1
|
Wu J, Han Y, Yao M, Zhao H, Li Z, Xie T, Zhang Y, Zeng X. The impact of oxidative balance on all-cause and cause-specific mortality in US adults and cancer survivors: evidence from NHANES 2001-2018. BMC Cancer 2025; 25:133. [PMID: 39849409 PMCID: PMC11756090 DOI: 10.1186/s12885-025-13531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Oxidative stress is a crucial pathophysiological mechanism in chronic diseases and mortality. While individual oxidative markers have been studied, the comprehensive impact of oxidative balance on mortality risks remains unclear, particularly among cancer survivors. We aimed to investigate the associations of Oxidative Balance Score (OBS) with mortality in both the general population and cancer survivors. METHODS This study included 37,317 adults (52% female) from the National Health and Nutrition Examination Survey (2001-2018). OBS was calculated based on antioxidant and pro-oxidant exposures and categorized into quartiles. Survey-weighted Cox proportional hazards models were used to estimate hazard ratios for mortality risks. Restricted cubic spline analyses were performed to examine potential non-linear relationships. Stratified analyses were conducted to further refine the findings. RESULTS During a mean follow-up of 9.1 years, 5,092 deaths occurred. Compared with the lowest quartile, the highest quartile of total OBS was associated with lower risks of all-cause mortality (HR 0.68) and cancer mortality (HR 0.55). Among cancer survivors, similar associations were observed with all-cause mortality (HR 0.66). Component analysis revealed consistent protective effects of antioxidant OBS (HR 0.60 for all-cause mortality), while higher pro-oxidant OBS showed varying associations across mortality causes. CONCLUSIONS Higher OBS was associated with lower mortality risks, particularly cancer-related mortality, in both the general population and cancer survivors. While antioxidant exposures showed consistent protective effects, the impact of pro-oxidant exposures varied by mortality causes.
Collapse
Affiliation(s)
- Juan Wu
- Department of family medicine & Division of General Internal Medicine, Department of internal medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Yingdong Han
- Department of family medicine & Division of General Internal Medicine, Department of internal medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Menghui Yao
- Department of family medicine & Division of General Internal Medicine, Department of internal medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - He Zhao
- Department of family medicine & Division of General Internal Medicine, Department of internal medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Zhikai Li
- Department of family medicine & Division of General Internal Medicine, Department of internal medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Tiange Xie
- Department of family medicine & Division of General Internal Medicine, Department of internal medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhang
- Department of family medicine & Division of General Internal Medicine, Department of internal medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Chinese Academy of Medical Sciences, Beijing, China.
| | - Xuejun Zeng
- Department of family medicine & Division of General Internal Medicine, Department of internal medicine, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Boldori JR, Nogueira JCC, Munieweg FR, Lunardi AG, de Freitas Rodrigues C, Cibin FWS, Denardin CC. Jabuticaba (Myrciaria trunciflora) extract improves metabolic and behavioral markers of obese rats fed on a hypercaloric diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:473-482. [PMID: 39207125 DOI: 10.1002/jsfa.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Obesity is a metabolic disease that affects many individuals around the world, related to imbalance between energy consumption and expenditure, which can lead to comorbidities. A healthy diet can significantly contribute to the prevention or treatment of this condition. Jabuticaba is an emerging fruit presenting a wide range of bioactive compounds and is being extensively studied due to its effects on lipid metabolism. The aim of this study was to evaluate the jabuticaba extract in the anxious-like behavior and in the lipid and oxidative metabolism in the context of obesity. METHODS Forty male Wistar rats divided into five groups were used. The animals received a standard diet and/or a hypercaloric diet and after 60 days of induction, interventions were carried out with jabuticaba extract (5% and 10%) via gavage for 30 days. RESULTS It can be observed that the jabuticaba extract was able to reverse the anxious behavior observed in obese animals and modulate parameters of lipid and oxidative metabolism. We observed a reduction in cholesterol and triglyceride levels compared to obese animals. Furthermore, we observed an improvement in oxidative parameters, with a reduction in protein carbonylation in the liver and modulation of antioxidant enzymes such as superoxide dismutase and catalase. Contrary to expectations, we did not observe changes in leptin, adiponectin and tumor necrosis factor alpha (TNF-α) levels. CONCLUSION Our work demonstrates that jabuticaba extract can improve metabolic, oxidative and behavioral changes in animals with obesity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jean Ramos Boldori
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Jean Carlos Costa Nogueira
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Félix Roman Munieweg
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Annelize Gruppi Lunardi
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Cristiane de Freitas Rodrigues
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | | | - Cristiane Casagrande Denardin
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| |
Collapse
|
3
|
Kato Y, Sato K, Nagamine H, Kanatani M, Horikoshi Y, Nakaso K. Cytoprotective effect of melatonin against MPP + toxicity in SH-SY5Y cells: Role sharing of two types of antioxidative activities of melatonin. Biochem Biophys Res Commun 2025; 742:151074. [PMID: 39626365 DOI: 10.1016/j.bbrc.2024.151074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Melatonin is a neurohormone that is not only a regulator of circadian cycles, but also a potent antioxidant. Parkinson's disease (PD) is a major neurodegenerative disease that may result from oxidative stress as a part of its pathogenic cascade. Therefore, antioxidants, including melatonin, have attracted attention as potential candidates for neuroprotection against PD-related neurotoxicity. In this study, we report that melatonin has 2 types of antioxidant mechanisms of neuroprotection in an experimental cellular PD model using 1-Methyl-4-phenylpyridinium ion (MPP+) in human neuroblastoma SH-SY5Y cells. The first mechanism is a classical antioxidative mechanism through the direct action of melatonin, which reduces lipid hydroperoxide and 8-OHdG. The second mechanism is an indirect antioxidative effect via the melatonin receptor (Mel-R)/PI3K/Akt/Nrf2 cascade. Melatonin and Mel-R agonist activated PI3K/Akt signaling and Nrf2. Both Mel-R antagonist and the PI3K inhibitor blocked transcription induced by Nrf2 and the cytoprotective effect of melatonin. Interestingly, the antioxidative effect due to the Nrf2-related mechanism contributed mainly to a decrease of protein carbonyl, but not to lipid hydroperoxide and 8-OHdG. Mel-R agonist also showed a similar effect. Our results elucidate the mechanism of melatonin's powerful antioxidative effect and suggest the application of melatonin therapy to PD-related cytotoxicity.
Collapse
Affiliation(s)
- Yugo Kato
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Kanon Sato
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Hidetoshi Nagamine
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Masahiro Kanatani
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan; Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Yosuke Horikoshi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Kazuhiro Nakaso
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan.
| |
Collapse
|
4
|
Zhang Z, Guo J. Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation. Antioxidants (Basel) 2024; 14:38. [PMID: 39857372 PMCID: PMC11759168 DOI: 10.3390/antiox14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Sun S, Li C, Hou H, Li J. Protein-metabolite Interactions Based on Chemical Targeting Methods. Chembiochem 2024:e202400852. [PMID: 39715006 DOI: 10.1002/cbic.202400852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The importance of the protein-metabolite interaction network extends beyond its relevance to life sciences focused on proteins, it also profoundly influences its mechanisms related to disease targets, drug screening, and clinical diagnosis and treatment. Research methods targeting protein-metabolite interaction focus on enhancing the detectable signals of specific interactions by examining the structural characteristics of both proteins and metabolites in conjunction with chemical molecules, playing a crucial role in elucidating the protein-metabolite interaction network. Consequently, this article outlines several chemical targeting strategies developed in recent years and provides examples of their applications in the discovery and interpretation of new protein-metabolite interaction pathways. Finally, a brief summary will be presented regarding technological advances, research prospects, and current challenges of protein-metabolite interaction research.
Collapse
Affiliation(s)
- Shuzhe Sun
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chuntong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 102209, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Beijing Life Science Academy, Beijing, 102209, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Zaimoglu M, Secinti KD, Altinoz MA, Bozkurt M, Eroglu U, Ozpiskin O, Mammadkhanli O, Bayatli E, Caglar YS, Attar A. Organelle-level toxicity of nanometals relevant to titanium implants. Original research and comprehensive literature overview. Tissue Cell 2024; 91:102612. [PMID: 39546971 DOI: 10.1016/j.tice.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study analyzed organelle toxicities of nanometals applied as free formulations or titanium rod-coating materials in rats. METHODS All materials were injected intraperitoneally, including the physiological saline applied to the control group. The first experimental group was implanted with nanosilver-coated titanium rods, and the second, third, and fourth groups received free nanosilver at rising levels. The fifth group was implanted with nanosilver, nanocopper, and nanozinc-coated titanium rods, and the sixth group received the same nanometals as free formulations. Light and electron microscopy and ICP-Mass Spectrometry were utilized to determine the neural, hepatic, and renal toxicities and tissue metal levels. RESULTS In brains, neuropil, myelin, and cellular damages occurred, especially in groups receiving high-dose nanosilver or nanometal combinations. Histiocyte accumulation and dark mitochondria within hepatocytes were discernible in the liver. Kidneys were the organs that were most severely affected by nanometal toxicity. The nephrotoxicity was apparent with the perturbations of the membrane infoldings and mitochondrial damage in the proximal and distal convoluted epithelia. Large angular peroxisomes developed inside the mesangial cells, and Golgi bodies increased in epithelial cells. Systemic metal levels increased on the thirtieth and prominently dropped on the sixtieth day. CONCLUSION These results provide insights into the extent of injury and organelle targets of nanometals and will guide optimizing the nanomaterials and implants used in the surgical practice.
