1
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
2
|
Platonov M, Maximyuk O, Rayevsky A, Hurmach V, Iegorova O, Naumchyk V, Bulgakov E, Cherninskyi A, Ozheredov D, Ryabukhin SV, Krishtal O, Volochnyuk DM. 4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors. Int J Mol Sci 2024; 25:3584. [PMID: 38612396 PMCID: PMC11011685 DOI: 10.3390/ijms25073584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.
Collapse
Affiliation(s)
- Maksym Platonov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Alexey Rayevsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Vasyl Hurmach
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
| | - Olena Iegorova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Vasyl Naumchyk
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
| | - Elijah Bulgakov
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Andrii Cherninskyi
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Danil Ozheredov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Serhiy V. Ryabukhin
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar Str., 02660 Kyiv, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Dmytro M. Volochnyuk
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar Str., 02660 Kyiv, Ukraine
| |
Collapse
|
3
|
Spekker E, Nagy-Grócz G, Vécsei L. Ion Channel Disturbances in Migraine Headache: Exploring the Potential Role of the Kynurenine System in the Context of the Trigeminovascular System. Int J Mol Sci 2023; 24:16574. [PMID: 38068897 PMCID: PMC10706278 DOI: 10.3390/ijms242316574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Migraine is a primary headache disorder, which is an enormous burden to the healthcare system. While some aspects of the pathomechanism of migraines remain unknown, the most accepted theory is that activation and sensitization of the trigeminovascular system are essential during migraine attacks. In recent decades, it has been suggested that ion channels may be important participants in the pathogenesis of migraine. Numerous ion channels are expressed in the peripheral and central nervous systems, including the trigeminovascular system, affecting neuron excitability, synaptic energy homeostasis, inflammatory signaling, and pain sensation. Dysfunction of ion channels could result in neuronal excitability and peripheral or central sensitization. This narrative review covers the current understanding of the biological mechanisms leading to activation and sensitization of the trigeminovascular pain pathway, with a focus on recent findings on ion channel activation and modulation. Furthermore, we focus on the kynurenine pathway since this system contains kynurenic acid, which is an endogenous glutamate receptor antagonist substance, and it has a role in migraine pathophysiology.
Collapse
Affiliation(s)
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Khataei T, Benson CJ. ASIC3 plays a protective role in delayed-onset muscle soreness (DOMS) through muscle acid sensation during exercise. FRONTIERS IN PAIN RESEARCH 2023; 4:1215197. [PMID: 37795390 PMCID: PMC10546048 DOI: 10.3389/fpain.2023.1215197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
Immediate exercise-induced pain (IEIP) and DOMS are two types of exercise-induced muscle pain and can act as barriers to exercise. The burning sensation of IEIP occurs during and immediately after intensive exercise, whereas the soreness of DOMS occurs later. Acid-sensing ion channels (ASICs) within muscle afferents are activated by H+ and other chemicals and have been shown to play a role in various chronic muscle pain conditions. Here, we further defined the role of ASICs in IEIP, and also tested if ASIC3 is required for DOMS. After undergoing exhaustive treadmill exercise, exercise-induced muscle pain was assessed in wild-type (WT) and ASIC3-/- mice at baseline via muscle withdrawal threshold (MWT), immediately, and 24 h after exercise. Locomotor movement, grip strength, and repeat exercise performance were tested at baseline and 24 h after exercise to evaluate DOMS. We found that ASIC3-/- had similar baseline muscle pain, locomotor activity, grip strength, and exercise performance as WT mice. WT showed diminished MWT immediately after exercise indicating they developed IEIP, but ASIC3-/- mice did not. At 24 h after baseline exercise, both ASIC3-/- and WT had similarly lower MWT and grip strength, however, ASIC3-/- displayed significantly lower locomotor activity and repeat exercise performance at 24 h time points compared to WT. In addition, ASIC3-/- mice had higher muscle injury as measured by serum lactate dehydrogenase and creatine kinase levels at 24 h after exercise. These results show that ASIC3 is required for IEIP, but not DOMS, and in fact might play a protective role to prevent muscle injury associated with strenuous exercise.
Collapse
Affiliation(s)
- Tahsin Khataei
- Department of Internal Medicine, Roy J and Lucile A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
| | - Christopher J. Benson
- Department of Internal Medicine, Roy J and Lucile A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
| |
Collapse
|
5
|
Segmental Upregulation of ASIC1 Channels in the Formalin Acute Pain Mouse Model. Pharmaceuticals (Basel) 2022; 15:ph15121539. [PMID: 36558990 PMCID: PMC9784454 DOI: 10.3390/ph15121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hindpaw injection of formalin in rodents is used to assess acute persistent pain. The response to formalin is biphasic. The initial response (first minutes) is thought to be linked to inflammatory, peripheral mechanisms, while the latter (around 30 min after the injection), is linked to central mechanisms. This model is useful to analyze the effect of drugs at one or both phases, and the involvement of ion channels in the response. Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in pain conditions. Recently, psalmotoxin-1 (Pctx-1), a toxin that inhibits ASIC1a-constituted channels, and antisense ASIC1a-RNA, intrathecal administered in mice were shown to affect both phases of the test. METHODS The mouse formalin test was performed on C57/BL6 7- to 9-week-old mice. Behavioral tests were conducted and tissue was extracted to detect proteins (ASIC1 and pERK) and ASIC1-mRNA and mir485-5p levels. RESULTS The injection of formalin was accompanied by an increase in ASIC1 levels. This was detected at the contralateral anterior cingulate cortex (ACC) compared to the ipsilateral side, and both sides of the ACC of vehicle-injected animals. At the spinal cord and dorsal root ganglia, ASIC1 levels followed a gradient stronger at lumbar (L) 3 and decreased towards L5. Gender differences were detected at the ACC; with female mice showing higher ASIC1a levels at the ACC. No significant changes in ASIC1-mRNA levels were detected. Evidence suggests ASIC1 upregulation depends on regulatory microRNAs. CONCLUSION This work highlights the important role of ASIC1 in pain and the potential role of pharmacological therapies aimed at this channel.
Collapse
|
6
|
Wu JJ, Sun ZL, Liu SY, Chen ZH, Yuan ZD, Zou ML, Teng YY, Li YY, Guo DY, Yuan FL. The ASIC3-M-CSF-M2 macrophage-positive feedback loop modulates fibroblast-to-myofibroblast differentiation in skin fibrosis pathogenesis. Cell Death Dis 2022; 13:527. [PMID: 35661105 PMCID: PMC9167818 DOI: 10.1038/s41419-022-04981-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Inflammation is one of the main pathological features leading to skin fibrosis and a key factor leading to the progression of skin fibrosis. Acidosis caused by a decrease in extracellular pH is a sign of the inflammatory process. Acid-sensing ion channels (ASICs) are ligand-gated ion channels on the cell membrane that sense the drop in extracellular pH. The molecular mechanisms by which skin fibroblasts are regulated by acid-sensing ion channel 3 (ASIC3) remain unknown. This study investigated whether ASIC3 is related to inflammation and skin fibrosis and explored the underlying mechanisms. We demonstrate that macrophage colony-stimulating factor (M-CSF) is a direct target of ASIC3, and ASIC3 activation promotes M-CSF transcriptional regulation of macrophages for M2 polarization. The polarization of M2 macrophages transduced by the ASIC3-M-CSF signal promotes the differentiation of fibroblasts into myofibroblasts through transforming growth factor β1 (TGF-β1), thereby producing an ASIC3-M-CSF-TGF-β1 positive feedback loop. Targeting ASIC3 may be a new treatment strategy for skin fibrosis.
Collapse
Affiliation(s)
- Jun-Jie Wu
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Zi-Li Sun
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Si-Yu Liu
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Zhong-Hua Chen
- grid.260483.b0000 0000 9530 8833The Nantong University, Nantong, Jiangsu 226000 China
| | - Zheng-Dong Yuan
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Ming-Li Zou
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| | - Ying-Ying Teng
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Yue-Yue Li
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Dan-Yang Guo
- grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China
| | - Feng-Lai Yuan
- grid.258151.a0000 0001 0708 1323Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.258151.a0000 0001 0708 1323The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041 China ,grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000 China
| |
Collapse
|
7
|
King P, Wan J, Guo AA, Guo S, Jiang Y, Liu M. Regulation of gliomagenesis and stemness through acid sensor ASIC1a. Int J Oncol 2021; 59:82. [PMID: 34515325 PMCID: PMC8448544 DOI: 10.3892/ijo.2021.5262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive type of adult gliomas. Despite intensive therapy including surgery, radiation, and chemotherapy, invariable tumor recurrence occurs, which suggests that glioblastoma stem cells (GSCs) render these tumors persistent. Recently, the induction of GSC differentiation has emerged as an alternative method to treat GBM, and most of the current studies aim to convert GSCs to neurons by a combination of transcriptional factors. As the tumor microenvironment is typically acidic due to increased glycolysis and consequently leads to an increased production of lactic acid in tumor cells, in the present study, the role of acid‑sensing ion channel 1a (ASIC1a), an acid sensor, was explored as a tumor suppressor in gliomagenesis and stemness. The bioinformatics data from The Cancer Genome Atlas revealed that ASIC1 expression levels in GBM tumor tissues were lower than those in normal brain, and glioma patients with high ASIC1 expression had longer survival than those with low ASIC1 expression. Our immunohistochemistry data from tissue microarray revealed that ASIC1a expression was negatively associated with glioma grading. Functional studies revealed that the downregulation of ASIC1a promoted glioma cell proliferation and invasion, while upregulation of ASIC1a inhibited their proliferation and invasion. Furthermore, ASIC1a suppressed growth and proliferation of glioma cells through G1/S arrest and apoptosis induction. Mechanistically, ASIC1a negatively modulated glioma stemness via inhibition of the Notch signaling pathway and GSC markers CD133 and aldehyde dehydrogenase 1. ASIC1a is a tumor suppressor in gliomagenesis and stemness and may serve as a promising prognostic biomarker and target for GBM patients.
