1
|
Johnson CP, Shrestha S, Hart A, Jarvis KF, Genrich LE, Latario SG, Leclerc N, Systuk T, Scandura M, Geohegan RP, Khalil A, Kelley JB. Septin organization is regulated by the Gpa1 Ubiquitination Domain and Endocytic Machinery during the yeast pheromone response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.16.545321. [PMID: 37398119 PMCID: PMC10312744 DOI: 10.1101/2023.06.16.545321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The septin cytoskeleton plays a key role in the morphogenesis of the yeast mating projection, forming structures at the base of the projection. The yeast mating response uses the G-protein coupled receptor (GPCR), Ste2, to detect mating pheromone and initiate mating projection morphogenesis. Desensitization of the Gα, Gpa1, by the Regulator of G-protein Signaling (RGS), Sst2, is required for proper septin organization and morphogenesis. We hypothesized that Gpa1 would utilize known septin regulators to control septin organization. We found that single deletions of the septin chaperone Gic1, the Cdc42 GAP Bem3, and the endocytic adaptor proteins Ent1 and Ent2 rescued the polar cap accumulation of septins in the hyperactive Gα. We hypothesized that hyperactive Gα might increase the rate of endocytosis of a pheromone-responsive cargo, thereby altering where septins are localized. Mathematical modeling predicted that changes in endocytosis could explain the septin organizations we find in WT and mutant cells. Our results show that Gpa1-induced disorganization of septins requires clathrin-mediated endocytosis. Both the GPCR and the Gα are known to be internalized by clathrin-mediated endocytosis during the pheromone response. Deletion of the GPCR C-terminus to block internalization partially rescued septin organization. However, deleting the Gpa1 ubiquitination domain required for its endocytosis completely abrogated septin accumulation at the polarity site. Our data support a model where the location of endocytosis serves as a spatial mark for septin structure assembly and that desensitization of the Gα delays its endocytosis sufficiently that septins are placed peripheral to the site of Cdc42 polarity.
Collapse
Affiliation(s)
- Cory P. Johnson
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Sudati Shrestha
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Andrew Hart
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Katherine F. Jarvis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
- CompuMAINE Laboratory University of Maine, Orono, ME
| | - Loren E. Genrich
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Sarah G. Latario
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Nicholas Leclerc
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Tetiana Systuk
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Matthew Scandura
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
| | - Remi P. Geohegan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - André Khalil
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME
- CompuMAINE Laboratory University of Maine, Orono, ME
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| |
Collapse
|
2
|
Hasan S, Guo Y, Sandroni P, Dubey D, McKeon A. Anhidrosis in septin-7 autoimmunity. Clin Auton Res 2025:10.1007/s10286-025-01108-w. [PMID: 39815061 DOI: 10.1007/s10286-025-01108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Affiliation(s)
- Shemonti Hasan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Paola Sandroni
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Tripoli BA, Smyth JT. Septins regulate heart contractility through modulation of cardiomyocyte store-operated calcium entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621876. [PMID: 39574715 PMCID: PMC11580947 DOI: 10.1101/2024.11.04.621876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Highly regulated cardiomyocyte Ca 2+ fluxes drive heart contractions. Recent findings from multiple organisms demonstrate that the specific Ca 2+ transport mechanism known as store-operated Ca 2+ entry (SOCE) is essential in cardiomyocytes for proper heart function, and SOCE dysregulation results in cardiomyopathy. Mechanisms that regulate SOCE in cardiomyocytes are poorly understood. Here we tested the role of cytoskeletal septin proteins in cardiomyocyte SOCE regulation. Septins are essential SOCE modulators in other cell types, but septin functions in cardiomyocytes are nearly completely unexplored. We show using targeted genetics and intravital imaging of heart contractility in Drosophila that cardiomyocyte-specific depletion of septins 1, 2, and 4 results in heart dilation that phenocopies the effects of SOCE suppression. Heart dilation caused by septin 2 depletion was suppressed by SOCE upregulation, supporting the hypothesis that septin 2 is required in cardiomyocytes for sufficient SOCE function. A major function of SOCE is to support SERCA-dependent sarco/endoplasmic reticulum (S/ER) Ca 2+ stores, and augmenting S/ER store filling by SERCA overexpression also suppressed the septin 2 phenotype. We also ruled out several potential SOCE-independent septin functions, as septin 2 phenotypes were not due to septin function during development and septin 2 was not required for z-disk organization as defined by α-actinin labeling. These results demonstrate, for the first time, an essential role of septins in cardiomyocyte physiology and heart function that is due, at least in part, to septin regulation of SOCE function.
Collapse
|
4
|
Henson JH, Reyes G, Lo NT, Herrera K, McKim QW, Herzon HY, Galvez-Ceron M, Hershey AE, Kim RS, Shuster CB. Cytokinetic contractile ring structural progression in an early embryo: positioning of scaffolding proteins, recruitment of α-actinin, and effects of myosin II inhibition. Front Cell Dev Biol 2024; 12:1483345. [PMID: 39398481 PMCID: PMC11467475 DOI: 10.3389/fcell.2024.1483345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Our knowledge of the assembly and dynamics of the cytokinetic contractile ring (CR) in animal cells remains incomplete. We have previously used super-resolution light microscopy and platinum replica electron microscopy to elucidate the ultrastructural organization of the CR in first division sea urchin embryos. To date, our studies indicate that the CR initiates as an equatorial band of clusters containing myosin II, actin, septin and anillin, which then congress over time into patches which coalesce into a linear array characteristic of mature CRs. In the present study, we applied super-resolution interferometric photoactivated localization microscopy to confirm the existence of septin filament-like structures in the developing CR, demonstrate the close associations between septin2, anillin, and myosin II in the CR, as well as to show that septin2 appears consistently submembranous, whereas anillin is more widely distributed in the early CR. We also provide evidence that the major actin cross-linking protein α-actinin only associates with the linearized, late-stage CR and not with the early CR clusters, providing further support to the idea that α-actinin associates with actomyosin structures under tension and can serve as a counterbalance. In addition, we show that inhibition of actomyosin contraction does not stop the assembly of the early CR clusters but does arrest the progression of these structures to the aligned arrays required for functional cytokinesis. Taken together our results reinforce and extend our model for a cluster to patch to linear structural progression of the CR in sea urchin embryos and highlight the evolutionary relationships with cytokinesis in fission yeast.
Collapse
Affiliation(s)
- John H. Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Gabriela Reyes
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Nina T. Lo
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Karina Herrera
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Quenelle W. McKim
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Hannah Y. Herzon
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Maritriny Galvez-Ceron
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Alexandra E. Hershey
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Rachael S. Kim
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Charles B. Shuster
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
5
|
Ugorets V, Mendez PL, Zagrebin D, Russo G, Kerkhoff Y, Kotsaris G, Jatzlau J, Stricker S, Knaus P. Dynamic remodeling of septin structures fine-tunes myogenic differentiation. iScience 2024; 27:110630. [PMID: 39246450 PMCID: PMC11380178 DOI: 10.1016/j.isci.2024.110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Controlled myogenic differentiation is integral to the development, maintenance and repair of skeletal muscle, necessitating precise regulation of myogenic progenitors and resident stem cells. The transformation of proliferative muscle progenitors into multinuclear syncytia involves intricate cellular processes driven by cytoskeletal reorganization. While actin and microtubles have been extensively studied, we illuminate the role of septins, an essential yet still often overlooked cytoskeletal component, in myoblast architecture. Notably, Septin9 emerges as a critical regulator of myoblast differentiation during the initial commitment phase. Knock-down of Septin9 in C2C12 cells and primary mouse myoblasts accelerates the transition from proliferation to committed progenitor transcriptional programs. Furthermore, we unveil significant reorganization and downregulation of Septin9 during myogenic differentiation. Collectively, we propose that filmamentous septin structures and their orchestrated reorganization in myoblasts are part of a temporal regulatory mechanism governing the differentiation of myogenic progenitors. This study sheds light on the dynamic interplay between cytoskeletal components underlying controlled myogenic differentiation.
