1
|
Wadding-Lee CA, Jay M, Jones SM, Thompson J, Howatt DA, Daugherty A, Mackman N, Owens AP. Attenuation of Atherosclerosis with PAR4 Deficiency: Differential Platelet Outcomes in apoE -/- vs. Ldlr -/- Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606266. [PMID: 39211209 PMCID: PMC11361089 DOI: 10.1101/2024.08.01.606266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Cardiovascular disease (CVD) is a significant burden globally and, despite current therapeutics, remains the leading cause of death. Platelet inhibitors are of interest in CVD treatment to reduce thrombus formation post-plaque rupture as well their contribution to inflammation throughout the progression of atherosclerosis. Protease activated receptor 4 (PAR4) is a receptor highly expressed by platelets, strongly activated by thrombin, and plays a vital role in platelet activation and aggregation. However, the role of PAR4. Approach and Results Mice on a low-density lipoprotein receptor-deficient ( Ldlr -/- ) background were bred with Par4 deficient ( Par4 -/- ) mice to create Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- cousin lines. Mice were fed high fat (42%) and cholesterol (0.2%) 'Western' diet for 12 weeks for all studies. Bone marrow transplant (BMT) studies were conducted by irradiating Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- mice with 550 rads (2x, 4 hours apart) and then repopulated with Par4 +/+ or Par4 -/- bone marrow. To determine if the effects of thrombin were mediated solely by PAR4, the thrombin inhibitor dabigatran was added to the 'Western' diet. Ldlr -/- /Par4 -/- given dabigatran did not further decrease their atherosclerotic burden. Differences between apolipoprotein E deficient ( apoE -/- ) and Ldlr -/- platelets were assessed for changes in reactivity. We observed higher PAR4 abundance in arteries with atherosclerosis in human and mice versus healthy controls. PAR4 deficiency attenuated atherosclerosis in the aortic sinus and root versus proficient controls. BMT studies demonstrated this effect was due to hematopoietic cells, most likely platelets. PAR4 appeared to be acting independent of PAR1, as there werer no changes with addition of dabigatran to PAR4 deficient mice. apoE -/- platelets are hyperreactive compared to Ldlr -/- platelets. Conclusions Hematopoietic-derived PAR4, most likely platelets, plays a vital role in the development and progression of atherosclerosis. Specific targeting of PAR4 may be a potential therapeutic target for CVD. Highlights Deficiency of protease-activated receptor 4 attenuates the development of diet-induced atherosclerosis in a Ldlr -/- mouse model. PAR4 deficiency in hematopoietic cells is atheroprotective. PAR4 deficiency accounts for the majority of thrombin-induced atherosclerosis in a Ldlr -/- mouse model. The examination of platelet-specific proteins and platelet activation should be carefully considered before using the apoE -/- or Ldlr -/- mouse models of atherosclerosis.
Collapse
|
2
|
Govatati S, Kumar R, Boro M, Traylor JG, Orr AW, Lusis AJ, Rao GN. TRIM13 reduces cholesterol efflux and increases oxidized LDL uptake leading to foam cell formation and atherosclerosis. J Biol Chem 2024; 300:107224. [PMID: 38537695 PMCID: PMC11053335 DOI: 10.1016/j.jbc.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1β also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/β downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/β, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Monoranjan Boro
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James G Traylor
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
3
|
Loix M, Zelcer N, Bogie JFJ, Hendriks JJA. The ubiquitous role of ubiquitination in lipid metabolism. Trends Cell Biol 2024; 34:416-429. [PMID: 37770289 DOI: 10.1016/j.tcb.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Lipids are essential molecules that play key roles in cell physiology by serving as structural components, for storage of energy, and in signal transduction. Hence, efficient regulation and maintenance of lipid homeostasis are crucial for normal cellular and tissue function. In the past decade, increasing research has shown the importance of ubiquitination in regulating the stability of key players in different aspects of lipid metabolism. This review describes recent insights into the regulation of lipid metabolism by ubiquitin signaling, discusses how ubiquitination can be targeted in diseases characterized by lipid dysregulation, and identifies areas that require further research.
Collapse
Affiliation(s)
- Melanie Loix
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen F J Bogie
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
4
|
Zhang Y, Sun L, Wang X, Zhou Q. Integrative analysis of HASMCs gene expression profile revealed the role of thrombin in the pathogenesis of atherosclerosis. BMC Cardiovasc Disord 2023; 23:191. [PMID: 37046189 PMCID: PMC10091598 DOI: 10.1186/s12872-023-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
We explored the effect of thrombin on human aortic smooth muscle cells (HASMCs) and further analyzed its role in the pathogenesis of atherosclerosis (AS). Thrombin-induced differentially expressed genes (DEGs) in HASMCs were identified by analyzing expression profiles from the GEO. Subsequently, enrichment analysis, GSEA, PPI network, and gene-microRNAs networks were interrogated to identify hub genes and associated pathways. Enrichment analysis results indicated that thrombin causes HASMCs to secrete various pro-inflammatory cytokines and chemokines, exacerbating local inflammatory response in AS. Moreover, we identified 9 HUB genes in the PPI network, which are closely related to the inflammatory response and the promotion of the cell cycle. Additionally, we found that thrombin inhibits lipid metabolism and autophagy of HASMCs, potentially contributing to smooth muscle-derived foam cell formation. Our study deepens a mechanistic understanding of the effect of thrombin on HASMCs and provides new insight into treating AS.