Collapse
Affiliation(s)
- Pendelton King
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Alyssa Aihui Guo
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA 70125, USA
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
8
|
Acid-Sensing Ion Channels in Zebrafish. Animals (Basel) 2021; 11:ani11082471. [PMID: 34438928 PMCID: PMC8388743 DOI: 10.3390/ani11082471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The present review collects data regarding the presence of ASICs (acid-sensing ion channels) in zebrafish, which have become, over several years, an important experimental model for the study of various diseases. ASICs are a family of ion channels involved in the perception of different types of stimuli. They are excitatory receptors for extracellular H+ involved in synaptic transmission, the peripheral perception of pain and in chemical or mechanosensation. Abstract The ASICs, in mammals as in fish, control deviations from the physiological values of extracellular pH, and are involved in mechanoreception, nociception, or taste receptions. They are widely expressed in the central and peripheral nervous system. In this review, we summarized the data about the presence and localization of ASICs in different organs of zebrafish that represent one of the most used experimental models for the study of several diseases. In particular, we analyzed the data obtained by immunohistochemical and molecular biology techniques concerning the presence and expression of ASICs in the sensory organs, such as the olfactory rosette, lateral line, inner ear, taste buds, and in the gut and brain of zebrafish.
Collapse
|
9
|
Yamamoto T, Mulpuri Y, Izraylev M, Li Q, Simonian M, Kramme C, Schmidt BL, Seltzman HH, Spigelman I. Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache. Pain 2021; 162:2246-2262. [PMID: 33534356 PMCID: PMC8277668 DOI: 10.1097/j.pain.0000000000002214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and although cannabinoids seem beneficial in alleviating migraine symptoms, central nervous system side effects limit their widespread use. We developed peripherally restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable central nervous system side effects or tolerance development. Here, we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache. Long-term glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH-activated and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Long-term GTN treatment significantly enhanced these currents. Long-term sumatriptan treatment also led to the development of allodynia to mechanical and cold stimuli that was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, long-term PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and medication overuse headache.
Collapse
Affiliation(s)
- Toru Yamamoto
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Mikhail Izraylev
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Qianyi Li
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Menooa Simonian
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Christian Kramme
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Brian L. Schmidt
- Department of Oral & Maxillofacial Surgery and Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY
| | - Herbert H. Seltzman
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
10
|
Epigenetic upregulation of acid-sensing ion channel 1 contributes to gastric hypersensitivity in adult offspring rats with prenatal maternal stress. Pain 2021; 161:989-1004. [PMID: 31895269 DOI: 10.1097/j.pain.0000000000001785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional dyspepsia is a common functional gastrointestinal disorder. Gastric hypersensitivity (GHS) is a hallmark of this disorder, but the cellular mechanisms remain largely unknown. Stressors during gestational period could have effects on the offspring's tissue structure and function, which may predispose to gastrointestinal diseases. The aim of this study was to test whether prenatal maternal stress (PMS) induces GHS and to investigate role of acid-sensing ion channel (ASIC)/nuclear factor-κB (NF-κB) signaling by examining Asic1 methylation status in adult offspring rats. Gastric hypersensitivity in response to gastric distension was examined by electromyography recordings. Changes in neuronal excitability were determined by whole-cell patch-clamp recording techniques. Demethylation of CpG islands of Asic1 was determined by methylation-specific PCR and bisulfite sequencing assay. Prenatal maternal stress produced GHS in adult offspring rats. Treatment with amiloride, an inhibitor of ASICs, significantly attenuated GHS and reversed hyperexcitability of gastric-specific dorsal root ganglion (DRG) neurons labeled by the dye DiI. Expression of ASIC1 and NF-κBp65 was markedly enhanced in T7 to T10 DRGs. Furthermore, PMS led to a significant demethylation of CpG islands in the Asic1 promoter. A chromatin immunoprecipitation assay showed that PMS also enhanced the ability of NF-κBp65 to bind the promoter of Asic1 gene. Blockade of NF-κB using lentiviral-p65shRNA reversed upregulation of ASIC1 expression, GHS, and the hyperexcitability of DRG neurons. These data suggest that upregulation of ASIC1 expression is attributed to Asic1 promoter DNA demethylation and NF-κB activation, and that the enhanced interaction of the Asic1 and NF-κBp65 contributes to GHS induced by PMS.
Collapse
|
11
|
ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging (Albany NY) 2021; 13:10703-10723. [PMID: 33824228 PMCID: PMC8064223 DOI: 10.18632/aging.202850] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Stem cell approaches have become an attractive therapeutic option for intervertebral disc degeneration (IVDD). Nucleus pulposus mesenchymal stem cells (NP-MSCs) participate in the regeneration and homeostasis of the intervertebral disc (IVD), but the molecular mechanisms governing these processes remain to be elucidated. Acid-sensing ion channels (ASICs) which act as key receptors for extracellular protons in central and peripheral neurons, have been implicated in IVDD where degeneration is associated with reduced microenvironmental pH. Here we show that ASIC1 and ASIC3, but not ASIC2 and ASIC4 are upregulated in human IVDs according to the degree of clinical degeneration. Subjecting IVD-derived NP-MSCs to pH 6.6 culture conditions to mimic pathological IVD changes resulted in decreased cell proliferation that was associated with cell cycle arrest and induction of senescence. Key molecular changes observed were increased expression of p53, p21, p27, p16 and Rb1. Instructively, premature senescence in NP-MSCs could be largely alleviated using ASIC inhibitors, suggesting both ASIC1 and ASIC3 act decisively upstream to activate senescence programming pathways including p53-p21/p27 and p16-Rb1 signaling. These results highlight the potential of ASIC inhibitors as a therapeutic approach for IVDD and broadly define an in vitro system that can be used to evaluate other IVDD therapies.
Collapse
|
12
|
Hang X, Zhang Z, Niu R, Wang C, Yao J, Xu Y, Tao J, Li L, Chen F. Estrogen Protects Articular Cartilage by Downregulating ASIC1a in Rheumatoid Arthritis. J Inflamm Res 2021; 14:843-858. [PMID: 33737825 PMCID: PMC7966409 DOI: 10.2147/jir.s295222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The severity of rheumatoid arthritis (RA) in women is generally lower than that in men. RA is mediated, at least in part, by the protective effects of estradiol. However, the mechanisms underlying the protective effect of estradiol on RA are still unclear. Recent studies have demonstrated that activation of acid-sensing ion channel 1a (ASIC1a) by tissue acidosis plays an important role in the injury of cartilage in RA. Here, we assessed the effects of estradiol on acid-mediated cartilage injury both in vitro and in vivo and explored the involvement of ASIC1a in RA and its underlying mechanism. Methods Cultured primary articular chondrocytes were subjected to acidosis-mediated injury in vitro. Beclin1, LC3, p62, GPER1, and ASIC1a expression was detected through Western blotting, quantitative real-time PCR, and immunofluorescence analysis. Adjuvant arthritis (AA) was induced in rats through intradermal immunization by injecting 0.25 mL heat-killed mycobacteria (10 mg/mL) suspended in complete Freund’s adjuvant into the left hind metatarsal footpad. The levels of estrogen and related inflammatory factors in the serum were measured using enzyme-linked immunosorbent assay. The expression of ASIC1a and autophagy-related proteins was detected through immunohistochemical analysis and Western blot. Results Treatment of primary articular chondrocytes with estradiol decreased the expression of ASIC1a and autophagy level. The symptoms of cartilage damage and levels of inflammatory cytokines in the serum were reduced after estradiol treatment in the rats with AA. In addition, estradiol treatment reduced ASIC1a expression via the PI3K-AKT-mTOR pathway, among which G-protein coupled estradiol receptor 1 (GPER1) plays a regulatory role. Finally, the level of autophagy in chondrocytes was decreased by the selective ASIC1a blocker psalmotoxin-1 (PCTX-1). Conclusion Estradiol can protect the cartilage of rats with AA against acidosis-mediated damage and autophagy by suppressing ASIC1a expression through GPER1.
Collapse
Affiliation(s)
- Xiaoyu Hang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Zhenyu Zhang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ruowen Niu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Chen Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jing Yao
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yayun Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jingjing Tao
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Lanlan Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, People's Republic of China
| |
Collapse
|
13
|
Xu Y, Chen F. Acid-Sensing Ion Channel-1a in Articular Chondrocytes and Synovial Fibroblasts: A Novel Therapeutic Target for Rheumatoid Arthritis. Front Immunol 2021; 11:580936. [PMID: 33584647 PMCID: PMC7876322 DOI: 10.3389/fimmu.2020.580936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H+-activated cation channel family. Emerging evidence has suggested that ASIC1a plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Specifically, ASIC1a could promote inflammation, synovial hyperplasia, articular cartilage, and bone destruction; these lead to the progression of RA, a chronic autoimmune disease characterized by chronic synovial inflammation and extra-articular lesions. In this review, we provided a brief overview of the molecular properties of ASIC1a, including the basic biological characteristics, tissue and cell distribution, channel blocker, and factors influencing the expression and function, and focused on the potential therapeutic targets of ASIC1a in RA and possible mechanisms of blocking ASIC1a to improve RA symptoms, such as regulation of apoptosis, autophagy, pyroptosis, and necroptosis of articular cartilage, and synovial inflammation and invasion of fibroblast-like cells in synovial tissue.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
14
|
Li YC, Tian YQ, Wu YY, Xu YC, Zhang PA, Sha J, Xu GY. Upregulation of Spinal ASIC1 and NKCC1 Expression Contributes to Chronic Visceral Pain in Rats. Front Mol Neurosci 2021; 13:611179. [PMID: 33584200 PMCID: PMC7874109 DOI: 10.3389/fnmol.2020.611179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aims: To determine whether acid-sensing ion channel 1 (ASIC1)–sodium-potassium-chloride cotransporter 1 (NKCC1) signaling pathway participates in chronic visceral pain of adult rats with neonatal maternal deprivation (NMD). Methods: Chronic visceral pain was detected by colorectal distension (CRD). Western blotting and Immunofluorescence were performed to detect the expression and location of ASIC1 and NKCC1. Whole-cell patch-clamp recordings were performed to record spinal synaptic transmission. Results: The excitatory synaptic transmission was enhanced and the inhibitory synaptic transmission was weakened in the spinal dorsal horn of NMD rats. ASIC1 and NKCC1 protein expression in the spinal dorsal horn was significantly up-regulated in NMD rats. Incubation of Amiloride reduced the amplitude of mEPSCs. Incubation of Bumetanide (BMT) increased the amplitude of mIPSCs. Intrathecal injection of ASIC1 or NKCC1 inhibitors reversed the threshold of CRD in NMD rats. Also, Amiloride treatment significantly reversed the expression of NKCC1 in the spinal dorsal horn of NMD rats. Conclusion: Our data suggest that the ASIC1-NKCC1 signaling pathway is involved in chronic visceral pain in NMD rats.