Collapse
Affiliation(s)
- Vladimir Ugorets
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
| | - Paul-Lennard Mendez
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
- Max Planck Institute for Molecular Genetics, IMPRS-Biology and Computation, 14195 Berlin, Germany
| | - Dmitrii Zagrebin
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
| | - Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Bionanointerfaces Group, 14195 Berlin, Germany
| | - Georgios Kotsaris
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, 14195 Berlin, Germany
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
| | - Sigmar Stricker
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, 14195 Berlin, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Signal Transduction Group, 14195 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
6
|
Princen K, Van Dooren T, van Gorsel M, Louros N, Yang X, Dumbacher M, Bastiaens I, Coupet K, Dupont S, Cuveliers E, Lauwers A, Laghmouchi M, Vanwelden T, Carmans S, Van Damme N, Duhamel H, Vansteenkiste S, Prerad J, Pipeleers K, Rodiers O, De Ridder L, Claes S, Busschots Y, Pringels L, Verhelst V, Debroux E, Brouwer M, Lievens S, Tavernier J, Farinelli M, Hughes-Asceri S, Voets M, Winderickx J, Wera S, de Wit J, Schymkowitz J, Rousseau F, Zetterberg H, Cummings JL, Annaert W, Cornelissen T, De Winter H, De Witte K, Fivaz M, Griffioen G. Pharmacological modulation of septins restores calcium homeostasis and is neuroprotective in models of Alzheimer's disease. Science 2024; 384:eadd6260. [PMID: 38815015 PMCID: PMC11827694 DOI: 10.1126/science.add6260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-β and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-β and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.
Collapse
Affiliation(s)
| | | | | | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Xiaojuan Yang
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | | | | | - Shana Dupont
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Eva Cuveliers
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Carmans
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Hein Duhamel
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Jovan Prerad
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Claes
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | | | - Marinka Brouwer
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sam Lievens
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | | | - Marieke Voets
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Joris Winderickx
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- Functional Biology, Department of Biology, KU Leuven, 3001 Leuven-Heverlee, Belgium
| | - Stefaan Wera
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- ViroVet NV, 3001 Leuven-Heverlee, Belgium
| | - Joris de Wit
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Koen De Witte
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Marc Fivaz
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | |
Collapse
|
7
|
Stjepić V, Nakamura M, Hui J, Parkhurst SM. Two Septin complexes mediate actin dynamics during cell wound repair. Cell Rep 2024; 43:114215. [PMID: 38728140 PMCID: PMC11203717 DOI: 10.1016/j.celrep.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1/Sep2/Pnut and Sep4/Sep5/Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side by side to discretely regulate actomyosin ring dynamics during cell wound repair.
Collapse
Affiliation(s)
- Viktor Stjepić
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
8
|
Eisermann I, Talbot NJ. Septin-dependent invasive growth by the rice blast fungus Magnaporthe oryzae. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2024; 131:1145-1151. [PMID: 38947556 PMCID: PMC11213810 DOI: 10.1007/s41348-024-00883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 07/02/2024]
Abstract
Septin GTPases are morphogenetic proteins that are widely conserved in eukaryotic organisms fulfilling diverse roles in cell division, differentiation and development. In the filamentous fungal pathogen Magnaporthe oryzae, the causal agent of the devastating blast diseases of rice and wheat, septins have been shown to be essential for plant infection. The blast fungus elaborates a specialised infection structure called an appressorium with which it mechanically ruptures the plant cuticle. Septin aggregation and generation of a hetero-oligomeric ring structure at the base of the infection cell is indispensable for plant infection. Furthermore, once the fungus enters host tissue it develops another infection structure, the transpressorium, enabling it to move between living host plant cells, which also requires septins for its function. Specific inhibition of septin aggregation-either genetically or with chemical inhibitors-prevents plant infection. Significantly, by screening for inhibitors of septin aggregation, broad spectrum anti-fungal compounds have been identified that prevent rice blast and a number of other cereal diseases in field trials. We review the recent advances in our understanding of septin biology and their potential as targets for crop disease control.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR47UH UK
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR47UH UK
| |
Collapse
|
9
|
Zheng S, Zheng B, Fu C. The Roles of Septins in Regulating Fission Yeast Cytokinesis. J Fungi (Basel) 2024; 10:115. [PMID: 38392788 PMCID: PMC10890454 DOI: 10.3390/jof10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Cytokinesis is required to separate two daughter cells at the end of mitosis, and septins play crucial roles in many aspects of cytokinesis. While septins have been intensively studied in many model organisms, including the budding yeast Saccharomyces cerevisiae, septins have been relatively less characterized in the fission yeast Schizosaccharomyces pombe, which has proven to be an excellent model organism for studying fundamental cell biology. In this review, we summarize the findings of septins made in fission yeasts mainly from four aspects: the domain structure of septins, the localization of septins during the cell cycle, the roles of septins in regulating cytokinesis, and the regulatory proteins of septins.
Collapse
Affiliation(s)
- Shengnan Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Biyu Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
10
|
Zhovmer AS, Manning A, Smith C, Nguyen A, Prince O, Sáez PJ, Ma X, Tsygankov D, Cartagena-Rivera AX, Singh NA, Singh RK, Tabdanov ED. Septins provide microenvironment sensing and cortical actomyosin partitioning in motile amoeboid T lymphocytes. SCIENCE ADVANCES 2024; 10:eadi1788. [PMID: 38170778 DOI: 10.1126/sciadv.adi1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The all-terrain motility of lymphocytes in tissues and tissue-like gels is best described as amoeboid motility. For amoeboid motility, lymphocytes do not require specific biochemical or structural modifications to the surrounding extracellular matrix. Instead, they rely on changing shape and steric interactions with the microenvironment. However, the exact mechanism of amoeboid motility remains elusive. Here, we report that septins participate in amoeboid motility of T cells, enabling the formation of F-actin and α-actinin-rich cortical rings at the sites of cell cortex-indenting collisions with the extracellular matrix. Cortical rings compartmentalize cells into chains of spherical segments that are spatially conformed to the available lumens, forming transient "hourglass"-shaped steric locks onto the surrounding collagen fibers. The steric lock facilitates pressure-driven peristaltic propulsion of cytosolic content by individually contracting cell segments. Our results suggest that septins provide microenvironment-guided partitioning of actomyosin contractility and steric pivots required for amoeboid motility of T cells in tissue-like microenvironments.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Olivia Prince
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, and Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xuefei Ma
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Niloy A Singh
- Department of Hematology Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rakesh K Singh
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey-Hummelstown, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
11
|
Stjepić V, Nakamura M, Hui J, Parkhurst SM. Two Septin Complexes Mediate Actin Dynamics During Cell Wound Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567084. [PMID: 38014090 PMCID: PMC10680708 DOI: 10.1101/2023.11.14.567084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1-Sep2-Pnut and Sep4-Sep5-Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side-by-side to discretely regulate actomyosin ring dynamics during cell wound repair.
Collapse
Affiliation(s)
- Viktor Stjepić
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
12
|
Jespersen JH, Harazin A, Bohn AB, Christensen A, Lorentzen E, Lorentzen A. Analysis of cortical cell polarity by imaging flow cytometry. J Cell Biochem 2023; 124:1685-1694. [PMID: 37721096 DOI: 10.1002/jcb.30476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Metastasis is the main cause of cancer-related death and therapies specifically targeting metastasis are highly needed. Cortical cell polarity (CCP) is a prometastatic property of circulating tumor cells affecting their ability to exit blood vessels and form new metastases that constitute a promising point of attack to prevent metastasis. However, conventional fluorescence microscopy on single cells and manual quantification of CCP are time-consuming and unsuitable for screening regulators. In this study, we developed an imaging flow cytometry-based method for high-throughput screening of factors affecting CCP in melanoma cells. The artificial intelligence-supported analysis method we developed is highly reproducible, accurate, and orders of magnitude faster than manual quantification. Additionally, this method is flexible and can be adapted to include additional cellular parameters. In a small-scale pilot experiment using polarity-, cytoskeleton-, or membrane-affecting drugs, we demonstrate that our workflow provides a straightforward and efficient approach for screening factors affecting CCP in cells in suspension and provide insights into the specific function of these drugs in this cellular system. The method and workflow presented here will facilitate large-scale studies to reveal novel cell-intrinsic as well as systemic factors controlling CCP during metastasis.