Collapse
Affiliation(s)
- Murat Zaimoglu
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Kutsal Devrim Secinti
- Department of Neurosurgery, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Altunizade, Istanbul, Turkey
| | - Melih Bozkurt
- Department of Neurosurgery, Istanbul Arel University, Istanbul, Turkey; Department of Neurosurgery, Memorial Bahcelievler Hospital, Memorial Health Group, Istanbul, Turkey
| | - Umit Eroglu
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Omer Ozpiskin
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Orkhan Mammadkhanli
- Department of Neurosurgery, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Eyup Bayatli
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yusuf Sukru Caglar
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ayhan Attar
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
8
|
Montoya-Estrada A, García-Cortés AY, Romo-Yañez J, Ortiz-Luna GF, Arellano-Eguiluz A, Belmont-Gómez A, Lopéz-Ugalde V, León-Reyes G, Flores-Pliego A, Espejel-Nuñez A, Solis-Paredes JM, Reyes-Muñoz E. The Administration of Resveratrol and Vitamin C Reduces Oxidative Stress in Postmenopausal Women-A Pilot Randomized Clinical Trial. Nutrients 2024; 16:3775. [PMID: 39519608 PMCID: PMC11548005 DOI: 10.3390/nu16213775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
In postmenopausal women, due to endocrine changes, there is an increase in oxidative stress (OS) that predisposes them to cardiovascular and metabolic alterations. Sixty-one percent of women in this stage require a primary therapeutic strategy to decrease OS. This study aimed to evaluate the effect of resveratrol and vitamin C on OS in postmenopausal women. A randomized, double-blind clinical trial was carried out. Forty-six postmenopausal women with insulin resistance (HOMA-IR > 2.5) were included and divided into three treatment groups: group A: resveratrol, n = 13; group B: resveratrol + vitamin C, n = 15; and group C: vitamin C, n = 14. Between before and after the antioxidants, group B showed a decrease of 33% in lipohydroperoxides (p = 0.02), and malondialdehyde (MDA) decreased by 26% (p = 0.0007), 32% (p = 0.0001), and 38% (p = 0.0001) in groups A-C, respectively. For protein damage, group B is the most representative, with a decrease of 39% (p = 0.0001). For total antioxidant capacity (TAC), there were significant increases of 30% and 28% in groups B and C, respectively. For HOMA-IR, there were no significant differences among the study groups. Supplementation with this combination of antioxidants significantly decreases markers of OS in postmenopausal women. In addition, it increases TAC by up to 30%.
Collapse
Affiliation(s)
- Araceli Montoya-Estrada
- Coordination of Gynecological and Perinatal Endocrinology, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico; (A.M.-E.); (J.R.-Y.)
| | - Aline Yunuen García-Cortés
- Human Reproductive Biology, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico;
| | - José Romo-Yañez
- Coordination of Gynecological and Perinatal Endocrinology, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico; (A.M.-E.); (J.R.-Y.)
| | - Guillermo F. Ortiz-Luna
- Peri and Postmenopause Clinic, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico; (G.F.O.-L.); (A.A.-E.)
| | - Arturo Arellano-Eguiluz
- Peri and Postmenopause Clinic, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico; (G.F.O.-L.); (A.A.-E.)
| | - Aurora Belmont-Gómez
- Coordination of Clinical Pharmacology, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico; (A.B.-G.); (V.L.-U.)
| | - Vivian Lopéz-Ugalde
- Coordination of Clinical Pharmacology, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico; (A.B.-G.); (V.L.-U.)
| | - Guadalupe León-Reyes
- Nutrigenetics and Nutrigenomics Laboratory, National Institute of Genomic Medicine, Ministry of Health, Mexico City 14610, Mexico;
| | - Arturo Flores-Pliego
- Department of Immunobiochemistry, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico; (A.F.-P.); (A.E.-N.)
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico; (A.F.-P.); (A.E.-N.)
| | - Juan Mario Solis-Paredes
- Clinical Research Branch, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico;
| | - Enrique Reyes-Muñoz
- Research Direction, National Institute of Perinatology, Ministry of Health, Mexico City 11000, Mexico
| |
Collapse
|
9
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
10
|
Su Z, Lu W, Cao J, Xie Z, Zhao P. Endoplasmic reticulum stress in abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101500. [PMID: 39280692 PMCID: PMC11402186 DOI: 10.1016/j.ijcha.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by permanent dilatation of the abdominal aorta, which is accompanied by inflammation, degradation of the extracellular matrix (ECM) and disruption of vascular smooth muscle cell (VSMC) homeostasis. Endoplasmic reticulum (ER) stress is involved in the regulation of inflammation, oxidative stress and VSMC apoptosis, all of which are critical factors in AAA development. Although several studies have revealed the occurrence of ER stress in AAA development, the specific biological functions of ER stress in AAA development remain largely unknown. Given that targeting ER stress is a promising strategy for treating AAAs, further investigation of the physiological and pathological roles of ER stress in AAA development is warranted.
Collapse
Affiliation(s)
- Zhaohai Su
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
| |
Collapse
|
11
|
Liu K, Liu J, Xu A, Ding J. The role of polydatin in inhibiting oxidative stress through SIRT1 activation: A comprehensive review of molecular targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118322. [PMID: 38729537 DOI: 10.1016/j.jep.2024.118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reynoutria japonica Houtt is a medicinal plant renowned for its diverse pharmacological properties, including heat-clearing, toxin-removing, blood circulation promotion, blood stasis removal, diuretic action, and pain relief. The plant is commonly utilized in Traditional Chinese Medicine (TCM), and its major bioactive constituents consist of polydatin (PD) and resveratrol (RES). AIM OF THE STUDY To summarize the relevant targets of PD in various oxidative stress-related diseases through the activation of Silence information regulator1 (SIRT1). Furthermore, elucidating the pharmacological effects and signaling mechanisms to establish the basis for PD's secure clinical implementation and expanded range of application. MATERIALS AND METHODS Literature published before November 2023 on the structural analysis and pharmacological activities of PD was collected using online databases such as Google Scholar, PubMed, and Web of Science. The keywords were "polydatin", "SIRT1" and "oxidative stress". The inclusion criteria were research articles published in English, including in vivo and in vitro experiments and clinical studies. Non-research articles such as reviews, meta-analyses, and letters were excluded. RESULTS PD has been found to have significantly protective and curative effects on diseases associated with oxidative stress by regulating SIRT1-related targets including peroxisome proliferator-activated receptor γ coactivator 1-alpha (PGC-1α), nuclear factor erythroid2-related factor 2 (Nrf2), high mobility group box 1 protein (HMGB1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), p38/p53, as well as endothelial nitric oxide synthase (eNOs), among others. Strong evidence suggests that PD is an effective natural product for treating diseases related to oxidative stress. CONCLUSION PD holds promise as an effective treatment for a wide range of diseases, with SIRT1-mediated oxidative stress as its potential pathway.
Collapse
Affiliation(s)
- Ke Liu
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxi Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Anjian Xu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Junying Ding
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Egresi A, Blázovics A, Lengyel G, Tóth AG, Csongrády B, Jakab Z, Hagymási K. Redox Homeostasis and Non-Invasive Assessment of Significant Liver Fibrosis by Shear Wave Elastography. Diagnostics (Basel) 2024; 14:1945. [PMID: 39272729 PMCID: PMC11394606 DOI: 10.3390/diagnostics14171945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatic fibrosis with various origins can be estimated non-invasively by using certain biomarkers and imaging-based measurements. The aim of our study was to examine redox homeostasis biomarkers and liver stiffness measurements for the assessment of significant liver fibrosis in different etiologies of chronic liver diseases. A cohort study consisting of 88 chronic liver disease patients of both sexes (age 49.1 ± 14.7 years) was performed. Cytokine profiles as well as redox homeostasis characteristics were determined. Liver fibrosis stages were assessed with shear wave elastography. The plasma levels of four cytokines showed no significant alteration between the four fibrotic stages; however, higher values were measured in the F2-4 stages. Free sulfhydryl group concentration, the marker of redox homeostasis, was lower in significant fibrosis (F0-F1: 0.36 ± 0.06 vs. F2-4: 0.29 ± 0.08 mmol/L, p < 0.05). Higher chemiluminescence values, as free radical-antioxidant parameters, were detected in advanced fibrosis stages in erythrocytes (F0-F1: 36.00 ± 37.13 vs. F2-4: 51.47 ± 44.34 RLU%). These data suggest that oxidative stress markers can predict significant fibrosis, with the aim of reducing the number of protocol liver biopsies in patients unlikely to have significant disease; however, their role in distinguishing between the certain fibrosis groups needs further studies.
Collapse
Affiliation(s)
- Anna Egresi
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1091 Budapest, Hungary
| | - Anna Blázovics
- Department of Surgical Research and Techniques, The Heart and Vascular Center, Semmelweis University, 1091 Budapest, Hungary
| | - Gabriella Lengyel
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1091 Budapest, Hungary
| | - Adrienn Gréta Tóth
- Centre for Bioinformatics, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Barbara Csongrády
- Department of Radiology, Semmelweis University, 1091 Budapest, Hungary
| | - Zsuzsanna Jakab
- Department of Internal Medicine and Oncology, Semmelweis University, 1091 Budapest, Hungary
| | | |
Collapse
|
13
|
Lv XL, Yue YX, Jia BB, Weng YZ, Lu Y, Yang ZX. Bilirubin influences the predictive effect of body mass index on hospital mortality in critically ill patients. Heliyon 2024; 10:e32089. [PMID: 38882368 PMCID: PMC11176823 DOI: 10.1016/j.heliyon.2024.e32089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Body mass index (BMI) can predict mortality in critically ill patients. Moreover, mortality is related to increased bilirubin levels. Thus, herein, we aimed to investigate the effect of bilirubin levels on the usefulness of BMI in predicting mortality in critically ill patients. Methods Data were extracted from the Medical Information Mart for Intensive Care (MIMIC IV) database. Patients were divided into two groups according to their total bilirubin levels within 24 h. Cox proportional hazard regression models were applied to obtain adjusted hazard ratios and 95 % confidence intervals for the correlation between BMI categories and hospital mortality. The dose-response relationship was flexibly modeled using a restricted cubic spline (RCS) with three knots. Results Of the 14376 patients included, 3.4 % were underweight, 29.3 % were of normal body weight, 32.2 % were overweight, and 35.1 % were obese. For patients with total bilirubin levels <2 mg/dL, hospital mortality was significantly lower in patients with obesity than in normal body weight patients (p < 0.05). However, the opposite results were observed for patients with total bilirubin levels ≥2 mg/dL. The Cox proportional hazard regression models suggested that the risk of death was lower in patients with overweightness and obesity than in normal body weight patients when the total bilirubin levels were <2 mg/dL, but not in the other case (total bilirubin levels ≥2 mg/dL). RCS analyses showed that, for patients with total bilirubin levels <2 mg/dL, the risk of death gradually decreased with increasing BMI. Conversely, for patients with total bilirubin levels ≥2 mg/dL, this risk did not decrease with increasing BMI until reaching obesity, after which it increased rapidly. Conclusion BMI predicted the risk of death differently in critically ill patients with different bilirubin levels.