Collapse
Affiliation(s)
- Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yuan-Qing Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu-Cheng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jie Sha
- Department of Gastroenterology, Jingjiang People's Hospital, Jingjiang, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Yoshiyama M, Kobayashi H, Takeda M, Araki I. Blockade of Acid-Sensing Ion Channels Increases Urinary Bladder Capacity With or Without Intravesical Irritation in Mice. Front Physiol 2020; 11:592867. [PMID: 33192609 PMCID: PMC7649782 DOI: 10.3389/fphys.2020.592867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
We conducted this study to examine whether acid-sensing ion channels (ASICs) are involved in the modulation of urinary bladder activity with or without intravesical irritation induced by acetic acid. All in vivo evaluations were conducted during continuous infusion cystometry in decerebrated unanesthetized female mice. During cystometry with a pH 6.3 saline infusion, an i.p. injection of 30 μmol/kg A-317567 (a potent, non-amiloride ASIC blocker) increased the intercontraction interval (ICI) by 30% (P < 0.001), whereas vehicle injection had no effect. An intravesical acetic acid (pH 3.0) infusion induced bladder hyperactivity, with reductions in ICI and maximal voiding pressure (MVP) by 79% (P < 0.0001) and 29% (P < 0.001), respectively. A-317567 (30 μmol/kg i.p.) alleviated hyperreflexia by increasing the acid-shortened ICI by 76% (P < 0.001). This dose produced no effect on MVP under either intravesical pH condition. Further analysis in comparison with vehicle showed that the increase in ICI (or bladder capacity) by the drug was not dependent on bladder compliance. Meanwhile, intravesical perfusion of A-317567 (100 μM) had no effect on bladder activity during pH 6.0 saline infusion cystometry, and drug perfusion at neither 100 μM nor 1 mM produced any effects on bladder hyperreflexia during pH 3.0 acetic acid infusion cystometry. A-317567 has been suggested to display extremely poor penetrability into the central nervous system and thus to be a peripherally active blocker. Taken together, our results suggest that blockade of ASIC signal transduction increases bladder capacity under normal intravesical pH conditions and alleviates bladder hyperreflexia induced by intravesical acidification and that the site responsible for this action is likely to be the dorsal root ganglia.
Collapse
Affiliation(s)
- Mitsuharu Yoshiyama
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Shintotsuka Hospital, Yokohama, Japan
| | - Hideki Kobayashi
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Kobayashi Urology Clinic, Kai, Japan
| | - Masayuki Takeda
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Isao Araki
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Kusatsu Public Health Center, Kusatsu, Japan
| |
Collapse
|
16
|
Buijs TJ, McNaughton PA. The Role of Cold-Sensitive Ion Channels in Peripheral Thermosensation. Front Cell Neurosci 2020; 14:262. [PMID: 32973456 PMCID: PMC7468449 DOI: 10.3389/fncel.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
The detection of ambient cold is critical for mammals, who use this information to avoid tissue damage by cold and to maintain stable body temperature. The transduction of information about the environmental cold is mediated by cold-sensitive ion channels expressed in peripheral sensory nerve endings in the skin. Most transduction mechanisms for detecting temperature changes identified to date depend on transient receptor potential (TRP) ion channels. Mild cooling is detected by the menthol-sensitive TRPM8 ion channel, but how painful cold is detected remains unclear. The TRPA1 ion channel, which is activated by cold in expression systems, seemed to provide an answer to this question, but whether TRPA1 is activated by cold in neurons and contributes to the sensation of cold pain continues to be a matter of debate. Recent advances have been made in this area of investigation with the identification of several potential cold-sensitive ion channels in thermosensory neurons, including two-pore domain potassium channels (K2P), GluK2 glutamate receptors, and CNGA3 cyclic nucleotide-gated ion channels. This mini-review gives a brief overview of the way by which ion channels contribute to cold sensation, discusses the controversy around the cold-sensitivity of TRPA1, and provides an assessment of some recently-proposed novel cold-transduction mechanisms. Evidence for another unidentified cold-transduction mechanism is also presented.
Collapse
Affiliation(s)
- Tamara Joëlle Buijs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | | |
Collapse
|
17
|
Zu SQ, Feng YB, Zhu CJ, Wu XS, Zhou RP, Li G, Dai BB, Wang ZS, Xie YY, Li Y, Ge JF, Chen FH. Acid-sensing ion channel 1a mediates acid-induced pyroptosis through calpain-2/calcineurin pathway in rat articular chondrocytes. Cell Biol Int 2020; 44:2140-2152. [PMID: 32678496 DOI: 10.1002/cbin.11422] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 12/19/2022]
Abstract
The pyroptosis is a causative agent of rheumatoid arthritis, a systemic autoimmune disease merged with degenerative articular cartilage. Nevertheless, the precise mechanism of extracellular acidosis on chondrocyte pyroptosis is largely unclear. Acid-sensing ion channels (ASICs) belong to an extracellular H+ -activated cation channel family. Accumulating evidence has highlighted activation of ASICs induced by extracellular acidosis upregulate calpain and calcineurin expression in arthritis. In the present study, to investigate the expression and the role of acid-sensing ion channel 1a (ASIC1a), calpain, calcineurin, and NLRP3 inflammasome proteins in regulating acid-induced articular chondrocyte pyroptosis, primary rat articular chondrocytes were subjected to different pH, different time, and different treatments with or without ASIC1a, calpain-2, and calcineurin, respectively. Initially, the research results showed that extracellular acidosis-induced the protein expression of ASIC1a in a pH- and time-dependent manner, and the messenger RNA and protein expressions of calpain, calcineurin, NLRP3, apoptosis-associated speck-like protein, and caspase-1 were significantly increased in a time-dependent manner. Furthermore, the inhibition of ASIC1a, calpain-2, or calcineurin, respectively, could decrease the cell death accompanied with the decreased interleukin-1β level, and the decreased expression of ASIC1a, calpain-2, calcineurin, and NLRP3 inflammasome proteins. Taken together, these results indicated the activation of ASIC1a induced by extracellular acidosis could trigger pyroptosis of rat articular chondrocytes, the mechanism of which might partly be involved with the activation of calpain-2/calcineurin pathway.
Collapse
Affiliation(s)
- Sheng-Qin Zu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Bin Feng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chuan-Jun Zhu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Shan Wu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ge Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Bei-Bei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Sen Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yue Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
18
|
Protein Kinase C Regulates ASIC1a Protein Expression and Channel Function via NF-kB Signaling Pathway. Mol Neurobiol 2020; 57:4754-4766. [PMID: 32783140 DOI: 10.1007/s12035-020-02056-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Tissue acidosis is a common feature in many pathological conditions. Activation of acid-sensing ion channel 1a (ASIC1a) plays a key role in acidosis-mediated neurotoxicity. Protein kinase C (PKC) activity has been proved to be associated with many physiological processes and pathological conditions; however, whether PKC activation regulates ASIC1a protein expression and channel function remains ill defined. In this study, we demonstrated that treatment with phorbol 12-myristate 13-acetate (PMA, a PKC activator) for 6 h significantly increased ASIC1a protein expression and ASIC currents in NS20Y cells, a neuronal cell line, and in primary cultured mouse cortical neurons. In contrast, treatment with Calphostin C (a nonselective PKC inhibitor) for 6 h or longer decreased ASIC1a protein expression and ASIC currents. Similar to Calphostin C, PKC α and βI inhibitor Go6976 exposure also reduced ASIC1a protein expression. The reduction in ASIC1a protein expression by PKC inhibition involves a change in ASIC1a protein degradation, which is mediated by ubiquitin-proteasome system (UPS)-dependent degradation pathway. In addition, we showed that PKC regulation of ASIC1a protein expression involves NF-κB signaling pathway. Consistent with their effects on ASIC1a protein expression and channel function, PKC inhibition protected NS20Y cells against acidosis-induced cytotoxicity, while PKC activation potentiated acidosis-induced cells injury. Together, these results indicate that ASIC1a protein expression and channel function are closely regulated by the activity of protein kinase C and its downstream signaling pathway(s).
Collapse
|
19
|
Endothelin-1 enhances acid-sensing ion channel currents in rat primary sensory neurons. Acta Pharmacol Sin 2020; 41:1049-1057. [PMID: 32107467 PMCID: PMC7468575 DOI: 10.1038/s41401-019-0348-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1−100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration–response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.
Collapse
|
20
|
Papalampropoulou-Tsiridou M, Labrecque S, Godin AG, De Koninck Y, Wang F. Differential Expression of Acid - Sensing Ion Channels in Mouse Primary Afferents in Naïve and Injured Conditions. Front Cell Neurosci 2020; 14:103. [PMID: 32508593 PMCID: PMC7248332 DOI: 10.3389/fncel.2020.00103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Injury and inflammation cause tissue acidosis, which is a common feature of various painful conditions. Acid-Sensing Ion channels (ASICs) are amongst the main excitatory channels activated by extracellular protons and expressed in the nervous system. Six transcripts of ASIC subunits including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4 are encoded by four genes (Asic1–4) and have been identified in rodents. Most ASIC subunits are present at substantial levels in primary sensory neurons of dorsal root ganglia (DRG) except for ASIC4. However, their expression pattern in DRG neurons remains largely unclear, mainly due to the lack of antibodies with appropriate specificity. In this study, we examined in detail the expression pattern of ASIC1-3 subunits, including splice variants, in different populations of DRG neurons in adult mice using an in situ hybridization technique (RNAscope) with high sensitivity and specificity. We found that in naïve condition, all five subunits examined were expressed in the majority of myelinated, NF200-immunoreactive, DRG neurons (NF200+). However, ASIC subunits showed a very different expression pattern among non-myelinated DRG neuronal subpopulations: ASIC1 and ASIC3 were only expressed in CGRP-immunoreactive neurons (CGRP+), ASIC2a was mostly expressed in the majority of IB4-binding neurons (IB4+), while ASIC2b was expressed in almost all non-myelinated DRG neurons. We also found that at least half of sensory neurons expressed multiple types of ASIC subunits, indicating prevalence of heteromeric channels. In mice with peripheral nerve injury, the expression level of ASIC1a and ASIC1b in L4 DRG and ASIC3 in L5 DRG were altered in CGRP+ neurons, but not in IB4+ neurons. Furthermore, the pattern of change varied among DRGs depending on their segmental level, which pointed to differential regulatory mechanisms between afferent types and anatomical location. The distinct expression pattern of ASIC transcripts in naïve condition, and the differential regulation of ASIC subunits after peripheral nerve injury, suggest that ASIC subunits are involved in separate sensory modalities.