Collapse
Affiliation(s)
- Yichen Zhang
- The Second Hospital of Shandong University, Jinan, Shandong Province, China
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lin Sun
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xingsheng Wang
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qingbo Zhou
- The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
5
|
Hara T, Sata M, Fukuda D. Emerging roles of protease-activated receptors in cardiometabolic disorders. J Cardiol 2023; 81:337-346. [PMID: 36195252 DOI: 10.1016/j.jjcc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Cardiometabolic disorders, including obesity-related insulin resistance and atherosclerosis, share sterile chronic inflammation as a major cause; however, the precise underlying mechanisms of chronic inflammation in cardiometabolic disorders are not fully understood. Accumulating evidence suggests that several coagulation proteases, including thrombin and activated factor X (FXa), play an important role not only in the coagulation cascade but also in the proinflammatory responses through protease-activated receptors (PARs) in many cell types. Four members of the PAR family have been cloned (PAR 1-4). For instance, thrombin activates PAR-1, PAR-3, and PAR-4. FXa activates both PAR-1 and PAR-2, while it has no effect on PAR-3 or PAR-4. Previous studies demonstrated that PAR-1 and PAR-2 activated by thrombin or FXa promote gene expression of inflammatory molecules mainly via the NF-κB and ERK1/2 pathways. In obese adipose tissue and atherosclerotic vascular tissue, various stresses increase the expression of tissue factor and procoagulant activity. Recent studies indicated that the activation of PARs in adipocytes and vascular cells by coagulation proteases promotes inflammation in these tissues, which leads to the development of cardiometabolic diseases. This review briefly summarizes the role of PARs and coagulation proteases in the pathogenesis of inflammatory diseases and describes recent findings (including ours) on the potential participation of this system in the development of cardiometabolic disorders. New insights into PARs may ensure a better understanding of cardiometabolic disorders and suggest new therapeutic options for these major health threats.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
6
|
Joseph C, Berghausen EM, Behringer A, Rauch B, Ten Freyhaus H, Gnatzy-Feik LL, Krause M, Wong DWL, Boor P, Baldus S, Vantler M, Rosenkranz S. Coagulation-independent effects of thrombin and Factor Xa: role of protease-activated receptors in pulmonary hypertension. Cardiovasc Res 2022; 118:3225-3238. [PMID: 35104324 DOI: 10.1093/cvr/cvac004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 01/25/2023] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a devastating disease with limited therapeutic options. Vascular remodelling of pulmonary arteries, characterized by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a hallmark of PAH. Here, we aimed to systematically characterize coagulation-independent effects of key coagulation proteases thrombin and Factor Xa (FXa) and their designated receptors, protease-activated receptor (PAR)-1 and -2, on PASMCs in vitro and experimental PAH in vivo. METHODS AND RESULTS In human and murine PASMCs, both thrombin and FXa were identified as potent mitogens, and chemoattractants. FXa mediated its responses via PAR-1 and PAR-2, whereas thrombin signalled through PAR-1. Extracellular-signal regulated kinases 1/2, protein kinase B (AKT), and sphingosine kinase 1 were identified as downstream mediators of PAR-1 and PAR-2. Inhibition of FXa or thrombin blunted cellular responses in vitro, but unexpectedly failed to protect against hypoxia-induced PAH in vivo. However, pharmacological inhibition as well as genetic deficiency of both PAR-1 and PAR-2 significantly reduced vascular muscularization of small pulmonary arteries, diminished right ventricular systolic pressure, and right ventricular hypertrophy upon chronic hypoxia compared to wild-type controls. CONCLUSION Our findings indicate a coagulation-independent pathogenic potential of thrombin and FXa for pulmonary vascular remodelling via acting through PAR-1 and PAR-2, respectively. While inhibition of single coagulation proteases was ineffective in preventing experimental PAH, our results propose a crucial role for PAR-1 and PAR-2 in its pathobiology, thus identifying PARs but not their dedicated activators FXa and thrombin as suitable targets for the treatment of PAH.
Collapse
Affiliation(s)
- Christine Joseph
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany
| | - Eva Maria Berghausen
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany
| | - Arnica Behringer
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany
| | - Bernhard Rauch
- Institut für Pharmakologie, Universität Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Henrik Ten Freyhaus
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany
| | - Leoni Luisa Gnatzy-Feik
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany.,Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany
| | - Max Krause
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany.,Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany
| | - Dickson W L Wong
- Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Stephan Baldus
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany.,Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany
| | - Marius Vantler
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany
| | - Stephan Rosenkranz
- Klinik III für Innere Medizin, Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany.,Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Kerpener Str. 62, 50937 Köln, Germany
| |
Collapse
|
7
|
Chen C, Ji H, Jiang N, Wang Y, Zhou Y, Zhu Z, Hu Y, Wang Y, Li A, Guo A. Thrombin increases the expression of cholesterol 25-hydroxylase in rat astrocytes after spinal cord injury. Neural Regen Res 2022; 18:1339-1346. [PMID: 36453421 PMCID: PMC9838143 DOI: 10.4103/1673-5374.357905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Astrocytes are important cellular centers of cholesterol synthesis and metabolism that help maintain normal physiological function at the organism level. Spinal cord injury results in aberrant cholesterol metabolism by astrocytes and excessive production of oxysterols, which have profound effects on neuropathology. 25-Hydroxycholesterol (25-HC), the main product of the membrane-associated enzyme cholesterol-25-hydroxylase (CH25H), plays important roles in mediating neuroinflammation. However, whether the abnormal astrocyte cholesterol metabolism induced by spinal cord injury contributes to the production of 25-HC, as well as the resulting pathological effects, remain unclear. In the present study, spinal cord injury-induced activation of thrombin was found to increase astrocyte CH25H expression. A protease-activated receptor 1 inhibitor was able to attenuate this effect in vitro and in vivo. In cultured primary astrocytes, thrombin interacted with protease-activated receptor 1, mainly through activation of the mitogen-activated protein kinase/nuclear factor-kappa B signaling pathway. Conditioned culture medium from astrocytes in which ch25h expression had been knocked down by siRNA reduced macrophage migration. Finally, injection of the protease activated receptor 1 inhibitor SCH79797 into rat neural sheaths following spinal cord injury reduced migration of microglia/macrophages to the injured site and largely restored motor function. Our results demonstrate a novel regulatory mechanism for thrombin-regulated cholesterol metabolism in astrocytes that could be used to develop anti-inflammatory drugs to treat patients with spinal cord injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Ji
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Nan Jiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yue Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenjie Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yuming Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Aisong Guo, ; Aihong Li, .
