1
|
Li L, An Z, Lin C, Xu Q, Tang C. An update on regulation and function of G protein-coupled receptors in cancer: A promising strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189266. [PMID: 39864470 DOI: 10.1016/j.bbcan.2025.189266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a crucial role in signal transduction and cellular communication. GPCR proteins are involved in a wide range of physiological processes, including cell growth, migration, and survival. Dysregulation of GPCR protein expression has been implicated in the pathogenesis of various diseases, including cancer, and GPCR proteins have been shown to modulate these processes in various types of cancer, highlighting their importance as potential therapeutic targets. In this review, we summarize the expression regulation of GPCRs in cancer cells, update the various ways by which the abnormal expression of GPCR protein affects the behavior of tumor cells, and discuss the current research directions and potentially facing problems of strategies on GPCR-targeting therapy.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Department of Urology, Third Affiliated Hospital of Naval Medical University, Shanghai 201805, China
| | - Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Lin
- Department of Neurosurgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
2
|
Chen PY, Wang PY, Liu B, Jia YP, Zhang ZX, Liu X, Wang DH, Yan YJ, Fu WH, Zhu F. RGS4 promotes the progression of gastric cancer through the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition. World J Gastroenterol 2025; 31:100898. [PMID: 39811500 PMCID: PMC11684191 DOI: 10.3748/wjg.v31.i2.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/28/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regulator of G protein signaling (RGS) proteins participate in tumor formation and metastasis by acting on the α-subunit of heterotrimeric G proteins. The specific effect of RGS, particularly RGS4, on the progression of gastric cancer (GC) is not yet clear. AIM To explore the role and underlying mechanisms of action of RGS4 in GC development. METHODS The prognostic significance of RGS4 in GC was analyzed using bioinformatics based public databases and verified by immunohistochemistry and quantitative polymerase chain reaction in 90 patients with GC. Function assays were employed to assess the carcinogenic impact of RGS4, and the mechanism of its possible influence was detected by western blot analysis. A nude mouse xenograft model was established to study the effects of RGS4 on GC growth in vitro. RESULTS RGS4 was highly expressed in GC tissues compared with matched adjacent normal tissues. Elevated RGS4 expression was correlated with increased tumor-node-metastasis stage, increased tumor grade as well as poorer overall survival in patients with GC. Cell experiments demonstrated that RGS4 knockdown suppressed GC cell proliferation, migration and invasion. Similarly, xenograft experiments confirmed that RGS4 silencing significantly inhibited tumor growth. Moreover, RGS4 knockdown resulted in reduced phosphorylation levels of focal adhesion kinase, phosphatidyl-inositol-3-kinase, and protein kinase B, decreased vimentin and N-cadherin, and elevated E-cadherin. CONCLUSION High RGS4 expression in GC indicates a worse prognosis and RGS4 is a prognostic marker. RGS4 influences tumor progression via the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Peng-Yu Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Pei-Yao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Bang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Yang-Pu Jia
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Zhao-Xiong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Dao-Han Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Yong-Jia Yan
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Wei-Hua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Feng Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
- Department of General Surgery, Jincheng People’s Hospital, Jincheng 048000, Shanxi Province, China
| |
Collapse
|
3
|
Barham WT, Stagg MP, Mualla R, DiLeo M, Kansara S. Recurrent and Metastatic Head and Neck Cancer: Mechanisms of Treatment Failure, Treatment Paradigms, and New Horizons. Cancers (Basel) 2025; 17:144. [PMID: 39796771 PMCID: PMC11720666 DOI: 10.3390/cancers17010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Background: Head and neck cancer is a deadly disease with over 500,000 cases annually worldwide. Metastatic head and neck cancer accounts for a large proportion of the mortality associated with this disease. Many advances have been made in our understanding of the mechanisms of metastasis. The application of immunotherapy to locally recurrent or metastatic head and neck cancer has not only improved oncologic outcomes but has also provided valuable insights into the mechanisms of immune evasion and ultimately treatment failure. Objectives: This review paper will review our current understanding of biological mechanisms of treatment failure and metastasis. Published and ongoing clinical trials in the management of metastatic head and neck cancer will also be summarized. Methods: A narrative review was conducted to address the current understanding of the mechanisms of treatment failure and current treatment paradigms in recurrent and metastatic head and neck carcinoma. Conclusions: Our understanding of treatment failure in this disease is rapidly evolving. Immunotherapy represents a valuable new tool in the fight against recurrent and metastatic head and neck squamous cell carcinoma. Integrating patient and tumor specific data via artificial intelligence and deep learning will allow for a precision oncology approach, thereby achieving better prognostication and management of patients with this deadly disease.
Collapse
Affiliation(s)
- William T. Barham
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 71103, USA; (W.T.B.); (R.M.); (M.D.)
| | - Marshall Patrick Stagg
- Department of Oncology, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70809, USA;
| | - Rula Mualla
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 71103, USA; (W.T.B.); (R.M.); (M.D.)
| | - Michael DiLeo
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 71103, USA; (W.T.B.); (R.M.); (M.D.)
| | - Sagar Kansara
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 71103, USA; (W.T.B.); (R.M.); (M.D.)
| |
Collapse
|
4
|
Inverso D, Tacconi C, Ranucci S, De Giovanni M. The power of many: Multilevel targeting of representative chemokine and metabolite GPCRs in personalized cancer therapy. Eur J Immunol 2024; 54:e2350870. [PMID: 39263783 PMCID: PMC11628915 DOI: 10.1002/eji.202350870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
G protein-coupled receptors (GPCRs) are vital cell surface receptors that govern a myriad of physiological functions. Despite their crucial role in regulating antitumor immunity and tumorigenesis, therapeutic applications targeting GPCRs in oncology are currently limited. This review offers a focused examination of selected protumorigenic chemokine and metabolite-sensing GPCRs. Specifically, the review highlights five GPCRs able to orchestrate tumor immunobiology at three main levels: tumor immunity, cancer cell expansion, and blood vessel development. The review culminates by illuminating emerging therapies and discussing innovative strategies to harness the full potential of GPCR-targeted treatments, by applying a multireceptor and patient-specific logic.
