1
|
Yegnaswamy S, C SK, Aldaais E. Conformational dynamics of the membrane protein of MERS-CoV in comparison with SARS-CoV-2 in ERGIC complex. J Biomol Struct Dyn 2025:1-15. [PMID: 39755960 DOI: 10.1080/07391102.2024.2437529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/21/2024] [Indexed: 01/07/2025]
Abstract
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions. A structural expansion below the transmembrane and above the beta-sheet sandwich domain within the dimer was observed in all the M-proteins. This site on the beta-sheet sandwich domains near the C-terminal end could serve as a potential drug-binding site. Notably, a stable helical structure was identified in the C-terminal domain of the MERS-CoV membrane protein, whereas a proper secondary structural conformation was not observed in the SARS-CoV-2 membrane protein. Further, the SARS-CoV-2 membrane protein exhibited stronger binding to the lipid bilayer than the MERS-CoV, indicating its greater structural stability within the ERGIC complex. The structural similarity between the membrane protein of MERS-CoV and SARS-CoV-2 suggests the feasibility of employing a common inhibitor against these beta-coronaviruses. Furthermore, this analysis enhances our understanding of the membrane protein's interactions with proteins and lipids, paving the way for therapeutic developments against these viruses.
Collapse
Affiliation(s)
- Subha Yegnaswamy
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, Maharashtra, India
| | - Ebtisam Aldaais
- College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia
| |
Collapse
|
2
|
Wang F, Han H, Wang C, Wang J, Peng Y, Chen Y, He Y, Deng Z, Li F, Rong Y, Wang D, Liu W, Chen H, Zhang Z. SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction. Transl Neurodegener 2024; 13:68. [PMID: 39726060 DOI: 10.1186/s40035-024-00458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood. METHODS We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo. The M protein was stereotaxically injected to further assess its effects in the brains of wild-type (WT) and 5 × FAD mice. Omics technologies, including RNA sequencing and interactome analysis, were performed to explore the mechanisms of the effects of M protein both in vitro and in vivo. RESULTS Systematic analysis of SARS-CoV-2 structural and accessory proteins in Drosophila identified that the M protein induces mitochondrial fragmentation and dysfunction, leading to reduced ATP production, ROS overproduction, and eventually cell death in the indirect flight muscles. In WT mice, M caused hippocampal atrophy, neural apoptosis, glial activation, and mitochondrial damage. These changes were further aggravated in 5 × FAD mice. M was localized to the Golgi apparatus and genetically interacted with four wheel drive (FWD, a Drosophila homolog of mammalian PI4KIIIβ) to regulate Golgi functions in flies. Fwd RNAi, but not PI4KIIIα RNAi, reversed the M-induced Golgi abnormality, mitochondrial fragmentation, and ATP reduction. Inhibition of PI4KIIIβ activity suppressed the M-induced neuronal cell death. Therefore, M induced mitochondrial fragmentation and apoptosis likely through disruption of Golgi-derived PI(4)P-containing vesicles. CONCLUSIONS M disturbs the distribution and function of Golgi, leading to mitochondrial abnormality and eventually neurodegeneration via a PI4KIIIβ-mediated mechanism. This study reveals a potential mechanism for COVID-19 neurological symptoms and opens a new avenue for development of therapeutic strategies targeting SARS-CoV-2 M or mitochondria.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Hailong Han
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Caifang Wang
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Yanni Peng
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Ye Chen
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Yaohui He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361000, China
| | - Zhouyang Deng
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Fang Li
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China
| | - Yikang Rong
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China
| | - Danling Wang
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361000, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Zhuohua Zhang
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.
- Institute of Molecular Precision Medicine and Hunan Provincial Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Medical Genetics, College of Biological Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
3
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
4
|
Dutta M, Dolan KA, Amiar S, Bass EJ, Sultana R, Voth GA, Brohawn SG, Stahelin RV. Direct lipid interactions control SARS-CoV-2 M protein conformational dynamics and virus assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.620124. [PMID: 39574576 PMCID: PMC11580925 DOI: 10.1101/2024.11.04.620124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
M is the most abundant structural membrane protein in coronaviruses and is essential for the formation of infectious virus particles. SARS-CoV-2 M adopts two conformations, Mshort and Mlong, and regulated transition between states is hypothesized to coordinate viral assembly and budding. However, the factors that regulate M conformation and roles for each state are unknown. Here, we discover a direct M-sphingolipid interaction that controls M conformational dynamics and virus assembly. We show M binds Golgi-enriched anionic lipids including ceramide-1-phosphate (C1P). Molecular dynamics simulations show C1P interaction promotes a long to short transition and energetically stabilizes Mshort. Cryo-EM structures show C1P specifically binds Mshort at a conserved site bridging transmembrane and cytoplasmic regions. Disrupting Mshort-C1P interaction alters M subcellular localization, reduces interaction with Spike and E, and impairs subsequent virus-like particle cell entry. Together, these results show endogenous signaling lipids regulate M structure and support a model in which Mshort is stabilized in the early endomembrane system to organize other structural proteins prior to viral budding.
Collapse
Affiliation(s)
- Mandira Dutta
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Kimberly A. Dolan
- Department of Molecular & Cell Biology, Department of Neuroscience, California Institute for Quantitative Biology (QB3), Biophysics Graduate Program, University of California Berkeley, Berkeley, California 94720, USA
| | - Souad Amiar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Elijah J. Bass
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Rokaia Sultana
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Gregory A. Voth
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Stephen G. Brohawn
- Department of Molecular & Cell Biology, Department of Neuroscience, California Institute for Quantitative Biology (QB3), Biophysics Graduate Program, University of California Berkeley, Berkeley, California 94720, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
5
|
Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, Yu F, Rao L, Fan Z. Extracellular Vesicle-Inspired Therapeutic Strategies for the COVID-19. Adv Healthc Mater 2024; 13:e2402103. [PMID: 38923772 DOI: 10.1002/adhm.202402103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Emerging infectious diseases like coronavirus pneumonia (COVID-19) present significant challenges to global health, extensively affecting both human society and the economy. Extracellular vesicles (EVs) have demonstrated remarkable potential as crucial biomedical tools for COVID-19 diagnosis and treatment. However, due to limitations in the performance and titer of natural vesicles, their clinical use remains limited. Nonetheless, EV-inspired strategies are gaining increasing attention. Notably, biomimetic vesicles, inspired by EVs, possess specific receptors that can act as "Trojan horses," preventing the virus from infecting host cells. Genetic engineering can enhance these vesicles by enabling them to carry more receptors, significantly increasing their specificity for absorbing the novel coronavirus. Additionally, biomimetic vesicles inherit numerous cytokine receptors from parent cells, allowing them to effectively mitigate the "cytokine storm" by adsorbing pro-inflammatory cytokines. Overall, this EV-inspired strategy offers new avenues for the treatment of emerging infectious diseases. Herein, this review systematically summarizes the current applications of EV-inspired strategies in the diagnosis and treatment of COVID-19. The current status and challenges associated with the clinical implementation of EV-inspired strategies are also discussed. The goal of this review is to provide new insights into the design of EV-inspired strategies and expand their application in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Ziwei Hu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Lin
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Hui Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Yiwen Chen
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Junjie Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Feng Yu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
6