| | - Aisong Guo
- Department of Traditional Chinese Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Aisong Guo, ; Aihong Li, .
| |
Collapse
|
8
|
Wilkinson H, Leonard H, Robson MG, Smith R, Tam E, McVey JH, Kirckhofer D, Chen D, Dorling A. Manipulation of tissue factor-mediated basal PAR-2 signalling on macrophages determines sensitivity for IFNγ responsiveness and significantly modifies the phenotype of murine DTH. Front Immunol 2022; 13:999871. [PMID: 36172348 PMCID: PMC9510775 DOI: 10.3389/fimmu.2022.999871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tissue factor (TF) generates proteases that can signal through PAR-1 and PAR-2. We have previously demonstrated PAR-1 signalling primes innate myeloid cells to be exquisitely sensitive to interferon-gamma (IFNγ). In this work we explored how TF mediated PAR-2 signalling modulated responsiveness to IFNγ and investigated the interplay between PAR-1/-2 signalling on macrophages. Methodology We characterised how TF through PAR-2 influenced IFNγ sensitivity in vitro using PCR and flow cytometry. and how it influenced oxazolone-induced delayed type hypersensitivity (DTH) responses in vivo. We investigated how basal signalling through PAR-2 influenced PAR-1 signalling using a combination of TF-inhibitors and PAR-1 &-2 agonists and antagonists. Finally, we investigated whether this system could be targeted therapeutically using 3-mercaptopropionyl-F-Cha-Cha-RKPNDK (3-MP), which has actions on both PAR-1 and -2. Results TF delivered a basal signal through PAR-2 that upregulated SOCS3 expression and blunted M1 polarisation after IFNγ stimulation, opposing the priming achieved by signalling through PAR-1. PAR-1 and -2 agonists or antagonists could be used in combination to modify this basal signal in vitro and in vivo. 3-MP, by virtue of its PAR-2 agonist properties was superior to agents with only PAR-1 antagonist properties at reducing M1 polarisation induced by IFNγ and suppressing DTH. Tethering a myristoyl electrostatic switch almost completely abolished the DTH response. Conclusions TF-mediated signalling through PARs-1 and -2 act in a homeostatic way to determine how myeloid cells respond to IFNγ. 3-MP, an agent that simultaneously inhibits PAR-1 whilst delivering a PAR-2 signal, can almost completely abolish immune responses dependent on M1 polarisation, particularly if potency is enhanced by targeting to cell membranes; this has potential therapeutic potential in multiple diseases.
Collapse
Affiliation(s)
- Hannah Wilkinson
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Hugh Leonard
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Michael G. Robson
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Richard Smith
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - ElLi Tam
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - John H. McVey
- School of Bioscience & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Kirckhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, United States
| | - Daxin Chen
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
9
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
10
|
Friebel J, Moritz E, Witkowski M, Jakobs K, Strässler E, Dörner A, Steffens D, Puccini M, Lammel S, Glauben R, Nowak F, Kränkel N, Haghikia A, Moos V, Schutheiss HP, Felix SB, Landmesser U, Rauch BH, Rauch U. Pleiotropic Effects of the Protease-Activated Receptor 1 (PAR1) Inhibitor, Vorapaxar, on Atherosclerosis and Vascular Inflammation. Cells 2021; 10:cells10123517. [PMID: 34944024 PMCID: PMC8700178 DOI: 10.3390/cells10123517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Protease-activated receptor 1 (PAR1) and toll-like receptors (TLRs) are inflammatory mediators contributing to atherogenesis and atherothrombosis. Vorapaxar, which selectively antagonizes PAR1-signaling, is an approved, add-on antiplatelet therapy for secondary prevention. The non-hemostatic, platelet-independent, pleiotropic effects of vorapaxar have not yet been studied. METHODS AND RESULTS Cellular targets of PAR1 signaling in the vasculature were identified in three patient cohorts with atherosclerotic disease. Evaluation of plasma biomarkers (n = 190) and gene expression in endomyocardial biopsies (EMBs) (n = 12) revealed that PAR1 expression correlated with endothelial activation and vascular inflammation. PAR1 colocalized with TLR2/4 in human carotid plaques and was associated with TLR2/4 gene transcription in EMBs. In addition, vorapaxar reduced atherosclerotic lesion size in apolipoprotein E-knock out (ApoEko) mice. This reduction was associated with reduced expression of vascular adhesion molecules and TLR2/4 presence, both in isolated murine endothelial cells and the aorta. Thrombin-induced uptake of oxLDL was augmented by additional TLR2/4 stimulation and abrogated by vorapaxar. Plaque-infiltrating pro-inflammatory cells were reduced in vorapaxar-treated ApoEko mice. A shift toward M2 macrophages paralleled a decreased transcription of pro-inflammatory cytokines and chemokines. CONCLUSIONS PAR1 inhibition with vorapaxar may be effective in reducing residual thrombo-inflammatory event risk in patients with atherosclerosis independent of its effect on platelets.