Collapse
Affiliation(s)
- Xiao-Ling Lv
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ying-Xing Yue
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Bing-Bing Jia
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ying-Zheng Weng
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Yan Lu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Zhou-Xin Yang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| |
Collapse
|
14
|
Gilbert E, Žagar A, López-Darias M, Megía-Palma R, Lister KA, Jones MD, Carretero MA, Serén N, Beltran-Alvarez P, Valero KCW. Environmental factors influence cross-talk between a heat shock protein and an oxidative stress protein modification in the lizard Gallotia galloti. PLoS One 2024; 19:e0300111. [PMID: 38470891 DOI: 10.1371/journal.pone.0300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Better understanding how organisms respond to their abiotic environment, especially at the biochemical level, is critical in predicting population trajectories under climate change. In this study, we measured constitutive stress biomarkers and protein post-translational modifications associated with oxidative stress in Gallotia galloti, an insular lizard species inhabiting highly heterogeneous environments on Tenerife. Tenerife is a small volcanic island in a relatively isolated archipelago off the West coast of Africa. We found that expression of GRP94, a molecular chaperone protein, and levels of protein carbonylation, a marker of cellular stress, change across different environments, depending on solar radiation-related variables and topology. Here, we report in a wild animal population, cross-talk between the baseline levels of the heat shock protein-like GRP94 and oxidative damage (protein carbonylation), which are influenced by a range of available temperatures, quantified through modelled operative temperature. This suggests a dynamic trade-off between cellular homeostasis and oxidative damage in lizards adapted to this thermally and topologically heterogeneous environment.
Collapse
Affiliation(s)
- Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, United Kingdom
| | - Anamarija Žagar
- National Institute of Biology, Ljubljana, Slovenia
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
| | - Marta López-Darias
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Rodrigo Megía-Palma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- Universidad de Alcalá (UAH), Biomedicine and Biotechnology, Alcalá de Henares, Madrid, Spain
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Karen A Lister
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Max Dolton Jones
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nina Serén
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Katharina C Wollenberg Valero
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- School of Biology and Environmental Science, University College Dublin, Belfield Campus, Dublin, Ireland
| |
Collapse
|
15
|
Pradel-Mora JJ, Marín G, Castillo-Rangel C, Hernández-Contreras KA, Vichi-Ramírez MM, Zarate-Calderon C, Herran Motta FS. Oxidative Stress in Postbariatric Patients: A Systematic Literature Review Exploring the Long-term Effects of Bariatric Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5646. [PMID: 38515558 PMCID: PMC10956951 DOI: 10.1097/gox.0000000000005646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
Background The present study investigates the impact of oxidative stress after bariatric surgery in patients with obesity. This field of study has gained great interest in recent years due to the role that oxidative stress plays in metabolic diseases. Obesity, by itself, can generate an increase in reactive oxygen and nitrogen species, intensifying cellular damage and promoting the progression of adverse metabolic conditions. In this context, bariatric surgery emerges as a candidate capable of modifying oxidative stress biomarkers, facilitating the patient's metabolic recovery. Methods A systematic review was carried out, identifying 30 studies found in databases such as PubMed, Scopus, Web of Science, and Google Scholar. It looked at the link between oxidative stress and recovery after bariatric surgery in patients. The selection of studies was based on the measurement of oxidative stress biomarkers before and after surgical intervention. Results The results reveal a significant decrease in oxidative stress biomarkers after bariatric surgery. However, a notable variability in antioxidant activity is observed between different patients, as well as a significant influence of comorbidities. Conclusions Bariatric surgery is postulated as an effective intervention in reducing oxidative stress in patients with obesity, enhancing antioxidant activity and improving patient recovery. This finding highlights the importance of considering oxidative stress management as an integral part of postoperative care, suggesting the need to implement complementary treatment strategies to optimize health outcomes.
Collapse
Affiliation(s)
- Jessica Juliana Pradel-Mora
- From the Plastic and Reconstructive Surgery, “UMAE Hospital de Especialidades Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Gerardo Marín
- Neural Dynamics and Modulation Lab, Cleveland Clinic, Cleveland, Ohio
| | - Carlos Castillo-Rangel
- Department of Neurosurgery, “Hospital Regional 1º de Octubre,” Institute of Social Security and Services for State Workers (ISSSTE), Mexico City, Mexico
| | | | | | | | - Fanny Stella Herran Motta
- Plastic and Reconstructive Surgery, “Centro Médico Nacional 20 de noviembre,” Institute of Social Security and Services for State Workers (ISSSTE), Mexico City, Mexico
| |
Collapse
|
16
|
Liu C, Ding X, Xie Y, Chen C, Zhao M, Duan Y, Yuan G, Ren J. Isolation and purification of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu peptides and study of their antioxidant effects and mechanisms. Front Pharmacol 2024; 15:1353871. [PMID: 38389921 PMCID: PMC10883310 DOI: 10.3389/fphar.2024.1353871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidative stress is a state of imbalance between oxidant and antioxidant effects in the body, which is closely associated with aging and many diseases. Therefore, the development of antioxidants has become urgent. In this study, we isolated three polypeptides, G-6-Y, P-8-R, and F-10-W, from Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu (E. sessiliflorus), based on the antioxidant and anti-aging properties of Eleutherococcus, and screened the most powerful free radical scavenging peptide P-8-R. Ultraviolet B (UVB)-induced oxidative stress damage in the skin was established to test the efficacy of P-8-R. In cellular experiments, P-8-R not only prevented oxidative stress damage in HaCaT cells, reduced intracellular reactive oxygen species levels, and inhibited the overexpression of matrix metalloproteinases but also inhibited apoptosis via the mitochondria-dependent apoptotic pathway; in animal experiments, P-8-R was able to prevent oxidative stress damage in the skin and reduce skin collagen loss by inhibiting the overexpression of MMPs to prevent mouse skin aging. In conclusion, the present study contributes to an in-depth understanding of the active compounds of Eleutherococcus, which is of great significance for the pharmacodynamic mechanism and industrial development of Eleutherococcus, and P-8-R is likely to become a potential antioxidant and anti-aging drug or skin care cosmetic in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, China
| | - Xuying Ding
- College of Pharmacy, Beihua University, Jilin, China
| | - Yining Xie
- College of Pharmacy, Beihua University, Jilin, China
| | - Chen Chen
- Affiliated Hospital of Yanbian University, Yanji, China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Yanming Duan
- College of Pharmacy, Beihua University, Jilin, China
| | - Guojing Yuan
- College of Pharmacy, Beihua University, Jilin, China
| | - Junxi Ren
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
17
|
Wang F, Liu Y, Dong Y, Zhao M, Huang H, Jin J, Fan L, Xiang R. Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1. Front Med 2024; 18:180-191. [PMID: 37776435 DOI: 10.1007/s11684-023-1003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/27/2023] [Indexed: 10/02/2023]
Abstract
Lipin proteins including Lipin 1-3 act as transcriptional co-activators and phosphatidic acid phosphohydrolase enzymes, which play crucial roles in lipid metabolism. However, little is known about the function of Lipin3 in triglyceride (TG) metabolism. Here, we identified a novel mutation (NM_001301860: p.1835A>T/p.D612V) of Lipin3 in a large family with hypertriglyceridemia (HTG) and obesity through whole-exome sequencing and Sanger sequencing. Functional studies revealed that the novel variant altered the half-life and stability of the Lipin3 protein. Hence, we generated Lipin3 heterozygous knockout (Lipin3-heKO) mice and cultured primary hepatocytes to explore the pathophysiological roles of Lipin3 in TG metabolism. We found that Lipin3-heKO mice exhibited obvious obesity, HTG, and non-alcoholic fatty liver disorder. Mechanistic study demonstrated that the haploinsufficiency of Lipin3 in primary hepatocytes may induce the overexpression and abnormal distribution of Lipin1 in cytosol and nucleoplasm. The increased expression of Lipin1 in cytosol may contribute to TG anabolism, and the decreased Lipin1 in nucleoplasm can reduce PGC1α, further leading to mitochondrial dysfunction and reduced TG catabolism. Our study suggested that Lipin3 was a novel disease-causing gene inducing obesity and HTG. We also established a relationship between Lipin3 and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fang Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yuxing Liu
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Yi Dong
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Meifang Zhao
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Hao Huang
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Jieyuan Jin
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Liangliang Fan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China.
| | - Rong Xiang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China.
| |
Collapse
|
18
|
Zhao M, Liu S, Wang Y, Lv K, Lou P, Zhou P, Zhu J, Li L, Cheng J, Lu Y, Liu J. The mitochondria‒paraspeckle axis regulates the survival of transplanted stem cells under oxidative stress conditions. Theranostics 2024; 14:1517-1533. [PMID: 38389853 PMCID: PMC10879866 DOI: 10.7150/thno.88764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Stem cell-based therapies have emerged as promising tools for tissue engineering and regenerative medicine, but their therapeutic efficacy is largely limited by the oxidative stress-induced loss of transplanted cells at injured tissue sites. To address this issue, we aimed to explore the underlying mechanism and protective strategy of ROS-induced MSC loss. Methods: Changes in TFAM (mitochondrial transcription factor A) signaling, mitochondrial function, DNA damage, apoptosis and senescence in MSCs under oxidative stress conditions were assessed using real-time PCR, western blotting and RNA sequencing, etc. The impact of TFAM or lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) knockdown or overexpression on mitochondrial function, DNA damage repair, apoptosis and senescence in MSCs was also analyzed. The effect of mitochondrion-targeted antioxidant (Mito-TEMPO) on the survival of transplanted MSCs was evaluated in a mouse model of renal ischemia/reperfusion (I/R) injury. Results: Mitochondrial ROS (mtROS) bursts caused defects in TFAM signaling and overall mitochondrial function, which further impaired NEAT1 expression and its mediated paraspeckle formation and DNA repair pathways in MSCs, thereby jointly promoting MSC senescence and death under oxidative stress. In contrast, targeted inhibition of the mtROS bursts is a sufficient strategy for attenuating early transplanted MSC loss at injured tissue sites, and coadministration of Mito-TEMPO improved the local retention of transplanted MSCs and reduced oxidative injury in ischemic kidneys. Conclusions: This study identified the critical role of the mitochondria‒paraspeckle axis in regulating cell survival and may provide insights into developing advanced stem cell therapies for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Meng Zhao
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shuyun Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhuo Wang
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke Lv
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Lou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingya Zhou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaying Zhu
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Lan Li
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Butcko AJ, Putman AK, Mottillo EP. The Intersection of Genetic Factors, Aberrant Nutrient Metabolism and Oxidative Stress in the Progression of Cardiometabolic Disease. Antioxidants (Basel) 2024; 13:87. [PMID: 38247511 PMCID: PMC10812494 DOI: 10.3390/antiox13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics and environmental factors such as diet. With the increased reliance on processed foods containing saturated fats, fructose and cholesterol, a mechanistic understanding of how these molecules cause metabolic disease is required. A major pathway by which excessive nutrients contribute to CMD is through oxidative stress. In this review, we discuss how oxidative stress can drive CMD and the role of aberrant nutrient metabolism and genetic risk factors and how they potentially interact to promote progression of MAFLD, CVD and CKD. This review will focus on genetic mutations that are known to alter nutrient metabolism. We discuss the major genetic risk factors for MAFLD, which include Patatin-like phospholipase domain-containing protein 3 (PNPLA3), Membrane Bound O-Acyltransferase Domain Containing 7 (MBOAT7) and Transmembrane 6 Superfamily Member 2 (TM6SF2). In addition, mutations that prevent nutrient uptake cause hypercholesterolemia that contributes to CVD. We also discuss the mechanisms by which MAFLD, CKD and CVD are mutually associated with one another. In addition, some of the genetic risk factors which are associated with MAFLD and CVD are also associated with CKD, while some genetic risk factors seem to dissociate one disease from the other. Through a better understanding of the causative effect of genetic mutations in CMD and how aberrant nutrient metabolism intersects with our genetics, novel therapies and precision approaches can be developed for treating CMD.