Collapse
Affiliation(s)
- Melina Papalampropoulou-Tsiridou
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Graduate Program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Simon Labrecque
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Graduate Program in Neuroscience, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Graduate Program in Neuroscience, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Feng Wang
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| |
Collapse
|
21
|
Takeuchi K, Ohashi Y, Amagase K. Roles of Up-Regulated Expression of ASIC3 in Sex Difference of Acid-Induced Duodenal HCO3 - Responses. Curr Pharm Des 2020; 26:3001-3009. [PMID: 32303171 DOI: 10.2174/1381612826666200417170319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
Although the morbidity of ulcers is statistically higher in males than females, the mechanism of this difference remains unknown. Recent studies show that duodenal HCO3 - response to mucosal acidification is higher in females than males, and this may be a factor responsible for the sex difference in the mucosal protective mechanisms. In this article, we examined the duodenal HCO3 - responses to various stimuli in male and female rats, including estrogen, and reviewed the mechanisms responsible for the sex difference in the acid-induced HCO3 - secretion. Mucosal acidification was performed by exposing the duodenum to 10 mM HCl for 10 min. PGE2 was administered intravenously, while capsaicin was applied topically to the duodenum for 10 min. Tamoxifen was given s.c. 30 min before the acidification. Ovariectomy was performed 2 weeks before the experiments; half of the animals were given estrogen i.m. after the operation. Mucosal acidification increased duodenal HCO3 - secretion in male rats, and this response was inhibited by indomethacin and sensory deafferentation. Although no sex difference was found in HCO3 - responses to PGE2 and capsaicin, the response to acid was significantly greater in female than male rats. The different HCO3 - response to acid disappeared on ovariectomy, and this effect was totally reversed by the repeated administration of estrogen. The gene expression of ASIC3 in female rats was greater than in male rats and down-regulated by ovariectomy or tamoxifen treatment in an estradiol- dependent manner, while no sex difference was observed in TRPV1 and CFTR expressions. In conclusion, the acid-induced HCO3 - response is greater in female than male rats, and this phenomenon is not due to changes in PGE2 sensitivity or TRPV1/CFTR expressions but may be accounted for by increased expression of ASIC3 on sensory neurons, which is associated with the chronic influence of estrogen.
Collapse
Affiliation(s)
- Koji Takeuchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan,General Incorporated Association, Kyoto Research Center for Gastrointestinal Diseases, Karasuma-Oike,
Kyoto 604-8106, Japan
| | - Yumi Ohashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan,Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan
University, Shiga 525-8577, Japan
| |
Collapse
|
22
|
Slota LA, Miranda E, Peskin B, McClay DR. Developmental origin of peripheral ciliary band neurons in the sea urchin embryo. Dev Biol 2020; 459:72-78. [PMID: 31881199 PMCID: PMC7080585 DOI: 10.1016/j.ydbio.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
In the sea urchin larva, most neurons lie within an ectodermal region called the ciliary band. Our understanding of the mechanisms of specification and patterning of these peripheral ciliary band neurons is incomplete. Here, we first examine the gene regulatory landscape from which this population of neural progenitors arise in the neuroectoderm. We show that ciliary band neural progenitors first appear in a bilaterally symmetric pattern on the lateral edges of chordin expression in the neuroectoderm. Later in development, these progenitors appear in a salt-and-pepper pattern in the ciliary band where they express soxC, and prox, which are markers of neural specification, and begin to express synaptotagminB, a marker of differentiated neurons. We show that the ciliary band expresses the acid sensing ion channel gene asicl, which suggests that ciliary band neurons control the larva's ability to discern touch sensitivity. Using a chemical inhibitor of MAPK signaling, we show that this signaling pathway is required for proper specification and patterning of ciliary band neurons. Using live imaging, we show that these neural progenitors undergo small distance migrations in the embryo. We then show that the normal swimming behavior of the larvae is compromised if the neurogenesis pathway is perturbed. The developmental sequence of ciliary band neurons is very similar to that of neural crest-derived sensory neurons in vertebrates and may provide insights into the evolution of sensory neurons in deuterostomes.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Esther Miranda
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Brianna Peskin
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
23
|
Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. Compr Physiol 2020; 10:345-363. [DOI: 10.1002/cphy.c190013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Calcitonin Gene-Related Peptide (CGRP) and Cluster Headache. Brain Sci 2020; 10:brainsci10010030. [PMID: 31935868 PMCID: PMC7016902 DOI: 10.3390/brainsci10010030] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Cluster headache (CH) is a severe primary headache with a prevalence of 1/1000 individuals, and a predominance in men. Calcitonin gene-related peptide (CGRP) is a potent vasodilator, originating in trigeminal neurons and has a central role in CH pathophysiology. CGRP and the CGRP receptor complex have recently taken center stage as therapeutic targets for primary headaches, such as migraine. Multiple CGRP and CGRP receptor monoclonal antibodies, as well as small molecule antagonists (gepants) are on their way constituting a new frontier of migraine and possibly CH medication. During a CH attack, there is an activation of the trigeminal-autonomic reflex with the release of CGRP, and inversely if CGRP is administered to a CH patient in an active disease phase, it triggers an attack. Increased levels of CGRP have been found in ipsilateral jugular vein blood during the active phase of CH. This process is hypothesized to have a key role in the intense pain perception and in the associated distinctive vasodilation. So far, clinical tests of CGRP antibodies have been inconclusive in CH patients. This review summarizes the current state of knowledge on the role of CGRP in CH pathology, and as a target for future treatments.
Collapse
|
25
|
Zhang Y, Qian X, Yang X, Niu R, Song S, Zhu F, Zhu C, Peng X, Chen F. ASIC1a induces synovial inflammation via the Ca 2+/NFATc3/ RANTES pathway. Theranostics 2020; 10:247-264. [PMID: 31903118 PMCID: PMC6929608 DOI: 10.7150/thno.37200] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Synovial inflammation is one of the main pathological features of rheumatoid arthritis (RA) and is a key factor leading to the progression of RA. Understanding the regulatory mechanism of synovial inflammation is crucial for the treatment of RA. Acid-sensing ion channel 1a (ASIC1a) is an H+-gated cation channel that promotes the progression of RA, but the role of ASIC1a in synovial inflammation is unclear. This study aimed to investigate whether ASIC1a is involved in the synovial inflammation and explore the underlying mechanisms in vitro and in vivo. Methods: The expression of ASIC1a and nuclear factor of activated T cells (NFATs) were analyzed by Western blotting, immunofluorescence, and immunohistochemistry both in vitro and in vivo. The Ca2+ influx mediated by ASIC1a was detected by calcium imaging and flow cytometry. The role of ASIC1a in inflammation was studied in rats with adjuvant-induced arthritis (AA). Inflammatory cytokine profile was analyzed by protein chip in RA synovial fibroblasts (RASF) and verified by a magnetic multi-cytokine assay and ELISA. The NFATc3-regulated RANTES (Regulated upon activation, normal T cell expressed and secreted) gene transcription was investigated by ChIP-qPCR and dual-luciferase reporter assay. Results: The expression of ASIC1a was significantly increased in human RA synovial tissues and primary human RASF as well as in ankle synovium of AA rats. Activated ASIC1a mediated Ca2+ influx to increase [Ca2+]i in RASF. The activation/overexpression of ASIC1a in RASF up-regulated the expression of inflammatory cytokines RANTES, sTNF RI, MIP-1a, IL-8, sTNF RII, and ICAM-1 among which RANTES was increased most remarkably. In vivo, ASIC1a promoted inflammation, synovial hyperplasia, articular cartilage, and bone destruction, leading to the progression of AA. Furthermore, activation of ASIC1a upregulated the nuclear translocation of NFATc3, which bound to RANTES promoter and directly regulated gene transcription to enhance RANTES expression. Conclusion: ASIC1a induces synovial inflammation, which leads to the progression of RA. Our study reveals a novel RA inflammation regulatory mechanism and indicates that ASIC1a might be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Yihao Zhang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xuewen Qian
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiaojuan Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ruowen Niu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Sujing Song
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Fei Zhu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Chuanjun Zhu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiaoqing Peng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| |
Collapse
|
26
|
ASIC1a promotes synovial invasion of rheumatoid arthritis via Ca 2+/Rac1 pathway. Int Immunopharmacol 2019; 79:106089. [PMID: 31865241 DOI: 10.1016/j.intimp.2019.106089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
Acid-sensitive ion channels (ASICs) as Ca2+ and Na+ cation channels are activated by changing in extracellular pH, which expressed in various diseases and participated in underlying pathogenesis. ASIC1a is involved in migration and invasion of various tumor cells. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) located at the edge of the synovium were identified as key players in the pathophysiological process of rheumatoid arthritis and reported to have many similar properties to tumor cells. Here, we investigated the roles of ASIC1a in synovial invasion in vivo and the migration and invasion of RA-FLSs in vitro. Our results showed ASIC1a highly expressed in RA synovial tissues and RA-FLSs. Inhibition of ASIC1a by PCTX-1 reduces synovial invasion and the expressions of MMP2, MMP9, p-FAK to protect articular cartilage in AA rats. Moreover, the acidity-promoted invasion and migration as well as the expressions of MMP2, MMP9, p-FAK of RA-FLSs were down-regulated by ASIC1a-RNAi and PCTX-1 while they were increased by overexpression-ASIC1a. ASIC1a mediated Ca2+ influx and the activation of Ras-related C3 botulinum toxin substrate 1(Rac1), which was decreased by the intracellular calcium chelating agent BAPTA-AM. Meanwhile, the migration and invasion as well as the expressions of MMP2, MMP9, p-FAK of RA-FLSs were decreased by Rac1 specific blocker NSC23766. In conclusion, this study indicated that ASIC1a may be a master regulator of synovial invasion via Ca2+/Rac1 pathway.