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Deshmukh N, Talkal R, Lakshmi B. In silico screening of potential inhibitors from Cordyceps species against SARS-CoV-2 main protease. J Biomol Struct Dyn 2024; 42:4395-4411. [PMID: 37325819 DOI: 10.1080/07391102.2023.2225110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a result of a retroviral infection of SARS-CoV-2. Due to its virulence and high infection rate, it is a matter of serious concern and a global health emergency. Currently available COVID-19 vaccines approved by regulatory bodies around the world have been shown to provide significant protection against COVID-19. But no vaccine is 100% effective at preventing infection, also they have varying efficacy rates and different side effects. However, the main protease (Mpro) of SARS-CoV-2 has been identified as a key drug target due to its essential role in viral infection and its minimal similarity with human proteases. Cordyceps mushrooms have been found to have various therapeutic properties that could effectively combat SARS-CoV-2, including improve lung functioning, anti-viral, immunomodulators, anti-infectious, and anti-inflammatory. The present study aims to screen and evaluate the inhibitory potential of the bioactive molecules from the Cordyceps species against the Mpro of SARS-CoV-2. The bioactive molecules were screened based on their docking score, molecular interactions in the binding pocket, ADME properties, toxicity, carcinogenicity, and mutagenicity. Among all the molecules that were tested, cordycepic acid was the most effective and promising candidate, with a binding affinity of -8.10 kcal/mol against Mpro. The molecular dynamics (MD) simulation and free binding energy calculations revealed that the cordycepic acid-Mpro complex was highly stable and showed fewer conformational fluctuations. These findings need to be investigated further through in-vitro and in-vivo studies for additional validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niketan Deshmukh
- L J School of Applied Sciences, L J University, Ahmedabad, India
| | - Reshma Talkal
- Gujarat Biotechnology Research Centre, Gandhinagar, India
| | - Bhaskaran Lakshmi
- Department of Biotechnology, Kadi Sarva Vishwavidyalaya, Gandhinagar, India
| |
Collapse
|
8
|
Golzari-Sorkheh M, Liyanage I, Reed MA, Weaver DF. Alzheimer's Disease and COVID-19 Pathogenic Overlap: Implications for Drug Repurposing. Can J Neurol Sci 2024; 51:161-172. [PMID: 36991574 DOI: 10.1017/cjn.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
As COVID-19 continues, a safe, cost-effective treatment strategy demands continued inquiry. Chronic neuroinflammatory disorders may appear to be of little relevance in this regard; often indolent and progressive disorders characterized by neuroinflammation (such as Alzheimer's disease (AD)) are fundamentally dissimilar in etiology and symptomology to COVID-19's rapid infectivity and pathology. However, the two disorders share extensive pathognomonic features, including at membrane, cytoplasmic, and extracellular levels, culminating in analogous immunogenic destruction of their respective organ parenchyma. We hypothesize that these mechanistic similarities may extent to therapeutic targets, namely that it is conceivable an agent against AD's immunopathy may have efficacy against COVID-19 and vice versa. It is notable that while extensively investigated, no agent has yet demonstrated significant therapeutic efficacy against AD's cognitive and memory declines. Yet this very failure has driven the development of numerous agents with strong mechanistic potential and clinical characteristics. Having already approved for clinical trials, these agents may be an expedient starting point in the urgent search for an effective COVID-19 therapy. Herein, we review the overlapping Alzheimer's/ COVID-19 targets and theorize several initial platforms.
Collapse
Affiliation(s)
| | - Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Lapierre LA, Roland JT, Manning EH, Caldwell C, Glenn HL, Vidalain PO, Tangy F, Hogue BG, de Haan CAM, Goldenring JR. Coronavirus M Protein Trafficking in Epithelial Cells Utilizes a Myosin Vb Splice Variant and Rab10. Cells 2024; 13:126. [PMID: 38247817 PMCID: PMC10814003 DOI: 10.3390/cells13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The membrane (M) glycoprotein of coronaviruses (CoVs) serves as the nidus for virion assembly. Using a yeast two-hybrid screen, we identified the interaction of the cytosolic tail of Murine Hepatitis Virus (MHV-CoV) M protein with Myosin Vb (MYO5B), specifically with the alternative splice variant of cellular MYO5B including exon D (MYO5B+D), which mediates interaction with Rab10. When co-expressed in human lung epithelial A549 and canine kidney epithelial MDCK cells, MYO5B+D co-localized with the MHV-CoV M protein, as well as with the M proteins from Porcine Epidemic Diarrhea Virus (PEDV-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome 2 (SARS-CoV-2). Co-expressed M proteins and MYO5B+D co-localized with endogenous Rab10 and Rab11a. We identified point mutations in MHV-CoV M that blocked the interaction with MYO5B+D in yeast 2-hybrid assays. One of these point mutations (E121K) was previously shown to block MHV-CoV virion assembly and its interaction with MYO5B+D. The E to K mutation at homologous positions in PEDV-CoV, MERS-CoV and SARS-CoV-2 M proteins also blocked colocalization with MYO5B+D. The knockdown of Rab10 blocked the co-localization of M proteins with MYO5B+D and was rescued by re-expression of CFP-Rab10. Our results suggest that CoV M proteins traffic through Rab10-containing systems, in association with MYO5B+D.
Collapse
Affiliation(s)
- Lynne A. Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Nashville VA Medical Center, Nashville, TN 37212, USA
| | - Joseph T. Roland
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Elizabeth H. Manning
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Nashville VA Medical Center, Nashville, TN 37212, USA
| | - Catherine Caldwell
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Nashville VA Medical Center, Nashville, TN 37212, USA
| | - Honor L. Glenn
- Biodesign Institute Center for Immunotherapy, Vaccines & Virotherapy, Tempe, AZ 85287, USA; (H.L.G.); (B.G.H.)
| | - Pierre-Olivier Vidalain
- Equipe Infections Virales, Métabolisme et Immunité, Centre International de Recherche en Infectiologie (CIRI), Univ. Lyon, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France;
- Unité Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR3569, 75015 Paris, France
| | - Frederic Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR3569, 75015 Paris, France;
| | - Brenda G. Hogue
- Biodesign Institute Center for Immunotherapy, Vaccines & Virotherapy, Tempe, AZ 85287, USA; (H.L.G.); (B.G.H.)
- Center for Applied Structural Discovery, Biodesign Institute, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - C. A. M. de Haan
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Section Virology, University of Utrecht, 3584 CS Utrecht, The Netherlands;
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Nashville VA Medical Center, Nashville, TN 37212, USA
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
10
|
D’Avila H, Lima CNR, Rampinelli PG, Mateus LCO, de Sousa Silva RV, Correa JR, de Almeida PE. Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects. Int J Mol Sci 2024; 25:640. [PMID: 38203811 PMCID: PMC10778989 DOI: 10.3390/ijms25010640] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.
Collapse
Affiliation(s)
- Heloisa D’Avila
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | | | - Pollianne Garbero Rampinelli
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Laiza Camila Oliveira Mateus
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Renata Vieira de Sousa Silva
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, University of Brasília, Brasília 70910-900, Brazil;
| | - Patrícia Elaine de Almeida
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| |
Collapse
|
11
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Desmarets L, Danneels A, Burlaud-Gaillard J, Blanchard E, Dubuisson J, Belouzard S. The KxGxYR and DxE motifs in the C-tail of the Middle East respiratory syndrome coronavirus membrane protein are crucial for infectious virus assembly. Cell Mol Life Sci 2023; 80:353. [PMID: 37940699 PMCID: PMC10632273 DOI: 10.1007/s00018-023-05008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
The coronavirus' (CoV) membrane (M) protein is the driving force during assembly, but this process remains poorly characterized. Previously, we described two motifs in the C-tail of the Middle East respiratory syndrome CoV (MERS-CoV) M protein involved in its endoplasmic reticulum (ER) exit (211DxE213) and trans-Golgi network (TGN) retention (199KxGxYR204). Here, their function in virus assembly was investigated by two different virus-like particle (VLP) assays and by mutating both motifs in an infectious MERS-CoV cDNA clone. It was shown that the 199KxGxYR204 motif was essential for VLP and infectious virus assembly. Moreover, the mislocalization of the M protein induced by mutation of this motif prevented M-E interaction. Hampering the ER export of M by mutating its 211DxE213 motif still allowed the formation of nucleocapsid-empty VLPs, but prevented the formation of fully assembled VLPs and infectious particles. Taken together, these data show that the MERS-CoV assembly process highly depends on the correct intracellular trafficking of its M protein, and hence that not only specific protein-protein interacting motifs but also correct subcellular localization of the M protein in infected cells is essential for virus formation and should be taken into consideration when studying the assembly process.