Collapse
Affiliation(s)
- Julian Friebel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Eileen Moritz
- Center of Drug Absorption and Transport, Institute of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (E.M.); (B.H.R.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
| | - Marco Witkowski
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kai Jakobs
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Elisabeth Strässler
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Andrea Dörner
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Daniel Steffens
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Marianna Puccini
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Stella Lammel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Rainer Glauben
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | - Franziska Nowak
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | - Nicolle Kränkel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Arash Haghikia
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Verena Moos
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | | | - Stephan B. Felix
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulf Landmesser
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Bernhard H. Rauch
- Center of Drug Absorption and Transport, Institute of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (E.M.); (B.H.R.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
- Department of Human Medicine, Section of Pharmacology and Toxicology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Ursula Rauch
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513794
| |
Collapse
|
11
|
Xiang Y, Li L, Xia S, Lv J, Li X. Cullin3 (CUL3) suppresses proliferation, migration and phenotypic transformation of PDGF-BB-stimulated vascular smooth muscle cells and mitigates inflammatory response by repressing Hedgehog signaling pathway. Bioengineered 2021; 12:9463-9472. [PMID: 34699319 PMCID: PMC8809906 DOI: 10.1080/21655979.2021.1995572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) hyperplasia is closely associated with AS progression. Hence, it is of great significance to elucidate the molecular mechanisms underlying the involvement of VSMCs in AS. SHH antagonist can inhibit the excessive proliferation, migration and phenotypic transformation of PDGF-BB-induced VSMCs. It has been proved that CUL3 can suppress Hedgehog signaling. This current work was designed to identify the biological role of CUL3 in the behaviors of VSMCs in AS and investigate the potential molecular mechanism. VSMCs were treated with PDGF-BB to establish the cell model in vitro. Levels of CUL3, SHH and Gli1 in PDGF-BB-stimulated VSMCs were measured by RT-qPCR analysis. Then, the precise functions of CUL3 in VSMCs were determined from the perspectives of proliferation, migration, apoptosis and phenotype transformation. Besides, the influence of CUL3 on inflammatory response in VSMCs was evaluated. Moreover, the impact of CUL3 on Hedgehog signaling pathway was also investigated. In the present research, it was observed that CUL3 was lowly expressed and SHH and Gli1 were highly expressed in PDGF-BB-stimulated VSMCs. Upregulation of CUL3 suppressed the excessive proliferation, migration and phenotypic transformation and facilitated the apoptosis of PDGF-BB-stimulated VSMCs. In addition, elevation of CUL3 alleviated inflammatory response in PDGF-BB-stimulated VSMCs. Importantly, CUL3 overexpression inactivated Hedgehog signaling pathway. To conclude, CUL3 might regulate the biological behaviors of VSMCs in AS by modulating Hedgehog signaling pathway. These data encourage to further investigate any potential therapeutic role of CUL3 in animal models of AS and explore therapeutic values for AS clinically.
Collapse
Affiliation(s)
- Yuluan Xiang
- Department of Gerontology and Special Medical Services, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Lihua Li
- Department of Gerontology and Special Medical Services, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Shuang Xia
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Jinlin Lv
- Department of Gerontology and Special Medical Services, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Xiaoling Li
- Department of cardiovascular medicine, People's Hospital of Fengjie, Chongqing, 404600, China
| |
Collapse
|
12
|
Zhang ZZ, Chen JJ, Deng WY, Yu XH, Tan WH. CTRP1 decreases ABCA1 expression and promotes lipid accumulation through the miR-424-5p/FoxO1 pathway in THP-1 macrophage-derived foam cells. Cell Biol Int 2021; 45:2226-2237. [PMID: 34288211 DOI: 10.1002/cbin.11666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 07/03/2021] [Indexed: 11/08/2022]
Abstract
Prevention of ATP binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux leads to lipid accumulation in macrophages and atherosclerosis development. C1q tumor necrosis factor-related protein 1 (CTRP1), a conserved paralog of adiponectin, has been shown to aggravate atherosclerosis via its proinflammatory property. However, very little is known about its effects on ABCA1 expression and macrophage lipid accumulation. In the current studies, we found that CTRP1 downregulated ABCA1 expression, inhibited cholesterol efflux to apoA-I and promoted lipid accumulation in THP-1 macrophage-derived foam cells. Forkhead box O1 (FoxO1), a transcriptional repressor of ABCA1, was identified as a direct target of miR-424-5p. Mechanistically, CTRP1 attenuated miR-424-5p levels and then augmented FoxO1 expression in the nucleus, which led to downregulation of ABCA1 expression and inhibition of cholesterol efflux. In conclusion, these findings suggest that CTRP1 restrains cholesterol efflux and facilitates macrophage lipid accumulation through the miR-424-5p/FoxO1/ABCA1 signaling pathway, thereby providing a novel mechanistical insight into its proatherosclerotic action.
Collapse
Affiliation(s)
- Zi-Zhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, China
| | - Jiao-Jiao Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei-Hua Tan
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Rachmawati E, Sargowo D, Rohman MS, Widodo N, Kalsum U. miR-155-5p predictive role to decelerate foam cell atherosclerosis through CD36, VAV3, and SOCS1 pathway. Noncoding RNA Res 2021; 6:59-69. [PMID: 33869908 PMCID: PMC8027696 DOI: 10.1016/j.ncrna.2021.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that play a significant role in atherosclerosis pathogenesis through post-transcriptional regulation. In the present work, a bioinformatic analysis using TargetScan and miRdB databases was performed to identify the miRNAs targeting three genes involved in foam cell atherosclerosis (CD36, Vav3, and SOCS1). A total number of three hundred and sixty-seven miRNAs were recognized and only miR-155-5p was selected for further evaluation based on Venn analysis. Another objective of this study was to evaluate the biological process and regulatory network of miR-155-5p associated with foam cell atherosclerosis using DIANA, DAVID, Cytoscape, and STRING tools. Additionally, the comprehensive literature review was performed to prove the miR-155-5p function in foam cell atherosclerosis. miR-155-5p might be related with ox-LDL uptake and endocytosis in macrophage cell by targeting CD36 and Vav3 genes which was showed from the KEGG pathways hsa04979, hsa04666, hsa04145 H, hsa04810, and GO:0099632, GO:0060100, GO:0010743, GO:001745. Furthermore, miR-155-5p was also predicted to increase the cholesterol efflux from macrophage by inhibit SOCS1 expression based on KEGG pathway hsa04120. Eleven original studies were included in the review and strongly suggest the role of miR-155-5p in foam cell atherosclerosis inhibition.