Collapse
Affiliation(s)
- Andrew J. Butcko
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| | - Ashley K. Putman
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48823, USA
| | - Emilio P. Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| |
Collapse
|
20
|
Berdaweel IA, Monroe TB, Alowaisi AA, Mahoney JC, Liang IC, Berns KA, Gao D, McLendon JM, Anderson EJ. Iron scavenging and suppression of collagen cross-linking underlie antifibrotic effects of carnosine in the heart with obesity. Front Pharmacol 2024; 14:1275388. [PMID: 38348353 PMCID: PMC10859874 DOI: 10.3389/fphar.2023.1275388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/13/2023] [Indexed: 02/15/2024] Open
Abstract
Oral consumption of histidyl dipeptides such as l-carnosine has been suggested to promote cardiometabolic health, although therapeutic mechanisms remain incompletely understood. We recently reported that oral consumption of a carnosine analog suppressed markers of fibrosis in liver of obese mice, but whether antifibrotic effects of carnosine extend to the heart is not known, nor are the mechanisms by which carnosine is acting. Here, we investigated whether oral carnosine was able to mitigate the adverse cardiac remodeling associated with diet induced obesity in a mouse model of enhanced lipid peroxidation (i.e., glutathione peroxidase 4 deficient mice, GPx4+/-), a model which mimics many of the pathophysiological aspects of metabolic syndrome and T2 diabetes in humans. Wild-type (WT) and GPx4+/-male mice were randomly fed a standard (CNTL) or high fat high sucrose diet (HFHS) for 16 weeks. Seven weeks after starting the diet, a subset of the HFHS mice received carnosine (80 mM) in their drinking water for duration of the study. Carnosine treatment led to a moderate improvement in glycemic control in WT and GPx4+/-mice on HFHS diet, although insulin sensitivity was not significantly affected. Interestingly, while our transcriptomic analysis revealed that carnosine therapy had only modest impact on global gene expression in the heart, carnosine substantially upregulated cardiac GPx4 expression in both WT and GPx4+/-mice on HFHS diet. Carnosine also significantly reduced protein carbonyls and iron levels in myocardial tissue from both genotypes on HFHS diet. Importantly, we observed a robust antifibrotic effect of carnosine therapy in hearts from mice on HFHS diet, which further in vitro experiments suggest is due to carnosine's ability to suppress collagen-cross-linking. Collectively, this study reveals antifibrotic potential of carnosine in the heart with obesity and illustrates key mechanisms by which it may be acting.
Collapse
Affiliation(s)
- Islam A. Berdaweel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Department of Clinical Pharmacy, College of Pharmacy, Yarmouk University, Irbid, Jordan
| | - T. Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Amany A. Alowaisi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Department of Clinical Pharmacy, College of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Jolonda C. Mahoney
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - I-Chau Liang
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Kaitlyn A. Berns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Dylan Gao
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jared M. McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
21
|
Rahimi H, Mirnezami M, Yazdabadi A, Hajihashemi A. Evaluation of systemic oxidative stress in patients with melasma. J Cosmet Dermatol 2024; 23:284-288. [PMID: 37461812 DOI: 10.1111/jocd.15924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 01/02/2024]
Abstract
BACKGROUND The significance of oxidative stress has been assessed and proven in the etiopathogenesis of many cutaneous disorders, but there are few studies that evaluated the role of only some factors involved in oxidative stress in patients with melasma. OBJECTIVE This study aimed to examine the role of oxidative stress in melasma and assess the relationship between systemic oxidative stress and the severity and extension of this disease. METHODS In this study, the serum levels of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), malondialdehyde (MDA), protein carbonyl (PC), selenium (Se), vitamin E (vit E), and vitamin C (vit C) of fifty patients with melasma were compared with those of fifty controls. RESULTS The serum level of MDA was significantly higher in the melasma group (3.08 vs. 2.35 U/mL; p < 0.05), and it was positively correlated with the severity (r = 0.4; p < 0.001) and extension (r = 0.3; p < 0.05) of the disease. Furthermore, the serum level of vit C was significantly lower in melasma patients (2.16 vs. 2.57 μg/mL; p < 0.001). CONCLUSION Systemic oxidative stress has a key role in the etiopathogenesis of melasma. Serum concentrations of MDA and vitamin C are indicators of this impairment.
Collapse
Affiliation(s)
- Hoda Rahimi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Mirnezami
- Department of Dermatology, Arak University of Medical Sciences, Arak, Iran
| | - Anousha Yazdabadi
- Department of Dermatology, Eastern Health, Box Hill, Victoria, Australia
- Monash University, Eastern Health, Box Hill, Victoria, Australia
- Department of Medical Education, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
22
|
Singh K, Gupta JK, Sethi P, Mathew S, Bhatt A, Sharma MC, Saha S, Shamim, Kumar S. Recent Advances in the Synthesis of Antioxidant Derivatives: Pharmacological Insights for Neurological Disorders. Curr Top Med Chem 2024; 24:1940-1959. [PMID: 39108007 DOI: 10.2174/0115680266305736240725052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024]
Abstract
Neurological disorders, characterized by oxidative stress (OS) and inflammation, have become a major global health concern. Redox reactions play a vital role in regulating the balance of the neuronal microenvironment. Specifically, the imbalance leads to a significant weakening of the organism's natural defensive mechanisms. This, in turn, causes the development of harmful oxidative stress, which plays a crucial role in the onset and progression of neurodegenerative diseases. The quest for effective therapeutic agents has led to significant advancements in the synthesis of antioxidant derivatives. This review provides a comprehensive overview of the recent developments in the use of novel antioxidant compounds with potential pharmacological applications in the management of neurological disorders. The discussed compounds encompass a diverse range of chemical structures, including polyphenols, vitamins, flavonoids, and hybrid molecules, highlighting their varied mechanisms of action. This review also focuses on the mechanism of oxidative stress in developing neurodegenerative disease. The neuroprotective effects of these antioxidant derivatives are explored in the context of specific neurological disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. The ultimate goal is to provide effective treatments for these debilitating conditions and improve the quality of life for patients.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Sojomon Mathew
- Department of Zoology, Government College, Kottayam, Kerala, India
| | - Alok Bhatt
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | | | - Sunam Saha
- Department of Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
23
|
Hassan HA, Ahmed HS, Hassan DF. Free radicals and oxidative stress: Mechanisms and therapeutic targets. Hum Antibodies 2024; 32:151-167. [PMID: 39031349 DOI: 10.3233/hab-240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND Free radicals are small extremely reactive species that have unpaired electrons. Free radicals include subgroups of reactive species, which are all a product of regular cellular metabolism. Oxidative stress happens when the free radicals production exceeds the capacity of the antioxidant system in the body's cells. OBJECTIVE The current review clarifies the prospective role of antioxidants in the inhibition and healing of diseases. METHODS Information on oxidative stress, free radicals, reactive oxidant species, and natural and synthetic antioxidants was obtained by searching electronic databases like PubMed, Web of Science, and Science Direct, with articles published between 1987 and 2023 being included in this review. RESULTS Free radicals exhibit a dual role in living systems. They are toxic byproducts of aerobic metabolism that lead to oxidative injury and tissue disorders and act as signals to activate appropriate stress responses. Endogenous and exogenous sources of reactive oxygen species are discussed in this review. Oxidative stress is a component of numerous diseases, including diabetes mellitus, atherosclerosis, cardiovascular disease, Alzheimer's disease, Parkinson's disease, and cancer. Although various small molecules assessed as antioxidants have shown therapeutic prospects in preclinical studies, clinical trial outcomes have been inadequate. Understanding the mechanisms through which antioxidants act, where, and when they are active may reveal a rational approach that leads to more tremendous pharmacological success. This review studies the associations between oxidative stress, redox signaling, and disease, the mechanisms through which oxidative stress can donate to pathology, the antioxidant defenses, the limits of their effectiveness, and antioxidant defenses that can be increased through physiological signaling, dietary constituents, and probable pharmaceutical interference. Prospective clinical applications of enzyme mimics and current progress in metal- and non-metal-based materials with enzyme-like activities and protection against chronic diseases have been discussed. CONCLUSION This review discussed oxidative stress as one of the main causes of illnesses, as well as antioxidant systems and their defense mechanisms that can be useful in inhibiting these diseases. Thus, the positive and deleterious effects of antioxidant molecules used to lessen oxidative stress in numerous human diseases are discussed. The optimal level of vitamins and minerals is the amount that achieves the best feed benefit, best growth rate, and health, including immune efficiency, and provides sufficient amounts to the body.
Collapse
|
24
|
Popa AD, Niță O, Caba L, Gherasim A, Graur M, Mihalache L, Arhire LI. From the Sun to the Cell: Examining Obesity through the Lens of Vitamin D and Inflammation. Metabolites 2023; 14:4. [PMID: 38276294 PMCID: PMC10820276 DOI: 10.3390/metabo14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Obesity affects more than one billion people worldwide and often leads to cardiometabolic chronic comorbidities. It induces senescence-related alterations in adipose tissue, and senescence is closely linked to obesity. Fully elucidating the pathways through which vitamin D exerts anti-inflammatory effects may improve our understanding of local adipose tissue inflammation and the pathogenesis of metabolic disorders. In this narrative review, we compiled and analyzed the literature from diverse academic sources, focusing on recent developments to provide a comprehensive overview of the effect of vitamin D on inflammation associated with obesity and senescence. The article reveals that the activation of the NF-κB (nuclear factor kappa B subunit 1) and NLRP3 inflammasome (nucleotide-binding domain, leucine-rich-containing, pyrin domain-containing-3) pathways through the toll-like receptors, which increases oxidative stress and cytokine release, is a common mechanism underlying inflammation associated with obesity and senescence, and it discusses the potential beneficial effect of vitamin D in alleviating the development of subclinical inflammation. Investigating the main target cells and pathways of vitamin D action in adipose tissue could help uncover complex mechanisms of obesity and cellular senescence. This review summarizes significant findings related to opportunities for improving metabolic health.