Collapse
Affiliation(s)
- Lowiese Desmarets
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Adeline Danneels
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Julien Burlaud-Gaillard
- INSERM U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Sandrine Belouzard
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| |
Collapse
|
13
|
Lou P, Fang A, Zhao W, Yao K, Yang Y, Hu J. Potential Target Discovery and Drug Repurposing for Coronaviruses: Study Involving a Knowledge Graph-Based Approach. J Med Internet Res 2023; 25:e45225. [PMID: 37862061 PMCID: PMC10592722 DOI: 10.2196/45225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The global pandemics of severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19 have caused unprecedented crises for public health. Coronaviruses are constantly evolving, and it is unknown which new coronavirus will emerge and when the next coronavirus will sweep across the world. Knowledge graphs are expected to help discover the pathogenicity and transmission mechanism of viruses. OBJECTIVE The aim of this study was to discover potential targets and candidate drugs to repurpose for coronaviruses through a knowledge graph-based approach. METHODS We propose a computational and evidence-based knowledge discovery approach to identify potential targets and candidate drugs for coronaviruses from biomedical literature and well-known knowledge bases. To organize the semantic triples extracted automatically from biomedical literature, a semantic conversion model was designed. The literature knowledge was associated and integrated with existing drug and gene knowledge through semantic mapping, and the coronavirus knowledge graph (CovKG) was constructed. We adopted both the knowledge graph embedding model and the semantic reasoning mechanism to discover unrecorded mechanisms of drug action as well as potential targets and drug candidates. Furthermore, we have provided evidence-based support with a scoring and backtracking mechanism. RESULTS The constructed CovKG contains 17,369,620 triples, of which 641,195 were extracted from biomedical literature, covering 13,065 concept unique identifiers, 209 semantic types, and 97 semantic relations of the Unified Medical Language System. Through multi-source knowledge integration, 475 drugs and 262 targets were mapped to existing knowledge, and 41 new drug mechanisms of action were found by semantic reasoning, which were not recorded in the existing knowledge base. Among the knowledge graph embedding models, TransR outperformed others (mean reciprocal rank=0.2510, Hits@10=0.3505). A total of 33 potential targets and 18 drug candidates were identified for coronaviruses. Among them, 7 novel drugs (ie, quinine, nelfinavir, ivermectin, asunaprevir, tylophorine, Artemisia annua extract, and resveratrol) and 3 highly ranked targets (ie, angiotensin converting enzyme 2, transmembrane serine protease 2, and M protein) were further discussed. CONCLUSIONS We showed the effectiveness of a knowledge graph-based approach in potential target discovery and drug repurposing for coronaviruses. Our approach can be extended to other viruses or diseases for biomedical knowledge discovery and relevant applications.
Collapse
Affiliation(s)
- Pei Lou
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - An Fang
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wanqing Zhao
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kuanda Yao
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yusheng Yang
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiahui Hu
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Juckel D, Desmarets L, Danneels A, Rouillé Y, Dubuisson J, Belouzard S. MERS-CoV and SARS-CoV-2 membrane proteins are modified with polylactosamine chains. J Gen Virol 2023; 104. [PMID: 37800895 DOI: 10.1099/jgv.0.001900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Coronaviruses are positive-stranded RNA enveloped viruses. The helical nucleocapsid is surrounded by a lipid bilayer in which are anchored three viral proteins: the spike (S), membrane (M) and envelope (E) proteins. The M protein is the major component of the viral envelope and is believed to be its building block. The M protein of Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a short N-terminal domain with an N-glycosylation site. We investigated their N-glycosylation and show that polylactosamine chains are conjugated to SARS-CoV-2 and MERS-CoV M proteins in transfected and infected cells. Acidic residues present in the first transmembrane segments of the proteins are required for their glycosylation. No specific signal to specify polylactosamine conjugation could be identified and high mannose-conjugated protein was incorporated into virus-like particles.
Collapse
Affiliation(s)
- Dylan Juckel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Adeline Danneels
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Yves Rouillé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Mokhria RK, Bhardwaj JK, Sanghi AK. History, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment of COVID-19: A review. World J Meta-Anal 2023; 11:266-276. [DOI: 10.13105/wjma.v11.i6.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
In December, 2019, pneumonia triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced in Wuhan, China. An acute respiratory illness named coronavirus disease 2019 (COVID-19) is caused by a new coronavirus designated as SARS-CoV-2. COVID-19 has surfaced as a major pandemic in the 21st century as yet. The entire world has been affected by this virus. World Health Organization proclaimed COVID-19 pandemic as a public health emergency of international concern on January 30, 2020. SARS-CoV-2 shares the same genome as coronavirus seen in bats. Therefore, bats might be its natural host of this virus. It primarily disseminates by means of the respiratory passage. Evidence revealed human-to-human transmission. Fever, cough, tiredness, and gastrointestinal illness are the manifestations in COVID-19-infected persons. Senior citizens are more vulnerable to infections which can lead to dangerous consequences. Various treatment strategies including antiviral therapies are accessible for the handling of this disease. In this review, we organized the most recent findings on COVID-19 history, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Rajesh Kumar Mokhria
- Department of School Education, Government Model Sanskriti Senior Secondary School, Chulkana, Panipat, 132101, Haryana, India
| | - Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Ashwani Kumar Sanghi
- School of Allied and Health Sciences, MVN University, Palwal 121102, Haryana, India
| |
Collapse
|
16
|
Urmi UL, Attard S, Vijay AK, Willcox MDP, Kumar N, Islam S, Kuppusamy R. Antiviral Activity of Anthranilamide Peptidomimetics against Herpes Simplex Virus 1 and a Coronavirus. Antibiotics (Basel) 2023; 12:1436. [PMID: 37760732 PMCID: PMC10525570 DOI: 10.3390/antibiotics12091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The development of potent antiviral agents is of utmost importance to combat the global burden of viral infections. Traditional antiviral drug development involves targeting specific viral proteins, which may lead to the emergence of resistant strains. To explore alternative strategies, we investigated the antiviral potential of antimicrobial peptidomimetic compounds. In this study, we evaluated the antiviral potential of 17 short anthranilamide-based peptidomimetic compounds against two viruses: Murine hepatitis virus 1 (MHV-1) which is a surrogate of human coronaviruses and herpes simplex virus 1 (HSV-1). The half-maximal inhibitory concentration (IC50) values of these compounds were determined in vitro to assess their potency as antiviral agents. Compounds 11 and 14 displayed the most potent inhibitory effects with IC50 values of 2.38 μM, and 6.3 μM against MHV-1 while compounds 9 and 14 showed IC50 values of 14.8 μM and 13 μM against HSV-1. Multiple antiviral assessments and microscopic images obtained through transmission electron microscopy (TEM) collectively demonstrated that these compounds exert a direct influence on the viral envelope. Based on this outcome, it can be concluded that peptidomimetic compounds could offer a new approach for the development of potent antiviral agents.
Collapse
Affiliation(s)
- Umme Laila Urmi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Samuel Attard
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| | - Salequl Islam
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (A.K.V.); (S.I.); (R.K.)
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (S.A.); (N.K.)
| |
Collapse
|
17
|
Dolan KA, Dutta M, Kern DM, Kotecha A, Voth GA, Brohawn SG. Structure of SARS-CoV-2 M protein in lipid nanodiscs. eLife 2022; 11:e81702. [PMID: 36264056 PMCID: PMC9642992 DOI: 10.7554/elife.81702] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 encodes four structural proteins incorporated into virions, spike (S), envelope (E), nucleocapsid (N), and membrane (M). M plays an essential role in viral assembly by organizing other structural proteins through physical interactions and directing them to sites of viral budding. As the most abundant protein in the viral envelope and a target of patient antibodies, M is a compelling target for vaccines and therapeutics. Still, the structure of M and molecular basis for its role in virion formation are unknown. Here, we present the cryo-EM structure of SARS-CoV-2 M in lipid nanodiscs to 3.5 Å resolution. M forms a 50 kDa homodimer that is structurally related to the SARS-CoV-2 ORF3a viroporin, suggesting a shared ancestral origin. Structural comparisons reveal how intersubunit gaps create a small, enclosed pocket in M and large open cavity in ORF3a, consistent with a structural role and ion channel activity, respectively. M displays a strikingly electropositive cytosolic surface that may be important for interactions with N, S, and viral RNA. Molecular dynamics simulations show a high degree of structural rigidity in a simple lipid bilayer and support a role for M homodimers in scaffolding viral assembly. Together, these results provide insight into roles for M in coronavirus assembly and structure.