Collapse
Affiliation(s)
- Jesper H Jespersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andras Harazin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anja B Bohn
- Department of Biomedicine, FACS Core Facility, Aarhus University, Aarhus, Denmark
| | - Anni Christensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Health Bioimaging Core Facility, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Eisermann I, Garduño‐Rosales M, Talbot NJ. The emerging role of septins in fungal pathogenesis. Cytoskeleton (Hoboken) 2023; 80:242-253. [PMID: 37265147 PMCID: PMC10952683 DOI: 10.1002/cm.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Fungal pathogens undergo specific morphogenetic transitions in order to breach the outer surfaces of plants and invade the underlying host tissue. The ability to change cell shape and switch between non-polarised and polarised growth habits is therefore critical to the lifestyle of plant pathogens. Infection-related development involves remodelling of the cytoskeleton, plasma membrane and cell wall at specific points during fungal pathogenesis. Septin GTPases are components of the cytoskeleton that play pivotal roles in actin remodelling, micron-scale plasma membrane curvature sensing and cell polarity. Septin assemblages, such as rings, collars and gauzes, are known to have important roles in cell shape changes and are implicated in formation of specialised infection structures to enter plant cells. Here, we review and compare the reported functions of septins of plant pathogenic fungi, with a special focus on invasive growth. Finally, we discuss septins as potential targets for broad-spectrum antifungal plant protection strategies.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
14
|
Béziat C, Jaillais Y. Should I stay or should I go: the functional importance and regulation of lipid diffusion in biological membranes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2479-2488. [PMID: 36738265 DOI: 10.1093/jxb/erad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/23/2023] [Indexed: 06/06/2023]
Abstract
Biological membranes are highly dynamic, in particular due to the constant exchange of vesicles between the different compartments of the cell. In addition, the dynamic nature of membranes is also caused by their inherently fluid properties, with the diffusion of both proteins and lipids within their leaflets. Lipid diffusion is particularly difficult to study in vivo but recent advances in optical microscopy and lipid visualization now enable the characterization of lipid lateral motion, and here we review these methods in plants. We then discuss the parameters that affect lipid diffusion in membranes and explore their consequences on the formation of membrane domains at different scales. Finally, we consider how controlled lipid diffusion affects membrane functions during cell signaling, development, and environmental interactions.
Collapse
Affiliation(s)
- Chloé Béziat
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| |
Collapse
|
15
|
Nakamura M, Hui J, Parkhurst SM. Bending actin filaments: twists of fate. Fac Rev 2023; 12:7. [PMID: 37081903 PMCID: PMC10111394 DOI: 10.12703/r/12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
16
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
17
|
Ibanes S, El-Alaoui F, Lai-Kee-Him J, Cazevieille C, Hoh F, Lyonnais S, Bron P, Cipelletti L, Picas L, Piatti S. The Syp1/FCHo2 protein induces septin filament bundling through its intrinsically disordered domain. Cell Rep 2022; 41:111765. [PMID: 36476870 DOI: 10.1016/j.celrep.2022.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
The septin collar of budding yeast is an ordered array of septin filaments that serves a scaffolding function for the cytokinetic machinery at the bud neck and compartmentalizes the membrane between mother and daughter cell. How septin architecture is aided by septin-binding proteins is largely unknown. Syp1 is an endocytic protein that was implicated in the timely recruitment of septins to the newly forming collar through an unknown mechanism. Using advanced microscopy and in vitro reconstitution assays, we show that Syp1 is able to align laterally and tightly pack septin filaments, thereby forming flat bundles or sheets. This property is shared by the Syp1 mammalian counterpart FCHo2, thus emphasizing conserved protein functions. Interestingly, the septin-bundling activity of Syp1 resides mainly in its intrinsically disordered region. Our data uncover the mechanism through which Syp1 promotes septin collar assembly and offer another example of functional diversity of unstructured protein domains.
Collapse
Affiliation(s)
- Sandy Ibanes
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Fatima El-Alaoui
- IRIM (Institut de Recherche en Infectiologie de Montpellier), University of Montpellier, CNRS UMR 9004, 1919 Route de Mende, 34293 Montpellier, France
| | - Joséphine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), University of Montpellier, CNRS UMR 5048, INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Chantal Cazevieille
- COMET Electron Microscopy Platform, INM (Institute for Neurosciences of Montpellier), University of Montpellier, INSERM U 1298, 80 Rue Augustin Fliche, 34091 Montpellier, France
| | - François Hoh
- CBS (Centre de Biologie Structurale), University of Montpellier, CNRS UMR 5048, INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Sébastien Lyonnais
- CEMIPAI (Centre d'Etudes des Maladies Infectieuses et Pharmacologie Anti-Infectieuse), University of Montpellier, UAR 3725 CNRS, Montpellier, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), University of Montpellier, CNRS UMR 5048, INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Luca Cipelletti
- L2C (Laboratoire Charles Coulomb), University of Montpellier, CNRS, Place E. Bataillon, 34095 Montpellier, France; IUF (Institut Universitaire de France), Paris, France
| | - Laura Picas
- IRIM (Institut de Recherche en Infectiologie de Montpellier), University of Montpellier, CNRS UMR 9004, 1919 Route de Mende, 34293 Montpellier, France
| | - Simonetta Piatti
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France.
| |
Collapse
|
18
|
Hinson SR, Honorat JA, Grund EM, Clarkson BD, Miske R, Scharf M, Zivelonghi C, Al-Lozi MT, Bucelli RC, Budhram A, Cho T, Choi E, Grell J, Lopez-Chiriboga AS, Levin M, Merati M, Montalvo M, Pittock SJ, Wilson MR, Howe CL, McKeon A. Septin-5 and -7-IgGs: Neurologic, Serologic, and Pathophysiologic Characteristics. Ann Neurol 2022; 92:1090-1101. [PMID: 36053822 PMCID: PMC9672904 DOI: 10.1002/ana.26482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. METHODS Septin-IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalization of) extracellular septin epitopes were evaluated for by live rat hippocampal neuron assay. The impact of purified patient IgGs on murine cortical neuron function was determined by recording extracellular field potentials in a multielectrode array platform. RESULTS Septin-IgGs were identified in 23 patients. All 8 patients with septin-5-IgG detected had cerebellar ataxia, and 7 had prominent eye movement disorders. One of 2 patients with co-existing septin-7-IgG had additional psychiatric phenotype (apathy, emotional blunting, and poor insight). Fifteen patients had septin-7 autoimmunity, without septin-5-IgG detected. Disorders included encephalopathy (11; 2 patients with accompanying myelopathy, and 2 were relapsing), myelopathy (3), and episodic ataxia (1). Psychiatric symptoms (≥1 of agitation, apathy, catatonia, disorganized thinking, and paranoia) were prominent in 6 of 11 patients with encephalopathic symptoms. Eight of 10 patients with data available (from 23 total) improved after immunotherapy, and a further 2 patients improved spontaneously. Staining of plasma membranes of live hippocampal neurons produced by patient IgGs (subclasses 1 and 2) colocalized with pre- and post-synaptic markers. Decreased spiking and bursting behavior in mixed cultures of murine glutamatergic and GABAergic cortical neurons produced by patient IgGs were attributable to neither antigenic crosslinking and internalization nor complement activation. INTERPRETATION Septin-IgGs are predictive of distinct treatment-responsive autoimmune central nervous system (CNS) disorders. Live neuron binding and induced electrophysiologic effects by patient IgGs may support septin-specific pathophysiology. ANN NEUROL 2022;92:1090-1101.