Collapse
Affiliation(s)
- Ermin Rachmawati
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Faculty of Medicine and Health Sciences UIN Maulana Malik Ibrahim Malang
| | - Djanggan Sargowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - M. Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Brawijaya Cardiovascular Research Center
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Umi Kalsum
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
14
|
Izem L, Bialkowska K, Pluskota E, Das M, Das R, Nieman MT, Plow EF. Plasminogen-induced foam cell formation by macrophages occurs through a histone 2B (H2B)-PAR1 pathway and requires integrity of clathrin-coated pits. J Thromb Haemost 2021; 19:941-953. [PMID: 33492784 DOI: 10.1111/jth.15253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Plasminogen/plasmin is a serine protease system primarily responsible for degrading fibrin within blood clots. Plasminogen mediates its functions by interacting with plasminogen receptors on the cell surface. H2B, one such plasminogen receptor, is found on the surface of several cell types including macrophages. Both basic and clinical studies support the role of plasminogen in the process of foam cell formation (FCF), a hallmark of atherosclerosis. Growing evidence also implicates serine protease-activated receptors (PARs) in atherosclerosis. These receptors are also found on macrophages, and plasmin is capable of activating PAR1 and PAR4. The goal of this study was to determine the extent of H2B's contribution to plasminogen-mediated FCF by macrophages and if PARs are involved in this process. APPROACH AND RESULTS Treating macrophages with plasminogen increases their oxidized low-density lipoprotein uptake and plasminogen-mediated foam cell formation (Plg-FCF) significantly. The magnitude of Plg-FCF correlates with cell-surface expression of the H2B level. H2B blockade or downregulation reduces Plg-FCF, whereas its overexpression or high endogenous levels increases Plg-FCF. Modulating PAR1 level in mouse macrophages affects Plg-FCF. Activation/overexpression of PAR1 increases and its blockade/knockdown reduces this response. Confocal imaging indicates that both H2B and PAR1 colocalize with clathrin coated pits on the surface of macrophages, and reducing expression of clathrin or interfering with the clathrin-coated pits integrity reduces Plg-FCF. CONCLUSION Our data indicate that the magnitude of Plg-FCF by macrophages is proportional to the H2B levels and demonstrate for the first time that PAR1 is involved in this process and that the integrity of clathrin-coated pits is required for the full effect of Plg-induced FCF.
Collapse
Affiliation(s)
- Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| | - Katarzyna Bialkowska
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| | - Elzbieta Pluskota
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| | - Mitali Das
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| | - Riku Das
- Roberts J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Edward F Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Zhou ZX, Ren Z, Yan BJ, Qu SL, Tang ZH, Wei DH, Liu LS, Fu MG, Jiang ZS. The Role of Ubiquitin E3 Ligase in Atherosclerosis. Curr Med Chem 2021; 28:152-168. [PMID: 32141415 DOI: 10.2174/0929867327666200306124418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Min-Gui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, United States
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| |
Collapse
|
16
|
Wilkinson H, Leonard H, Chen D, Lawrence T, Robson M, Goossens P, McVey JH, Dorling A. PAR-1 signaling on macrophages is required for effective in vivo delayed-type hypersensitivity responses. iScience 2021; 24:101981. [PMID: 33458623 PMCID: PMC7797913 DOI: 10.1016/j.isci.2020.101981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Delayed-type hypersensitivity (DTH) responses underpin chronic inflammation. Using a model of oxazolone-induced dermatitis and a combination of transgenic mice, adoptive cell transfer, and selective agonists/antagonists against protease activated receptors, we show that that PAR-1 signaling on macrophages by thrombin is required for effective granuloma formation. Using BM-derived macrophages (BMMs) in vitro, we show that thrombin signaling induced (a) downregulation of cell membrane reverse cholesterol transporter ABCA1 and (b) increased expression of IFNγ receptor and enhanced co-localization within increased areas of cholesterol-rich membrane microdomains. These two key phenotypic changes combined to make thrombin-primed BMMs sensitive to M1 polarization by 1000-fold less IFNγ, compared to resting BMMs. We confirm that changes in ABCA1 expression were directly responsible for the exquisite sensitivity to IFNγ in vitro and for the impact on granuloma formation in vivo. These data indicate that PAR-1 signaling plays a hitherto unrecognized and critical role in DTH responses.
Collapse
Affiliation(s)
- Hannah Wilkinson
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Hugh Leonard
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daxin Chen
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Michael Robson
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229HX Maastricht, the Netherlands
| | - John H McVey
- School of Bioscience & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Anthony Dorling
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
17
|
Wang L, Tang C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int J Mol Sci 2020; 21:ijms21249760. [PMID: 33371312 PMCID: PMC7767086 DOI: 10.3390/ijms21249760] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Besides their role in hemostasis and thrombosis, it has become increasingly clear that platelets are also involved in many other pathological processes of the vascular system, such as atherosclerotic plaque formation. Atherosclerosis is a chronic vascular inflammatory disease, which preferentially develops at sites under disturbed blood flow with low speeds and chaotic directions. Hyperglycemia, hyperlipidemia, and hypertension are all risk factors for atherosclerosis. When the vascular microenvironment changes, platelets can respond quickly to interact with endothelial cells and leukocytes, participating in atherosclerosis. This review discusses the important roles of platelets in the plaque formation under pro-atherogenic factors. Specifically, we discussed the platelet behaviors under disturbed flow, hyperglycemia, and hyperlipidemia conditions. We also summarized the molecular mechanisms involved in vascular inflammation during atherogenesis based on platelet receptors and secretion of inflammatory factors. Finally, we highlighted the studies of platelet migration in atherogenesis. In general, we elaborated an atherogenic role of platelets and the aspects that should be further studied in the future.