Collapse
Affiliation(s)
- Donato Inverso
- Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Carlotta Tacconi
- Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Serena Ranucci
- Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Marco De Giovanni
- Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
5
|
Yoon SE, Kim WS. New insights on Epstein-Barr virus-induced lymphomagenesis. Sci Bull (Beijing) 2024; 69:3478-3479. [PMID: 39370357 DOI: 10.1016/j.scib.2024.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| |
Collapse
|
6
|
Dwyer MB, Aumiller JL, Wedegaertner PB. Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G α in Human Cancer. Mol Pharmacol 2024; 106:198-215. [PMID: 39187387 PMCID: PMC11493338 DOI: 10.1124/molpharm.124.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
G protein-coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and βγ subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein βγ subunits (Gβγ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβγ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants. SIGNIFICANCE STATEMENT: Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenna L Aumiller
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
8
|
Dickinson K, Yee EJ, Vigil I, Schulick RD, Zhu Y. GPCRs: emerging targets for novel T cell immune checkpoint therapy. Cancer Immunol Immunother 2024; 73:253. [PMID: 39358616 PMCID: PMC11447192 DOI: 10.1007/s00262-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Although immune checkpoint blockade (ICB) has become the mainstay of treatment for advanced solid organ malignancies, success in revitalizing the host anticancer immune response remains limited. G-protein coupled receptors (GPCRs) are a broad family of cell-surface proteins that have been regarded as main players in regulating the immune system, namely by mediating the activity of T lymphocytes. Among the most novel immunoregulatory GPCRs include GPR171, lysophosphatidic acid receptors (LPARs), GPR68, cannabinoid receptor 2 (CB2), and prostaglandin E receptors, many of which have shown promise in mediating antitumor response via activation of cytotoxic T cells, inhibiting immunosuppressive lymphocytes, and facilitating immune cell infiltration within the tumor microenvironment across multiple types of cancers. This paper reviews our current understanding of some of the most novel GPCRs-their expression patterns, evolving roles within the immune system and cancer, potential therapeutic applications, and perspective for future investigation.
Collapse
Affiliation(s)
- Kaitlyn Dickinson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott J Yee
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Vigil
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
9
|
Faske JB, Myers MB, Bryant M, He X, McLellen F, Bourcier T, Parsons BL. CarcSeq detection of lorcaserin-induced clonal expansion of Pik3ca H1047R mutants in rat mammary tissue. Toxicol Sci 2024; 201:129-144. [PMID: 38851877 PMCID: PMC11347771 DOI: 10.1093/toxsci/kfae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
Lorcaserin is a 5-hydroxytryptamine 2C (serotonin) receptor agonist and a nongenotoxic rat carcinogen, which induced mammary tumors in male and female rats in a 2-yr bioassay. Female Sprague Dawley rats were treated by gavage daily with 0, 30, or 100 mg/kg lorcaserin, replicating bioassay dosing but for shorter duration, 12 or 24 wk. To characterize exposure and eliminate possible confounding by a potentially genotoxic degradation product, lorcaserin and N-nitroso-lorcaserin were quantified in dosing solutions, terminal plasma, mammary, and liver samples using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry. N-nitroso-lorcaserin was not detected, supporting lorcaserin classification as nongenotoxic carcinogen. Mammary DNA samples (n = 6/dose/timepoint) were used to synthesize PCR products from gene segments encompassing hotspot cancer driver mutations, namely regions of Apc, Braf, Egfr, Hras, Kras, Nfe2l2, Pik3ca, Setbp1, Stk11, and Tp53. Mutant fractions (MFs) in the amplicons were quantified by CarcSeq, an error-corrected next-generation sequencing approach. Considering all recovered mutants, no significant differences between lorcaserin dose groups were observed. However, significant dose-responsive increases in Pik3ca H1047R mutation were observed at both timepoints (ANOVA, P < 0.05), with greater numbers of mutants and mutants with greater MFs observed at 24 wk as compared with 12 wk. These observations suggest lorcaserin promotes outgrowth of spontaneously occurring Pik3ca H1047R mutant clones leading to mammary carcinogenesis. Importantly, this work reports approaches to analyze clonal expansion and demonstrates CarcSeq detection of the carcinogenic impact (selective Pik3ca H0147R mutant expansion) of a nongenotoxic carcinogen using a treatment duration as short as 3 months.
Collapse
Affiliation(s)
- Jennifer B Faske
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Florence McLellen
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| | - Todd Bourcier
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, US FDA, Silver Spring, MD 20993, United States
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, United States
| |
Collapse
|
10
|
Zhu Y, Pei X, Novaj A, Setton J, Bronder D, Derakhshan F, Selenica P, McDermott N, Orman M, Plum S, Subramanyan S, Braverman SH, McMillan B, Sinha S, Ma J, Gazzo A, Khan A, Bakhoum S, Powell SN, Reis-Filho JS, Riaz N. Large-scale copy number alterations are enriched for synthetic viability in BRCA1/BRCA2 tumors. Genome Med 2024; 16:108. [PMID: 39198848 PMCID: PMC11351199 DOI: 10.1186/s13073-024-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pathogenic BRCA1 or BRCA2 germline mutations contribute to hereditary breast, ovarian, prostate, and pancreatic cancer. Paradoxically, bi-allelic inactivation of BRCA1 or BRCA2 (bBRCA1/2) is embryonically lethal and decreases cellular proliferation. The compensatory mechanisms that facilitate oncogenesis in bBRCA1/2 tumors remain unclear. METHODS We identified recurrent genetic alterations enriched in human bBRCA1/2 tumors and experimentally validated if these improved proliferation in cellular models. We analyzed mutations and copy number alterations (CNAs) in bBRCA1/2 breast and ovarian cancer from the TCGA and ICGC. We used Fisher's exact test to identify CNAs enriched in bBRCA1/2 tumors compared to control tumors that lacked evidence of homologous recombination deficiency. Genes located in CNA regions enriched in bBRCA1/2 tumors were further screened by gene expression and their effects on proliferation in genome-wide CRISPR/Cas9 screens. A set of candidate genes was functionally validated with in vitro clonogenic survival and functional assays to validate their influence on proliferation in the setting of bBRCA1/2 mutations. RESULTS We found that bBRCA1/2 tumors harbor recurrent large-scale genomic deletions significantly more frequently than histologically matched controls (n = 238 cytobands in breast and ovarian cancers). Within the deleted regions, we identified 277 BRCA1-related genes and 218 BRCA2-related genes that had reduced expression and increased proliferation in bBRCA1/2 but not in wild-type cells in genome-wide CRISPR screens. In vitro validation of 20 candidate genes with clonogenic proliferation assays validated 9 genes, including RIC8A and ATMIN (ATM-Interacting protein). We identified loss of RIC8A, which occurs frequently in both bBRCA1/2 tumors and is synthetically viable with loss of both BRCA1 and BRCA2. Furthermore, we found that metastatic homologous recombination deficient cancers acquire loss-of-function mutations in RIC8A. Lastly, we identified that RIC8A does not rescue homologous recombination deficiency but may influence mitosis in bBRCA1/2 tumors, potentially leading to increased micronuclei formation. CONCLUSIONS This study provides a means to solve the tumor suppressor paradox by identifying synthetic viability interactions and causal driver genes affected by large-scale CNAs in human cancers.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ardijana Novaj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Bronder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niamh McDermott