Collapse
Affiliation(s)
- Shannon R. Hinson
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN, USA
| | - Josephe A. Honorat
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN, USA
| | - Ethan M. Grund
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
| | | | - Ramona Miske
- Institute for Experimental Immunology, affiliated to
EUROIMMUN Medizinische Labordiagnostika, Lubeck, Germany
| | - Madeleine Scharf
- Institute for Experimental Immunology, affiliated to
EUROIMMUN Medizinische Labordiagnostika, Lubeck, Germany
| | - Cecilia Zivelonghi
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN, USA
| | | | | | - Adrian Budhram
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
| | - Tracey Cho
- Department of Neurology, University of Iowa, Iowa,
USA
| | - Ellie Choi
- Overlake Hospital, Bellevue, Washington, USA
| | - Jacquelyn Grell
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN, USA
| | | | - Marc Levin
- Department of Ophthalmology, Palo Alto Medical Foundation,
Palo Alto, CA, USA
| | - Melody Merati
- Department of Neurology, Michigan State University,
Lansing, MI, USA
| | - Mayra Montalvo
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
| | - Sean J. Pittock
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of
Neurology, University of California, San Francisco, USA
| | | | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN,
USA
| |
Collapse
|
19
|
Bian C, Su J, Zheng Z, Wei J, Wang H, Meng L, Xin Y, Jiang X. ARTS, an unusual septin, regulates tumorigenesis by promoting apoptosis. Biomed Pharmacother 2022; 152:113281. [PMID: 35714512 DOI: 10.1016/j.biopha.2022.113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Apoptosis plays particularly important roles in tumorigenesis through various mechanisms. Apoptosis can be initiated by both extrinsic and intrinsic signals centered in and coming from the mitochondria. Antiapoptotic proteins promote tumor progression, and the occurrence and progression of tumors are closely related to antiapoptotic protein expression. As the only member of the septin gene family with proapoptotic function, apoptosis-related proteins in the TGF-β signaling pathway (ARTS) has received extensive attention for its unique structure. In contrast, unlike other known inhibitors of apoptosis protein (IAP) antagonists, ARTS exhibits a stronger tumor suppressor potential. Recent research has shown that ARTS can bind and inhibit XIAP and Bcl-2 directly or assist p53 in the degradation of Bcl-XL. Here, we review recent advances in the molecular mechanisms by which the proapoptotic protein ARTS, with its unique structure, inhibits tumorigenesis. We also discuss the possibility of mimicking ARTS to develop small-molecule drugs.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Kim OV, Litvinov RI, Mordakhanova ER, Bi E, Vagin O, Weisel JW. Contribution of septins to human platelet structure and function. iScience 2022; 25:104654. [PMID: 35832887 PMCID: PMC9272382 DOI: 10.1016/j.isci.2022.104654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although septins have been well-studied in nucleated cells, their role in anucleate blood platelets remains obscure. Here, we elucidate the contribution of septins to human platelet structure and functionality. We show that Septin-2 and Septin-9 are predominantly distributed at the periphery of resting platelets and co-localize strongly with microtubules. Activation of platelets by thrombin causes clustering of septins and impairs their association with microtubules. Inhibition of septin dynamics with forchlorfenuron (FCF) reduces thrombin-induced densification of septins and lessens their colocalization with microtubules in resting and activated platelets. Exposure to FCF alters platelet shape, suggesting that septins stabilize platelet cytoskeleton. FCF suppresses platelet integrin αIIbβ3 activation, promotes phosphatidylserine exposure on activated platelets, and induces P-selectin expression on resting platelets, suggesting septin involvement in these processes. Inhibition of septin dynamics substantially reduces platelet contractility and abrogates their spreading on fibrinogen-coated surfaces. Overall, septins strongly contribute to platelet structure, activation and biomechanics.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elmira R. Mordakhanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Vagin
- Department of Pediatrics, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Microtubule and Actin Cytoskeletal Dynamics in Male Meiotic Cells of Drosophila melanogaster. Cells 2022; 11:cells11040695. [PMID: 35203341 PMCID: PMC8870657 DOI: 10.3390/cells11040695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Drosophila dividing spermatocytes offer a highly suitable cell system in which to investigate the coordinated reorganization of microtubule and actin cytoskeleton systems during cell division of animal cells. Like male germ cells of mammals, Drosophila spermatogonia and spermatocytes undergo cleavage furrow ingression during cytokinesis, but abscission does not take place. Thus, clusters of primary and secondary spermatocytes undergo meiotic divisions in synchrony, resulting in cysts of 32 secondary spermatocytes and then 64 spermatids connected by specialized structures called ring canals. The meiotic spindles in Drosophila males are substantially larger than the spindles of mammalian somatic cells and exhibit prominent central spindles and contractile rings during cytokinesis. These characteristics make male meiotic cells particularly amenable to immunofluorescence and live imaging analysis of the spindle microtubules and the actomyosin apparatus during meiotic divisions. Moreover, because the spindle assembly checkpoint is not robust in spermatocytes, Drosophila male meiosis allows investigating of whether gene products required for chromosome segregation play additional roles during cytokinesis. Here, we will review how the research studies on Drosophila male meiotic cells have contributed to our knowledge of the conserved molecular pathways that regulate spindle microtubules and cytokinesis with important implications for the comprehension of cancer and other diseases.
Collapse
|
22
|
Menon MB, Yakovleva T, Ronkina N, Suwandi A, Odak I, Dhamija S, Sandrock I, Hansmann F, Baumgärtner W, Förster R, Kotlyarov A, Gaestel M. Lyz2-Cre-Mediated Genetic Deletion of Septin7 Reveals a Role of Septins in Macrophage Cytokinesis and Kras-Driven Tumorigenesis. Front Cell Dev Biol 2022; 9:795798. [PMID: 35071236 PMCID: PMC8772882 DOI: 10.3389/fcell.2021.795798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
By crossing septin7-floxed mice with Lyz2-Cre mice carrying the Cre recombinase inserted in the Lysozyme-M (Lyz2) gene locus we aimed the specific deletion of septin7 in myeloid cells, such as monocytes, macrophages and granulocytes. Septin7 flox/flox :Lyz2-Cre mice show no alterations in the myeloid compartment. Septin7-deleted macrophages (BMDMs) were isolated and analyzed. The lack of Septin7 expression was confirmed and a constitutive double-nucleation was detected in Septin7-deficient BMDMs indicating a defect in macrophage cytokinesis. However, phagocytic function of macrophages as judged by uptake of labelled E. coli particles and LPS-stimulated macrophage activation as judged by induction of TNF mRNA expression and TNF secretion were not compromised. In addition to myeloid cells, Lyz2-Cre is also active in type II pneumocytes (AT2 cells). We monitored lung adenocarcinoma formation in these mice by crossing them with the conditional knock-in Kras-LSL-G12D allele. Interestingly, we found that control mice without septin7 depletion die after 3-5 weeks, while the Septin7-deficient animals survived 11 weeks or even longer. Control mice sacrificed in the age of 4 weeks display a bronchiolo-alveolar hyperplasia with multiple adenomas, whereas the Septin7-deficient animals of the same age are normal or show only a weak multifocal brochiolo-alveolar hyperplasia. Our findings indicate an essential role of Septin7 in macrophage cytokinesis but not in macrophage function. Furthermore, septin7 seems absolutely essential for oncogenic Kras-driven lung tumorigenesis making it a potential target for anti-tumor interventions.
Collapse
Affiliation(s)
- Manoj B Menon
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Tatiana Yakovleva
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Abdulhadi Suwandi
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sonam Dhamija
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Florian Hansmann
- Institute of Pathology, Stiftung Tierärztliche Hochschule, Hannover, Germany.,Institute of Veterinary Pathology, Veterinary Faculty of Leipzig University, Leipzig, Germany
| | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Alexey Kotlyarov
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Zheng S, Zheng B, Liu Z, Ma X, Liu X, Yao X, Wei W, Fu C. The Cdc42 GTPase activating protein Rga6 promotes the cortical localization of Septin. J Cell Sci 2022; 135:274388. [DOI: 10.1242/jcs.259228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Septins are a family of filament-forming GTP-binding proteins that regulate fundamental cellular activities such as cytokinesis and cell polarity. In general, Septin filaments function as barriers and scaffolds on the cell cortex. However, little is known about the mechanism that governs the recruitment and localization of the Septin complex to the cell cortex. Here, we identified the Cdc42 GTPase activating protein Rga6 as a key protein involved in promoting the localization of the Septin complex to the cell cortex in the fission yeast Schizosaccharomyces pombe. Rga6 interacts with the Septin complex and partially colocalizes with the Septin complex on the cell cortex. Live-cell microscopic analysis further showed Septin enrichment at the cortical regions adjacent to the growing cell tip. The Septin enrichment likely plays a crucial role in confining active Cdc42 to the growing cell tip. Hence, our findings support a model that Rga6 regulates polarized cell growth partly through promoting targeted localization of the Septin complex on the cell cortex.
