nociception was assessed through an antibody blockade, siRNA silencing, and lentivirus-mediated overexpression of spinal Syt-1 in rats with spared nerve injury (SNI). EA was used for stimulating bilateral "Sanjinjiao" and "Zusanli" acupoints of the SNI rats to evaluate its effect on nociceptive thresholds and spinal Syt-1 expression. The mechanically and thermally nociceptive behaviors were assessed with paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) at different temperatures, respectively, at day 0, 7, 8, 14, and 20. Syt-1 mRNA and protein levels were determined with qRT-PCR and Western blot, respectively, and its distribution was observed with the immunohistochemistry method. The results demonstrated Syt-1 antibody blockade and siRNA silencing increased ipsilateral PWTs and PWLs of SNI rats, while Syt-1 overexpression decreased ipsilateral PWTs and PWLs of rats. EA significantly attenuated nociceptive behaviors and down-regulated spinal Syt-1 protein levels (especially in laminae I-II), which were reversed by Syt-1 overexpression. Our findings firstly indicate that Syt-1 is involved in the development of neuropathic pain and that EA attenuates neuropathic pain, probably through suppressing Syt-1 protein expression in the spinal cord.
Collapse
|
42
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
43
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
44
|
Zhang L, Fan B, Zheng Y, Lou Y, Cui Y, Wang K, Zhang T, Tan X. Identification SYT13 as a novel biomarker in lung adenocarcinoma. J Cell Biochem 2019; 121:963-973. [PMID: 31625195 DOI: 10.1002/jcb.29224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Liyan Zhang
- Department of Respiratory Medicine, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Bijun Fan
- Department of Respiratory Medicine, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yu Zheng
- Department of Respiratory Medicine, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yueyan Lou
- Department of Respiratory Medicine, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yongqi Cui
- Department of Respiratory Medicine, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ke Wang
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research (SIPPR) Fudan University Reproduction and Development Institution Shanghai China
| | - Tiancheng Zhang
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research (SIPPR) Fudan University Reproduction and Development Institution Shanghai China
| | - Xiaoming Tan
- Department of Respiratory Medicine, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| |
Collapse
|
45
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
46
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
47
|
Kula B, Chen T, Kukley M. Glutamatergic signaling between neurons and oligodendrocyte lineage cells: Is it synaptic or non‐synaptic? Glia 2019; 67:2071-2091. [DOI: 10.1002/glia.23617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Bartosz Kula
- Group of Neuron Glia InteractionUniversity of Tübingen Tübingen Germany
- Graduate Training Centre for NeuroscienceUniversity of Tübingen Tübingen Germany
| | - Ting‐Jiun Chen
- Center for Neuroscience ResearchChildren's Research Institute, Children's National Medical Center Washington District of Columbia
| | - Maria Kukley
- Group of Neuron Glia InteractionUniversity of Tübingen Tübingen Germany
- Research Institute for OphthalmologyUniversity Hospital Tübingen Tübingen Germany
| |
Collapse
|
48
|
Goel M, Li T, Badea TC. Differential expression and subcellular localization of Copines in mouse retina. J Comp Neurol 2019; 527:2245-2262. [PMID: 30866042 DOI: 10.1002/cne.24684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 01/06/2023]
Abstract
Combinatorial expression of Brn3 transcription factors is required for the development of cell-specific morphologies in retinal ganglion cells (RGCs). The molecular mechanisms by which Brn3s regulate RGC type specific features are largely unexplored. We previously identified several members of the Copine (Cpne) family of molecules as potential targets of Brn3 transcription factors in the retina. We now use in situ hybridization and immunohistochemistry to characterize Copine expression in the postnatal and adult mouse retina. We find that Cpne5, 6, and 9 are expressed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in both amacrine cells and RGCs. Cpne4 expression is restricted to one amacrine cell population of the INL, but is specifically expressed in RGCs in the GCL. Cpne4 expression in RGCs is regulated by Brn3b both cell autonomously (in Brn3b+ RGCs) and cell nonautonomously (in Brn3b- RGCs). Copines exhibit a variety of subcellular distributions when overexpressed in tissue culture cells (HEK293), and can induce the formation of elongated processes reminiscent of neurites in these non-neuronal cells. Our results suggest that Copines might be involved in a combinatorial fashion in Brn3b-dependent specification of RGC types. Given their expression profile and previously proven role as Ca2+ sensors, they may participate in the morphogenetic processes that shape RGC dendrite and axon formation at early postnatal ages.