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mehmet Orman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarina Plum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shyamal Subramanyan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara H Braverman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Biko McMillan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonali Sinha
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Ma
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Atif Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Ma S, Li R, Li G, Wei M, Li B, Li Y, Ha C. Identification of a G-protein coupled receptor-related gene signature through bioinformatics analysis to construct a risk model for ovarian cancer prognosis. Comput Biol Med 2024; 178:108747. [PMID: 38897150 DOI: 10.1016/j.compbiomed.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Ovarian cancer (OV) is a common malignant tumor of the female reproductive system with a 5-year survival rate of ∼30 %. Inefficient early diagnosis and prognosis leads to poor survival in most patients. G protein-coupled receptors (GPCRs, the largest family of human cell surface receptors) are associated with OV. We aimed to identify GPCR-related gene (GPCRRG) signatures and develop a novel model to predict OV prognosis. METHOD We downloaded data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Prognostic GPCRRGs were screened using least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and a prognostic model was constructed. The predictive ability of the model was evaluated by Kaplan-Meier (K-M) survival analysis. The levels of GPCRRGs were examined in normal and OV cell lines using quantitative reverse-Etranscription polymerase chain reaction. The immunological characteristics of the high- and low-risk groups were analyzed using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. RESULTS Based on the risks scores, 17 GPCRRGs were associated with OV prognosis. CXCR4, GPR34, LGR6, LPAR3, and RGS2 were significantly expressed in three OV datasets and enabled accurate OV diagnosis. K-M analysis of the prognostic model showed that it could differentiate high- and low-risk patients, which correspond to poorer and better prognoses, respectively. GPCRRG expression was correlated with immune infiltration rates. CONCLUSIONS Our prognostic model elaborates on the roles of GPCRRGs in OV and provides a new tool for prognosis and immune response prediction in patients with OV.
Collapse
Affiliation(s)
- Shaohan Ma
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ruyue Li
- Gynecology Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guangqi Li
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Meng Wei
- Gynecology Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bowei Li
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yongmei Li
- Gynecology Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chunfang Ha
- Gynecology Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Fertility Preservation & Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, 750000, China.
| |
Collapse
|
12
|
Nag JK, Appasamy P, Malka H, Sedley S, Bar-Shavit R. New Target(s) for RNF43 Regulation: Implications for Therapeutic Strategies. Int J Mol Sci 2024; 25:8083. [PMID: 39125653 PMCID: PMC11311281 DOI: 10.3390/ijms25158083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer cells depend on specific oncogenic pathways or present a genetic alteration that leads to a particular disturbance. Still, personalized and targeted biological therapy remains challenging, with current efforts generally yielding disappointing results. Carefully assessing onco-target molecular pathways can, however, potently assist with such efforts for the selection of patient populations that would best respond to a given drug treatment. RNF43, an E3 ubiquitin ligase that negatively regulates Wnt/frizzled (FZD) receptors by their ubiquitination, internalization, and degradation, controls a key pathway in cancer. Recently, additional target proteins of RNF43 were described, including p85 of the PI3K/AKT/mTOR signaling pathway and protease-activated receptor 2 (PAR2), a G-protein-coupled receptor that potently induces β-catenin stabilization, independent of Wnts. RNF43 mutations with impaired E3 ligase activity were found in several types of cancers (e.g., gastrointestinal system tumors and endometrial and ovarian cancer), pointing to a high dependency on FZD receptors and possibly PAR2 and the PI3K/AKT/mTOR signaling pathway. The development of drugs toward these targets is essential for improved treatment of cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel; (J.K.N.); (P.A.); (H.M.); (S.S.)
| |
Collapse
|
13
|
Xu X, Lu Y, Cao L, Miao Y, Li Y, Cui Y, Han T. Tumor-intrinsic P2RY6 drives immunosuppression by enhancing PGE 2 production. Cell Rep 2024; 43:114469. [PMID: 38996067 DOI: 10.1016/j.celrep.2024.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Despite the success of anti-programmed cell death-1 (anti-PD-1) immunotherapy, many cancer patients remain unresponsive, and reliable predictive biomarkers are lacking. Here, we show that aberrant expression of the pyrimidinergic receptor P2RY6 is frequent in human cancers and causes immune evasion. In mouse syngeneic and human xenograft tumor models, ectopic expression of P2RY6 shapes an immunosuppressive tumor microenvironment (TME) to enhance tumor growth and resistance to immunotherapy, whereas deletion of P2RY6 from tumors with high P2RY6 expression inflames the TME to inhibit tumor growth. As a G protein-coupled receptor, P2RY6 activates Gq/phospholipase C-β signaling and stimulates the synthesis of prostaglandin E2, which is a key mediator of immunosuppression in the TME. In contrast to the essential role of P2RY6 in tumors, global deletion of P2ry6 from mice does not compromise viability. Our study thus nominates P2RY6 as a precision immunotherapy target for patients with high tumor-intrinsic P2RY6 expression.
Collapse
Affiliation(s)
- Xilong Xu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yi Lu
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Longzhi Cao
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Miao
- National Institute of Biological Sciences, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yamei Li
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Cui
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Ting Han
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
14
|
Shen H, Yuan J, Tong D, Chen B, Yu E, Chen G, Peng C, Chang W, E J, Cao F. Regulator of G protein signaling 16 restrains apoptosis in colorectal cancer through disrupting TRAF6-TAB2-TAK1-JNK/p38 MAPK signaling. Cell Death Dis 2024; 15:438. [PMID: 38906869 PMCID: PMC11192724 DOI: 10.1038/s41419-024-06803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Colorectal cancer (CRC) remains a major global cause of cancer-related mortality, lacking effective biomarkers and therapeutic targets. Revealing the critical pathogenic factors of CRC and the underlying mechanisms would offer potential therapeutic strategies for clinical application. G protein signaling (RGS) protein family modulators play essential role within regulating downstream signaling of GPCR receptors, with function in cancers unclear. Our study focused on the expression patterns of RGS proteins in CRC, identifying Regulator of G protein signaling 16 (RGS16) as a prospective diagnostic and therapeutic target. Analyzing 899 CRC tissues revealed elevated RGS16 levels, correlating with clinicopathological features and CRC prognosis by immunohistochemistry (IHC) combined with microarray. We confirmed the elevated RGS16 protein level in CRC, and found that patients with RGS16-high tumors exhibited decreased disease-specific survival (DSS) and disease-free survival (DFS) compared to those with low RGS16 expression. Functional assays demonstrated that RGS16 promoted the CRC progression, knockdown of RGS16 led to significantly increased apoptosis rates of CRC in vitro and in vivo. Notably, we also confirmed these phenotypes of RGS16 in organoids originated from resected primary human CRC tissues. Mechanistically, RGS16 restrained JNK/P38-mediated apoptosis in CRC cells through disrupting the recruitment of TAB2/TAK1 to TRAF6. This study provides insights into addressing the challenges posed by CRC, offering avenues for clinical translation.