Collapse
Affiliation(s)
- Shengnan Zheng
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Biyu Zheng
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Zhenbang Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Xiaopeng Ma
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Xing Liu
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Xuebiao Yao
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Wenfan Wei
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| |
Collapse
|
24
|
UBC Mediated by SEPT6 Inhibited the Progression of Prostate Cancer. Mediators Inflamm 2021; 2021:7393029. [PMID: 34966246 PMCID: PMC8712179 DOI: 10.1155/2021/7393029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background Prostate cancer is one of the most common malignancies in men. Protein ubiquitination is an important mechanism for regulating protein activity and level in vivo. We aimed to study the mechanism of SEPT6 and UBC action in prostate cancer to identify new targets. Methods The ubiquitin-protein and the ubiquitin coding gene UBA52, UBA80, UBB, and UBC expressions were detected in clinical tissues and cells. Overexpression and knockdown of UBC were performed in prostate cancer DU145 cells. Cell Counting Kit 8 (CCK-8) assay was performed to detect cell proliferation. Cell cycle at 24 h was detected by flow cytometry. Clonal formation assay was used to measure cell clone number. Immunofluorescence (IF) was performed to detect the colocalization of SEPT6 and UBC in prostate cancer cells. Next, we overexpressed or knocked down SEPT6 expression in DU145 cells. Pearson correlation coefficient was applied to analyze the relationship between SEPT6 and UBC in prostate cancer tissue. oe-SEPT6+oe-UBC coexpressing cells were constructed to detect the upstream and downstream relationship between SEPT6 and UBC on prostate cancer cells. The tumor formation experiment was performed to explore SEPT6/UBC effect on prostate cancer. Results UBC was upregulated in prostate cancer tissues and cells. Overexpression of UBC promoted cell survival and proliferation. IF revealed the colocalization of SEPT6 and UBC in prostate cancer cells. UBC expression decreased after oe-SEPT6, while increased after sh-SEPT6, indicating that UBC was downstream of SEPT6. Pearson correlation coefficient analysis showed that SEPT6 was negatively correlated with UBC in prostate cancer tissues. SEPT6 as an upstream gene of UBC regulated prostate cancer cell behavior through UBC. The tumor formation experiment showed that SEPT6 could inhibit tumor growth. Conclusion In general, SEPT6 inhibited UBC expression, thereby reducing the overall ubiquitination level, affecting the expression level of downstream cell proliferation-related genes, and then affecting the progression of prostate cancer.
Collapse
|
25
|
Garno C, Irons ZH, Gamache CM, McKim Q, Reyes G, Wu X, Shuster CB, Henson JH. Building the cytokinetic contractile ring in an early embryo: Initiation as clusters of myosin II, anillin and septin, and visualization of a septin filament network. PLoS One 2021; 16:e0252845. [PMID: 34962917 PMCID: PMC8714119 DOI: 10.1371/journal.pone.0252845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell.
Collapse
Affiliation(s)
- Chelsea Garno
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Zoe H. Irons
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Courtney M. Gamache
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Quenelle McKim
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Xufeng Wu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles B. Shuster
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - John H. Henson
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Neubauer K, Zieger B. Role of Septins in Endothelial Cells and Platelets. Front Cell Dev Biol 2021; 9:768409. [PMID: 34858990 PMCID: PMC8632023 DOI: 10.3389/fcell.2021.768409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Septins are conserved cytoskeletal GTP-binding proteins identified in almost all eukaryotes except higher plants. Mammalian septins comprise 13 family members with either ubiquitous or organ- and tissue-specific expression patterns. They form filamentous oligomers and complexes with other proteins to serve as diffusions barrier and/or multi-molecular scaffolds to function in a physiologically regulated manner. Diverse septins are highly expressed in endothelial cells and platelets, which play an important role in hemostasis, a process to prevent blood loss after vascular injury. Endothelial septins are involved in cellular processes such as exocytosis and in processes concerning organismal level, like angiogenesis. Septins are additionally found in endothelial cell-cell junctions where their presence is required to maintain the integrity of the barrier function of vascular endothelial monolayers. In platelets, septins are important for activation, degranulation, adhesion, and aggregation. They have been identified as mediators of distinct platelet functions and being essential in primary and secondary hemostatic processes. Septin-knockout mouse studies show the relevance of septins in several aspects of hemostasis. This is in line with reports that dysregulation of septins is clinically relevant in human bleeding disorders. The precise function of septins in the biology of endothelial cells and platelets remains poorly understood. The following mini-review highlights the current knowledge about the role of septin cytoskeleton in regulating critical functions in these two cell types.
Collapse
Affiliation(s)
- Katharina Neubauer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Beepat SS, Davy SK, Oakley CA, Mashini A, Peng L, Bell JJ. Increased cellular detoxification, cytoskeletal activities and protein transport explain physiological stress in a lagoon sponge. J Exp Biol 2021; 224:273478. [PMID: 34661236 DOI: 10.1242/jeb.242820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
Tropical lagoon-inhabiting organisms live in highly irradiated ecosystems and are particularly susceptible to thermal stress resulting from climate change. However, despite living close to their thermal maxima, stress response mechanisms found in these organisms are poorly understood. We used a novel physiological-proteomic approach for sponges to describe the stress response mechanisms of the lagoon-inhabiting sponge Amphimedon navalis, when exposed to elevated seawater temperatures of +2°C and +4°C relative to a 26°C ambient temperature for 4 weeks. After 4 weeks of thermal exposure, the buoyant weight of the sponge experienced a significant decline, while its pumping rates and oxygen consumption rates significantly increased. Proteome dynamics revealed 50 differentially abundant proteins in sponges exposed to elevated temperature, suggesting that shifts in the sponge proteome were potential drivers of physiological dysfunction. Thermal stress promoted an increase in detoxification proteins, such as catalase, suggesting that an excess of reactive oxygen species in sponge cells was responsible for the significant increase in oxygen consumption. Elevated temperature also disrupted cellular growth and cell proliferation, promoting the loss of sponge biomass, and the high abundance of multiple α-tubulin chain proteins also indicated an increase in cytoskeletal activities within sponge cells, which may have induced the increase in sponge pumping rate. Our results show that sustained thermal exposure in susceptible lagoonal sponges may induce significant disruption of cellular homeostasis, leading to physiological dysfunction, and that a combined physiological-proteomic approach may provide new insights into physiological functions and cellular processes occurring in sponges.
Collapse
Affiliation(s)
- Sandeep S Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Amirhossein Mashini
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
28
|
Zukerman R, Harris A, Oddone F, Siesky B, Verticchio Vercellin A, Ciulla TA. Glaucoma Heritability: Molecular Mechanisms of Disease. Genes (Basel) 2021; 12:genes12081135. [PMID: 34440309 PMCID: PMC8391305 DOI: 10.3390/genes12081135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is one of the world’s leading causes of irreversible blindness. A complex, multifactorial disease, the underlying pathogenesis and reasons for disease progression are not fully understood. The most common form of glaucoma, primary open-angle glaucoma (POAG), was traditionally understood to be the result of elevated intraocular pressure (IOP), leading to optic nerve damage and functional vision loss. Recently, researchers have suggested that POAG may have an underlying genetic component. In fact, studies of genetic association and heritability have yielded encouraging results showing that glaucoma may be influenced by genetic factors, and estimates for the heritability of POAG and disease-related endophenotypes show encouraging results. However, the vast majority of the underlying genetic variants and their molecular mechanisms have not been elucidated. Several genes have been suggested to have molecular mechanisms contributing to alterations in key endophenotypes such as IOP (LMX1B, MADD, NR1H3, and SEPT9), and VCDR (ABCA1, ELN, ASAP1, and ATOH7). Still, genetic studies about glaucoma and its molecular mechanisms are limited by the multifactorial nature of the disease and the large number of genes that have been identified to have an association with glaucoma. Therefore, further study into the molecular mechanisms of the disease itself are required for the future development of therapies targeted at genes leading to POAG endophenotypes and, therefore, increased risk of disease.
Collapse
Affiliation(s)
- Ryan Zukerman
- Department of Ophthalmology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; (R.Z.); (A.H.); (B.S.); (A.V.V.)