Collapse
Affiliation(s)
- Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-6588-0899
| |
Collapse
|
18
|
Boro M, Govatati S, Kumar R, Singh NK, Pichavaram P, Traylor JG, Orr AW, Rao GN. Thrombin-Par1 signaling axis disrupts COP9 signalosome subunit 3-mediated ABCA1 stabilization in inducing foam cell formation and atherogenesis. Cell Death Differ 2020; 28:780-798. [PMID: 32968199 DOI: 10.1038/s41418-020-00623-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1) play a vital role in promoting cholesterol efflux. Although, the dysregulation of these transporters was attributed as one of the mechanisms of atherogenesis, what renders their dysfunction is not well explored. Previously, we have reported that thrombin without having any effect on ABCG1 levels depletes ABCA1 levels affecting cholesterol efflux. In this study, we explored the mechanisms underlying thrombin-induced depletion of ABCA1 levels both in macrophages and smooth muscle cells. Under normal physiological conditions, COP9 signalosome subunit 3 (CSN3) was found to exist in complex with ABCA1 and in the presence of proatherogenic stimulants such as thrombin, ABCA1 was phosphorylated and dissociated from CSN3, leading to its degradation. Forced expression of CSN3 inhibited thrombin-induced ABCA1 ubiquitination and degradation, restored cholesterol efflux and suppressed foam cell formation. In Western diet (WD)-fed ApoE-/- mice, CSN3 was also disassociated from ABCA1 otherwise remained as a complex in Chow diet (CD)-fed ApoE-/- mice. Interestingly, depletion of CSN3 levels in WD-fed ApoE-/- mice significantly lowered ABCA1 levels, inhibited cholesterol efflux and intensified foam cell formation exacerbating the lipid laden atherosclerotic plaque formation. Mechanistic studies have revealed the involvement of Par1-Gα12-Pyk2-Gab1-PKCθ signaling in triggering phosphorylation of ABCA1 and its disassociation from CSN3 curtailing cholesterol efflux and amplifying foam cell formation. In addition, although both CSN3 and ABCA1 were found to be colocalized in human non-lesion coronary arteries, their levels were decreased as well as dissociated from each other in advanced atherosclerotic lesions. Together, these observations reveal for the first time an anti-atherogenic role of CSN3 and hence, designing therapeutic drugs protecting its interactions with ABCA1 could be beneficial against atherosclerosis.
Collapse
Affiliation(s)
- Monoranjan Boro
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - James G Traylor
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, LA, 71103, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
19
|
Chen D, Li K, Festenstein S, Karegli J, Wilkinson H, Leonard H, Wei L, Ma N, Xia M, Tam H, Wang J, Xu Q, McVey JH, Smith RAG, Dorling A. Regression of Atherosclerosis in ApoE-/- Mice Via Modulation of Monocyte Recruitment and Phenotype, Induced by Weekly Dosing of a Novel "Cytotopic" Anti-Thrombin Without Prolonged Anticoagulation. J Am Heart Assoc 2020; 9:e014811. [PMID: 32611229 PMCID: PMC7670518 DOI: 10.1161/jaha.119.014811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Background Anticoagulants induce atherosclerosis regression in animal models but exploiting this clinically is limited by bleeding events. Here we test a novel thrombin inhibitor, PTL060, comprising hirulog covalently linked to a synthetic myristoyl electrostatic switch to tether to cell membranes. Methods and Results ApoE-/- mice were fed chow or high-fat diets, before transplantation of congenic aortic segments or injection of PTL060, parental hirulog, control saline, or labeled CD11b positive cells. Aortic transplants from transgenic mice expressing anticoagulants on endothelium did not develop atherosclerosis. A single intravenous injection of PTL060, but not hirulog inhibited atheroma development by >50% compared with controls when assessed 4 weeks later. Mice had prolonged bleeding times for only one seventh of the time that PTL060 was biologically active. Repeated weekly injections of PTL060 but not hirulog caused regression of atheroma. We dissected 2 contributory mechanisms. First, the majority of CCR2+ (C-C chemokine receptor type 2+) monocytes recruited into plaques expressed CCR7 (C-C chemokine receptor type 7), ABCA1 (ATP-binding cassette transporter - 1), and interleukin-10 in PTL060 mice, a phenotype seen in <20% of CCR2+ recruits in controls. Second, after several doses, there was a significant reduction in monocyte recruits, the majority of which were CCR2-negative with a similar regression-associated phenotype. Regression equivalent to that induced by intravenous PTL060 was induced by adoptive transfer of CD11b+ cells pre-coated with PTL060. Conclusions Covalent linkage of a myristoyl electrostatic switch onto hirulog in PTL060 uncouples the pharmacodynamic effects on hemostasis and atherosclerosis, such that plaque regression, mediated predominantly via effects on monocytes, is accompanied by only transient anticoagulation.
Collapse
Affiliation(s)
- Daxin Chen
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Ke Li
- Core Research Laboratorythe Second Affiliated Hospital, School of MedicineJiaotong UniversityXi’anChina
| | - Sam Festenstein
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Julieta Karegli
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Hannah Wilkinson
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Hugh Leonard
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Lin‐Lin Wei
- Core Research Laboratorythe Second Affiliated Hospital, School of MedicineJiaotong UniversityXi’anChina
| | - Ning Ma
- Core Research Laboratorythe Second Affiliated Hospital, School of MedicineJiaotong UniversityXi’anChina
| | - Min Xia
- Thrombosis Research InstituteLondonUnited Kingdom
| | - Henry Tam
- Department of ImagingImperial College Healthcare NHS TrustCharing Cross HospitalLondonUnited Kingdom
| | - Jian‐an Wang
- Department of CardiologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Qingbo Xu
- Cardiovascular DivisionKing’s College LondonJames Black CentreLondonUnited Kingdom
| | - John H. McVey
- School of Bioscience & MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUnited Kingdom
| | - Richard A. G. Smith
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Anthony Dorling
- Department of Inflammation BiologySchool of Immunology and Microbial SciencesKing’s College London, Guy’s HospitalLondonUnited Kingdom
| |
Collapse
|
20
|
Grover SP, Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 2020; 307:80-86. [PMID: 32674807 DOI: 10.1016/j.atherosclerosis.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the formation of lipid rich plaques in the wall of medium to large sized arteries. Atherothrombosis represents the terminal manifestation of this pathology in which atherosclerotic plaque rupture or erosion triggers the formation of occlusive thrombi. Occlusion of arteries and resultant tissue ischemia in the heart and brain causes myocardial infarction and stroke, respectively. Tissue factor (TF) is the receptor for the coagulation protease factor VIIa, and formation of the TF:factor VIIa complex triggers blood coagulation. TF is expressed at high levels in atherosclerotic plaques by both macrophage-derived foam cells and vascular smooth muscle cells, as well as extracellular vesicles derived from these cells. Importantly, TF mediated activation of coagulation is critically important for arterial thrombosis in the setting of atherosclerotic disease. The major endogenous inhibitor of the TF:factor VIIa complex is TF pathway inhibitor 1 (TFPI-1), which is also present in atherosclerotic plaques. In mouse models, increased or decreased expression of TFPI-1 has been found to alter atherosclerosis. This review highlights the contribution of TF-dependent activation of coagulation to atherthrombotic disease.