Collapse
Affiliation(s)
- Alina Delia Popa
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Otilia Niță
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lavinia Caba
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Andreea Gherasim
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Laura Mihalache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lidia Iuliana Arhire
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| |
Collapse
|
25
|
Adikusuma W, Firdayani F, Irham LM, Darmawi D, Hamidy MY, Nopitasari BL, Soraya S, Azizah N. Integrated genomic network analysis revealed potential of a druggable target for hemorrhoid treatment. Saudi Pharm J 2023; 31:101831. [PMID: 37965490 PMCID: PMC10641558 DOI: 10.1016/j.jsps.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023] Open
Abstract
Hemorrhoids are a prevalent medical condition that necessitates effective treatment options. The current options for treatment consist of oral medications, topical applications, or surgery, yet a scarcity of highly effective drugs still exists. Genetic markers provide promising avenues for investigating the treatment of hemorrhoids, as they may reveal intricate biological mechanisms and targeted drug therapies, ultimately enhancing more precise treatment tailored to the patient. This study aims to identify new drug candidates for treating hemorrhoids through a meticulous bioinformatics approach and integrated with genomic network analysis. After extracting 21 druggable target genes using DrugBank from 293 genes connected to hemorrhoids, 87 possible drugs were selected. Three of these drugs (ketamine, methylene blue, and fulvestrant) hold potential in addressing issues associated with hemorrhoids and have been supported by clinical or preclinical studies. Eighty-four compounds present new therapeutic possibilities for managing hemorrhoids. We highlight that our findings indicate that NOX1 and NOS3 genes are promising biomarkers, with NOS3 gaining significance owing to its robust systemic functional annotations. Sapropterin, an existing drug, is closely associated with NOS3, providing a clear target for biomarker-driven interventions. This study illustrates the potential of combining genomic network analysis with bioinformatics to repurpose drugs for treating hemorrhoids. Subsequent research will explore the mechanisms for utilizing NOS3 targeting in the treatment of hemorrhoids.
Collapse
Affiliation(s)
- Wirawan Adikusuma
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | | | - Darmawi Darmawi
- Department of Histology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Graduate School in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Muhammad Yulis Hamidy
- Department of Pharmacology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | | | - Soraya Soraya
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Nurul Azizah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| |
Collapse
|
26
|
Ruan ML, Wang J, Xia ZY, Li XW, Zhang B, Wang GL, Wu YY, Han Y, Deng J, Sun LH. An integrated mycotoxin-mitigating agent can effectively mitigate the combined toxicity of AFB 1, DON and OTA on the production performance, liver and oviduct health in broiler breeder hens. Food Chem Toxicol 2023; 182:114159. [PMID: 37913901 DOI: 10.1016/j.fct.2023.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
This study was to evaluate the efficacy of an integrated mycotoxin-mitigating agent in reducing the adverse effects of co-occurring dietary aflatoxin B1 deoxynivalenol and ochratoxin A on broiler breeder hens. 360 30-week-old Hubbard Efficiency Plus broiler breeder hens were allocated into four groups and received a basal diet (BD; Control), BD added 0.15 mg/kg aflatoxin B1+1.5 mg/kg deoxynivalenol+0.12 mg/kg ochratoxin A (Toxins), BD plus Toxins with 0.1% TOXO-XL (Toxins + XL1), and BD plus Toxins with 0.2% TOXO-XL (Toxins + XL2), respectively, for 8 weeks, and then received the same BD for another 4 weeks. Compared with control, mycotoxins decreased total egg weigh, egg laying rate, settable eggs rate, hatch of total eggs rate, egg quality, but increased feed/egg ratio and mortality rate, and impaired the liver and oviduct health during weeks 1-8 and(or) 9-12. It also increased PC and MDA concentrations, TUNEL-positive cells and IL-1β and IL-6 expression, and decreased T-AOC, GPX and CAT activities in liver and/or oviduct. Notably, most of these negative changes were mitigated by both dosages of TOXO-XL. Generally, 0.2% TOXO-XL displayed better mitigation effects than 0.1% TOXO-XL. Conclusively, these findings revealed that TOXO-XL could mitigate the combined mycotoxins-induced toxicity on the performance, liver and oviduct health, through the regulation of redox, immunity, and apoptosis in broiler breeder hens.
Collapse
Affiliation(s)
- Meng-Ling Ruan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhi-Yuan Xia
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue-Wu Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Newhope Liuhe Co. Ltd., Beijing, 100102, China
| | - Bo Zhang
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Guan-Lin Wang
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yuan-Yuan Wu
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yanming Han
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
27
|
Liu Y, Zhang H, Fan C, Liu F, Li S, Li J, Zhao H, Zeng X. Potential role of Bcl2 in lipid metabolism and synaptic dysfunction of age-related hearing loss. Neurobiol Dis 2023; 187:106320. [PMID: 37813166 DOI: 10.1016/j.nbd.2023.106320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Age-related hearing loss (ARHL) is a prevalent condition affecting millions of individuals globally. This study investigated the role of the cell survival regulator Bcl2 in ARHL through in vitro and in vivo experiments and metabolomics analysis. The results showed that the lack of Bcl2 in the auditory cortex affects lipid metabolism, resulting in reduced synaptic function and neurodegeneration. Immunohistochemical analysis demonstrated enrichment of Bcl2 in specific areas of the auditory cortex, including the secondary auditory cortex, dorsal and ventral areas, and primary somatosensory cortex. In ARHL rats, a significant decrease in Bcl2 expression was observed in these areas. RNAseq analysis showed that the downregulation of Bcl2 altered lipid metabolism pathways within the auditory pathway, which was further confirmed by metabolomics analysis. These results suggest that Bcl2 plays a crucial role in regulating lipid metabolism, synaptic function, and neurodegeneration in ARHL; thereby, it could be a potential therapeutic target. We also revealed that Bcl2 probably has a close connection with lipid peroxidation and reactive oxygen species (ROS) production occurring in cochlear hair cells and cortical neurons in ARHL. The study also identified changes in hair cells, spiral ganglion cells, and nerve fiber density as consequences of Bcl2 deficiency, which could potentially contribute to the inner ear nerve blockage and subsequent hearing loss. Therefore, targeting Bcl2 may be a promising potential therapeutic intervention for ARHL. These findings provide valuable insights into the molecular mechanisms underlying ARHL and may pave the way for novel treatment approaches for this prevalent age-related disorder.
Collapse
Affiliation(s)
- Yue Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, China; Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China.
| | - Huasong Zhang
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China; Department of Otolaryngology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China; Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China.
| | - Cong Fan
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Feiyi Liu
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Shaoying Li
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Juanjuan Li
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, China; Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China.
| |
Collapse
|
28
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
29
|
Wang Y, Cheng H, Wang T, Zhang K, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif 2023; 56:e13448. [PMID: 36915968 PMCID: PMC10472537 DOI: 10.1111/cpr.13448] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Low back pain (LBP) is a leading cause of labour loss and disability worldwide, and it also imposes a severe economic burden on patients and society. Among symptomatic LBP, approximately 40% is caused by intervertebral disc degeneration (IDD). IDD is the pathological basis of many spinal degenerative diseases such as disc herniation and spinal stenosis. Currently, the therapeutic approaches for IDD mainly include conservative treatment and surgical treatment, neither of which can solve the problem from the root by terminating the degenerative process of the intervertebral disc (IVD). Therefore, further exploring the pathogenic mechanisms of IDD and adopting targeted therapeutic strategies is one of the current research hotspots. Among the complex pathophysiological processes and pathogenic mechanisms of IDD, oxidative stress is considered as the main pathogenic factor. The delicate balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining the normal function and survival of IVD cells. Excessive ROS levels can cause damage to macromolecules such as nucleic acids, lipids, and proteins of cells, affect normal cellular activities and functions, and ultimately lead to cell senescence or death. This review discusses the potential role of oxidative stress in IDD to further understand the pathophysiological processes and pathogenic mechanisms of IDD and provides potential therapeutic strategies for the treatment of IDD.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huiguang Cheng
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tao Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kun Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yumin Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Kang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
30
|
He Q, Zhang X, Yang X. Glutathione Mitigates Meiotic Defects in Porcine Oocytes Exposed to Beta-cypermethrin by Regulating ROS Levels. Toxicology 2023; 494:153592. [PMID: 37442269 DOI: 10.1016/j.tox.2023.153592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Beta-cypermethrin (β-CYP) is a commonly used insecticide that is potentially toxic and has adverse effects on the health of both animals and humans. Studies have indicated that β-CYP damages organs like the liver, thyroid, intestinal tract, and uterus. However, the underlying mechanisms that β-CYP affects oocyte quality are poorly understood. According to our research, β-CYP exposure led to the aberrant assembly of spindles and alignment of chromosomes, resulting in porcine oocytes' defective nuclear maturation. Concurrently, β-CYP exposure perturbed the cytoplasmic maturation by disturbing the cortical granules (CGs), endoplasmic reticulum (ER), and mitochondrial integrity. It also led to accumulating reactive oxygen species (ROS) and apoptosis. We found that supplementation with glutathione (GSH) mitigated the meiotic defects induced by β-CYP exposure via regulating ROS levels. Our observations illustrate that β-CYP exposure adversely impacts oocyte meiotic maturation, and taking GSH supplementation is an effective strategy.