Collapse
Affiliation(s)
- Hao Shen
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Environmental and Occupational Health, Naval Medical University, Shanghai, China
| | - Jie Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Health Management, Beidaihe Rest and Recuperation Center of PLA Joint Logistics Support Force, Qinhuangdao, China
| | - Dafeng Tong
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bingchen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Enda Yu
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guanglei Chen
- Department of Health Management, Beidaihe Rest and Recuperation Center of PLA Joint Logistics Support Force, Qinhuangdao, China
| | - Cheng Peng
- Department of Health Management, Beidaihe Rest and Recuperation Center of PLA Joint Logistics Support Force, Qinhuangdao, China
| | - Wenjun Chang
- Department of Environmental and Occupational Health, Naval Medical University, Shanghai, China.
| | - Jifu E
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Fuao Cao
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
15
|
Peng YC, Wu J, He X, Dai J, Xia L, Valenzuela-Leon P, Tumas KC, Singh BK, Xu F, Ganesan S, Munir S, Calvo E, Huang R, Liu C, Long CA, Su XZ. NAD activates olfactory receptor 1386 to regulate type I interferon responses in Plasmodium yoelii YM infection. Proc Natl Acad Sci U S A 2024; 121:e2403796121. [PMID: 38809710 PMCID: PMC11161801 DOI: 10.1073/pnas.2403796121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-β and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/β levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-β mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-β responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.
Collapse
Affiliation(s)
- Yu-chih Peng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xiao He
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jin Dai
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Lu Xia
- Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Disease of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410083, People’s Republic of China
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Keyla C. Tumas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Brajesh K. Singh
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Fangzheng Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD20892
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| |
Collapse
|
16
|
Ferrucci V, Lomada S, Wieland T, Zollo M. PRUNE1 and NME/NDPK family proteins influence energy metabolism and signaling in cancer metastases. Cancer Metastasis Rev 2024; 43:755-775. [PMID: 38180572 PMCID: PMC11156750 DOI: 10.1007/s10555-023-10165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
We describe here the molecular basis of the complex formation of PRUNE1 with the tumor metastasis suppressors NME1 and NME2, two isoforms appertaining to the nucleoside diphosphate kinase (NDPK) enzyme family, and how this complex regulates signaling the immune system and energy metabolism, thereby shaping the tumor microenvironment (TME). Disrupting the interaction between NME1/2 and PRUNE1, as suggested, holds the potential to be an excellent therapeutic target for the treatment of cancer and the inhibition of metastasis dissemination. Furthermore, we postulate an interaction and regulation of the other Class I NME proteins, NME3 and NME4 proteins, with PRUNE1 and discuss potential functions. Class I NME1-4 proteins are NTP/NDP transphosphorylases required for balancing the intracellular pools of nucleotide diphosphates and triphosphates. They regulate different cellular functions by interacting with a large variety of other proteins, and in cancer and metastasis processes, they can exert pro- and anti-oncogenic properties depending on the cellular context. In this review, we therefore additionally discuss general aspects of class1 NME and PRUNE1 molecular structures as well as their posttranslational modifications and subcellular localization. The current knowledge on the contributions of PRUNE1 as well as NME proteins to signaling cascades is summarized with a special regard to cancer and metastasis.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology, DMMBM, University of Naples, Federico II, Via Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore", Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Santosh Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- DZHK, German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 68167, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- DZHK, German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 68167, Mannheim, Germany.
- Medical Faculty Mannheim, Ludolf Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, DMMBM, University of Naples, Federico II, Via Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate "Franco Salvatore", Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'AOU' Federico II Policlinico, 80131, Naples, Italy.
| |
Collapse
|
17
|
Arora C, Matic M, Bisceglia L, Di Chiaro P, De Oliveira Rosa N, Carli F, Clubb L, Nemati Fard LA, Kargas G, Diaferia GR, Vukotic R, Licata L, Wu G, Natoli G, Gutkind JS, Raimondi F. The landscape of cancer-rewired GPCR signaling axes. CELL GENOMICS 2024; 4:100557. [PMID: 38723607 PMCID: PMC11099383 DOI: 10.1016/j.xgen.2024.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/17/2024] [Accepted: 04/10/2024] [Indexed: 05/15/2024]
Abstract
We explored the dysregulation of G-protein-coupled receptor (GPCR) ligand systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes. Multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes and are associated to specific transcriptional programs and to patient survival patterns. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including, e.g., muscarinic, adenosine, 5-hydroxytryptamine, and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens, which we further validated. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).
Collapse
Affiliation(s)
- Chakit Arora
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luisa Bisceglia
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Natalia De Oliveira Rosa
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Lauren Clubb
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lorenzo Amir Nemati Fard
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giorgos Kargas
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giuseppe R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Ranka Vukotic
- Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126 Pisa, Italy
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
18
|
Gorostiola González M, Rakers PRJ, Jespers W, IJzerman AP, Heitman LH, van Westen GJP. Computational Characterization of Membrane Proteins as Anticancer Targets: Current Challenges and Opportunities. Int J Mol Sci 2024; 25:3698. [PMID: 38612509 PMCID: PMC11011372 DOI: 10.3390/ijms25073698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a leading cause of mortality worldwide and calls for novel therapeutic targets. Membrane proteins are key players in various cancer types but present unique challenges compared to soluble proteins. The advent of computational drug discovery tools offers a promising approach to address these challenges, allowing for the prioritization of "wet-lab" experiments. In this review, we explore the applications of computational approaches in membrane protein oncological characterization, particularly focusing on three prominent membrane protein families: receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and solute carrier proteins (SLCs). We chose these families due to their varying levels of understanding and research data availability, which leads to distinct challenges and opportunities for computational analysis. We discuss the utilization of multi-omics data, machine learning, and structure-based methods to investigate aberrant protein functionalities associated with cancer progression within each family. Moreover, we highlight the importance of considering the broader cellular context and, in particular, cross-talk between proteins. Despite existing challenges, computational tools hold promise in dissecting membrane protein dysregulation in cancer. With advancing computational capabilities and data resources, these tools are poised to play a pivotal role in identifying and prioritizing membrane proteins as personalized anticancer targets.