Collapse
Affiliation(s)
- Kimberly A Dolan
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Mandira Dutta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of ChicagoChicagoUnited States
| | - David M Kern
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher ScientificEindhovenNetherlands
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of ChicagoChicagoUnited States
| | - Stephen G Brohawn
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
18
|
Latifi-Pupovci H. Molecular mechanisms involved in pathogenicity of SARS-CoV-2: Immune evasion and implications for therapeutic strategies. Biomed Pharmacother 2022; 153:113368. [PMID: 35792393 PMCID: PMC9243164 DOI: 10.1016/j.biopha.2022.113368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the outbreak of unusual viral pneumonia that emerged in late 2019 in the city of Wuhan, China. Since then, because of its high transmission and pathogenic potential it spread almost all over the world causing the pandemic, as an extraordinary threat to the world public health. Rapid activation of a well-orchestrated and functional immune system with its both arms innate and adaptive immune response is pivotal to eradication of the disease caused by this coronavirus (COVID-19). Therefore, in this review are summarized the most recent data on complex molecular mechanisms involved in the innate and adaptive immune response to combat COVID-19. In addition to widely used vaccines against SARS-CoV-2, because of the induction of short-lived immunity and appearance of variants of concern (VOCs), there will be also discussed newly developed strategies to target different viral proteins, which are not prone to frequent mutations. Obviously, SARS-CoV-2 cannot evade the effect of these novel drugs and therefore they show a great promise as an antiviral therapy not only in COVID-19 but also in future viral outbreaks.
Collapse
|
19
|
Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies. Pharmaceuticals (Basel) 2022; 15:ph15091045. [PMID: 36145266 PMCID: PMC9501068 DOI: 10.3390/ph15091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
Since it acquired pandemic status, SARS-CoV-2 has been causing all kinds of damage all over the world. More than 6.3 million people have died, and many cases of sequelae are in survivors. Currently, the only products available to most of the world’s population to fight the pandemic are vaccines, which still need improvement since the number of new cases, admissions into intensive care units, and deaths are again reaching worrying rates, which makes it essential to compounds that can be used during infection, reducing the impacts of the disease. Plant metabolites are recognized sources of diverse biological activities and are the safest way to research anti-SARS-CoV-2 compounds. The present study computationally evaluated 55 plant compounds in five SARS-CoV-2 targets such Main Protease (Mpro or 3CL or MainPro), RNA-dependent RNA polymerase (RdRp), Papain-Like Protease (PLpro), NSP15 Endoribonuclease, Spike Protein (Protein S or Spro) and human Angiotensin-converting enzyme 2 (ACE-2) followed by in vitro evaluation of their potential for the inhibition of the interaction of the SARS-CoV-2 Spro with human ACE-2. The in silico results indicated that, in general, amentoflavone, 7-O-galloylquercetin, kaempferitrin, and gallagic acid were the compounds with the strongest electronic interaction parameters with the selected targets. Through the data obtained, we can demonstrate that although the indication of individual interaction of plant metabolites with both Spro and ACE-2, the metabolites evaluated were not able to inhibit the interaction between these two structures in the in vitro test. Despite this, these molecules still must be considered in the research of therapeutic agents for treatment of patients affected by COVID-19 since the activity on other targets and influence on the dynamics of viral infection during the interaction Spro x ACE-2 should be investigated.
Collapse
|
20
|
Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Chem Rev 2022; 122:14066-14084. [PMID: 35863749 PMCID: PMC9344915 DOI: 10.1021/acs.chemrev.1c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
![]()
The global spread
of SARS-CoV-2 has proceeded at an unprecedented
rate. Remarkably, characterization of the virus using modern tools
in structural biology has also progressed at exceptional speed. Advances
in electron-based imaging techniques, combined with decades of foundational
studies on related viruses, have enabled the research community to
rapidly investigate structural aspects of the novel coronavirus from
the level of individual viral proteins to imaging the whole virus
in a native context. Here, we provide a detailed review of the structural
biology and pathobiology of SARS-CoV-2 as it relates to all facets
of the viral life cycle, including cell entry, replication, and three-dimensional
(3D) packaging based on insights obtained from X-ray crystallography,
cryo-electron tomography, and single-particle cryo-electron microscopy.
The structural comparison between SARS-CoV-2 and the related earlier
viruses SARS-CoV and MERS-CoV is a common thread throughout this review.
We conclude by highlighting some of the outstanding unanswered structural
questions and underscore areas that are under rapid current development
such as the design of effective therapeutics that block viral infection.
Collapse
Affiliation(s)
- James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Gandeeva Therapeutics Inc., Vancouver, British Columbia, Canada, V5C 6N5
| |
Collapse
|
21
|
Saud Z, Tyrrell VJ, Zaragkoulias A, Protty MB, Statkute E, Rubina A, Bentley K, White DA, Rodrigues PDS, Murphy RC, Köfeler H, Griffiths WJ, Alvarez-Jarreta J, Brown RW, Newcombe RG, Heyman J, Pritchard M, Mcleod RW, Arya A, Lynch CA, Owens D, Jenkins PV, Buurma NJ, O'Donnell VB, Thomas DW, Stanton RJ. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J Lipid Res 2022; 63:100208. [PMID: 35436499 PMCID: PMC9010312 DOI: 10.1016/j.jlr.2022.100208] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.
Collapse
Affiliation(s)
- Zack Saud
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andreas Zaragkoulias
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Majd B Protty
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Evelina Statkute
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anzelika Rubina
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kirsten Bentley
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel A White
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | | | - Jorge Alvarez-Jarreta
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard William Brown
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Robert G Newcombe
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Heyman
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Manon Pritchard
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Robert Wj Mcleod
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Arvind Arya
- ENT Department, Betsi Cadwaladr University Health Board, Wrexham Maelor Hospital, Wrexham, United Kingdom
| | - Ceri-Ann Lynch
- Anaesthetics and Critical Care Directorate, Cwm Taf University Health Board, Royal Glamorgan Hospital, Llantrisant, United Kingdom
| | - David Owens
- Division of Surgery, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - P Vince Jenkins
- Haemostasis Diagnosis and Research, University Hospital Wales, Cardiff, United Kingdom
| | - Niklaas J Buurma
- Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - David W Thomas
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, United Kingdom.
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
22
|
Cesar-Silva D, Pereira-Dutra FS, Moraes Giannini AL, Jacques G. de Almeida C. The Endolysosomal System: The Acid Test for SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23094576. [PMID: 35562967 PMCID: PMC9105036 DOI: 10.3390/ijms23094576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
This review aims to describe and discuss the different functions of the endolysosomal system, from homeostasis to its vital role during viral infections. We will initially describe endolysosomal system's main functions, presenting recent data on how its compartments are essential for host defense to explore later how SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and other coronaviruses subvert these organelles for their benefit. It is clear that to succeed, pathogens' evolution favored the establishment of ways to avoid, escape, or manipulate lysosomal function. The unavoidable coexistence with such an unfriendly milieu imposed on viruses the establishment of a vast array of strategies to make the most out of the invaded cell's machinery to produce new viruses and maneuvers to escape the host's defense system.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
- Correspondence: or
| |
Collapse
|
23
|
Prydz K, Saraste J. The life cycle and enigmatic egress of coronaviruses. Mol Microbiol 2022; 117:1308-1316. [PMID: 35434857 PMCID: PMC9321882 DOI: 10.1111/mmi.14907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
There has been considerable recent interest in the life cycle of Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2), the causative agent of the Covid‐19 pandemic. Practically every step in CoV replication—from cell attachment and uptake via genome replication and expression to virion assembly has been considered as a specific event that potentially could be targeted by existing or novel drugs. Interference with cellular egress of progeny viruses could also be adopted as a possible therapeutic strategy; however, the situation is complicated by the fact that there is no broad consensus on how CoVs find their way out of their host cells. The viral nucleocapsid, consisting of the genomic RNA complexed with nucleocapsid proteins obtains a membrane envelope during virus budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)–Golgi interface. From here, several alternative routes for CoV extracellular release have been proposed. Strikingly, recent studies have shown that CoV infection leads to the disassembly of the Golgi ribbon and the mobilization of host cell compartments and protein machineries that are known to promote Golgi‐independent trafficking to the cell surface. Here, we discuss the life cycle of CoVs with a special focus on different possible pathways for virus egress.