Collapse
Affiliation(s)
- Qinyuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China; Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China
| | - Xian Zhang
- Department of Gynecology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
31
|
Dong L, Xu M, Li Y, Xu W, Wu C, Zheng H, Xiao Z, Sun G, Ding L, Li X, Li W, Zhou L, Xia Q. SMURF1 attenuates endoplasmic reticulum stress by promoting the degradation of KEAP1 to activate NRF2 antioxidant pathway. Cell Death Dis 2023; 14:361. [PMID: 37316499 PMCID: PMC10267134 DOI: 10.1038/s41419-023-05873-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Cancer cells consistently utilize the unfolded protein response (UPR) to encounter the abnormal endoplasmic reticulum (ER) stress induced by the accumulation of misfolded proteins. Extreme activation of the UPR could also provoke maladaptive cell death. Previous reports have shown that NRF2 antioxidant signaling is activated by UPR and serves as noncanonical pathway to defense and reduce excessive ROS levels during ER stress. However, the mechanisms of regulating NRF2 signaling upon ER stress in glioblastoma have not been fully elucidated. Here we identify that SMURF1 protects against ER stress and facilitates glioblastoma cell survival by rewiring KEAP1-NRF2 pathway. We show that ER stress induces SMURF1 degradation. Knockdown of SMURF1 upregulates IRE1 and PERK signaling in the UPR pathway and prevents ER-associated protein degradation (ERAD) activity, leading to cell apoptosis. Importantly, SMURF1 overexpression activates NRF2 signaling to reduce ROS levels and alleviate UPR-mediated cell death. Mechanistically, SMURF1 interacts with and ubiquitinates KEAP1 for its degradation (NRF2 negative regulator), resulting in NRF2 nuclear import. Moreover, SMURF1 loss reduces glioblastoma cell proliferation and growth in subcutaneously implanted nude mice xenografts. Taken together, SMURF1 rewires KEAP1-NRF2 pathway to confer resistance to ER stress inducers and protect glioblastoma cell survival. ER stress and SMURF1 modulation may provide promising therapeutic targets for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengchuan Xu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Li
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wanting Xu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chengwei Wu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hanfei Zheng
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenyu Xiao
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guochen Sun
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lei Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaobo Li
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Wenming Li
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Liying Zhou
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Qin Xia
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
32
|
Pelczyńska M, Moszak M, Wesołek A, Bogdański P. The Preventive Mechanisms of Bioactive Food Compounds against Obesity-Induced Inflammation. Antioxidants (Basel) 2023; 12:1232. [PMID: 37371961 DOI: 10.3390/antiox12061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary patterns are promising strategies for preventing and treating obesity and its coexisting inflammatory processes. Bioactive food compounds have received considerable attention due to their actions against obesity-induced inflammation, with limited harmful side effects. They are perceived as food ingredients or dietary supplements other than those necessary to meet basic human nutritional needs and are responsible for positive changes in the state of health. These include polyphenols, unsaturated fatty acids, and probiotics. Although the exact mechanisms of bioactive food compounds' action are still poorly understood, studies have indicated that they involve the modulation of the secretion of proinflammatory cytokines, adipokines, and hormones; regulate gene expression in adipose tissue; and modify the signaling pathways responsible for the inflammatory response. Targeting the consumption and/or supplementation of foods with anti-inflammatory potential may represent a new approach to obesity-induced inflammation treatment. Nevertheless, more studies are needed to evaluate strategies for bioactive food compound intake, especially times and doses. Moreover, worldwide education about the advantages of bioactive food compound consumption is warranted to limit the consequences of unhealthy dietary patterns. This work presents a review and synthesis of recent data on the preventive mechanisms of bioactive food compounds in the context of obesity-induced inflammation.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Małgorzata Moszak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Agnieszka Wesołek
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 10 Fredry Street, 61-701 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| |
Collapse
|
33
|
Ma Y, Meng X, Sowanou A, Wang J, Li H, Li A, Zhong N, Yao Y, Pei J. Effect of Fluoride on the Expression of 8-Hydroxy-2'-Deoxyguanosine in the Blood, Kidney, Liver, and Brain of Rats. Biol Trace Elem Res 2023; 201:2904-2916. [PMID: 35984601 DOI: 10.1007/s12011-022-03394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Excessive exposure of fluoride not only leads to damage on bone, but also has an adverse effect on soft tissues. Oxidative DNA damage induced by fluoride is thought to be one of the toxic mechanisms of fluoride effect. However, the dose-response of fluoride on oxidative DNA damage is barely studied in organisms. This study investigated the concentration of fluoride in rat blood, kidney, liver, and brain as well as the dose-time effect of fluoride on the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the above tissues. Rats were exposed to 0 mg/L, 25 mg/L, 50 mg/L, and 100 mg/L of fluorine ion and treated for one and three months. The results showed that the accumulation of fluoride in soft tissues was very different. At the first month, blood fluoride was increased, liver and brain fluoride showed a U-shaped change, and kidney fluoride was not significant. At the third month, blood fluoride was altered with an inverted U-shaped change, kidney and brain fluoride increased, but liver fluoride decreased. Both the exposure concentration and the time of exposure had a significant effect on the expression of 8-OHdG in the above tissues. However, the effect patterns of fluoride on these tissues were notably different at different times. At the first month of fluoride treatment, blood, kidney, and liver 8-OHdG decreased with the increasing fluoride concentration. At the third month, blood 8-OHdG showed a U-shaped change, but kidney 8-OHdG altered with an inverted U-shaped change. Liver 8-OHdG increased, while brain 8-OHdG decreased at the third month. Correlation analysis showed that only blood 8-OHdG was significantly inversely correlated with blood fluoride and dental fluorosis grade in both the first and third months. Liver 8-OHdG was negatively and significantly correlated with liver fluoride. There was a weak but nonsignificant correlation between kidney and brain 8-OHdG and fluoride in both tissues. Additionally, blood 8-OHdG was positively correlated with kidney and liver 8-OHdG at the first month and positively correlated with brain 8-OHdG at the third month. Taken together, our data suggests that concentration and time of fluoride exposure had a significant effect on 8-OHdG, but the effect patterns of fluoride on 8-OHdG were different in the tissues, which suggests that the impact of fluoride on 8-OHdG may be a tissue-specific, as well as a non-monotonic positive correlation.
Collapse
Affiliation(s)
- Yongzheng Ma
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xinyue Meng
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Alphonse Sowanou
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Jian Wang
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Hanying Li
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ailin Li
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Nan Zhong
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yingjie Yao
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Junrui Pei
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
34
|
Muñoz-Mayorga D, Tovar A, Díaz-Muñoz M, Morales T. Lactation attenuates pro-oxidant reactions in the maternal brain. Mol Cell Endocrinol 2023; 565:111888. [PMID: 36804275 DOI: 10.1016/j.mce.2023.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Reactive oxygen species (ROS) are intimately linked to bioenergetics and redox biology, contributing to cellular functioning and physiological signaling, but also acting as toxic agents during oxidative stress. Hence, the balance between pro-oxidant reactions and the activity of antioxidant defenses sustains a basal oxidative status, controls the increase of redox signaling, and mediates potential pathological events during oxidative stress. Maternal experience, especially during nursing, requires high energetic demands and expenditure to ensure the well-being of the offspring. The mother must adapt from satisfying her own needs to additionally fulfilling those of her descendants. Oxidative stress has been proposed as one of the reproductive trade-off hallmarks. However, the oxidative shielding hypothesis has also been proposed in the context of reproduction. The reproductive experience induces a wide range of well-documented changes in the female brain, which potentially lead to protection against the enhanced oxidative activity. To date, the metabolic and cellular mechanisms that underlie lactation-induced neuroprotection against oxidants are unknown. The neuroendocrine changes in the brain of the lactating dam promote diminished propensity to excitotoxic brain injury and stress, as well as enhanced neuroprotection and plasticity. In addition to review studies on the oxidant balance due to motherhood, we included new data from our laboratory, addressing the importance of measuring pro-oxidant reactions in separated brain regions. The hippocampus of lactating rats exhibits lower levels of pro-oxidant reactions than that of virgin rats, supporting the oxidative shielding hypothesis in lactation.
Collapse
Affiliation(s)
- Daniel Muñoz-Mayorga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Adriana Tovar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
35
|
Kitamura Y, Oikawa S, Chang J, Mori Y, Ichihara G, Ichihara S. Carbonylated Proteins as Key Regulators in the Progression of Metabolic Syndrome. Antioxidants (Basel) 2023; 12:antiox12040844. [PMID: 37107219 PMCID: PMC10135001 DOI: 10.3390/antiox12040844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Based on the known role of oxidative stress in the pathogenesis and progression of metabolic syndrome, we used two-dimensional gel electrophoresis with immunochemical detection of protein carbonyls (2D-Oxyblot) to characterize the carbonylated proteins induced by oxidative stress in spontaneously hypertensive rats/NDmcr-cp (CP), an animal model of metabolic syndrome. We also profiled the proteins that showed change of expression levels in their epididymal adipose tissue at the pre-symptomatic (6-week-old) and the symptomatic (25-week-old) stages of the metabolic syndrome. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to analyze proteins extracted from the epididymal adipose tissue. The up-regulated proteins identified at the pre-symptomatic stage were mainly associated with ATP production and redox reaction, while the down-regulated proteins found at the symptomatic stage were involved in antioxidant activity and the tricarboxylic acid (TCA) cycle. Further analysis using the 2D-Oxyblot showed significantly high carbonylation levels of gelsolin and glycerol-3-phosphate dehydrogenase [NAD+] at the symptomatic stage. These results suggest that reduced antioxidant capacity underlies the increased oxidative stress state in the metabolic syndrome. The identified carbonylated proteins, including gelsolin, are potential targets that may act as key regulators in the progression of the metabolic syndrome.
Collapse
Affiliation(s)
- Yuki Kitamura
- Department of Molecular and Environmental Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
| | - Shinji Oikawa
- Department of Molecular and Environmental Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Jie Chang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Yurie Mori
- Department of Molecular and Environmental Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Sciences, Noda 278-8510, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
36
|
Świątkiewicz I, Wróblewski M, Nuszkiewicz J, Sutkowy P, Wróblewska J, Woźniak A. The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. Int J Mol Sci 2023; 24:ijms24076382. [PMID: 37047352 PMCID: PMC10094567 DOI: 10.3390/ijms24076382] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiometabolic diseases (CMDs), including cardiovascular disease (CVD), metabolic syndrome (MetS), and type 2 diabetes (T2D), are associated with increased morbidity and mortality. The growing prevalence of CVD is mostly attributed to the aging population and common occurrence of risk factors, such as high systolic blood pressure, elevated plasma glucose, and increased body mass index, which led to a global epidemic of obesity, MetS, and T2D. Oxidant–antioxidant balance disorders largely contribute to the pathogenesis and outcomes of CMDs, such as systemic essential hypertension, coronary artery disease, stroke, and MetS. Enhanced and disturbed generation of reactive oxygen species in excess adipose tissue during obesity may lead to increased oxidative stress. Understanding the interplay between adiposity, oxidative stress, and cardiometabolic risks can have translational impacts, leading to the identification of novel effective strategies for reducing the CMDs burden. The present review article is based on extant results from basic and clinical studies and specifically addresses the various aspects associated with oxidant–antioxidant balance disorders in the course of CMDs in subjects with excess adipose tissue accumulation. We aim at giving a comprehensive overview of existing knowledge, knowledge gaps, and future perspectives for further basic and clinical research. We provide insights into both the mechanisms and clinical implications of effects related to the interplay between adiposity and oxidative stress for treating and preventing CMDs. Future basic research and clinical trials are needed to further examine the mechanisms of adiposity-enhanced oxidative stress in CMDs and the efficacy of antioxidant therapies for reducing risk and improving outcome of patients with CMDs.