Collapse
|
27
|
Zhou R, Leng T, Yang T, Chen F, Hu W, Xiong ZG. β-Estradiol Protects Against Acidosis-Mediated and Ischemic Neuronal Injury by Promoting ASIC1a (Acid-Sensing Ion Channel 1a) Protein Degradation. Stroke 2019; 50:2902-2911. [PMID: 31412757 PMCID: PMC6756944 DOI: 10.1161/strokeaha.119.025940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023]
Abstract
Background and Purpose- Sex differences in the incidence and outcome of stroke have been well documented. The severity of stroke in women is, in general, significantly lower than that in men, which is mediated, at least in part, by the protective effects of β-estradiol. However, the detailed mechanisms underlying the neuroprotection by β-estradiol are still elusive. Recent studies have demonstrated that activation of ASIC1a (acid-sensing ion channel 1a) by tissue acidosis, a common feature of brain ischemia, plays an important role in ischemic brain injury. In the present study, we assessed the effects of β-estradiol on acidosis-mediated and ischemic neuronal injury both in vitro and in vivo and explored the involvement of ASIC1a and underlying mechanism. Methods- Cultured neurons and NS20Y cells were subjected to acidosis-mediated injury in vitro. Cell viability and cytotoxicity were measured by methylthiazolyldiphenyl-tetrazolium bromide and lactate dehydrogenase assays, respectively. Transient (60 minutes) focal ischemia in mice was induced by suture occlusion of the middle cerebral artery in vivo. ASIC currents were recorded using whole-cell patch-clamp technique while intracellular Ca2+ concentration was measured with fluorescence imaging using Fura-2. ASIC1a expression was detected by Western blotting and quantitative real-time polymerase chain reaction. Results- Treatment of neuronal cells with β-estradiol decreased acidosis-induced cytotoxicity. ASIC currents and acid-induced elevation of intracellular Ca2+ were all attenuated by β-estradiol treatment. In addition, we showed that β-estradiol treatment reduced ASIC1a protein expression, which was mediated by increased protein degradation, and that estrogen receptor α was involved. Finally, we showed that the level of ASIC1a protein expression in brain tissues and the degree of neuroprotection by ASIC1a blockade were lower in female mice, which could be attenuated by ovariectomy. Conclusions- β-estradiol can protect neurons against acidosis-mediated neurotoxicity and ischemic brain injury by suppressing ASIC1a protein expression and channel function. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Renpeng Zhou
- From the Department of Pharmacology, the Second Hospital of Anhui Medical University, China (R.Z., W.H.)
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Tiandong Leng
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Tao Yang
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Feihu Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, China (F.C.)
| | - Wei Hu
- From the Department of Pharmacology, the Second Hospital of Anhui Medical University, China (R.Z., W.H.)
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| |
Collapse
|
28
|
Paraskevopoulou S, Dennis AB, Weithoff G, Hartmann S, Tiedemann R. Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto. PLoS One 2019; 14:e0223134. [PMID: 31568501 PMCID: PMC6768451 DOI: 10.1371/journal.pone.0223134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023] Open
Abstract
Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics).
Collapse
Affiliation(s)
- Sofia Paraskevopoulou
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Unit of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail:
| | - Alice B. Dennis
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Guntram Weithoff
- Unit of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefanie Hartmann
- Unit of Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
29
|
Zhou YM, Wu L, Wei S, Jin Y, Liu TT, Qiu CY, Hu WP. Enhancement of acid-sensing ion channel activity by prostaglandin E2 in rat dorsal root ganglion neurons. Brain Res 2019; 1724:146442. [PMID: 31513790 DOI: 10.1016/j.brainres.2019.146442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 07/12/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 (PGE2) and proton are typical inflammatory mediators. They play a major role in pain processing and hypersensitivity through activating their cognate receptors expressed in terminals of nociceptive sensory neurons. However, it remains unclear whether there is an interaction between PGE2 receptors and proton-activated acid-sensing ion channels (ASICs). Herein, we show that PGE2 enhanced the functional activity of ASICs in rat dorsal root ganglion (DRG) neurons through EP1 and EP4 receptors. In the present study, PGE2 concentration-dependently increased ASIC currents in DRG neurons. It shifted the proton concentration-response curve upwards, without change in the apparent affinity of proton for ASICs. Moreover, PGE2 enhancement of ASIC currents was partially blocked by EP1 or EP4 receptor antagonist. PGE2 failed to enhance ASIC currents when simultaneous blockade of both EP1 and EP4 receptors. PGE2 enhancement was partially suppressed after inhibition of intracellular PKC or PKA signaling, and completely disappeared after concurrent blockade of both PKC and PKA signaling. PGE2 increased significantly the expression levels of p-PKCε and p-PKA in DRG cells. PGE2 also enhanced proton-evoked action potentials in rat DRG neurons. Finally, peripherally administration of PGE2 dose-dependently exacerbated acid-induced nocifensive behaviors in rats through EP1 and EP4 receptors. Our results indicate that PGE2 enhanced the electrophysiological activity of ASICs in DRG neurons and contributed to acidosis-evoked pain, which revealed a novel peripheral mechanism underlying PGE2 involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.
Collapse
Affiliation(s)
- Yi-Mei Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Lei Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Shuang Wei
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Ying Jin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China.
| |
Collapse
|
30
|
Pang L, Ji S, Xing J. Amiloride Alleviates Neurological Deficits Following Transient Global Ischemia and Engagement of Central IL-6 and TNF-α Signal. Curr Mol Med 2019; 19:597-604. [PMID: 31272354 DOI: 10.2174/1566524019666190704100444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine if blocking acid sensing ion channels (ASICs) using amiloride in the Central Nervous System can alleviate neurological deficits after the induction of CA and further examine the participation of PIC signal in the hippocampus for the effects of amiloride. METHODS CA was induced by asphyxia and then cardiopulmonary resuscitation was performed in rats. Western blot analysis and ELISA were used to determine the protein expression of ASIC subunit ASIC1 in the hippocampus, and the levels of PICs. As noted, it is unlikely that this procedure is clinically used although amiloride and other pharmacological agents were given into the brain in this study. RESULTS CA increased ASIC1 in the hippocampus of rats in comparison with control animals. This was associated with the increase in IL-1β, IL-6 and TNF-α together with Caspase-3 and Caspase-9. The administration of amiloride into the lateral ventricle attenuated the upregulation of Caspase-3/Caspase-9 and this further alleviated neurological severity score and brain edema. Inhibition of central IL-6 and TNF-α also decreased ASIC1 in the hippocampus of CA rats. CONCLUSION Transient global ischemia induced by CA amplifies ASIC1a in the hippocampus likely via PIC signal. Amiloride administered into the Central Nervous System plays a neuroprotective role in the process of global ischemia. Thus, targeting ASICs (i.e., ASIC1a) is suggested for the treatment and improvement of CA-evoked global cerebral ischemia.
Collapse
Affiliation(s)
- Li Pang
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shouqin Ji
- Jiutai District People's Hospital of Changchun, Changchun, Jilin 130500, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
31
|
Matsubara T, Hayashi K, Wakatsuki K, Abe M, Ozaki N, Yamanaka A, Mizumura K, Taguchi T. Thin-fibre receptors expressing acid-sensing ion channel 3 contribute to muscular mechanical hypersensitivity after exercise. Eur J Pain 2019; 23:1801-1813. [PMID: 31314951 DOI: 10.1002/ejp.1454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Delayed onset muscle soreness (DOMS) is characterized by mechanical hyperalgesia after lengthening contractions (LC). It is relatively common and causes disturbance for many people who require continuous exercise, yet its molecular and peripheral neural mechanisms are poorly understood. METHODS We examined whether muscular myelinated Aδ-fibres, in addition to unmyelinated C-fibres, are involved in LC-induced mechanical hypersensitivity, and whether acid-sensing ion channel (ASIC)-3 expressed in thin-fibre afferents contributes to this type of pain using a rat model of DOMS. The peripheral contribution of ASIC3 was investigated using single-fibre electrophysiological recordings in extensor digitorum longus muscle-peroneal nerve preparations in vitro. RESULTS Behavioural tests demonstrated a significant decrease of the muscular mechanical withdrawal threshold following LC to ankle extensor muscles, and it was improved by intramuscular injection of APETx2 (2.2 μM), a selective blocker of ASIC3. The lower concentration of APETx2 (0.22 µM) and its vehicle had no effect on the threshold. Intramuscular injection of APETx2 (2.2 μM) in naïve rats without LC did not affect the withdrawal threshold. In the ankle extensor muscles that underwent LC one day before the electrophysiological recordings, the mechanical response of Aδ- and C-fibres was significantly facilitated (i.e. decreased response threshold and increased magnitude of the response). The facilitated mechanical response of the Aδ- and C-fibres was significantly suppressed by selective blockade of ASIC3 with APETx2, but not by its vehicle. CONCLUSIONS These results clearly indicate that ASIC3 contributes to the augmented mechanical response of muscle thin-fibre receptors in delayed onset muscular mechanical hypersensitivity after LC. SIGNIFICANCE Here, we show that not only C- but also Aδ-fibre nociceptors in the muscle are involved in mechanical hypersensitivity after lengthening contractions, and that acid-sensing ion channel (ASIC)-3 expressed in the thin-fibre nociceptors is responsible for the mechanical hypersensitivity. ASIC3 might be a novel pharmacological target for pain after exercise.
Collapse
Affiliation(s)
- Takanori Matsubara
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Koei Hayashi
- Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Koji Wakatsuki
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Masahiro Abe
- Medical Information Department, Vitacain Pharmaceutical Co. Ltd, Osaka, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazue Mizumura
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
32
|
Blockade of Acid-Sensing Ion Channels Attenuates Recurrent Hypoglycemia-Induced Potentiation of Ischemic Brain Damage in Treated Diabetic Rats. Neuromolecular Med 2019; 21:454-466. [PMID: 31134484 DOI: 10.1007/s12017-019-08546-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022]
Abstract
Diabetes is a chronic metabolic disease and cerebral ischemia is a serious complication of diabetes. Anti-diabetic therapy mitigates this complication but increases the risk of exposure to recurrent hypoglycemia (RH). We showed previously that RH exposure increases ischemic brain damage in insulin-treated diabetic (ITD) rats. The present study evaluated the hypothesis that increased intra-ischemic acidosis in RH-exposed ITD rats leads to pronounced post-ischemic hypoperfusion via activation of acid-sensing (proton-gated) ion channels (ASICs). Streptozotocin-diabetic rats treated with insulin were considered ITD rats. ITD rats were exposed to RH for 5 days and were randomized into Psalmotoxin1 (PcTx1, ASIC1a inhibitor), APETx2 (ASIC3 inhibitor), or vehicle groups. Transient global cerebral ischemia was induced overnight after RH. Cerebral blood flow was measured using laser Doppler flowmetry. Ischemic brain injury in hippocampus was evaluated using histopathology. Post-ischemic hypoperfusion in RH-exposed rats was of greater extent than that in control rats. Inhibition of ASICs prevented RH-induced increase in the extent of post-ischemic hypoperfusion and ischemic brain injury. Since ASIC activation-induced store-operated calcium entry (SOCE) plays a role in vascular tone, next we tested if acidosis activates SOCE via activating ASICs in vascular smooth muscle cells (VSMCs). We observed that SOCE in VSMCs at lower pH is ASIC3 dependent. The results show the role of ASIC in post-ischemic hypoperfusion and increased ischemic damage in RH-exposed ITD rats. Understanding the pathways mediating exacerbated ischemic brain injury in RH-exposed ITD rats may help lower diabetic aggravation of ischemic brain damage.