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; (R.Z.); (A.H.); (B.S.); (A.V.V.)
| | | | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; (R.Z.); (A.H.); (B.S.); (A.V.V.)
| | - Alice Verticchio Vercellin
- Department of Ophthalmology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; (R.Z.); (A.H.); (B.S.); (A.V.V.)
| | - Thomas A. Ciulla
- Midwest Eye Institute, Indianapolis, IN 46290, USA
- Correspondence: ; Tel.: +1-(317)-506-0334 or +1-(317)-817-1822; Fax: +1-(317)-817-1898
| |
Collapse
|
29
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
30
|
Zaatri A, Perry JA, Maddox AS. Septins and a formin have distinct functions in anaphase chiral cortical rotation in the Caenorhabditis elegans zygote. Mol Biol Cell 2021; 32:1283-1292. [PMID: 34010018 PMCID: PMC8351551 DOI: 10.1091/mbc.e20-09-0576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many cells and tissues exhibit chirality that stems from the chirality of proteins and polymers. In the Caenorhabditis elegans zygote, actomyosin contractility drives chiral rotation of the entire cortex circumferentially around the division plane during anaphase. How contractility is translated to cell-scale chirality, and what dictates handedness, are unknown. Septins are candidate contributors to cell-scale chirality because they anchor and cross-link the actomyosin cytoskeleton. We report that septins are required for anaphase cortical rotation. In contrast, the formin CYK-1, which we found to be enriched in the posterior in early anaphase, is not required for cortical rotation but contributes to its chirality. Simultaneous loss of septin and CYK-1 function led to abnormal and often reversed cortical rotation. Our results suggest that anaphase contractility leads to chiral rotation by releasing torsional stress generated during formin-based polymerization, which is polarized along the cell anterior–posterior axis and which accumulates due to actomyosin network connectivity. Our findings shed light on the molecular and physical bases for cellular chirality in the C. elegans zygote. We also identify conditions in which chiral rotation fails but animals are developmentally viable, opening avenues for future work on the relationship between early embryonic cellular chirality and animal body plan.
Collapse
Affiliation(s)
- Adhham Zaatri
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Jenna A Perry
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
31
|
Abstract
Septins are an integral component of the cytoskeleton, assembling into higher-order oligomers and filamentous polymers that associate with actin filaments, microtubules and membranes. Here, we review septin interactions with actin and microtubules, and septin-mediated regulation of the organization and dynamics of these cytoskeletal networks, which is critical for cellular morphogenesis. We discuss how actomyosin-associated septins function in cytokinesis, cell migration and host defense against pathogens. We highlight newly emerged roles of septins at the interface of microtubules and membranes with molecular motors, which point to a 'septin code' for the regulation of membrane traffic. Additionally, we revisit the functions of microtubule-associated septins in mitosis and meiosis. In sum, septins comprise a unique module of cytoskeletal regulators that are spatially and functionally specialized and have properties of bona fide actin-binding and microtubule-associated proteins. With many questions still outstanding, the study of septins will continue to provide new insights into fundamental problems of cytoskeletal organization and function.
Collapse
|
32
|
Mela A, Momany M. Septins coordinate cell wall integrity and lipid metabolism in a sphingolipid-dependent process. J Cell Sci 2021; 135:256543. [PMID: 33912961 DOI: 10.1242/jcs.258336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.
Collapse
Affiliation(s)
- Alexander Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| |
Collapse
|
33
|
Robertin S, Mostowy S. The history of septin biology and bacterial infection. Cell Microbiol 2021; 22:e13173. [PMID: 32185906 DOI: 10.1111/cmi.13173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
Abstract
Investigation of cytoskeleton during bacterial infection has significantly contributed to both cell and infection biology. Bacterial pathogens Listeria monocytogenes and Shigella flexneri are widely recognised as paradigms for investigation of the cytoskeleton during bacterial entry, actin-based motility, and cell-autonomous immunity. At the turn of the century, septins were a poorly understood component of the cytoskeleton mostly studied in the context of yeast cell division and human cancer. In 2002, a screen performed in the laboratory of Pascale Cossart identified septin family member MSF (MLL septin-like fusion, now called SEPT9) associated with L. monocytogenes entry into human epithelial cells. These findings inspired the investigation of septins during L. monocytogenes and S. flexneri infection at the Institut Pasteur, illuminating important roles for septins in host-microbe interactions. In this review, we revisit the history of septin biology and bacterial infection, and discuss how the comparative study of L. monocytogenes and S. flexneri has been instrumental to understand septin roles in cellular homeostasis and host defence.
Collapse
Affiliation(s)
- Stevens Robertin
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
34
|
Szuba A, Bano F, Castro-Linares G, Iv F, Mavrakis M, Richter RP, Bertin A, Koenderink GH. Membrane binding controls ordered self-assembly of animal septins. eLife 2021; 10:63349. [PMID: 33847563 PMCID: PMC8099429 DOI: 10.7554/elife.63349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.
Collapse
Affiliation(s)
- Agata Szuba
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands
| | - Fouzia Bano
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Gerard Castro-Linares
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Francois Iv
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Gijsje H Koenderink
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
35
|
Neubauer K, Jurk K, Petermann V, Kumm E, Zieger B. Impaired Platelet Function in Sept8-Deficient Mice In Vitro. Thromb Haemost 2021; 121:484-494. [PMID: 33202444 DOI: 10.1055/s-0040-1718733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Septins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes.
Collapse
Affiliation(s)
- Katharina Neubauer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Victoria Petermann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Elena Kumm
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Goodson HV, Kelley JB, Brawley SH. Cytoskeletal diversification across 1 billion years: What red algae can teach us about the cytoskeleton, and vice versa. Bioessays 2021; 43:e2000278. [PMID: 33797088 DOI: 10.1002/bies.202000278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/05/2022]
Abstract
The cytoskeleton has a central role in eukaryotic biology, enabling cells to organize internally, polarize, and translocate. Studying cytoskeletal machinery across the tree of life can identify common elements, illuminate fundamental mechanisms, and provide insight into processes specific to less-characterized organisms. Red algae represent an ancient lineage that is diverse, ecologically significant, and biomedically relevant. Recent genomic analysis shows that red algae have a surprising paucity of cytoskeletal elements, particularly molecular motors. Here, we review the genomic and cell biological evidence and propose testable models of how red algal cells might perform processes including cell motility, cytokinesis, intracellular transport, and secretion, given their reduced cytoskeletons. In addition to enhancing understanding of red algae and lineages that evolved from red algal endosymbioses (e.g., apicomplexan parasites), these ideas may also provide insight into cytoskeletal processes in animal cells.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, Maine, USA
| |
Collapse
|
37
|
Phatarpekar PV, Overlee BL, Leehan A, Wilton KM, Ham H, Billadeau DD. The septin cytoskeleton regulates natural killer cell lytic granule release. J Cell Biol 2021; 219:152040. [PMID: 32841357 PMCID: PMC7594501 DOI: 10.1083/jcb.202002145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
Natural killer (NK) cell–mediated killing involves the membrane fusion of preformed lytic granules. While the roles of actin and microtubules are well accepted during this process, the function of septins, another cytoskeletal component that associates with actin and microtubules, has not been investigated. Here we show that genetic depletion or pharmacologic stabilization of the septin cytoskeleton significantly inhibited NK cell cytotoxicity. Although the stabilization of septin filaments impaired conjugate formation, depletion of septin proteins had no impact on conjugate formation, lytic granule convergence, or MTOC polarization to the cytotoxic synapse (CS). Interestingly, septins copurify and accumulate near the polarized lytic granules at the CS, where they regulate lytic granule release. Mechanistically, we find that septin 7 interacts with the SNARE protein syntaxin 11 and facilitates its interaction with syntaxin binding protein 2 to promote lytic granule fusion. Altogether, our data identify a critical role for septins in regulating the release of lytic granule contents during NK cell–mediated killing.
Collapse
Affiliation(s)
| | - Brittany L Overlee
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Alexander Leehan
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Katelynn M Wilton
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
38
|
Dulal N, Rogers AM, Proko R, Bieger BD, Liyanage R, Krishnamurthi VR, Wang Y, Egan MJ. Turgor-dependent and coronin-mediated F-actin dynamics drive septin disc-to-ring remodeling in the blast fungus Magnaporthe oryzae. J Cell Sci 2021; 134:jcs.251298. [PMID: 33414165 DOI: 10.1242/jcs.251298] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The fungus Magnaporthe oryzae uses a specialized pressure-generating infection cell called an appressorium to break into rice leaves and initiate disease. Appressorium functionality is dependent on the formation of a cortical septin ring during its morphogenesis, but precisely how this structure assembles is unclear. Here, we show that F-actin rings are recruited to the circumference of incipient septin disc-like structures in a pressure-dependent manner, and that this is necessary for their contraction and remodeling into rings. We demonstrate that the structural integrity of these incipient septin discs requires both an intact F-actin and microtubule cytoskeleton and provide fundamental new insight into their functional organization within the appressorium. Lastly, using proximity-dependent labeling, we identify the actin modulator coronin as a septin-proximal protein and show that F-actin-mediated septin disc-to-ring remodeling is perturbed in the genetic absence of coronin. Taken together, our findings provide new insight into the dynamic remodeling of infection-specific higher-order septin structures in a globally significant fungal plant pathogen.