Collapse
|
37
|
Lisakovska O, Labudzynskyi D, Khomenko A, Isaev D, Savotchenko A, Kasatkina L, Savosko S, Veliky M, Shymanskyi I. Brain vitamin D3-auto/paracrine system in relation to structural, neurophysiological, and behavioral disturbances associated with glucocorticoid-induced neurotoxicity. Front Cell Neurosci 2023; 17:1133400. [PMID: 37020845 PMCID: PMC10067932 DOI: 10.3389/fncel.2023.1133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/22/2023] Open
Abstract
IntroductionVitamin D3 (VD3) is a potent para/autocrine regulator and neurosteroid that can strongly influence nerve cell function and counteract the negative effects of glucocorticoid (GC) therapy. The aim of the study was to reveal the relationship between VD3 status and behavioral, structural-functional and molecular changes associated with GC-induced neurotoxicity.MethodsFemale Wistar rats received synthetic GC prednisolone (5 mg/kg b.w.) with or without VD3 (1000 IU/kg b.w.) for 30 days. Behavioral, histological, physiological, biochemical, molecular biological (RT-PCR, Western blotting) methods, and ELISA were used.Results and discussionThere was no difference in open field test (OFT), while forced swim test (FST) showed an increase in immobility time and a decrease in active behavior in prednisolone-treated rats, indicative of depressive changes. GC increased the perikaryon area, enlarged the size of the nuclei, and caused a slight reduction of cell density in CA1-CA3 hippocampal sections. We established a GC-induced decrease in the long-term potentiation (LTP) in CA1-CA3 hippocampal synapses, the amplitude of high K+-stimulated exocytosis, and the rate of Ca2+-dependent fusion of synaptic vesicles with synaptic plasma membranes. These changes were accompanied by an increase in nitration and poly(ADP)-ribosylation of cerebral proteins, suggesting the development of oxidative-nitrosative stress. Prednisolone upregulated the expression and phosphorylation of NF-κB p65 subunit at Ser311, whereas downregulating IκB. GC loading depleted the circulating pool of 25OHD3 in serum and CSF, elevated VDR mRNA and protein levels but had an inhibitory effect on CYP24A1 and VDBP expression. Vitamin D3 supplementation had an antidepressant-like effect, decreasing the immobility time and stimulating active behavior. VD3 caused a decrease in the size of the perikaryon and nucleus in CA1 hippocampal area. We found a recovery in depolarization-induced fusion of synaptic vesicles and long-term synaptic plasticity after VD3 treatment. VD3 diminished the intensity of oxidative-nitrosative stress, and suppressed the NF-κB activation. Its ameliorative effect on GC-induced neuroanatomical and behavioral abnormalities was accompanied by the 25OHD3 repletion and partial restoration of the VD3-auto/paracrine system.ConclusionGC-induced neurotoxicity and behavioral disturbances are associated with increased oxidative-nitrosative stress and impairments of VD3 metabolism. Thus, VD3 can be effective in preventing structural and functional abnormalities in the brain and behavior changes caused by long-term GC administration.
Collapse
Affiliation(s)
- Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
- *Correspondence: Olha Lisakovska,
| | - Dmytro Labudzynskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Anna Khomenko
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Alina Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Ludmila Kasatkina
- Research Laboratory for Young Scientists, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Serhii Savosko
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Mykola Veliky
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Ihor Shymanskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| |
Collapse
|
38
|
Somin S, Kulasiri D, Samarasinghe S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: a review of related concepts and strategies for the development of computational modelling. Transl Neurodegener 2023; 12:11. [PMID: 36907887 PMCID: PMC10009979 DOI: 10.1186/s40035-023-00344-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment for Alzheimer's disease (AD) can be more effective in the early stages. Although we do not completely understand the aetiology of the early stages of AD, potential pathological factors (amyloid beta [Aβ] and tau) and other co-factors have been identified as causes of AD, which may indicate some of the mechanism at work in the early stages of AD. Today, one of the primary techniques used to help delay or prevent AD in the early stages involves alleviating the unwanted effects of oxidative stress on Aβ clearance. 4-Hydroxynonenal (HNE), a product of lipid peroxidation caused by oxidative stress, plays a key role in the adduction of the degrading proteases. This HNE employs a mechanism which decreases catalytic activity. This process ultimately impairs Aβ clearance. The degradation of HNE-modified proteins helps to alleviate the unwanted effects of oxidative stress. Having a clear understanding of the mechanisms associated with the degradation of the HNE-modified proteins is essential for the development of strategies and for alleviating the unwanted effects of oxidative stress. The strategies which could be employed to decrease the effects of oxidative stress include enhancing antioxidant activity, as well as the use of nanozymes and/or specific inhibitors. One area which shows promise in reducing oxidative stress is protein design. However, more research is needed to improve the effectiveness and accuracy of this technique. This paper discusses the interplay of potential pathological factors and AD. In particular, it focuses on the effect of oxidative stress on the expression of the Aβ-degrading proteases through adduction of the degrading proteases caused by HNE. The paper also elucidates other strategies that can be used to alleviate the unwanted effects of oxidative stress on Aβ clearance. To improve the effectiveness and accuracy of protein design, we explain the application of quantum mechanical/molecular mechanical approach.
Collapse
Affiliation(s)
- Sarawoot Somin
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand.,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand. .,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand
| |
Collapse
|
39
|
Pratelli G, Di Liberto D, Carlisi D, Emanuele S, Giuliano M, Notaro A, De Blasio A, Calvaruso G, D’Anneo A, Lauricella M. Hypertrophy and ER Stress Induced by Palmitate Are Counteracted by Mango Peel and Seed Extracts in 3T3-L1 Adipocytes. Int J Mol Sci 2023; 24:ijms24065419. [PMID: 36982490 PMCID: PMC10048994 DOI: 10.3390/ijms24065419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In this context, the present study showed how the peel and seed extracts of mango (Mangifera indica L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1 adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation. In addition, mango extracts down-regulated the adipogenic transcription factor PPARγ as well as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1. Collectively, these results suggest that the intake of mango extract-enriched foods in association with a correct lifestyle could exert beneficial effects to counteract obesity.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-09123865854
| |
Collapse
|
40
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
41
|
Zhong Y, Ma T, Fu Z, Chen A, Yu J, Huang Y, Fu J. Effects of Hydrogen Peroxide-Induced Oxidative Stress on Intestinal Morphology, Redox Status, and Related Molecules in Squabs. Animals (Basel) 2023; 13:ani13040749. [PMID: 36830536 PMCID: PMC9952636 DOI: 10.3390/ani13040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The purpose of this study was to evaluate the potential effect of oxidative stress on the intestine of squabs, and to explore the molecular mechanisms. A total of 360 1-day-old squabs were divided evenly into five different groups (n = 72/group): control, negative control, low, medium, and high dose groups. On the 3rd, 5th, and 7th days, squabs in the control group were not effectively treated and the negative control group were intraperitoneally injected with normal saline, whereas the H2O2 group was injected with H2O2 of 2.0, 2.5, and 3.0 mmol/kg BW respectively. On the 21st day, the serum and duodenum were collected for further analysis. The results indicated that, compared with the control group, H2O2 caused squabs weight loss and intestinal morphology damage, and these effects were enhanced with an increase in dose. Further examination revealed that the contents of oxidative stress markers in both the serum and duodenum of the H2O2 group were significantly enhanced as the dose was increased. In addition, H2O2 exposure also resulted in the lower mRNA expression of Occludin, ZO-1, Beclin1, Atg5, and Caspase-3, but the expression of Claudin2 and Bcl-2 was decreased in comparison to the control group. These findings suggested that duodenal oxidative damage was accompanied by weight loss, changes in intestinal morphology, redox status imbalance, apoptosis as well as autophagy of intestinal cells, with, effects of 3.0 mmol/kg BW of H2O2 being the most severe.
Collapse
Affiliation(s)
- Yajing Zhong
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tingting Ma
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhiqi Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ailing Chen
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiahao Yu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.H.); (J.F.)
| | - Jing Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (Y.H.); (J.F.)
| |
Collapse
|
42
|
Basu T, Selman A, Reddy AP, Reddy PH. Current Status of Obesity: Protective Role of Catechins. Antioxidants (Basel) 2023; 12:antiox12020474. [PMID: 36830032 PMCID: PMC9952428 DOI: 10.3390/antiox12020474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity is a growing health concern in today's society. Current estimates indicate that obesity occurs in both adults and young people. Recent research also found that the Hispanic population in the U.S. is 1.9 times more likely to be overweight as compared to their non-Hispanic population. Obesity is a multifactorial disease that has a variety of causes. All current treatment options incorporate dietary changes aimed at establishing a negative energy balance. According to current scientific research, multiple factors are involved with the development of obesity, including genetic, biochemical, psychological, environmental, behavioral, and socio-demographic factors. The people who suffer from obesity are far more likely to suffer serious health problems, such as stroke, diabetes, lung disease, bone and joint disease, cancer, heart disease, neurological disorders, and poor mental health. Studies indicate that multiple cellular changes are implicated in the progression of obesity, mitochondrial dysfunction, deregulated microRNAs, inflammatory changes, hormonal deregulation, and others. This article highlights the role that oxidative stress plays in obesity and current obesity-prevention techniques with an emphasis on the impact of catechins to prevent and treat obesity.
Collapse
Affiliation(s)
- Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3194; Fax: +1-806-743-2334
| |
Collapse
|
43
|
Liang H, Shi H, Li Y, Wang D, Zhang Y. Mechanism of Aspirin oxidative stress regulating interleukin-induced apoptosis in nucleus pulposus cells in a rat model of intervertebral disc degeneration. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:124. [PMID: 36819489 PMCID: PMC9929745 DOI: 10.21037/atm-22-5700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Background Intervertebral disc degeneration (IDD) is an important cause of low back pain. Increase of reactive oxygen species (ROS), overexpression of inflammatory factors, and loss of extracellular matrix are important factors in the pathological changes of IDD. The present study aimed to investigate the mechanism of action of Aspirin regulating oxidative stress in IDD, so as to propose new treatment. Methods Nucleus pulposus cells (NPCs) were isolated from the caudal intervertebral discs of Sprague Dawley (SD) rats under sterile conditions. The expression of ROS and inflammatory factors was detected sequentially, and the degree of degeneration of nucleus pulposus cells was observed by real-time fluorescence quantitative polymerase chain reaction (PCR) and cell immunofluorescence staining. In vivo, the caudal disc puncture model was used to induce degeneration, and a local injection of 10 or 100 µg/mL Aspirin was performed. The rats were sacrificed 1 week later, and the disc specimens of the tail vertebrae were collected for imaging, histomorphology, and immunohistochemical analysis. Results In vitro experiments showed that lipopolysaccharide (LPS) could significantly induce oxidative stress in NPCs and stimulate NPCs to secrete a large amount of ROS and inflammatory factors, which eventually leads to the reduction of collagen type II and polyglycoprotein gene expression in NPCs and the high expression of matrix metalloproteinase (MMP). Consequently, NPCs degeneration occurs. Conclusions Our results clarified the important role of oxidative stress in IDD and proved that LPS can be used as a drug to alleviate oxidative stress and intervene in the IDD process.