Collapse
|
33
|
Shear force modulates the activity of acid-sensing ion channels at low pH or in the presence of non-proton ligands. Sci Rep 2019; 9:6781. [PMID: 31043630 PMCID: PMC6494901 DOI: 10.1038/s41598-019-43097-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Acid-sensing ion channels (ASICs) belong to the degenerin/epithelial sodium channel protein family that form mechanosensitive ion channels. Evidence as to whether or not ASICs activity is directly modulated by mechanical force is lacking. Human ASICs (hASIC1V3, hASIC2a and hASIC3a) were heterologously expressed as homomeric channels in Xenopus oocytes and two-electrode voltage-clamp recordings were performed. hASIC3a was expressed in HEK-293 cells and currents measured by whole-cell patch-clamp recordings. ASIC currents in response to shear force (SF) were measured at pH 7.4, acidic pH, or in the presence of non-proton ligands at pH 7.4. SF was applied via a fluid stream generated through a pressurized perfusion system. No effect was observed at pH 7.4. Increased transient currents for each homomeric channel were observed when elevated SF was applied in conjunction with acidic pH (6.0-4.0). The sustained current was not (hASIC2a) or only slightly increased (hASIC1V3 and hASIC3a). SF-induced effects were not seen in water injected oocytes and were blocked by amiloride. Non-proton ligands activated a persistent current in hASIC1V3 and cASIC1 (MitTx) and hASIC3a (GMQ) at pH 7.4. Here SF caused a further current increase. Results suggest that ASICs do have an intrinsic ability to respond to mechanical force, supporting their role as mechanosensors in certain local environments.
Collapse
|
34
|
Wan Y, Yu Y, Pan X, Mo X, Gong W, Liu X, Chen S. Inhibition on acid-sensing ion channels and analgesic activities of flavonoids isolated from dragon's blood resin. Phytother Res 2019; 33:718-727. [PMID: 30618119 DOI: 10.1002/ptr.6262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/08/2018] [Accepted: 11/23/2018] [Indexed: 11/08/2022]
Abstract
Acid-sensing ion channel (ASIC) serves important roles in the transmission of nociceptive information. To confirm the analgesic mechanism of dragon's blood resin, patch-clamp technique, in vivo animal experiments, and immunohistochemical staining were used to observe the effects of the three flavonoids (loureirin B, cochinchinemin A, and cochinchinemin B) isolated from dragon's blood resin on ASIC. Results showed that the three flavonoids exerted various inhibitory effects on ASIC currents in rat dorsal root ganglion (DRG) neurons. The combination of the three flavonoids with total concentration of 6.5 μM could decrease (53.8 ± 4.3%) of the peak amplitude and (45.8 ± 4.5%) of the sustained portion of ASIC currents. The combination of the three flavonoids was fully efficacious on complete Freud's adjuvant (CFA)-induced inflammatory thermal hyperalgesia at a dose of 6.5 mM similar with amiloride at 10 mM. The analgesic effects of the combination could be weakened by an ASIC activator 2-guanidine-4-methylquinazoline. CFA-induced hyperalgesia was accompanied by c-Fos up-regulation in DRG neurons, and the combination rescued thermal hyperalgesia through down-regulation of c-Fos and ASIC3 expression in CFA-induced inflammation. These collective results suggested that the flavonoids isolated from dragon's blood resin could be considered as the chemical compounds that exert analgesic effects on inflammatory thermal pain due to action on ASIC.
Collapse
Affiliation(s)
- Ying Wan
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.,Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
| | - Yi Yu
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.,Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
| | - Xinxin Pan
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.,Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
| | - Xiaoqiang Mo
- Basic Medical College, Youjiang Medical University for Nationalities, Baise, China
| | - Weifan Gong
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Xiangming Liu
- School of Nursing, Gongqing Institute of Science and Technology, Jiujiang, China
| | - Su Chen
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.,Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, Wuhan, China
| |
Collapse
|
35
|
Zhou RP, Leng TD, Yang T, Chen FH, Xiong ZG. Acute Ethanol Exposure Promotes Autophagy-Lysosome Pathway-Dependent ASIC1a Protein Degradation and Protects Against Acidosis-Induced Neurotoxicity. Mol Neurobiol 2018; 56:3326-3340. [PMID: 30120732 DOI: 10.1007/s12035-018-1289-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Tissue acidosis is a common feature of brain ischemia which causes neuronal injury. Activation of acid-sensing ion channel 1a (ASIC1a) plays an important role in acidosis-mediated neurotoxicity. Acute ethanol administration has been shown to provide neuroprotective effects during ischemic stroke, but the precise mechanisms have yet to be determined. In this study, we investigated the effect of ethanol on the activity/expression of ASIC1a channels and acidosis-induced neurotoxicity. We showed that acute treatment of neuronal cells with ethanol for more than 3 h could reduce ASIC1a protein expression, ASIC currents, and acid-induced [Ca2+]i elevation. We further demonstrated that ethanol-induced reduction of ASIC1a expression is mediated by autophagy-lysosome pathway (ALP)-dependent protein degradation. Finally, we showed that ethanol protected neuronal cells against acidosis-induced cytotoxicity, which effect was mimicked by autophagy activator rapamycin and abolished by autophagy inhibitor CQ. Together, these results indicate that moderate acute ethanol exposure can promote autophagy-lysosome pathway-dependent ASIC1a protein degradation and protect against acidosis-induced neurotoxicity.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Tian-Dong Leng
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Tao Yang
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Zhi-Gang Xiong
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA.
| |
Collapse
|
36
|
Yu GM, Liu D, Yuan N, Liu BH. Dual role of acid-sensing ion channels 3 in rheumatoid arthritis: destruction or protection? Immunopharmacol Immunotoxicol 2018; 40:273-277. [PMID: 30035658 DOI: 10.1080/08923973.2018.1485156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acid-sensing ion channels (ASIC) are voltage-independent cationic channels that open in response to decrease in extracellular pH. Amongst different subtypes, ASIC3 has received much attention in joint inflammatory conditions including rheumatoid arthritis. There have been a number of studies showing that there is an increase in expression of ASIC3 on nerve afferents supplying joints in response to inflammatory stimulus. Accordingly, a number of selective as well as nonselective ASIC3 inhibitors have shown potential in attenuating pain and inflammation in animal models of rheumatoid arthritis. On the other hand, there have been studies showing that ASIC3 may exert protective effects in joint inflammation. ASIC-/- animals, without ASIC3 genes, exhibit more joint inflammation and destruction in comparison to ASIC+/+ animals. The present review discusses the dual nature of ASIC3 in joint inflammation with possible mechanisms.
Collapse
Affiliation(s)
- Gui-Mei Yu
- a Department of Rheumatology , The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , PR China
| | - Di Liu
- a Department of Rheumatology , The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , PR China
| | - Na Yuan
- a Department of Rheumatology , The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , PR China
| | - Bao-Hua Liu
- b Department of Emergency , The First Hospital of Jilin University , Changchun , PR China
| |
Collapse
|
37
|
Gregory NS, Gautam M, Benson CJ, Sluka KA. Acid Sensing Ion Channel 1a (ASIC1a) Mediates Activity-induced Pain by Modulation of Heteromeric ASIC Channel Kinetics. Neuroscience 2018; 386:166-174. [PMID: 29964154 DOI: 10.1016/j.neuroscience.2018.06.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Chronic muscle pain is acutely worsened by exercise. Acid sensing ion channels (ASIC) are heteromeric channels expressed in muscle sensory neurons that detect decreases in pH. We have previously shown ASIC3 is important in activity-induced hyperalgesia. However, ASICs form heteromers with ASIC1a being a key component in sensory neurons. Therefore, we studied the role of ASIC1a in mice using behavioral pharmacology and genetic deletion in a model of activity-induced hyperalgesia. We found ASIC1a-/- mice developed mechanical hyperalgesia similar to wild-type mice, but antagonism of ASIC1a, with psalmotoxin, prevented development of mechanical hyperalgesia in wild-type mice, but not in ASIC1a-/- mice. To explain this discrepancy, we then performed electrophysiology studies of ASICs and examined the effects of psalmotoxin on ASIC heteromers. We expressed ASIC1a, 2 and 3 heteromers or ASIC1 and 3 heteromers in CHO cells, and examined the effects of psalmotoxin on pH sensitivity. Psalmotoxin significantly altered the properties of ASIC hetomeric channels. Specifically, in ASIC1a/2/3 heteromers, psalmotoxin slowed the kinetics of desensitization, slowed the recovery from desensitization, and inhibited pH-dependent steady-state desensitization, but had no effect on pH-evoked current amplitudes. We found a different pattern in ASIC1a/3 heteromers. There was a significant leftward shift in the pH dose response of steady-state desensitization and decrease in pH-evoked current amplitudes. These results suggest that blockade of ASIC1a modulates the kinetics of heteromeric ASICs to prevent development of activity-induced hyperalgesia. These data suggest ASIC1a is a key subunit in heteromeric ASICs and may be a pharmacological target for treatment of musculoskeletal pain.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, IA 52242, United States; Department of Neuroscience, The University of Iowa, Iowa City, IA 52242, United States; Pain Research Program, The University of Iowa, Iowa City, IA 52242, United States
| | - Mamta Gautam
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, United States; Pain Research Program, The University of Iowa, Iowa City, IA 52242, United States; Veterans Medical Center, Iowa City, IA, United States
| | - Christopher J Benson
- Department of Neuroscience, The University of Iowa, Iowa City, IA 52242, United States; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, United States; Pain Research Program, The University of Iowa, Iowa City, IA 52242, United States; Veterans Medical Center, Iowa City, IA, United States
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, IA 52242, United States; Department of Neuroscience, The University of Iowa, Iowa City, IA 52242, United States; Pain Research Program, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
38
|
Park SH, Eber MR, Widner DB, Shiozawa Y. Role of the Bone Microenvironment in the Development of Painful Complications of Skeletal Metastases. Cancers (Basel) 2018; 10:cancers10050141. [PMID: 29747461 PMCID: PMC5977114 DOI: 10.3390/cancers10050141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and painful complication in patients with bone metastases. It causes a significant reduction in patient quality of life. Available analgesic treatments for CIBP, such as opioids that target the central nervous system, come with severe side effects as well as the risk of abuse and addiction. Therefore, alternative treatments for CIBP are desperately needed. Although the exact mechanisms of CIBP have not been fully elucidated, recent studies using preclinical models have demonstrated the role of the bone marrow microenvironment (e.g., osteoclasts, osteoblasts, macrophages, mast cells, mesenchymal stem cells, and fibroblasts) in CIBP development. Several clinical trials have been performed based on these findings. CIBP is a complex and challenging condition that currently has no standard effective treatments other than opioids. Further studies are clearly warranted to better understand this painful condition and develop more effective and safer targeted therapies.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Matthew R Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - D Brooke Widner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