Collapse
Affiliation(s)
- Kristian Prydz
- Department of Biosciences, University of Oslo, Norway and Department of Biomedicine and Molecular Imaging Center University of Bergen Norway
| | | |
Collapse
|
24
|
Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. Virus interactions with the actin cytoskeleton-what we know and do not know about SARS-CoV-2. Arch Virol 2022; 167:737-749. [PMID: 35102456 PMCID: PMC8803281 DOI: 10.1007/s00705-022-05366-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interactions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies for mitigating the severity of COVID-19.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA.
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Jacek Z Kubiak
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, 04-141, Warsaw, Poland
- Institute of Genetics and Development of Rennes, Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Univ. Rennes, UMR 6290, CNRS, 35000, Rennes, France
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
25
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
26
|
Sriwilaijaroen N, Suzuki Y. Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections. Methods Mol Biol 2022; 2556:243-271. [PMID: 36175638 DOI: 10.1007/978-1-0716-2635-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ongoing seasonal HCoV-OC43 and HCoV-HKU1 (common cold), an ongoing zoonotic infection of highly lethal MERS-CoV in humans (MERS disease), and an ongoing pandemic SARS-CoV-2 (COVID-19) with high mutability giving some variants causing severe illness and death have been reported to attach to sialyl receptors via their spike (S) glycoproteins and via additional short spikes, hemagglutinin-esterase (HE) glycoproteins, for HCoV-OC43 and HCoV-HKU1. There is lack of zoonotic viruses that are origins of HCoV-HKU1 and the first recorded pandemic CoV (SARS-CoV-2) for studies. In this chapter, we review current knowledge of the roles of sialyl glycans in infections with these viruses in distinct infection stages. Determination of the similarities and differences in roles of sialyl glycans in infections with these viruses could lead to a better understanding of the pathogenesis and transmission that is essential for combating infections with CoVs that recognize sialyl glycans.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
27
|
Cao Y, Yang R, Wang W, Jiang S, Yang C, Liu N, Dai H, Lee I, Meng X, Yuan Z. Probing the Formation, Structure and Free Energy Relationships of M Protein Dimers of SARS-CoV-2. Comput Struct Biotechnol J 2022; 20:573-582. [PMID: 35047128 PMCID: PMC8756865 DOI: 10.1016/j.csbj.2022.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The M protein of the novel coronavirus 2019 (SARS-CoV-2) is the major structural component of the viral envelope and is also the minimum requirement for virus particle budding. M proteins generally exist as dimers. In virus assembly, they are the main driving force for envelope formation through lateral interactions and interactions with other viral structural proteins that play a central role. We built 100 candidate models and finally analyzed the six most convincing structural features of the SARS-CoV-2 M protein dimer based on long-timescale molecular dynamics (MD) simulations, multiple free energy analyses (potential mean force (PMF) and molecular mechanics Poisson-Boltzmann surface area (MMPBSA)) and principal component analysis (PCA) to obtain the most reasonable structure. The dimer stability was found to depend on the Leu-Ile zipper motif and aromatic amino acids in the transmembrane domain (TMD). Furthermore, the C-terminal domain (CTD) effects were relatively small. These results highlight a model in which there is sufficient binding affinity between the TMDs of M proteins to form dimers through the residues at the interface of the three transmembrane helices (TMHs). This study aims to help find more effective inhibitors of SARS-CoV-2 M dimers and to develop vaccines based on structural information.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
- National Supercomputer Center in Tianjin, 300457 PR China
| | - Rui Yang
- Department of Infection and Immunity, Tianjin Union Medical Center, Nankai University Affiliated Hospital. 300031, PR China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
| | - Shengpeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
| | - Chengwen Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
| | - Ningbo Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
| | - Hongji Dai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
- College of Physics, Nankai University, Tianjin 300071, PR China
| | - Imshik Lee
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, PR China
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, 300457 PR China
- Corresponding authors.
| | - Zhiyong Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060 PR China
- Corresponding authors.
| |
Collapse
|
28
|
Pathogenesis and mutagenesis of SARS-CoV-2. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217739 DOI: 10.1016/b978-0-323-85156-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious disease characterized by higher leukocyte numbers, acute respiratory distress, and elevated levels of plasma proinflammatory cytokines. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, begins its pathogenesis by the binding of the virus to the host's angiotensin-converting enzyme 2 (ACE-2) receptor and then replication. The various replicated viruses then reinfect other cells and organs with ACE-2 receptor and further wreak havoc and could later result in multisystem organ failure. Presently, efforts are on the way to develop vaccines and drugs for this virus. But the current spike in COVID-19 cases linked to mutation in the virus genome and those of its enzymes is a cause of concern. Studies conducted by some authors have identified 6 major clads (basal, D614G, L84S, L3606F, D448del, and G392D), out of which D614G (a G-to-A base change at position 23403 in the Wuhan reference strain) was found to be the most reoccurring clad. This chapter examines all of these.
Collapse
|
29
|
Samanta P, Ghosh AR. Environmental perspectives of COVID-19 outbreaks: A review. World J Gastroenterol 2021; 27:5822-5850. [PMID: 34629805 PMCID: PMC8475003 DOI: 10.3748/wjg.v27.i35.5822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), began in December 2019 in China and has led to a global public health emergency. Previously, it was known as 2019-nCoV and caused disease mainly through respiratory pathways. The COVID-19 outbreak is ranked third globally as the most highly pathogenic disease of the twenty-first century, after the outbreak of SARS-CoV and Middle East respiratory syndrome in 2002 and 2012, respectively. Clinical, laboratory, and diagnostic methodology have been demonstrated in some observational studies. No systematic reviews on COVID-19 have been published regarding the integration of COVID-19 outbreaks (monitoring, fate and treatment) with environmental and human health perspectives. Accordingly, this review systematically addresses environmental aspects of COVID-19 outbreak such as the origin of SARS-CoV-2, epidemiological characteristics, diagnostic methodology, treatment options and technological advancement for the prevention of COVID-19 outbreaks. Finally, we integrate COVID-19 outbreaks (monitoring, fate and treatment) with environmental and human health perspectives. We believe that this review will help to understand the SARS-CoV-2 outbreak as a multipurpose document, not only for the scientific community but also for global citizens. Countries should adopt emergency preparedness such as prepare human resources, infrastructure and facilities to treat severe COVID-19 as the virus spreads rapidly globally.
Collapse
Affiliation(s)
- Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India
| |
Collapse
|
30
|
Hackstadt T, Chiramel AI, Hoyt FH, Williamson BN, Dooley CA, Beare PA, de Wit E, Best SM, Fischer ER. Disruption of the Golgi Apparatus and Contribution of the Endoplasmic Reticulum to the SARS-CoV-2 Replication Complex. Viruses 2021; 13:v13091798. [PMID: 34578379 PMCID: PMC8473243 DOI: 10.3390/v13091798] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.