Collapse
Affiliation(s)
- Steven P Grover
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Stamatikos A, Knight E, Vojtech L, Bi L, Wacker BK, Tang C, Dichek DA. Exosome-Mediated Transfer of Anti-miR-33a-5p from Transduced Endothelial Cells Enhances Macrophage and Vascular Smooth Muscle Cell Cholesterol Efflux. Hum Gene Ther 2020; 31:219-232. [PMID: 31842627 DOI: 10.1089/hum.2019.245] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is a disease of large- and medium-sized arteries that is caused by cholesterol accumulation in arterial intimal cells, including macrophages and smooth muscle cells (SMC). Cholesterol accumulation in these cells can be prevented or reversed in preclinical models-and atherosclerosis reduced-by transgenesis that increases expression of molecules that control cholesterol efflux, including apolipoprotein AI (apoAI) and ATP-binding cassette subfamily A, member 1 (ABCA1). In a previous work, we showed that transduction of arterial endothelial cells (EC)-with a helper-dependent adenovirus (HDAd) expressing apoAI-enhanced EC cholesterol efflux in vitro and decreased atherosclerosis in vivo. Similarly, overexpression of ABCA1 in cultured EC increased cholesterol efflux and decreased inflammatory gene expression. These EC-targeted gene-therapy strategies might be improved by concurrent upregulation of cholesterol-efflux pathways in other intimal cell types. Here, we report modification of this strategy to enable delivery of therapeutic nucleic acids to cells of the sub-endothelium. We constructed an HDAd (HDAdXMoAntimiR33a5p) that expresses an antagomiR directed at miR-33a-5p (a microRNA that suppresses cholesterol efflux by silencing ABCA1). HDAdXMoAntimiR33a5p contains a sequence motif that enhances uptake of anti-miR-33a-5p into exosomes. Cultured EC release exosomes containing small RNA, including miR-33a-5p. After transduction with HDAdXMoAntimiR33a5p, EC-derived exosomes containing anti-miR-33a-5p accumulate in conditioned medium (CM). When this CM is added to macrophages or SMC, anti-miR-33a-5p is detected in these target cells. Exosome-mediated transfer of anti-miR-33a-5p reduces miR-33a-5p by ∼65-80%, increases ABCA1 protein by 1.6-2.2-fold, and increases apoAI-mediated cholesterol efflux by 1.4-1.6-fold (all p ≤ 0.01). These effects were absent in macrophages and SMC incubated in exosome-depleted CM. EC transduced with HDAdXMoAntimiR33a5p release exosomes that can transfer anti-miR-33a-5p to other intimal cell types, upregulating cholesterol efflux from these cells. This strategy provides a platform for genetic modification of intimal and medial cells, using a vector that transduces only EC.
Collapse
Affiliation(s)
- Alexis Stamatikos
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ethan Knight
- Department of Medicine, University of Washington, Seattle, Washington
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Lianxiang Bi
- Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K Wacker
- Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Slack MA, Gordon SM. Protease Activity in Vascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:e210-e218. [PMID: 31553665 PMCID: PMC6764587 DOI: 10.1161/atvbaha.119.312413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Megan A. Slack
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
23
|
Fu W, Chen M, Ou L, Li T, Chang X, Huang R, Zhang J, Zhang Z. Xiaoyaosan prevents atherosclerotic vulnerable plaque formation through heat shock protein/glucocorticoid receptor axis-mediated mechanism. Am J Transl Res 2019; 11:5531-5545. [PMID: 31632527 PMCID: PMC6789251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is a metabolic and chronic inflammatory disease caused by deposition of lipoproteins in arteries. However, the diagnostic drug and the mechanism for this vascular disease are less studied. In the present study, atherosclerosis model was developed using apolipoprotein E-deficient mice that was treated with long-term high-fat food and chronic stresses. Xiaoyaosan (XYS) and glucocorticoid receptor (GR) antagonist RU 38486 were orally administrated to the mice. The change of aortic root vessels was observed by histological analysis. The results indicate that high-fat food coupled with chronic stress induced atherosclerosis in mice model, with plaque formation in the entire aortas foam cells and macrophage infiltration in aortic tissues. However, XYS granules inhibited the development of atherosclerotic lesion, with down-regulation of GC, TC, TG, HDL-C, ox-LDL, LDL-C, IFN-γ, IL-6, IL-1β, and TNF-α measured by ELISA method; XYS inhibited the expressions of GR, CD36, HSP27/60/90, and induced ABCA1 in atherosclerotic mice, which was measured by qPCR and Western blot, which showed similar effect as positive control RU 38486 did. The interaction between HSP90-GR complexes and CD36 was validated in atherosclerotic mice. Our results inferred that the HSP/GR complex-mediated CD36 axis was involved in the regulation of atherosclerosis development in mice verified by Co-IP assay, EMSA, and Chip-PCR. These findings not only provide the potential therapeutic value of Xiaoyaosan for atherosclerotic vulnerable plaque but also brought forth a novel strategy for preventing the formation and treatment of atherosclerotic vulnerable plaques through the elucidated mechanism of XYS on vulnerable plaque.