39
|
Lin LH, Jones S, Talman WT. Cellular Localization of Acid-Sensing Ion Channel 1 in Rat Nucleus Tractus Solitarii. Cell Mol Neurobiol 2018; 38:219-232. [PMID: 28825196 DOI: 10.1007/s10571-017-0534-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
By determining its cellular localization in the nucleus tractus solitarii (NTS), we sought anatomical support for a putative physiological role for acid-sensing ion channel Type 1 (ASIC1) in chemosensitivity. Further, we sought to determine the effect of a lesion that produces gliosis in the area. In rats, we studied ASIC1 expression in control tissue with that in tissue with gliosis, which is associated with acidosis, after saporin lesions. We hypothesized that saporin would increase ASIC1 expression in areas of gliosis. Using fluorescent immunohistochemistry and confocal microscopy, we found that cells and processes containing ASIC1-immunoreactivity (IR) were present in the NTS, the dorsal motor nucleus of vagus, and the area postrema. In control tissue, ASIC1-IR predominantly colocalized with IR for the astrocyte marker, glial fibrillary acidic protein (GFAP), or the microglial marker, integrin αM (OX42). The subpostremal NTS was the only NTS region where neurons, identified by protein gene product 9.5 (PGP9.5), contained ASIC1-IR. ASIC1-IR increased significantly (157 ± 8.6% of control, p < 0.001) in the NTS seven days after microinjection of saporin. As we reported previously, GFAP-IR was decreased in the center of the saporin injection site, but GFAP-IR was increased in the surrounding areas where OX42-IR, indicative of activated microglia, was also increased. The over-expressed ASIC1-IR colocalized with GFAP-IR and OX42-IR in those reactive astrocytes and microglia. Our results support the hypothesis that ASIC1 would be increased in activated microglia and in reactive astrocytes after injection of saporin into the NTS.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Susan Jones
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - William T Talman
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
- Neurology Service, Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
40
|
Interleukin-1β and tumor necrosis factor-α augment acidosis-induced rat articular chondrocyte apoptosis via nuclear factor-kappaB-dependent upregulation of ASIC1a channel. Biochim Biophys Acta Mol Basis Dis 2018; 1864:162-177. [DOI: 10.1016/j.bbadis.2017.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/09/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
|
41
|
Effects of autophagy on acid-sensing ion channel 1a-mediated apoptosis in rat articular chondrocytes. Mol Cell Biochem 2017; 443:181-191. [DOI: 10.1007/s11010-017-3223-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022]
|
42
|
Zhou RP, Ni WL, Dai BB, Wu XS, Wang ZS, Xie YY, Wang ZQ, Yang WJ, Ge JF, Hu W, Chen FH. ASIC2a overexpression enhances the protective effect of PcTx1 and APETx2 against acidosis-induced articular chondrocyte apoptosis and cytotoxicity. Gene 2017; 642:230-240. [PMID: 29141196 DOI: 10.1016/j.gene.2017.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/30/2017] [Accepted: 11/11/2017] [Indexed: 11/16/2022]
Abstract
Acid hydrarthrosis is another important pathological character in rheumatoid arthritis (RA), and acid-sensing ion channel 1a (ASIC1a) plays a destructive role in acidosis-induced articular chondrocyte cytotoxicity. Recently, ASIC2a has been reported to possess neuroprotective effect on acidosis-induced injury of neuronal cells. However, whether ASIC2a has an enhanced effect on the protective effect of blocking ASIC1a and ASIC3 against acid-induced chondrocyte apoptosis is still unclear. The aim of present study was to investigate the chondroprotective effect of ASIC2a with PcTx1 (ASIC1a specific blocker) and APETx2 (ASIC3 specific blocker) on acidosis-induced chondrocyte apoptosis. Our results revealed that acid (pH 6.0) decreased the cell viability and induced apoptosis of articular chondrocytes. PcTx1 and APETx2 combination significantly attenuated acidosis-induced chondrocyte cytotoxicity due to inhibit apoptosis, and this role could be enhanced by ASIC2a overexpression compared with the PcTx1 and APETx2 combination alone group. Moreover, both the [Ca2+]i levels and the levels of phosphorylated ERK1/2 as well as p38 were further reduced in acidosis-induced chondrocytes after ASIC2a overexpression in the presence of PcTx1 and APETx2. Furthermore, ASIC2a overexpression also reduced acid-induced the expression of ASIC1a. In addition, ASIC2a overexpression further promoted the PcTx1 and APETx2-increased levels of type II collagen in acidosis-induced chondrocytes. Taken together, the current data suggested that ASIC2a overexpression might enhance the anti-apoptotic and protective role of PcTx1 and APETx2 against acid-induced rat articular chondrocyte apoptosis by regulating ASIC1a expression and the [Ca2+]i levels and at least in part, suppressing p38 and ERK1/2 MAPK signaling pathways.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Wen-Lin Ni
- Pharmaceutical Preparation Section, Tongling Fourth People's Hospital, Tongling 244000, China
| | - Bei-Bei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiao-Shan Wu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Zhi-Sen Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Zhi-Qiang Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Wei-Jie Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Wei Hu
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
43
|
Wu J, Wang JJ, Liu TT, Zhou YM, Qiu CY, Shen DW, Hu WP. PPAR-α acutely inhibits functional activity of ASICs in rat dorsal root ganglion neurons. Oncotarget 2017; 8:93051-93062. [PMID: 29190977 PMCID: PMC5696243 DOI: 10.18632/oncotarget.21805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α), a lipid activated transcription factor of nuclear hormone receptor superfamily, can relieve pain through a rapid-response mechanism. However, little is known about the underlying mechanism. Herein, we report that PPAR-α activation acutely inhibits the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglion (DRG) neurons. Pre-application of PPAR-α agonist GW7647 for 2 min decreased the amplitude of proton-gated currents mediated by ASICs in a concentration-dependent manner. GW7647 shifted the concentration-response curve for proton downwards, with a decrease of 36.9 ± 2.3% in the maximal current response to proton. GW7647 inhibition of proton-gated currents can be blocked by GW6471, a selective PPAR-α antagonist. Moreover, PPAR-α activation decreased the number of acidosis-evoked action potentials in rat DRG neurons. Finally, peripheral administration of GW7647 dose-dependently relieved nociceptive responses to injection of acetic acid in rats. These results indicated that activation of peripheral PPAR-α acutely inhibited functional activity of ASICs in a non-genomic manner, which revealed a novel mechanism underlying rapid analgesia through peripheral PPAR-α.
Collapse
Affiliation(s)
- Jing Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Jia-Jia Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Yi-Mei Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Ding-Wen Shen
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, Hubei, P.R. China
| |
Collapse
|
44
|
Dai B, Zhu F, Chen Y, Zhou R, Wang Z, Xie Y, Wu X, Zu S, Li G, Ge J, Chen F. ASIC1a Promotes Acid-Induced Autophagy in Rat Articular Chondrocytes through the AMPK/FoxO3a Pathway. Int J Mol Sci 2017; 18:E2125. [PMID: 29019932 PMCID: PMC5666807 DOI: 10.3390/ijms18102125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H⁺-activated cation channels family. Our previous studies suggested that ASIC1a contributed to acid-induced rat articular chondrocytes autophagy. However, its potential mechanisms remain unclear. The present study demonstrated the effect of ASIC1a on rat articular chondrocytes autophagy and explored the underlying molecular mechanisms. The results demonstrated that ASIC1a contributed to acid-induced autophagy in rat articular chondrocytes, and which was associated with an increase in (Ca2+)i, as indicated that acid-induced increases in mRNA and protein expression of LC3B-II and other autophagy-related markers were inhibited by ASIC1a-specific blocker, PcTx1 and calcium chelating agent, BAPTA-AM. Furthermore, the results showed that extracellular acid increased level of Forkhead box O (FoxO) 3a, but was reversed by inhibition of ASIC1a and Ca2+ influx. Moreover, gene ablation of FoxO3a prevented acid-induced increases in mRNA and protein expression of LC3B-II, Beclin1 and the formation of autophagosome. Finally, it also showed that ASIC1a activated adenine nucleotide (AMP)-activated protein kinase (AMPK). In addition, suppression of AMPK by Compound C and its small interfering RNA (siRNA) prevented acid-induced upregulation of total and nuclear FoxO3a and increases in mRNA and protein expression of LC3B-II, Beclin1, and ATG5. Taken together, these findings suggested that AMPK/FoxO3a axis plays an important role in ASIC1a-mediated autophagy in rat articular chondrocytes, which may provide novel mechanistic insight into ASIC1a effects on autophagy.
Collapse
Affiliation(s)
- Beibei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Fei Zhu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yong Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Renpeng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Zhisen Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yaya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Xiaoshan Wu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Shengqin Zu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Ge Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jinfang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
45
|
Solé-Magdalena A, Martínez-Alonso M, Coronado CA, Junquera LM, Cobo J, Vega JA. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann Anat 2017; 215:20-29. [PMID: 28954208 DOI: 10.1016/j.aanat.2017.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
Odontoblasts are the dental pulp cells responsible for the formation of dentin. In addition, accumulating data strongly suggest that they can also function as sensory cells that mediate the early steps of mechanical, thermic, and chemical dental sensitivity. This assumption is based on the expression of different families of ion channels involved in various modalities of sensitivity and the release of putative neurotransmitters in response to odontoblast stimulation which are able to act on pulp sensory nerve fibers. This review updates the current knowledge on the expression of transient-potential receptor ion channels and acid-sensing ion channels in odontoblasts, nerve fibers innervating them and trigeminal sensory neurons, as well as in pulp cells. Moreover, the innervation of the odontoblasts and the interrelationship been odontoblasts and nerve fibers mediated by neurotransmitters was also revisited. These data might provide the basis for novel therapeutic approaches for the treatment of dentin sensibility and/or dental pain.