Collapse
Affiliation(s)
- Marina Gorostiola González
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
- Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Pepijn R. J. Rakers
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Willem Jespers
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Adriaan P. IJzerman
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Laura H. Heitman
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
- Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| |
Collapse
|
19
|
Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, Green E, Philibert CE, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 2024; 187:1527-1546.e25. [PMID: 38412860 PMCID: PMC10947893 DOI: 10.1016/j.cell.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Eva Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Janicot R, Maziarz M, Park JC, Luebbers A, Green E, Zhao J, Philibert C, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573921. [PMID: 38260348 PMCID: PMC10802303 DOI: 10.1101/2024.01.02.573921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically-relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed new insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally-occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D. Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
21
|
Lyu C, Bhimani AK, Draus WT, Weigel R, Chen S. Active Gα i/o Mutants Accelerate Breast Tumor Metastasis via the c-Src Pathway. Mol Cell Biol 2023; 43:650-663. [PMID: 38099640 PMCID: PMC10761066 DOI: 10.1080/10985549.2023.2285833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Constitutively active mutations in the Gαi2 and GαoA subunits of heterotrimeric G proteins have been found in various human cancers, including breast cancer, but their precise roles in tumor formation, progression, and metastasis remain poorly understood. This study focused on GαoAR243H and Gαi2R179C mutants in breast cancer. These mutants alone were insufficient to initiate mammary tumor formation in mice. However, when introduced into transgenic mouse models of breast cancer induced by Neu expression or PTEN loss, the Gαi2R179C mutant notably enhanced spontaneous lung metastasis, without affecting primary tumor initiation and growth. Ectopic expression of the GαoAR243H and Gαi2R179C mutants in tumor cells promoted cell migration in vitro and dissemination into multiple organs in vivo by activating the c-Src signaling pathway. These mutants activate c-Src through direct interaction, involving specific residues in the switch domains II of Gαi subunits, which only partially overlap with those involved in inhibiting adenylyl cyclases. This study uncovers a critical role of Gαi/o signaling in accelerating breast cancer metastasis through the c-Src pathway. These findings hold clinical significance as they may pave the way for personalized therapies targeting c-Src to inhibit breast cancer metastasis in patients with active Gαi/o mutations or elevated Gαi/o signaling.
Collapse
Affiliation(s)
- Cancan Lyu
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Aarzoo K. Bhimani
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - William T. Draus
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ronald Weigel
- The Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Songhai Chen
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Chaim OM, Miki S, Prager BC, Ma J, Jeong AY, Lara J, Tran NK, Smith JM, Rich JN, Gutkind JS, Miyamoto S, Furnari FB, Brown JH. Gα12 signaling regulates transcriptional and phenotypic responses that promote glioblastoma tumor invasion. Sci Rep 2023; 13:22412. [PMID: 38104152 PMCID: PMC10725435 DOI: 10.1038/s41598-023-49164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
In silico interrogation of glioblastoma (GBM) in The Cancer Genome Atlas (TCGA) revealed upregulation of GNA12 (Gα12), encoding the alpha subunit of the heterotrimeric G-protein G12, concomitant with overexpression of multiple G-protein coupled receptors (GPCRs) that signal through Gα12. Glioma stem cell lines from patient-derived xenografts also showed elevated levels of Gα12. Knockdown (KD) of Gα12 was carried out in two different human GBM stem cell (GSC) lines. Tumors generated in vivo by orthotopic injection of Gα12KD GSC cells showed reduced invasiveness, without apparent changes in tumor size or survival relative to control GSC tumor-bearing mice. Transcriptional profiling of GSC-23 cell tumors revealed significant differences between WT and Gα12KD tumors including reduced expression of genes associated with the extracellular matrix, as well as decreased expression of stem cell genes and increased expression of several proneural genes. Thrombospondin-1 (THBS1), one of the genes most repressed by Gα12 knockdown, was shown to be required for Gα12-mediated cell migration in vitro and for in vivo tumor invasion. Chemogenetic activation of GSC-23 cells harboring a Gα12-coupled DREADD also increased THBS1 expression and in vitro invasion. Collectively, our findings implicate Gα12 signaling in regulation of transcriptional reprogramming that promotes invasiveness, highlighting this as a potential signaling node for therapeutic intervention.
Collapse
Affiliation(s)
- Olga Meiri Chaim
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA.
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil.
| | - Shunichiro Miki
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Briana C Prager
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jianhui Ma
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Anthony Y Jeong
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Jacqueline Lara
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Nancy K Tran
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Jeffrey M Smith
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Jeremy N Rich
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Frank B Furnari
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| |
Collapse
|
23
|
Salehi N, Totonchi M. The construction of a testis transcriptional cell atlas from embryo to adult reveals various somatic cells and their molecular roles. J Transl Med 2023; 21:859. [PMID: 38012716 PMCID: PMC10680190 DOI: 10.1186/s12967-023-04722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The testis is a complex organ that undergoes extensive developmental changes from the embryonic stage to adulthood. The development of germ cells, which give rise to spermatozoa, is tightly regulated by the surrounding somatic cells. METHODS To better understand the dynamics of these changes, we constructed a transcriptional cell atlas of the testis, integrating single-cell RNA sequencing data from over 26,000 cells across five developmental stages: fetal germ cells, infants, childhood, peri-puberty, and adults. We employed various analytical techniques, including clustering, cell type assignments, identification of differentially expressed genes, pseudotime analysis, weighted gene co-expression network analysis, and evaluation of paracrine cell-cell communication, to comprehensively analyze this transcriptional cell atlas of the testis. RESULTS Our analysis revealed remarkable heterogeneity in both somatic and germ cell populations, with the highest diversity observed in Sertoli and Myoid somatic cells, as well as in spermatogonia, spermatocyte, and spermatid germ cells. We also identified key somatic cell genes, including RPL39, RPL10, RPL13A, FTH1, RPS2, and RPL18A, which were highly influential in the weighted gene co-expression network of the testis transcriptional cell atlas and have been previously implicated in male infertility. Additionally, our analysis of paracrine cell-cell communication supported specific ligand-receptor interactions involved in neuroactive, cAMP, and estrogen signaling pathways, which support the crucial role of somatic cells in regulating germ cell development. CONCLUSIONS Overall, our transcriptional atlas provides a comprehensive view of the cell-to-cell heterogeneity in the testis and identifies key somatic cell genes and pathways that play a central role in male fertility across developmental stages.