Collapse
Affiliation(s)
- Nawaraj Dulal
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Rinalda Proko
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA.,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Baronger Dowell Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA.,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Yong Wang
- Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA.,Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA.,Microelectronics-Photonics graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA .,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
39
|
Magalhaes YT, Farias JO, Silva LE, Forti FL. GTPases, genome, actin: A hidden story in DNA damage response and repair mechanisms. DNA Repair (Amst) 2021; 100:103070. [PMID: 33618126 DOI: 10.1016/j.dnarep.2021.103070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
The classical small Rho GTPase (Rho, Rac, and Cdc42) protein family is mainly responsible for regulating cell motility and polarity, membrane trafficking, cell cycle control, and gene transcription. Cumulative recent evidence supports important roles for these proteins in the maintenance of genomic stability. Indeed, DNA damage response (DDR) and repair mechanisms are some of the prime biological processes that underlie several disease phenotypes, including genetic disorders, cancer, senescence, and premature aging. Many reports guided by different experimental approaches and molecular hypotheses have demonstrated that, to some extent, direct modulation of Rho GTPase activity, their downstream effectors, or actin cytoskeleton regulation contribute to these cellular events. Although much attention has been paid to this family in the context of canonical actin cytoskeleton remodeling, here we provide a contextualized review of the interplay between Rho GTPase signaling pathways and the DDR and DNA repair signaling components. Interesting questions yet to be addressed relate to the spatiotemporal dynamics of this collective response and whether it correlates with different subcellular pools of Rho GTPases. We highlight the direct and indirect targets, some of which still lack experimental validation data, likely associated with Rho GTPase activation that provides compelling evidence for further investigation in DNA damage-associated events and with potential therapeutic applications in translational medicine.
Collapse
Affiliation(s)
- Yuli T Magalhaes
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Jessica O Farias
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Luiz E Silva
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Fabio L Forti
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Kesisova IA, Robinson BP, Spiliotis ET. A septin GTPase scaffold of dynein-dynactin motors triggers retrograde lysosome transport. J Cell Biol 2021; 220:211663. [PMID: 33416861 PMCID: PMC7802366 DOI: 10.1083/jcb.202005219] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/22/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The metabolic and signaling functions of lysosomes depend on their intracellular positioning and trafficking, but the underlying mechanisms are little understood. Here, we have discovered a novel septin GTPase-based mechanism for retrograde lysosome transport. We found that septin 9 (SEPT9) associates with lysosomes, promoting the perinuclear localization of lysosomes in a Rab7-independent manner. SEPT9 targeting to mitochondria and peroxisomes is sufficient to recruit dynein and cause perinuclear clustering. We show that SEPT9 interacts with both dynein and dynactin through its GTPase domain and N-terminal extension, respectively. Strikingly, SEPT9 associates preferentially with the dynein intermediate chain (DIC) in its GDP-bound state, which favors dimerization and assembly into septin multimers. In response to oxidative cell stress induced by arsenite, SEPT9 localization to lysosomes is enhanced, promoting the perinuclear clustering of lysosomes. We posit that septins function as GDP-activated scaffolds for the cooperative assembly of dynein-dynactin, providing an alternative mechanism of retrograde lysosome transport at steady state and during cellular adaptation to stress.
Collapse
|
41
|
Kim J, Cooper JA. Junctional Localization of Septin 2 Is Required for Organization of Junctional Proteins in Static Endothelial Monolayers. Arterioscler Thromb Vasc Biol 2021; 41:346-359. [PMID: 33147991 PMCID: PMC7769918 DOI: 10.1161/atvbaha.120.315472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Septin 2 is localized at junctions in human microvascular endothelial monolayers. The junctional localization of septin 2 is necessary for organization of cell-cell adhesion proteins of endothelial cells. Approach and Results: Septin 2 was depleted at junctions by suppression of expression using shRNA, treatment with inflammatory cytokine, TNF (tumor necrosis factor)-α, and ectopic overexpression of septin 2 phosphatidylinositol 4,5-bisphosphate binding mutant defect in interaction with plasma membrane. Under those conditions, organizations and expression levels of various junctional proteins were analyzed. Confocal images of immunofluorescence staining showed substantial disorganization of adherens junctional proteins, nectin-2 and afadin, TJP (tight junction protein), ZO (zonula occludens)-1, and intercellular adhesion protein, PECAM-1 (platelet-endothelial cell adhesion molecule-1). Immunoblots for those proteins did not show significant changes in expression except for nectin-2 that highly increased in expression. Significant differential gene expression profiles and biological pathway analysis by septin 2 suppression and by TNF-α treatment using RNA-seq showed common overlapping pathways. The commonalities in expression may be consistent with the similar effects on the overall organization of cell-cell adhesion proteins. CONCLUSIONS Localization of septin 2 at cell junctions are required for the arrangement of junctional proteins and the integrity of the barrier formed by endothelial monolayers.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - John A. Cooper
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
42
|
Woods BL, Gladfelter AS. The state of the septin cytoskeleton from assembly to function. Curr Opin Cell Biol 2020; 68:105-112. [PMID: 33188984 DOI: 10.1016/j.ceb.2020.10.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
Septins are conserved guanine nucleotide-binding proteins that polymerize into filaments at the cell cortex or in association with other cytoskeletal proteins, such as actin or microtubules. As integral players in many morphogenic and signaling events, septins form scaffolds important for the recruitment of the cytokinetic machinery, organization of the plasma membrane, and orientation of cell polarity. Mutations in septins or their misregulation are associated with numerous diseases. Despite growing appreciation for the importance of septins in different aspects of cell biology and disease, septins remain relatively poorly understood compared with other cytoskeletal proteins. Here in this review, we highlight some of the recent developments of the last two years in the field of septin cell biology.
Collapse
Affiliation(s)
- Benjamin L Woods
- Biology Department, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Amy S Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC, 27599, USA; Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
43
|
Cao CQ, Chang L, Wu Q. Circulating methylated Septin 9 and ring finger protein 180 for noninvasive diagnosis of early gastric cancer. Transl Cancer Res 2020; 9:7012-7021. [PMID: 35117307 PMCID: PMC8799148 DOI: 10.21037/tcr-20-1330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Background Gastric cancer (GC) has a poor prognosis due to patients often being diagnosed at an advanced stage, when metastasis has already occurred. To improve the 5-year survival rate and reduce the number of cancer-related deaths in patients with GC, noninvasive methods for early detection need to be developed. This study aimed to evaluate the value of circulating methylated Septin 9 (SEPT9) and ring finger protein 180 (RNF180) for the early diagnosis of GC. Methods Seventy-four patients with early GC, 99 patients with benign gastric diseases (BGD) (inflammation, polyps, intestinal metaplasia, ulcers, and erosion), and 57 cases with no evidence of disease (NED) were enrolled. Methylated SEPT9 and RNF180 in circulating cell-free DNA in blood samples from each group were detected, and the positivity rates were calculated. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), confidence interval (CI), and area under the curve (AUC) were determined for methylated SEPT9 and RNF180 in relation to early GC. Results As a diagnostic target, methylated SEPT9 had a sensitivity of 28.3% (95% CI: 18.5–40.0%), specificity of 94.2% (95% CI: 89.3–97.3%), and AUC value of 0.616 (95% CI: 52.0–71.1%). Methylated RNF180 had a sensitivity of 32.4% (95% CI: 22.0–44.3%), specificity of 89.7% (95% CI: 83.9–94.0%), and AUC value of 0.636 (95% CI: 54.2–73.0%). A combination of the two yielded a sensitivity of 40.5% (95% CI: 29.3–52.6%), specificity of 85.3% (95% CI: 78.7–90.4%), and AUC value of 0.65 (95% CI: 55.7–74.4%). Conclusions Methylated SEPT9 and RNF180 could be used as diagnostic biomarkers for early gastric cancer (EGC).