Collapse
Affiliation(s)
- A Solé-Magdalena
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - M Martínez-Alonso
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - C A Coronado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - L M Junquera
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Servicio de Cirugía Maxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Cobo
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
46
|
Wu J, Liu TT, Zhou YM, Qiu CY, Ren P, Jiao M, Hu WP. Sensitization of ASIC3 by proteinase-activated receptor 2 signaling contributes to acidosis-induced nociception. J Neuroinflammation 2017; 14:150. [PMID: 28754162 PMCID: PMC5534107 DOI: 10.1186/s12974-017-0916-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background Tissue acidosis and inflammatory mediators play critical roles in pain. Pro-inflammatory agents trypsin and tryptase cleave and activate proteinase-activated receptor 2 (PAR2) expressed on sensory nerves, which is involved in peripheral mechanisms of inflammation and pain. Extracellular acidosis activates acid-sensing ion channel 3 (ASIC3) to trigger pain sensation. Here, we show that a functional interaction of PAR2 and ASIC3 could contribute to acidosis-induced nociception. Methods Electrophysiological experiments were performed on both rat DRG neurons and Chinese hamster ovary (CHO) cells expressing ASIC3 and PAR2. Nociceptive behavior was induced by acetic acid in rats. Results PAR2-AP, PAR2-activating peptide, concentration-dependently increased the ASIC3 currents in CHO cells transfected with ASIC3 and PAR2. The proton concentration–response relationship was not changed, but that the maximal response increased 58.7 ± 3.8% after pretreatment of PAR2-AP. PAR2 mediated the potentiation of ASIC3 currents via an intracellular cascade. PAR2-AP potentiation of ASIC3 currents disappeared after inhibition of intracellular G protein, PLC, PKC, or PKA signaling. Moreover, PAR2 activation increased proton-evoked currents and spikes mediated by ASIC3 in rat dorsal root ganglion neurons. Finally, peripheral administration of PAR2-AP dose-dependently exacerbated acidosis-induced nocifensive behaviors in rats. Conclusions These results indicated that PAR2 signaling sensitized ASIC3, which may contribute to acidosis-induced nociception. These represent a novel peripheral mechanism underlying PAR2 involvement in hyperalgesia by sensitizing ASIC3 in primary sensory neurons.
Collapse
Affiliation(s)
- Jing Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Yi-Mei Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ping Ren
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ming Jiao
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China. .,Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
47
|
Wu Y, Gao B, Xiong QJ, Wang YC, Huang DK, Wu WN. Acid-sensing ion channels contribute to the effect of extracellular acidosis on proliferation and migration of A549 cells. Tumour Biol 2017; 39:1010428317705750. [PMID: 28618956 DOI: 10.1177/1010428317705750] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acid-sensing ion channels, a proton-gated cation channel, can be activated by low extracellular pH and involved in pathogenesis of some tumors such as glioma and breast cancer. However, the role of acid-sensing ion channels in the growth of lung cancer cell is unclear. In this study, we investigated the expression of acid-sensing ion channels in human lung cancer cell line A549 and their possible role in proliferation and migration of A549 cells. The results show that acid-sensing ion channel 1, acid-sensing ion channel 2, and acid-sensing ion channel 3 are expressed in A549 cells at the messenger RNA and protein levels, and acid-sensing ion channel-like currents were elicited by extracellular acid stimuli. Moreover, we found that acidic extracellular medium or overexpressing acid-sensing ion channel 1a promotes proliferation and migration of A549 cells. In addition psalmotoxin 1, a specific acid-sensing ion channel 1a inhibitor, or acid-sensing ion channel 1a knockdown can abolish the effect of acid stimuli on A549 cells. In addition, acid-sensing ion channels mediate increase of [Ca2+]i induced by low extracellular pH in A549 cells. All these results indicate that acid-sensing ion channel-calcium signal mediate lung cancer cell proliferation and migration induced by extracellular acidosis, and acid-sensing ion channels may serve as a prognostic marker and a therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Yu Wu
- 1 Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
| | - Bo Gao
- 1 Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
| | - Qiu-Ju Xiong
- 2 Department of Pain Management, Wuhan Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yu-Chan Wang
- 1 Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
| | - Da-Ke Huang
- 3 Synthetic Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
| | - Wen-Ning Wu
- 1 Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China.,4 Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
48
|
Pohorille A, Wilson MA, Shannon G. Flexible Proteins at the Origin of Life. Life (Basel) 2017; 7:E23. [PMID: 28587235 PMCID: PMC5492145 DOI: 10.3390/life7020023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
Almost all modern proteins possess well-defined, relatively rigid scaffolds that provide structural preorganization for desired functions. Such scaffolds require the sufficient length of a polypeptide chain and extensive evolutionary optimization. How ancestral proteins attained functionality, even though they were most likely markedly smaller than their contemporary descendants, remains a major, unresolved question in the origin of life. On the basis of evidence from experiments and computer simulations, we argue that at least some of the earliest water-soluble and membrane proteins were markedly more flexible than their modern counterparts. As an example, we consider a small, evolved in vitro ligase, based on a novel architecture that may be the archetype of primordial enzymes. The protein does not contain a hydrophobic core or conventional elements of the secondary structure characteristic of modern water-soluble proteins, but instead is built of a flexible, catalytic loop supported by a small hydrophilic core containing zinc atoms. It appears that disorder in the polypeptide chain imparts robustness to mutations in the protein core. Simple ion channels, likely the earliest membrane protein assemblies, could also be quite flexible, but still retain their functionality, again in contrast to their modern descendants. This is demonstrated in the example of antiamoebin, which can serve as a useful model of small peptides forming ancestral ion channels. Common features of the earliest, functional protein architectures discussed here include not only their flexibility, but also a low level of evolutionary optimization and heterogeneity in amino acid composition and, possibly, the type of peptide bonds in the protein backbone.
Collapse
Affiliation(s)
- Andrew Pohorille
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94132, USA.
| | - Michael A Wilson
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- SETI Institute, 189 N Bernardo Ave #200, Mountain View, CA 94043, USA.
| | - Gareth Shannon
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- NASA Postdoctoral Program Fellow, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
49
|
Liu J, Tao H, Wang H, Dong F, Zhang R, Li J, Ge P, Song P, Zhang H, Xu P, Liu X, Shen C. Biological Behavior of Human Nucleus Pulposus Mesenchymal Stem Cells in Response to Changes in the Acidic Environment During Intervertebral Disc Degeneration. Stem Cells Dev 2017; 26:901-911. [PMID: 28298159 DOI: 10.1089/scd.2016.0314] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An acidic environment is vital for the maintenance of cellular activities but can be affected tremendously during intervertebral disc degeneration (IVDD). The effect of changes in the acidity of the environment on human nucleus pulposus mesenchymal stem cells (NP-MSCs) is, however, unknown. Thus, this study aimed to observe the biological effects of acidic conditions mimicking a degenerated intervertebral disc on NP-MSCs in vitro. NP-MSCs were isolated from patients with lumbar disc herniation and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were cultured at acidic pH levels (pH 6.2, pH 6.5, pH 6.8, pH 7.1, and pH 7.4) with/without amiloride, an acid-sensing ion channel (ASIC) blocker. The proliferation and apoptosis of NP-MSCs and the expression of stem cell-related genes (Oct4, Nanog, Jagged, Notch1), ASICs, and functional genes (Aggrecan, SOX-9, Collagen-I, and Collagen-II) in NP-MSCs were evaluated. Our work showed that cells obtained from human degenerated NP met the criteria of International Society for Cellular Therapy. Therefore, cells obtained from a degenerated nucleus pulposus were definitively identified as NP-MSCs. Our results also indicated that acidic conditions could significantly inhibit cell proliferation and increase cell apoptosis. Gene expression results demonstrated that acidic conditions could decrease the expression of stem cell-related genes and inhibit extracellular matrix synthesis, whereas it could increase the expression of ASICs. Our study further verified that the above-mentioned biological activities of NP-MSCs could be significantly improved by amiloride. Therefore, the results of the study indicated that the biological behavior of NP-MSCs could be inhibited by acidic conditions during IVDD, and amiloride may meliorate IVDD by improving the activities of NP-MSCs.
Collapse
Affiliation(s)
- Jianjun Liu
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Hui Tao
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Hanbang Wang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Fulong Dong
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Renjie Zhang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Jie Li
- 2 Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Ge
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peiwen Song
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Huaqing Zhang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Xu
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Xiaoying Liu
- 3 Biology Department, School of Life Science, Anhui Medical University , Hefei, People's Republic of China
| | - Cailiang Shen
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| |
Collapse
|
50
|
Wu Y, Qin D, Yang H, Fu H. Evidence for the Participation of Acid-Sensing Ion Channels (ASICs) in the Antinociceptive Effect of Curcumin in a Formalin-Induced Orofacial Inflammatory Model. Cell Mol Neurobiol 2017; 37:635-642. [PMID: 27383838 DOI: 10.1007/s10571-016-0399-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Curcumin, a major bioactive component of turmeric, has diverse therapeutic effects such as anti-inflammatory, antioxidant, anticancer, and antinociceptive activities. The acid-sensing ion channels (ASICs), which can be activated by acute drops in the extracellular pH, play an important role in nociception. However, very little is known about the interaction between ASICs and curcumin in nociception of inflammation. In our study, we investigated whether the antinociceptive effects of curcumin are mediated via ASICs using an orofacial nociceptive model and in vitro western blotting, immunofluorescence, whole-cell patch-clamp recordings in the trigeminal system. Intraperitoneally administered curcumin at a dose of 50 mg/kg can reduce hyperalgesia in both the phases of a formalin-induced orofacial nociceptive model. Curcumin reduced the amplitude of ASICs currents in a dose-dependent manner in trigeminal ganglion (TG) neurons, and curcumin also reduced the protein quantity but did not change the distribution of ASICs in TG. Thus, our results indicate that curcumin can reduce formalin-induced ASICs activation and thus inhibit ASICs-mediated inflammatory pain hypersensitivity.
Collapse
Affiliation(s)
- Yongfu Wu
- Department of Pharmacology, Guangdong Medical University, No. 1, Xincheng Road of Songshan Lake Science and Technology Industry Park, Dongguan, 523808, Guangdong, People's Republic of China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Dongyun Qin
- Department of Pharmacology, Guangdong Medical University, No. 1, Xincheng Road of Songshan Lake Science and Technology Industry Park, Dongguan, 523808, Guangdong, People's Republic of China
| | - Huiling Yang
- Department of Pharmacology, Guangdong Medical University, No. 1, Xincheng Road of Songshan Lake Science and Technology Industry Park, Dongguan, 523808, Guangdong, People's Republic of China
| | - Hui Fu
- Department of Pharmacology, Guangdong Medical University, No. 1, Xincheng Road of Songshan Lake Science and Technology Industry Park, Dongguan, 523808, Guangdong, People's Republic of China.
| |
Collapse
|