Collapse
Affiliation(s)
- Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
24
|
Iwasa YI, Nakajima T, Hori K, Yokota Y, Kitoh R, Uehara T, Takumi Y. A Spatial Transcriptome Reveals Changes in Tumor and Tumor Microenvironment in Oral Cancer with Acquired Resistance to Immunotherapy. Biomolecules 2023; 13:1685. [PMID: 38136558 PMCID: PMC10742283 DOI: 10.3390/biom13121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
Although anti-programmed death-1 (PD-1) antibody therapy improves the prognosis in patients with head and neck squamous cell carcinoma (HNSCC), some patients exhibit disease progression even after showing a good response to the treatment initially because of acquired resistance. Here, we aimed to reveal the dynamic changes in the tumor and tumor microenvironment (TME) in a 77-year-old man diagnosed with oral squamous cell carcinoma who developed acquired resistance after the administration of nivolumab using spatial transcriptomics. The results showed that, before immunotherapy, the activated pathways in the tumor area were mainly related to the cancer immune system, including antigen processing cross-presentation, interferon-gamma signaling, and the innate immune system. After immunotherapy, the activated pathways were mainly related to epigenetic modification, including RMTs methylate histone arginine and HDAC deacetylates histones. Before immunotherapy, the activated pathways in the TME were mainly related to the metabolism of proteins, including SRP-dependent co-translational protein targeting the membrane. After immunotherapy, the activated pathways in the TME were related to sensory perception and signal transduction. Our study revealed that epigenetic-modification-related pathways were mainly activated after establishing acquired resistance, suggesting that epigenetic modification in the tumor may prevent cancer immune system activation via the anti-PD-1 antibody.
Collapse
Affiliation(s)
- Yoh-ichiro Iwasa
- Department of Otorhinolaryngology-Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (K.H.); (Y.Y.); (R.K.); (Y.T.)
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.N.); (T.U.)
| | - Kentaro Hori
- Department of Otorhinolaryngology-Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (K.H.); (Y.Y.); (R.K.); (Y.T.)
| | - Yoh Yokota
- Department of Otorhinolaryngology-Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (K.H.); (Y.Y.); (R.K.); (Y.T.)
| | - Ryosuke Kitoh
- Department of Otorhinolaryngology-Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (K.H.); (Y.Y.); (R.K.); (Y.T.)
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.N.); (T.U.)
| | - Yutaka Takumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (K.H.); (Y.Y.); (R.K.); (Y.T.)
| |
Collapse
|
25
|
Shah H, Hill TA, Lim J, Fairlie DP. Protease-activated receptor 2 attenuates doxorubicin-induced apoptosis in colon cancer cells. J Cell Commun Signal 2023:10.1007/s12079-023-00791-6. [PMID: 37991681 DOI: 10.1007/s12079-023-00791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Drug resistance represents a major problem in cancer treatment. Doxorubicin (adriamycin) is an injectable DNA intercalating drug that halts cancer cell growth by inhibiting topoisomerase 2, but its long-term effectiveness is compromised by onset of resistance. This study demonstrates that expression of the PAR2 gene in human colon adenocarcinoma tissue samples was the highest among 32 different cancer types (n = 10,989), and higher in colon adenocarcinoma tissues (n = 331) than normal colon tissues (n = 308), revealing an association between PAR2 expression and human colon cancer. HT29 cells are a human colorectal adenocarcinoma cell line that is sensitive to the chemotherapeutic drug doxorubicin and also expresses PAR2. We find that PAR2 activation in HT29 cells, either by an endogenous protease agonist (trypsin) or an exogenous peptide agonist (2f-LIGRL-NH2), significantly reduces doxorubicin-induced cell death, reactive oxygen species production, caspase 3/7 activity and cleavage of caspase-8 and caspase-3. Moreover, PAR2-mediated MEK1/2-ERK1/2 pathway induced by 2f-LIGRL-NH2 leads to upregulated anti-apoptotic MCL-1 and Bcl-xL proteins that promote cellular survival. These findings suggest that activation of PAR2 compromises efficacy of doxorubicin in colon cancer. Further support for this conclusion came from experiments with human colon cancer HT29 cells, either with the PAR2 gene deleted or in the presence of a pharmacological antagonist of PAR2, which showed full restoration of all doxorubicin-mediated effects. Together, these findings reveal a strong link between PAR2 activation and signalling in human colon cancer cells and increased survival against doxorubicin-induced cell death. They support PAR2 antagonism as a possible new strategy for enhancing doxorubicin therapy.
Collapse
Affiliation(s)
- Himani Shah
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy A Hill
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Junxian Lim
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - David P Fairlie
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
26
|
Xiong J, Dai YT, Wang WF, Zhang H, Wang CF, Yin T, Cheng S, Zhong HJ, Yu SH, Jiang L, Wang SY, Fang H, Zhang RH, Zhu Y, Yi HM, Jiang XF, Chen JY, Wang L, Xu PP, Chen SJ, Zhao WL. GPCR signaling contributes to immune characteristics of microenvironment and process of EBV-induced lymphomagenesis. Sci Bull (Beijing) 2023; 68:2607-2619. [PMID: 37798178 DOI: 10.1016/j.scib.2023.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Epstein-Barr virus (EBV) is the oncogenic driver of multiple cancers. However, the underlying mechanism of virus-cancer immunological interaction during disease pathogenesis remains largely elusive. Here we reported the first comprehensive proteogenomic characterization of natural killer/T-cell lymphoma (NKTCL), a representative disease model to study EBV-induced lymphomagenesis, incorporating genomic, transcriptomic, and in-depth proteomic data. Our multi-omics analysis of NKTCL revealed that EBV gene pattern correlated with immune-related oncogenic signaling. Single-cell transcriptome further delineated the tumor microenvironment as immune-inflamed, -deficient, and -desert phenotypes, in association with different setpoints of cancer-immunity cycle. EBV interacted with transcriptional factors to provoke GPCR interactome (GPCRome) reprogramming. Enhanced expression of chemokine receptor-1 (CCR1) on malignant and immunosuppressive cells modulated virus-cancer interaction on microenvironment. Therapeutic targeting CCR1 showed promising efficacy with EBV eradication, T-cell activation, and lymphoma cell killing in NKTCL organoid. Collectively, our study identified a previously unknown GPCR-mediated malignant progression and translated sensors of viral molecules into EBV-specific anti-cancer therapeutics.