Collapse
Affiliation(s)
- Chang-Qi Cao
- Department of Endoscopy Center, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Lin Chang
- Department of Endoscopy Center, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Qi Wu
- Department of Endoscopy Center, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| |
Collapse
|
44
|
Novel Functions of the Septin Cytoskeleton: Shaping Up Tissue Inflammation and Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:40-51. [PMID: 33039354 DOI: 10.1016/j.ajpath.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory diseases cause profound alterations in tissue homeostasis, including unchecked activation of immune and nonimmune cells leading to disease complications such as aberrant tissue repair and fibrosis. Current anti-inflammatory therapies are often insufficient in preventing or reversing these complications. Remodeling of the intracellular cytoskeleton is critical for cell activation in inflamed and fibrotic tissues; however, the cytoskeleton has not been adequately explored as a therapeutic target in inflammation. Septins are GTP-binding proteins that self-assemble into higher order cytoskeletal structures. The septin cytoskeleton exhibits a number of critical cellular functions, including regulation of cell shape and polarity, cytokinesis, cell migration, vesicle trafficking, and receptor signaling. Surprisingly, little is known about the role of the septin cytoskeleton in inflammation. This article reviews emerging evidence implicating different septins in the regulation of host-pathogen interactions, immune cell functions, and tissue fibrosis. Targeting of the septin cytoskeleton as a potential future therapeutic intervention in human inflammatory and fibrotic diseases is also discussed.
Collapse
|
45
|
Jiao F, Cannon KS, Lin YC, Gladfelter AS, Scheuring S. The hierarchical assembly of septins revealed by high-speed AFM. Nat Commun 2020; 11:5062. [PMID: 33033254 PMCID: PMC7545167 DOI: 10.1038/s41467-020-18778-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Septins are GTP-binding proteins involved in diverse cellular processes including division and membrane remodeling. Septins form linear, palindromic heteromeric complexes that can assemble in filaments and higher-order structures. Structural studies revealed various septin architectures, but questions concerning assembly-dynamics and -pathways persist. Here we used high-speed atomic force microscopy (HS-AFM) and kinetic modeling which allowed us to determine that septin filament assembly was a diffusion-driven process, while formation of higher-order structures was complex and involved self-templating. Slightly acidic pH and increased monovalent ion concentrations favor filament-assembly, -alignment and -pairing. Filament-alignment and -pairing further favored diffusion-driven assembly. Pairing is mediated by the septin N-termini face, and may occur symmetrically or staggered, likely important for the formation of higher-order structures of different shapes. Multilayered structures are templated by the morphology of the underlying layers. The septin C-termini face, namely the C-terminal extension of Cdc12, may be involved in membrane binding.
Collapse
Affiliation(s)
- Fang Jiao
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kevin S Cannon
- Department of Biology, University of North Carolina and Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yi-Chih Lin
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina and Chapel Hill, Chapel Hill, NC, 27599, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
46
|
Carim SC, Kechad A, Hickson GRX. Animal Cell Cytokinesis: The Rho-Dependent Actomyosin-Anilloseptin Contractile Ring as a Membrane Microdomain Gathering, Compressing, and Sorting Machine. Front Cell Dev Biol 2020; 8:575226. [PMID: 33117802 PMCID: PMC7575755 DOI: 10.3389/fcell.2020.575226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Amel Kechad
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Gilles R. X. Hickson
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
47
|
Valenzuela A, Meservey L, Nguyen H, Fu MM. Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes. Trends Cell Biol 2020; 30:792-804. [PMID: 32863092 DOI: 10.1016/j.tcb.2020.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Classically, animal cells nucleate or form new microtubules off the perinuclear centrosome. In recent years, the Golgi outpost has emerged as a satellite organelle that can function as an acentrosomal microtubule-organizing center (MTOC), nucleating new microtubules at distances far from the nucleus or cell body. Golgi outposts can nucleate new microtubules in specialized cells with unique cytoarchitectures, including Drosophila neurons, mouse muscle cells, and rodent oligodendrocytes. This review compares and contrasts topics of functional relevance, including Golgi outpost heterogeneity, formation and transport, as well as regulation of microtubule polarity and branching. Golgi outposts have also been implicated in the pathology of diseases including muscular dystrophy, and neurodegenerative diseases, such as Parkinson's disease (PD). Since Golgi outposts are relatively understudied, many outstanding questions regarding their function and roles in disease remain.
Collapse
Affiliation(s)
- Alex Valenzuela
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lindsey Meservey
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Huy Nguyen
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
48
|
Svitkina TM. Actin Cell Cortex: Structure and Molecular Organization. Trends Cell Biol 2020; 30:556-565. [PMID: 32278656 PMCID: PMC7566779 DOI: 10.1016/j.tcb.2020.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
The actin cytoskeleton consists of structurally and biochemically different actin filament arrays. Among them, the actin cortex is thought to have key roles in cell mechanics, but remains a poorly characterized part of the actin cytoskeleton. The cell cortex is typically defined as a thin layer of actin meshwork that uniformly underlies the plasma membrane of the entire cell. However, this definition applies only to specific cases. In general, the cortex structure and subcellular distribution vary significantly across cell types and physiological states of the cell. In this review, I focus on our current knowledge of the structure and molecular composition of the cell cortex.
Collapse
Affiliation(s)
- Tatyana M Svitkina
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Castillo-Badillo JA, Bandi AC, Harlalka S, Gautam N. SRRF-Stream Imaging of Optogenetically Controlled Furrow Formation Shows Localized and Coordinated Endocytosis and Exocytosis Mediating Membrane Remodeling. ACS Synth Biol 2020; 9:902-919. [PMID: 32155337 DOI: 10.1021/acssynbio.9b00521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cleavage furrow formation during cytokinesis involves extensive membrane remodeling. In the absence of methods to exert dynamic control over these processes, it has been a challenge to examine the basis of this remodeling. Here we used a subcellular optogenetic approach to induce this at will and found that furrow formation is mediated by actomyosin contractility, retrograde plasma membrane flow, localized decrease in membrane tension, and endocytosis. FRAP, 4-D imaging, and inhibition or upregulation of endocytosis or exocytosis show that ARF6 and Exo70 dependent localized exocytosis supports a potential model for intercellular bridge elongation. TIRF and Super Resolution Radial Fluctuation (SRRF) stream microscopy show localized VAMP2-mediated exocytosis and incorporation of membrane lipids from vesicles into the plasma membrane at the front edge of the nascent daughter cell. Thus, spatially separated but coordinated plasma membrane depletion and addition are likely contributors to membrane remodeling during cytokinetic processes.
Collapse
|
50
|
Dulal N, Rogers A, Wang Y, Egan M. Dynamic assembly of a higher-order septin structure during appressorium morphogenesis by the rice blast fungus. Fungal Genet Biol 2020; 140:103385. [PMID: 32305452 DOI: 10.1016/j.fgb.2020.103385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
The rice blast fungus Magnaporthe oryzae differentiates a specialized infection structure called an appressorium, which is used to break into plant cells by directed application of enormous turgor force. Appressorium-mediated plant infection requires timely assembly of a higher-order septin ring structure at the base of the appressorium, which is needed to spatially orchestrate appressorium repolarization. Here we use quantitative 4D widefield fluorescence imaging to gain new insight into the spatiotemporal dynamics of septin ring formation, and septin-mediated actin re-organization, during appressorium morphogenesis by M. oryzae. We anticipate that the new knowledge will provide a quantitative framework for dissecting the molecular mechanisms of higher-order septin ring assembly in this devastating plant pathogenic fungus.
Collapse
Affiliation(s)
- Nawaraj Dulal
- Department of Entomology and Plant Pathology, Cell and Molecular Biology Program, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Audra Rogers
- Department of Entomology and Plant Pathology, Cell and Molecular Biology Program, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Yong Wang
- Department of Physics, Cell and Molecular Biology Program, Microelectronics Photonics Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Martin Egan
- Department of Entomology and Plant Pathology, Cell and Molecular Biology Program, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA.
| |
Collapse
|