Collapse
Affiliation(s)
- Wenjun Fu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, China
| | - Mingtai Chen
- Department of Cardiovascular, Shenzhen Traditional Chinese Medicine Hospital, The Forth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Lijun Ou
- Department of Cardiovascular, Shenzhen Traditional Chinese Medicine Hospital, The Forth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Tao Li
- Department of Cardiovascular, Shenzhen Traditional Chinese Medicine Hospital, The Forth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Xiao Chang
- Department of Intensive Care Unit, Shenzhen Traditional Chinese Medicine Hospital, The Forth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Ruolan Huang
- Department of Intensive Care Unit, Shenzhen Traditional Chinese Medicine Hospital, The Forth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Jian Zhang
- Heart Failure Center, Fuwai Hospital Chinese Academy of Medical SciencesBeijing 100037, China
| | - Zhong Zhang
- Department of Cardiovascular, Shenzhen Traditional Chinese Medicine Hospital, The Forth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| |
Collapse
|
24
|
Govatati S, Pichavaram P, Janjanam J, Zhang B, Singh NK, Mani AM, Traylor JG, Orr AW, Rao GN. NFATc1-E2F1-LMCD1-Mediated IL-33 Expression by Thrombin Is Required for Injury-Induced Neointima Formation. Arterioscler Thromb Vasc Biol 2019; 39:1212-1226. [PMID: 31043075 PMCID: PMC6540998 DOI: 10.1161/atvbaha.119.312729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective- IL (interleukin)-33 has been shown to play a role in endothelial dysfunction, but its role in atherosclerosis is controversial. Therefore, the purpose of this study is to examine its role in vascular wall remodeling following injury. Approach and Results- Thrombin induced IL-33 expression in a time-dependent manner in human aortic smooth muscle cells and inhibition of its activity by its neutralizing antibody suppressed thrombin induced human aortic smooth muscle cell migration but not DNA synthesis. In exploring the mechanisms, we found that Par1 (protease-activated receptor 1), Gαq/11 (Gα protein q/11), PLCβ3 (phospholipase Cβ3), NFATc1 (nuclear factor of activated T cells), E2F1 (E2F transcription factor 1), and LMCD1 (LIM and cysteine-rich domains protein 1) are involved in thrombin-induced IL-33 expression and migration. Furthermore, we identified an NFAT-binding site at -100 nt that mediates thrombin-induced IL-33 promoter activity. Interestingly, we observed that NFATc1, E2F1, and LMCD1 bind to NFAT site in response to thrombin and found that LMCD1, while alone has no significant effect, enhanced either NFATc1 or E2F1-dependent IL-33 promoter activity. In addition, we found that guidewire injury induces IL-33 expression in SMC and its neutralizing antibodies substantially reduce SMC migration and neointimal growth in vivo. Increased expression of IL-33 was also observed in human atherosclerotic lesions as compared to arteries without any lesions. Conclusions- The above findings reveal for the first time that thrombin-induced human aortic smooth muscle cell migration and injury-induced neointimal growth require IL-33 expression. In addition, thrombin-induced IL-33 expression requires LMCD1 enhanced combinatorial activation of NFATc1 and E2F1.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Co-Repressor Proteins/genetics
- Co-Repressor Proteins/metabolism
- Disease Models, Animal
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Female
- Femoral Artery/drug effects
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- HEK293 Cells
- Humans
- Interleukin-33/genetics
- Interleukin-33/metabolism
- LIM Domain Proteins/genetics
- LIM Domain Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Neointima
- Promoter Regions, Genetic
- Signal Transduction
- Up-Regulation
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jagadeesh Janjanam
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Baolin Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikhlesh K. Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arul M. Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James G. Traylor
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - A. Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Gadiparthi N. Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
25
|
The emerging role of sorting nexins in cardiovascular diseases. Clin Sci (Lond) 2019; 133:723-737. [PMID: 30877150 PMCID: PMC6418407 DOI: 10.1042/cs20190034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023]
Abstract
The sorting nexin (SNX) family consists of a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins that play pivotal roles in the regulation of protein trafficking. This includes the entire endocytic pathway, such as endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX pathway are involved in several forms of cardiovascular disease (CVD). Moreover, SNX gene variants are associated with CVDs. In this review, we discuss the current knowledge on SNX-mediated regulatory mechanisms and their roles in the pathogenesis and treatment of CVDs.
Collapse
|
26
|
Posma JJ, Grover SP, Hisada Y, Owens AP, Antoniak S, Spronk HM, Mackman N. Roles of Coagulation Proteases and PARs (Protease-Activated Receptors) in Mouse Models of Inflammatory Diseases. Arterioscler Thromb Vasc Biol 2019; 39:13-24. [PMID: 30580574 PMCID: PMC6310042 DOI: 10.1161/atvbaha.118.311655] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
Activation of the blood coagulation cascade leads to fibrin deposition and platelet activation that are required for hemostasis. However, aberrant activation of coagulation can lead to thrombosis. Thrombi can cause tissue ischemia, and fibrin degradation products and activated platelets can enhance inflammation. In addition, coagulation proteases activate cells by cleavage of PARs (protease-activated receptors), including PAR1 and PAR2. Direct oral anticoagulants have recently been developed to specifically inhibit the coagulation proteases FXa (factor Xa) and thrombin. Administration of these inhibitors to wild-type mice can be used to determine the roles of FXa and thrombin in different inflammatory diseases. These results can be compared with the phenotypes of mice with deficiencies of either Par1 (F2r) or Par2 (F2rl1). However, inhibition of coagulation proteases will have effects beyond reducing PAR signaling, and a deficiency of PARs will abolish signaling from all proteases that activate these receptors. We will summarize studies that examine the roles of coagulation proteases, particularly FXa and thrombin, and PARs in different mouse models of inflammatory disease. Targeting FXa and thrombin or PARs may reduce inflammatory diseases in humans.
Collapse
Affiliation(s)
- Jens J Posma
- Laboratory for Clinical Thrombosis and Hemostasis, Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Steven P Grover
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yohei Hisada
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, OH, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Henri M Spronk
- Laboratory for Clinical Thrombosis and Hemostasis, Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|