Collapse
Affiliation(s)
- Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Fang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zhang
- Department of Otolaryngology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui-Hong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Mei Yi
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu-Feng Jiang
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia-Yi Chen
- Department of Radiation, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China.
| |
Collapse
|
27
|
Masuho I, Kise R, Gainza P, Von Moo E, Li X, Tany R, Wakasugi-Masuho H, Correia BE, Martemyanov KA. Rules and mechanisms governing G protein coupling selectivity of GPCRs. Cell Rep 2023; 42:113173. [PMID: 37742189 PMCID: PMC10842385 DOI: 10.1016/j.celrep.2023.113173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, and G12/13. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference. Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Ryoji Kise
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Pablo Gainza
- Laboratory of Protein Design and Immunoengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ee Von Moo
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Xiaona Li
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ryosuke Tany
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hideko Wakasugi-Masuho
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kirill A Martemyanov
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.
| |
Collapse
|
28
|
Que Y, Wang J, Sun F, Wang S, Zhu J, Huang J, Zhao Z, Zhang L, Liu J, Xu J, Zhen Z, Sun X, Lu S, Zhang Y. Safety and clinical efficacy of sintilimab (anti-PD-1) in pediatric patients with advanced or recurrent malignancies in a phase I study. Signal Transduct Target Ther 2023; 8:392. [PMID: 37828033 PMCID: PMC10570390 DOI: 10.1038/s41392-023-01636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
The aim of this phase I study is to evaluate, for the first time, the safety and efficacy of sintilimab in pediatric patients diagnosed with advanced or recurrent malignancies. During the dose escalation phase, patients received a single intravenous infusion of sintilimab at varying doses of 1, 3, and 10 mg/kg. The primary endpoints included the identification of dose-limiting toxicities (DLTs) as well as the evaluation of safety and tolerance. Secondary endpoints focused on assessing objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). A total of 29 patients were enrolled, including 10 individuals diagnosed with Hodgkin lymphoma (HL) and 19 patients with various other tumor categories. Notably, diverse pathological types such as thymoma, choroid plexus carcinoma, and NK/T-cell lymphoma were also included in the study cohort. By the safety data cutoff, most adverse events were grade 1 or 2, with grade 3 or higher treatment-related adverse events (TRAE) occurring in 10% of patients. Among the 27 evaluated subjects, four achieved confirmed complete response (CR) while seven patients exhibited confirmed partial response (PR). Additionally, seven patients maintained disease (SD) during the study period. Notably, sintilimab demonstrated remarkable tolerability without DLTs and exhibited promising anti-tumor effects in pediatric HL. Whole-exome sequencing (WES) was conducted in 15 patients to assess the mutational landscape and copy number variation (CNV) status. The completion of this phase I study establishes the foundation for potential combination regimens involving sintilimab in childhood cancer treatment. The trial is registered on ClinicalTrials.gov with the identifier NCT04400851.
Collapse
Affiliation(s)
- Yi Que
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Shan Wang
- Department of Surgical Oncology, National Clinical Research Center for ChildHealth and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Zhenzhen Zhao
- Department of Surgical Oncology, National Clinical Research Center for ChildHealth and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Li Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Juan Liu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Jiaqian Xu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Xiaofei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China.
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China.
| |
Collapse
|
29
|
Arora C, Matic M, DiChiaro P, Rosa NDO, Carli F, Clubb L, Fard LAN, Kargas G, Diaferia G, Vukotic R, Licata L, Wu G, Natoli G, Gutkind JS, Raimondi F. The landscape of cancer rewired GPCR signaling axes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532291. [PMID: 37398064 PMCID: PMC10312480 DOI: 10.1101/2023.03.13.532291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We explored the dysregulation of GPCR ligand signaling systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes, which revealed that multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes. We showed that biosynthetic pathway enrichment from enzyme expression recapitulated pathway activity signatures from metabolomics datasets, providing valuable surrogate information for GPCRs responding to organic ligands. We found that several GPCRs signaling components were significantly associated with patient survival in a cancer type-specific fashion. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many pairs involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including e.g., muscarinic, adenosine, 5-hydroxytryptamine and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).
Collapse
Affiliation(s)
- Chakit Arora
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Pierluigi DiChiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Natalia De Oliveira Rosa
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Lauren Clubb
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lorenzo Amir Nemati Fard
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Giorgos Kargas
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Giuseppe Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Ranka Vukotic
- Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126 Pisa
| | - Luana Licata
- Department of Biology, University of Rome ‘Tor Vergata’, Rome 00133, Italy
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - J. Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| |
Collapse
|
30
|
Cui Y, Miao Y, Cao L, Guo L, Cui Y, Yan C, Zeng Z, Xu M, Han T. Activation of melanocortin-1 receptor signaling in melanoma cells impairs T cell infiltration to dampen antitumor immunity. Nat Commun 2023; 14:5740. [PMID: 37714844 PMCID: PMC10504282 DOI: 10.1038/s41467-023-41101-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Inhibition of T cell infiltration dampens antitumor immunity and causes resistance to immune checkpoint blockade (ICB) therapy. By in vivo CRISPR screening in B16F10 melanoma in female mice, here we report that loss of melanocortin-1 receptor (MC1R) in melanoma cells activates antitumor T cell response and overcomes resistance to ICB. Depletion of MC1R from another melanocytic melanoma model HCmel1274 also enhances ICB efficacy. By activating the GNAS-PKA axis, MC1R inhibits interferon-gamma induced CXCL9/10/11 transcription, thus impairing T cell infiltration into the tumor microenvironment. In human melanomas, high MC1R expression correlates with reduced CXCL9/10/11 expression, impaired T cell infiltration, and poor patient prognosis. Whereas MC1R activation is restricted to melanoma, GNAS activation by hotspot mutations is observed across diverse cancer types and is associated with reduced CXCL9/10/11 expression. Our study implicates MC1R as a melanoma immunotherapy target and suggests GNAS-PKA signaling as a pan-cancer oncogenic pathway inhibiting antitumor T cell response.