Collapse
Affiliation(s)
- Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
- Correspondence:
| | - Abhilash I. Chiramel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (A.I.C.); (S.M.B.)
| | - Forrest H. Hoyt
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (F.H.H.); (E.R.F.)
| | - Brandi N. Williamson
- Molecular Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.N.W.); (E.d.W.)
| | - Cheryl A. Dooley
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Emmie de Wit
- Molecular Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.N.W.); (E.d.W.)
| | - Sonja M. Best
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (A.I.C.); (S.M.B.)
| | - Elizabeth R. Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (F.H.H.); (E.R.F.)
| |
Collapse
|
31
|
Sarkar R, Bhargava S, Mendiratta V. Virology and Etiopathogenesis of COVID-19 with Special Reference to Cutaneous Implications. Indian J Dermatol 2021; 66:231-236. [PMID: 34446945 PMCID: PMC8375542 DOI: 10.4103/ijd.ijd_467_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Severe Acute Respiratory Virus Corona Virus 2 (SARS-CoV-2) has got its name Corona from Latin meaning “crown.” It has crown-like spikes present on the surface, which encloses the RNA, genetic material of this deadly virus. The virus attacks pneumocytes after binding with the angiotensin-converting enzyme 2 (ACE2) of the cell surface, which ultimately leads to chemotaxis followed by leukocyte infiltration, increased permeability of blood vessels and alveolar walls, and decreased surfactant in the lung leading to various symptoms. Skin provides a window to the internal changes of the body and also to mechanisms that are not readily visible. Commonly observed skin manifestations include vesicular lesions, maculopapular exanthema, urticarial eruptions, livedo or necrosis, and other forms of vasculitis, chilblain-like lesions. The skin lesions are attributed to either the virus directly affecting the skin or interferon dysregulation due to viral RNA or vascular involvement associated with alteration in coagulation or drug-induced skin manifestations. Observation of skin involvement and the vasculature due to SARS-CoV-2 illustrates the need for a precise stratification and differential diagnostic valuation so that the mechanisms of this novel virus are clearer for better management of the condition in the future. Vascular skin lesions are not seen in all the patients of COVID, but certain lesions should definitely alarm us to evaluate for coagulation abnormalities, complement levels, and skin biopsy, especially in critically ill patients. This review attempts to outline the pathogen briefly and the pathomechanism behind the development of various cutaneous manifestations.
Collapse
Affiliation(s)
- Rashmi Sarkar
- Department of Dermatology, Lady Hardinge Medical College and Associated KSCH and SSK Hospital, New Delhi, India
| | - Shashank Bhargava
- Department of Dermatology, R.D. Gardi Medical College, Ujjain, Madhya Pradesh, India
| | - Vibhu Mendiratta
- Department of Dermatology, Lady Hardinge Medical College and Associated KSCH and SSK Hospital, New Delhi, India
| |
Collapse
|
32
|
Grygiel-Górniak B. Antimalarial drugs-are they beneficial in rheumatic and viral diseases?-considerations in COVID-19 pandemic. Clin Rheumatol 2021; 41:1-18. [PMID: 34218393 PMCID: PMC8254634 DOI: 10.1007/s10067-021-05805-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023]
Abstract
The majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
33
|
Aldaais EA, Yegnaswamy S, Albahrani F, Alsowaiket F, Alramadan S. Sequence and structural analysis of COVID-19 E and M proteins with MERS virus E and M proteins-A comparative study. Biochem Biophys Rep 2021; 26:101023. [PMID: 34013072 PMCID: PMC8120451 DOI: 10.1016/j.bbrep.2021.101023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022] Open
Abstract
The outbreak of SARS in 2003, MERS in 2012, and now COVID-19 in 2019 has demonstrated that Coronaviruses are capable of causing primary lethal infections in humans, and the pandemic is now a global concern. The COVID-19 belongs to the beta coronavirus family encoding 29 proteins, of which four are structural, the Spike, Membrane, Envelope, and Nucleocapsid proteins. Here we have analyzed and compared the Membrane (M) and Envelope (E) proteins of COVID-19 and MERS with SARS and Bat viruses. The sequence analysis of conserved regions of both E and M proteins revealed that many regions of COVID-19 are similar to Bat and SARS viruses while the MERS virus showed variations. The essential binding motifs found in SARS appeared in COVID-19. Besides, the M protein of COVID-19 showed a distinct serine phosphorylation site in the C-terminal domain, which looked like a catalytic triad seen in serine proteases. A Dileucine motif occurred many times in the sequence of the M protein of all the four viruses compared. Concerning the structural part, the COVID-19 E protein showed more similarity to Bat while MERS shared similarity with the SARS virus. The M protein of both COVID-19 and MERS displayed variations in the structure. The interaction between M and E proteins was also studied to know the additional binding regions. Our study highlights the critical motifs and structural regions to be considered for further research to design better inhibitors for the infection caused by these viruses.
Collapse
Affiliation(s)
- Ebtisam A. Aldaais
- Department of Radiological Sciences, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31441, Saudi Arabia
| | - Subha Yegnaswamy
- Aldaais Research Group, Imam Abdulrahman bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Fatimah Albahrani
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Fatima Alsowaiket
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Sarah Alramadan
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| |
Collapse
|
34
|
Mohamed AA, Tantawi OI, Fathalla LA, El-Hassib DMA, El-Toukhy NETR, Salah W, Elkadeem M, Ezzat O, Abd-Elsalam S. Covid-19: Urgent Call to Action. Antiinflamm Antiallergy Agents Med Chem 2021; 20:118-122. [PMID: 33267767 DOI: 10.2174/1871523019666201202092859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Novel Corona Virus 2019 (COVID-19) is a new virus spread rapidly all over the world. It has specific respiratory or gastrointestinal tract symptoms. Its reported complications include respiratory distress, systemic inflammatory response syndrome, and septic shock. Due to heavy cytokines released by the virus; corticosteroids (40-120 mg / day) were given to severe cases to reduce pneumonia. It's a difficult task to control the spread of SARS-CoV-2, and to invent proper vaccines and treatments. In this review, the existing understanding of fatal, pandemic human coronavirus SARS-Cov2 (COVID-19), with special reference to its diagnosis, origin, transmission, and different approaches to develop its therapeutics, will be discussed.