Collapse
Affiliation(s)
- He Liang
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Hongyang Shi
- Second Department of Spine Surgery, Changzheng Hospital, Shanghai, China
| | - Yang Li
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Deguo Wang
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yajie Zhang
- College of pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
44
|
Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants (Basel) 2023; 12:antiox12010196. [PMID: 36671058 PMCID: PMC9854447 DOI: 10.3390/antiox12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic diseases, such as diabetes and non-alcoholic fatty liver disease (NAFLD), have several negative health outcomes on affected humans. Dysregulated energy metabolism is a key component underlying the pathophysiology of these conditions. Adipose tissue is a fundamental regulator of energy homeostasis that utilizes several redox reactions to carry out the metabolism. Brown and beige adipose tissues, in particular, perform highly oxidative reactions during non-shivering thermogenesis to dissipate energy as heat. The appropriate regulation of energy metabolism then requires coordinated antioxidant mechanisms to counterbalance the oxidation reactions. Indeed, non-shivering thermogenesis activation can cause striking changes in concentrations of both oxidants and antioxidants in order to adapt to various oxidative environments. Current therapeutic options for metabolic diseases either translate poorly from rodent models to humans (in part due to the challenges of creating a physiologically relevant rodent model) or tend to have numerous side effects, necessitating novel therapies. As increased brown adipose tissue activity results in enhanced energy expenditure and is associated with beneficial effects on metabolic health, such as decreased obesity, it has gathered great interest as a modulator of metabolic disease. One potential reason for the beneficial health effects may be that although non-shivering thermogenesis is enormously oxidative, it is also associated with decreased oxidant formation after its activation. However, targeting its redox mechanisms specifically to alter metabolic disease remains an underexplored area. Therefore, this review will discuss the role of adipose tissue in energy homeostasis, non-shivering thermogenesis in adults, and redox mechanisms that may serve as novel therapeutic targets of metabolic disease.
Collapse
|
45
|
Peonidin-3-O-Glucoside from Purple Corncob Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial and Lysosome Functions to Reduce Oxidative Stress and Inflammation. Nutrients 2023; 15:nu15020372. [PMID: 36678243 PMCID: PMC9866220 DOI: 10.3390/nu15020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
A frequent chronic liver condition across the world is nonalcoholic fatty liver disease (NAFLD). Oxidative stress caused by lipid accumulation is generally considered to be the main cause of NAFLD. Anthocyanins can effectively inhibit the production of reactive oxygen species and improve oxidative stress. In this work, six major anthocyanins were separated from purple corncob by semi-preparative liquid chromatography. The effects of the 6 kinds of anthocyanins against NAFLD were investigated using a free fatty acid (FFA)-induced cell model. The results showed that peonidin 3-O-glucoside (P3G) can significantly reduce lipid accumulation in the NAFLD cell model. The treatment with P3G also inhibited oxidative stress via inhibiting the excessive production of reactive oxygen species and superoxide anion, increasing glutathione levels, and enhancing the activities of SOD, GPX, and CAT. Further studies unveiled that treatment with P3G not only alleviated inflammation but also improved the depletion of mitochondrial content and damage of the mitochondrial electron transfer chain developed concomitantly in the cell model. P3G upregulated transcription factor EB (TFEB)-mediated lysosomal function and activated the peroxisome proliferator-activated receptor alpha (PPARα)-mediated peroxisomal lipid oxidation by interacting with PPARα possibly. Overall, this study added to our understanding of the protective effects of purple corn anthocyanins against NAFLD and offered suggestions for developing functional foods containing these anthocyanins.
Collapse
|
46
|
Chhunchha B, Kubo E, Krueger RR, Singh DP. Hydralazine Revives Cellular and Ocular Lens Health-Span by Ameliorating the Aging and Oxidative-Dependent Loss of the Nrf2-Activated Cellular Stress Response. Antioxidants (Basel) 2023; 12:140. [PMID: 36671002 PMCID: PMC9854670 DOI: 10.3390/antiox12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
A major hallmark of aging-associated diseases is the inability to evoke cellular defense responses. Transcriptional protein Nrf2 (nuclear factor erythroid-derived 2-related factor) plays a pivotal role in the oxidative stress response, cellular homeostasis, and health span. Nrf2's activation has been identified as a therapeutic target to restore antioxidant defense in aging. Here, we demonstrated that FDA-approved drug, hydralazine (Hyd), was a reactivator of the Nrf2/ARE (antioxidant response element) pathway in various ages and types of mouse (m) or human (h) lens epithelial cells (LECs) and mice lenses in-vitro/in-vivo. This led to Hyd-driven abatement of carbonyls, reduced reactive oxygen species (ROS), and reduced 4-HNE/MDA-adducts with cytoprotection, and extended lens healthspan by delaying/preventing lens opacity against aging/oxidative stress. We elucidated that Hyd activated the protective signaling by inducing Nrf2 to traverse from the cytoplasm to the nucleus and potentiated the ARE response by direct interaction of Nrf2 and ARE sequences of the promoter. Loss-of-function study and cotreatment of Hyd and antioxidant, N-acetyl cysteine (NAC) or Peroxiredoxin (Prdx)6, specified that Nrf2/ARE-driven increase in the promoter activity was Hyd-dependent. Our study provides proof-of concept evidence and, thereby, paves the way to repurposing Hyd as a therapeutic agent to delay/prevent aging and oxidative-related disorders.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan
| | - Ronald R. Krueger
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
47
|
Sanhueza S, Simón L, Cifuentes M, Quest AFG. The Adipocyte-Macrophage Relationship in Cancer: A Potential Target for Antioxidant Therapy. Antioxidants (Basel) 2023; 12:126. [PMID: 36670988 PMCID: PMC9855200 DOI: 10.3390/antiox12010126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Obesity has emerged as a major public health concern with a staggering 39% worldwide prevalence as of 2021. Given the magnitude of the problem and considering its association with chronic low-grade systemic inflammation, it does not come as a surprise that obesity is now considered one of the major risk factors for the development of several chronic diseases, such as diabetes, cardiovascular problems, and cancer. Adipose tissue dysfunction in obesity has taken center stage in understanding how changes in its components, particularly adipocytes and macrophages, participate in such processes. In this review, we will initially focus on how changes in adipose tissue upon excess fat accumulation generate endocrine signals that promote cancer development. Moreover, the tumor microenvironment or stroma, which is also critical in cancer development, contains macrophages and adipocytes, which, in reciprocal paracrine communication with cancer cells, generate relevant signals. We will discuss how paracrine signaling in the tumor microenvironment between cancer cells, macrophages, and adipocytes favors cancer development and progression. Finally, as reactive oxygen species participate in many of these signaling pathways, we will summarize the information available on how antioxidants can limit the effects of endocrine and paracrine signaling due to dysfunctional adipose tissue components in obesity.
Collapse
Affiliation(s)
- Sofía Sanhueza
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Layla Simón
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| |
Collapse
|
48
|
Kuzmenko NV, Tsyrlin VA, Pliss MG. Meta-Analysis of Experimental Studies of Diet-Dependent Effects of Melatonin Monotherapy on Circulatory Levels of Triglycerides, Cholesterol, Glucose and Insulin in Rats. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
49
|
Chen H, Zhou H, Yang J, Wan H, He Y. Guhong injection mitigates myocardial ischemia/reperfusion injury by activating GST P to inhibit ASK1-JNK/p38 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154603. [PMID: 36610111 DOI: 10.1016/j.phymed.2022.154603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Guhong injection (GHI), a novel compound preparation that is composed of a chemical drug, namely aceglutamide, and the aqueous extract of safflower (Carthamus tinctorius L.), exhibits extreme antioxidative, antiapoptotic, anti-inflammatory, and neuroprotective effects. Since oxidative stress, apoptosis, and inflammatory response are all the dominant mechanisms of myocardial ischemia/reperfusion (MI/R) injury, we probe into the protective mechanism of GHI on MI/R injury for the first time. METHODS In this research, we first employed molecular docking to determine whether three active ingredients in GHI, acetylglutamine (NAG), hydroxysafflor yellow A (HSYA), and syringin, possessed the potential activity to modulate the protein, glutathione S-transferase P (GST P). We further identified the protective effect of GHI on myocardial tissue with TTC staining, HE staining, TUNEL staining, and ELISA, and on H9c2 with flow cytometry and ELISA. We next explored whether the cardioprotective effect of GHI on left anterior descending ligation-reperfusion in rats and hypoxia/reoxygenation (H/R) in H9c2 cells was related to activate GST P to inhibit ASK1-JNK/p38 pathway via approaches of qRT-PCR and Western blot. RESULTS Results of molecular docking indicated that all three compounds spontaneously docked to GST P, among them the binding affinities of both HSYA and syringin to GST P were higher than NAG. In vivo, GHI reduced myocardial infarction size and mitigated myocardial pathological injury. In vitro, GHI enhanced cell viability and extenuated depolarization of mitochondrial membrane potential. In addition, the results of in vivo and in vitro studies demonstrated that the cardioprotection of GHI was associated with improving the mRNA and protein expression levels of GST P to modulate oxidative stress, and inhibiting the levels of mRNA expression and protein phosphorylation of ASK1, JNK, and p38. However, the suppressed effect of GHI on ASK1-JNK/p38 pathway was reversed by ethacrynic acid (EA, a GST inhibitor), indicating that the regulation of GHI on ASK1-JNK/p38 was related to the activity of GST P. Besides, the in vitro results of qRT-PCR and western-blot also certified that the inhibited JNK and p38 further reduced Bax expression and elevated Bcl-2 expression to reduce the expression of caspase-3 to exert anti-apoptosis effects. CONCLUSION Taken together, the cardioprotection of GHI mainly incarnated in activating GST P to relieve oxidation properties, thereby inhibiting ASK1-JNK/p38 pathway to suppress apoptosis.
Collapse
Affiliation(s)
- Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
50
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|