Collapse
Affiliation(s)
- Manvi Goel
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Tiansen Li
- Retinal Cell Biology & Degeneration Section, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Tudor C Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
49
|
Shimojo M, Madara J, Pankow S, Liu X, Yates J, Südhof TC, Maximov A. Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes Dev 2019; 33:365-376. [PMID: 30808661 PMCID: PMC6411015 DOI: 10.1101/gad.320077.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022]
Abstract
Synaptotagmin-11 (Syt11) is a Synaptotagmin isoform that lacks an apparent ability to bind calcium, phospholipids, or SNARE proteins. While human genetic studies have linked mutations in the Syt11 gene to schizophrenia and Parkinson's disease, the localization or physiological role of Syt11 remain unclear. We found that in neurons, Syt11 resides on abundant vesicles that differ from synaptic vesicles and resemble trafficking endosomes. These vesicles recycle via the plasma membrane in an activity-dependent manner, but their exocytosis is slow and desynchronized. Constitutive knockout mice lacking Syt11 died shortly after birth, suggesting Syt11-mediated membrane transport is required for survival. In contrast, selective ablation of Syt11 in excitatory forebrain neurons using a conditional knockout did not affect life span but impaired synaptic plasticity and memory. Syt11-deficient neurons displayed normal secretion of fast neurotransmitters and peptides but exhibited a reduction of long-term synaptic potentiation. Hence, Syt11 is an essential component of a neuronal vesicular trafficking pathway that differs from the well-characterized synaptic vesicle trafficking pathway but is also essential for life.
Collapse
Affiliation(s)
- Masafumi Shimojo
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
| | - Joseph Madara
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
| | - Sandra Pankow
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92037, USA
| | - Xinran Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
| | - John Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92037, USA
| | - Thomas C Südhof
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94035, USA
| | - Anton Maximov
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
| |
Collapse
|
50
|
Recovery from tachyphylaxis of TRPV1 coincides with recycling to the surface membrane. Proc Natl Acad Sci U S A 2019; 116:5170-5175. [PMID: 30804201 DOI: 10.1073/pnas.1819635116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential vanilloid-1 (TRPV1) ion channel is essential for sensation of thermal and chemical pain. TRPV1 activation is accompanied by Ca2+-dependent desensitization; acute desensitization reflects rapid reduction in channel activity during stimulation, whereas tachyphylaxis denotes the diminution in TRPV1 responses to repetitive stimulation. Acute desensitization has been attributed to conformational changes of the TRPV1 channel; however, the mechanisms underlying the establishment of tachyphylaxis remain to be defined. Here, we report that the degree of whole-cell TRPV1 tachyphylaxis is regulated by the strength of inducing stimulation. Using light-sheet microscopy and pH-sensitive sensor pHluorin to follow TRPV1 endocytosis and exocytosis trafficking, we provide real-time information that tachyphylaxis of different degrees concurs with TRPV1 recycling to the plasma membrane in a proportional manner. This process controls TRPV1 surface expression level thereby the whole-cell nociceptive response. We further show that activity-gated TRPV1 trafficking associates with intracellular Ca2+ signals of distinct kinetics, and recruits recycling routes mediated by synaptotagmin 1 and 7, respectively. These results suggest that activity-dependent TRPV1 recycling contributes to the establishment of tachyphylaxis.
Collapse
|