Collapse
Affiliation(s)
- Amal A Mohamed
- Department of Biochemistry, National Hepatology Tropical Medicine Research Institute, Cairo, Egypt
| | - Omnia I Tantawi
- Faculty of Biotechnology, Misr University for Science and Technology (MUST), Cairo, Egypt
| | - Lamiaa A Fathalla
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Dalia M Abd El-Hassib
- Clinical and Chemical Pathology Department, Benha Faculty of Medicine, Benha University, Benha, Egypt
| | - Naglaa El-Toukhy R El-Toukhy
- Hepatology, Gastroenterology and Infectious Diseases Department, Faculty of Medicine-Benha University, Benha, Egypt
| | - Wafaa Salah
- Department of Internal medicine, National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Mahmoud Elkadeem
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Omnia Ezzat
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Sherief Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
35
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
36
|
Kumar R, Harilal S, Al-Sehemi AG, Mathew GE, Carradori S, Mathew B. The Chronicle of COVID-19 and Possible Strategies to Curb the Pandemic. Curr Med Chem 2021; 28:2852-2886. [PMID: 32614740 DOI: 10.2174/0929867327666200702151018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022]
Abstract
COVID-19, a type of infection that emerged in Wuhan, has become a pandemic affecting people worldwide and is rapidly spreading and evolving. Day by day, the confirmed cases and deaths are increasing many folds. SARS-CoV-2 is a novel virus; therefore, limited data are available to curb the disease. Epidemiological approaches, such as isolation, quarantine, social distancing, lockdown, and curfew, are being employed to halt the spread of the disease. Individual and joint efforts all over the world are producing a wealth of data and information which are expected to produce therapeutic strategies against COVID-19. Current research focuses on the utilization of antiviral drugs, repurposing strategies, vaccine development, as well as basic to advanced research about the organism and the infection. The review focuses on its life cycle, targets, and possible therapeutic strategies, which can lead to further research and development of COVID-19 therapy.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Abdullah G Al-Sehemi
- Research center for Advanced Materials Science, King Khalid University, 61413 Abha, Saudi Arabia
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
37
|
Acquah C, Jeevanandam J, Tan KX, Danquah MK. Engineered Aptamers for Enhanced COVID-19 Theranostics. Cell Mol Bioeng 2021; 14:209-221. [PMID: 33488836 PMCID: PMC7810429 DOI: 10.1007/s12195-020-00664-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The 2019-novel coronavirus disease (COVID-19) is an intractable global health challenge resulting in an aberrant rate of morbidity and mortality worldwide. The mode of entry for SARS-CoV-2 into host cells occurs through clathrin-mediated endocytosis. As part of the efforts to mitigate COVID-19 infections, rapid and accurate detection methods, as well as smart vaccine and drug designs with SARS-CoV-2 targeting capabilities are critically needed. This systematic review aimed to present a good mapping between the structural and functional characteristics of aptamers and their potential applications in COVID-19 theranostics. METHODS In this study, extensive discussions into the potential development of aptameric systems as robust theranostics for rapid mitigation of the virulent SARS-CoV-2 was made. Information required for this study were extracted from a systematic review of literature in PubMed, SCOPUS, Web of Science (WOS), and other official related reports from reputable organisations. RESULTS The global burden of COVID-19 pandemic was discussed including the progress in rapid detection, repurposing of existing antiviral drugs, and development of prophylactic vaccines. Aptamers have highly specific and stable target binding characteristics which can be generated and engineered with less complexity for COVID-19 targeted theranostic applications. CONCLUSIONS There is an urgent need to develop safe innovative biomedical technologies to mitigate the dire impact of COVID-19 on public health worldwide. Research advances into aptameric systems bode well with the fact that they can be engineered for the development of effective and affordable diagnostics, therapeutics and prophylactic vaccines for SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
38
|
Goud BKM, Sharma D, Varanasi S. A review on COVID-19 for medical students. INDIAN JOURNAL OF MEDICAL SCIENCES 2021. [PMCID: PMC8219016 DOI: 10.25259/ijms_47_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has not been very long since the SARS-CoV 2002 and MERS-CoV 2012 epidemics. Yet again, nature has introduced SARS-CoV-2, also known as COVID-19, a highly virulent strain of the coronavirus that has its origin in the city of Wuhan, Hubei Province, China. Primarily, a zoonotic infection, the virus probably found its way to humans through infected wild bats sold in the Wuhan local market. What makes the virus virulent, is its ability to infect multiple people at once through single index case. This has led to inability to contain the virus with ease posing a significant threat to national and international health-care resources and economies. The objective of this review is to highlight the key features of the novel CoV-19 infection as per existing data for better understanding of the disease.
Collapse
Affiliation(s)
- B. K. Manjunatha Goud
- Department of Biochemistry, RAK Medical and Health Sciences University, RAK College of Medical Science, Kingdom of Saudi Arabia,
| | - Dharmendra Sharma
- Department of Microbiology, College of Medicine Shaqra, Kingdom of Saudi Arabia,
| | - Sreya Varanasi
- Department of Microbiology, RAK Medical and Health Sciences University, RAK College of Medical Science, United Arab Emirates,
| |
Collapse
|
39
|
Aziz A, Asif M, Ashraf G, Yang Q, Wang S. COVID-19 Impacts, Diagnosis and Possible Therapeutic Techniques: A Comprehensive Review. Curr Pharm Des 2021; 27:1170-1184. [PMID: 33280586 DOI: 10.2174/1874467213666201204154239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND The spread of COVID-19 has become a growing cause of mortalities over the globe since its major outbreak in December 2019. The scientific and medical communities are rallying to study different strains and probable mutations to develop more rapid and reliable molecular diagnostic tests and possible therapeutic approaches for SARS-CoV-2. INTRODUCTION In the first section, following the introductory part, we shed light on structural and pathogenic features of SARS-CoV-2 and risk factors related to age, gender, neonatal and comorbidities. The next section summarizes the current diagnostic tests for COVID-19, such as nucleic acid and computed tomography (CT) techniques, with further emphasis on emerging diagnostic approaches for COVID-19. METHODS Further, we also review the ongoing therapeutic practices which can block virus-host interaction, cease viral proliferation or inhibit hyperbolic host immune response with subsections on drug therapy, cell therapy, immunotherapy and herbal medicines that are being used for the possible treatment of patients. RESULTS AND CONCLUSION Among the different promising drugs, remdesivir, by inhibiting the RNA-dependent RNA-Polymerase activity, gives much better results, including declined viral load and quick lung tissue recovery. The long-lasting repercussions of COVID-19 have also been discussed at the end. In this review, we have also critically discussed the progress in several vaccines that are under development.
Collapse
Affiliation(s)
- Ayesha Aziz
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiaoli Yang
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Shenqi Wang
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
40
|
Xia X, Yuan P, Liu Y, Wang Y, Cao W, Zheng JC. Emerging roles of extracellular vesicles in COVID-19, a double-edged sword? Immunology 2021; 163:416-430. [PMID: 33742451 PMCID: PMC8251486 DOI: 10.1111/imm.13329] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
The sudden outbreak of SARS‐CoV‐2‐infected disease (COVID‐19), initiated from Wuhan, China, has rapidly grown into a global pandemic. Emerging evidence has implicated extracellular vesicles (EVs), a key intercellular communicator, in the pathogenesis and treatment of COVID‐19. In the pathogenesis of COVID‐19, cells that express ACE2 and CD9 can transfer these viral receptors to other cells via EVs, making recipient cells more susceptible for SARS‐CoV‐2 infection. Once infected, cells release EVs packaged with viral particles that further facilitate viral spreading and immune evasion, aggravating COVID‐19 and its complications. In contrast, EVs derived from stem cells, especially mesenchymal stromal/stem cells, alleviate severe inflammation (cytokine storm) and repair damaged lung cells in COVID‐19 by delivery of anti‐inflammatory molecules. These therapeutic beneficial EVs can also be engineered into drug delivery platforms or vaccines to fight against COVID‐19. Therefore, EVs from diverse sources exhibit distinct effects in regulating viral infection, immune response, and tissue damage/repair, functioning as a double‐edged sword in COVID‐19. Here, we summarize the recent progress in understanding the pathological roles of EVs in COVID‐19. A comprehensive discussion of the therapeutic effects/potentials of EVs is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Weijun Cao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Protein Intrinsic Disorder and Evolvability of MERS-CoV. Biomolecules 2021; 11:biom11040608. [PMID: 33923962 PMCID: PMC8074149 DOI: 10.3390/biom11040608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
|
42
|
Assembly and Cellular Exit of Coronaviruses: Hijacking an Unconventional Secretory Pathway from the Pre-Golgi Intermediate Compartment via the Golgi Ribbon to the Extracellular Space. Cells 2021; 10:cells10030503. [PMID: 33652973 PMCID: PMC7996754 DOI: 10.3390/cells10030503] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses (CoVs) assemble by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. However, why CoVs have chosen the IC as their intracellular site of assembly and how progeny viruses are delivered from this compartment to the extracellular space has remained unclear. Here we address these enigmatic late events of the CoV life cycle in light of recently described properties of the IC. Of particular interest are the emerging spatial and functional connections between IC elements and recycling endosomes (REs), defined by the GTPases Rab1 and Rab11, respectively. The establishment of IC-RE links at the cell periphery, around the centrosome and evidently also at the noncompact zones of the Golgi ribbon indicates that—besides traditional ER-Golgi communication—the IC also promotes a secretory process that bypasses the Golgi stacks, but involves its direct connection with the endocytic recycling system. The initial confinement of CoVs to the lumen of IC-derived large transport carriers and their preferential absence from Golgi stacks is consistent with the idea that they exit cells following such an unconventional route. In fact, CoVs may share this pathway with other intracellularly budding viruses, lipoproteins, procollagen, and/or protein aggregates experimentally introduced into the IC lumen.
Collapse
|
43
|
Alshehri MA, Manee MM, Alqahtani FH, Al-Shomrani BM, Uversky VN. On the Prevalence and Potential Functionality of an Intrinsic Disorder in the MERS-CoV Proteome. Viruses 2021; 13:v13020339. [PMID: 33671602 PMCID: PMC7926987 DOI: 10.3390/v13020339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Middle East respiratory syndrome is a severe respiratory illness caused by an infectious coronavirus. This virus is associated with a high mortality rate, but there is as of yet no effective vaccine or antibody available for human immunity/treatment. Drug design relies on understanding the 3D structures of viral proteins; however, arriving at such understanding is difficult for intrinsically disordered proteins, whose disorder-dependent functions are key to the virus’s biology. Disorder is suggested to provide viral proteins with highly flexible structures and diverse functions that are utilized when invading host organisms and adjusting to new habitats. To date, the functional roles of intrinsically disordered proteins in the mechanisms of MERS-CoV pathogenesis, transmission, and treatment remain unclear. In this study, we performed structural analysis to evaluate the abundance of intrinsic disorder in the MERS-CoV proteome and in individual proteins derived from the MERS-CoV genome. Moreover, we detected disordered protein binding regions, namely, molecular recognition features and short linear motifs. Studying disordered proteins/regions in MERS-CoV could contribute to unlocking the complex riddles of viral infection, exploitation strategies, and drug development approaches in the near future by making it possible to target these important (yet challenging) unstructured regions.
Collapse
Affiliation(s)
- Manal A. Alshehri
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Manee M. Manee
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Fahad H. Alqahtani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Badr M. Al-Shomrani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
- Correspondence: (B.M.A.-S.); (V.N.U.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612, USA
- Correspondence: (B.M.A.-S.); (V.N.U.)
| |
Collapse
|
44
|
Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop 2021; 214:105778. [PMID: 33253656 PMCID: PMC7695590 DOI: 10.1016/j.actatropica.2020.105778] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
We are living through an unprecedented crisis with the rapid spread of the new coronavirus disease (COVID-19) worldwide within a short time. The timely availability of thousands of SARS-CoV-2 genomes has enabled the scientific community to study the origin, structures, and pathogenesis of the virus. The pandemic has spurred research publication and resulted in an unprecedented number of therapeutic proposals. Because the development of new drugs is time consuming, several strategies, including drug repurposing and repositioning, are being tested to treat patients with COVID-19. Researchers have developed several potential vaccine candidates that have shown promise in phase II and III trials. As of 12 November 2020, 164 candidate vaccines are in preclinical evaluation, and 48 vaccines are in clinical evaluation, of which four have cleared phase III trials (Pfizer/BioNTech's BNT162b2, Moderna's mRNA-1273, University of Oxford & AstraZeneca's AZD1222, and Gamaleya's Sputnik V vaccine). Despite the acquisition of a vast body of scientific information, treatment depends only on the clinical management of the disease through supportive care. At the pandemic's 1-year mark, we summarize current information on SARS-CoV-2 origin and biology, and advances in the development of therapeutics. The updated information presented here provides a comprehensive report on the scientific progress made in the past year in understanding of SARS-CoV-2 biology and therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar Mishra
- Department of Botany, Ewing Christian College, Prayagraj- 211003, Uttar Pradesh, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
45
|
Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci 2021; 78:1655-1688. [PMID: 32712910 DOI: 10.1101/2020.03.13.990598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein-protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Meenakshi Shegane
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
46
|
Thankam FG, Agrawal DK. Molecular chronicles of cytokine burst in patients with coronavirus disease 2019 (COVID-19) with cardiovascular diseases. J Thorac Cardiovasc Surg 2021; 161:e217-e226. [PMID: 32631657 PMCID: PMC7834736 DOI: 10.1016/j.jtcvs.2020.05.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 02/02/2023]
Affiliation(s)
| | - Devendra K. Agrawal
- Address for reprints: Devendra K. Agrawal, PhD (Biochem), PhD (Med Sci), MBA, Department of Translational Research, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766
| |
Collapse
|
47
|
Carafoli E. Chloroquine and hydroxychloroquine in the prophylaxis and therapy of COVID-19 infection. Biochem Biophys Res Commun 2021; 538:156-162. [PMID: 33028485 PMCID: PMC7524676 DOI: 10.1016/j.bbrc.2020.09.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
At the end of last century a prominent biochemist once opened the discussion of a controversial issue in the field of Bioenergetics with the following statement: "This is a long story, that shouldn't be long, but it will take a long time to make it short". As it happens, such a statement would apply perfectly well to the story of chloroquine (CQ) and hydroxychloroquine (HCQ) in the COVID-19 infection: it has become a veritable saga, with conflicting views that have often gone beyond the normal scientific dialectic, and with conclusions that have frequently been polluted by non scientific opinions: thus, for instance, when National Agencies have taken positions against CQ and HCQ, the move has been seen as a pro-vaccine attempt to block low cost therapy means. And it is difficult to avoid the feeling that the opposition to CQ and HCQ has in large measure been shaped not by scientific arguments, but by the fact that their use has been strongly endorsed by National leaders whose popularity among Western intellectuals is extremely low. The role of the two drugs in the COVID-19 infection thus deserves an objective analysis solely based on scientific facts. This contribution will attempt to produce it.
Collapse
Affiliation(s)
- Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, Italy.
| |
Collapse
|
48
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
49
|
Illanes-Álvarez F, Márquez-Ruiz D, Márquez-Coello M, Cuesta-Sancho S, Girón-González JA. Similarities and differences between HIV and SARS-CoV-2. Int J Med Sci 2021; 18:846-851. [PMID: 33437221 PMCID: PMC7797543 DOI: 10.7150/ijms.50133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the last 50 years we have experienced two big pandemics, the HIV pandemic and the pandemic caused by SARS-CoV-2. Both pandemics are caused by RNA viruses and have reached us from animals. These two viruses are different in the transmission mode and in the symptoms they generate. However, they have important similarities: the fear in the population, increase in proinflammatory cytokines that generate intestinal microbiota modifications or NETosis production by polymorphonuclear neutrophils, among others. They have been implicated in the clinical, prognostic and therapeutic attitudes.
Collapse
Affiliation(s)
| | | | | | - Sara Cuesta-Sancho
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain. Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA)
| | - José Antonio Girón-González
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain. Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA)
| |
Collapse
|
50
|
Parlakpinar H, Gunata M. SARS-COV-2 (COVID-19): Cellular and biochemical properties and pharmacological insights into new therapeutic developments. Cell Biochem Funct 2021; 39:10-28. [PMID: 32992409 PMCID: PMC7537523 DOI: 10.1002/cbf.3591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 caused by SARS-COV-2 first appeared in the Wuhan City of China and began to spread rapidly among people. Rapid progression of the outbreak has led to a major global public health problem of a potentially fatal disease. On January 30, 2020, WHO declared the pandemic as the sixth public health emergency of the world. Upon this, the whole country has started to take the necessary precautions. The new coronavirus uses membrane-bound angiotensin-converting enzyme 2 (ACE2) to enter into the cells, such as SARS-CoV, and mostly affects the respiratory tract. Symptoms of COVID-19 patients include fever (93%), fatigue (70%), cough (70%), anorexia (40%) and dyspnoea (34.5%). The elderly and people with underlying chronic diseases are more susceptible to infection and higher mortality. Currently, a large number of drugs and vaccines studies are ongoing. In this review, we discussed the virology, epidemiological data, the replication of the virus, and its relationship with cardiovascular diseases on COVID-19 pandemics, treatment and vaccines. Thereby, this study aims to neatly present scientific data in light of many regarding literature that can be a clue for readers who research this disease prevention and treatment. SIGNIFICANCE OF THE STUDY: This review summarized current information on COVID-19 (epidemiology, pathophysiology, clinical, laboratory, cardiovascular diseases, ACE2 and pharmacological agents) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system, pharmacology, dysregulation of cellular function in disease, molecular and cell biology and physiology in the regulation of tissue function in health and disease.
Collapse
Affiliation(s)
- Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Mehmet Gunata
- Department of Medical Pharmacology, Faculty of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|