Collapse
Affiliation(s)
- Yazhong Cui
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yang Miao
- National Institute of Biological Sciences, 102206, Beijing, China
- PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Longzhi Cao
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Lifang Guo
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China
| | - Yue Cui
- National Institute of Biological Sciences, 102206, Beijing, China
- Graduate Program, School of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Chuanzhe Yan
- National Institute of Biological Sciences, 102206, Beijing, China
- PTN Joint Graduate Program, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Zhi Zeng
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Mo Xu
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Ting Han
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
31
|
Hamid R, Alaziz M, Mahal AS, Ashton AW, Halama N, Jaeger D, Jiao X, Pestell RG. The Role and Therapeutic Targeting of CCR5 in Breast Cancer. Cells 2023; 12:2237. [PMID: 37759462 PMCID: PMC10526962 DOI: 10.3390/cells12182237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The G-protein-coupled receptor C-C chemokine receptor 5 (CCR5) functions as a co-receptor for the entry of HIV into immune cells. CCR5 binds promiscuously to a diverse array of ligands initiating cell signaling that includes guided migration. Although well known to be expressed on immune cells, recent studies have shown the induction of CCR5 on the surface of breast cancer epithelial cells. The function of CCR5 on breast cancer epithelial cells includes the induction of aberrant cell survival signaling and tropism towards chemo attractants. As CCR5 is not expressed on normal epithelium, the receptor provides a potential useful target for therapy. Inhibitors of CCR5 (CCR5i), either small molecules (maraviroc, vicriviroc) or humanized monoclonal antibodies (leronlimab) have shown anti-tumor and anti-metastatic properties in preclinical studies. In early clinical studies, reviewed herein, CCR5i have shown promising results and evidence for effects on both the tumor and the anti-tumor immune response. Current clinical studies have therefore included combination therapy approaches with checkpoint inhibitors.
Collapse
Affiliation(s)
- Rasha Hamid
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | - Mustafa Alaziz
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | | | - Anthony W. Ashton
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Lankenau Institute for Medical Research Philadelphia, Wynnewood, PA 19096, USA
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Clinical Cooperation Unit Applied Tumor-Immunity, 69120 Heidelberg, Germany
| | - Xuanmao Jiao
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
| | - Richard G. Pestell
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
| |
Collapse
|
32
|
Qualliotine JR, Nakagawa T, Rosenthal SB, Sadat S, Ballesteros-Merino C, Xu G, Mark A, Nasamran A, Gutkind JS, Fisch KM, Guo T, Fox BA, Khan Z, Molinolo AA, Califano JA. A Network Landscape of HPVOPC Reveals Methylation Alterations as Significant Drivers of Gene Expression via an Immune-Mediated GPCR Signal. Cancers (Basel) 2023; 15:4379. [PMID: 37686653 PMCID: PMC10486378 DOI: 10.3390/cancers15174379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
HPV-associated oropharynx carcinoma (HPVOPC) tumors have a relatively low mutational burden. Elucidating the relative contributions of other tumor alterations, such as DNA methylation alterations, alternative splicing events (ASE), and copy number variation (CNV), could provide a deeper understanding of carcinogenesis drivers in this disease. We applied network propagation analysis to multiple classes of tumor alterations in a discovery cohort of 46 primary HPVOPC tumors and 25 cancer-unaffected controls and validated our findings with TCGA data. We identified significant overlap between differential gene expression networks and all alteration classes, and this association was highest for methylation and lowest for CNV. Significant overlap was seen for gene clusters of G protein-coupled receptor (GPCR) pathways. HPV16-human protein interaction analysis identified an enriched cluster defined by an immune-mediated GPCR signal, including CXCR3 cytokines CXCL9, CXCL10, and CXCL11. CXCR3 was found to be expressed in primary HPVOPC, and scRNA-seq analysis demonstrated CXCR3 ligands to be highly expressed in M2 macrophages. In vivo models demonstrated decreased tumor growth with antagonism of the CXCR3 receptor in immunodeficient but not immunocompetent mice, suggesting that the CXCR3 axis can drive tumor proliferation in an autocrine fashion, but the effect is tempered by an intact immune system. In conclusion, methylation, ASE, and SNV alterations are highly associated with network gene expression changes in HPVOPC, suggesting that ASE and methylation alterations have an important role in driving the oncogenic phenotype. Network analysis identifies GPCR networks, specifically the CXCR3 chemokine axis, as modulators of tumor-immune interactions that may have proliferative effects on primary tumors as well as a role for immunosurveillance; however, CXCR3 inhibition should be used with caution, as these agents may both inhibit and stimulate tumor growth considering the competing effects of this cytokine axis. Further investigation is needed to explore opportunities for targeted therapy in this setting.
Collapse
Affiliation(s)
- Jesse R. Qualliotine
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Takuya Nakagawa
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sayed Sadat
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Guorong Xu
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam Mark
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Art Nasamran
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa Guo
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernard A. Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR 97213, USA
| | - Zubair Khan
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alfredo A. Molinolo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph A. Califano
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Steinberg T, Dieterle MP, Ramminger I, Klein C, Brossette J, Husari A, Tomakidi P. On the Value of In Vitro Cell Systems for Mechanobiology from the Perspective of Yes-Associated Protein/Transcriptional Co-Activator with a PDZ-Binding Motif and Focal Adhesion Kinase and Their Involvement in Wound Healing, Cancer, Aging, and Senescence. Int J Mol Sci 2023; 24:12677. [PMID: 37628858 PMCID: PMC10454169 DOI: 10.3390/ijms241612677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.
Collapse
Affiliation(s)
- Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Charlotte Klein
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Julie Brossette
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
34
|
Wu VH, Yung BS, Faraji F, Saddawi-Konefka R, Wang Z, Wenzel AT, Song MJ, Pagadala MS, Clubb LM, Chiou J, Sinha S, Matic M, Raimondi F, Hoang TS, Berdeaux R, Vignali DAA, Iglesias-Bartolome R, Carter H, Ruppin E, Mesirov JP, Gutkind JS. The GPCR-Gα s-PKA signaling axis promotes T cell dysfunction and cancer immunotherapy failure. Nat Immunol 2023; 24:1318-1330. [PMID: 37308665 PMCID: PMC10735169 DOI: 10.1038/s41590-023-01529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/06/2023] [Indexed: 06/14/2023]
Abstract
Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, β1AR and β2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.
Collapse
Affiliation(s)
- Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Septerna, Inc., South San Francisco, CA, USA
| | - Bryan S Yung
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, USA
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Robert Saddawi-Konefka
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, USA
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhiyong Wang
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Alexander T Wenzel
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miranda J Song
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Meghana S Pagadala
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lauren M Clubb
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Chiou
- Biomedical Sciences Graduate Studies Program, University of California, San Diego, La Jolla, CA, USA
- Internal Medicine Research Unit, Pfizer Worldwide Research, Cambridge, MA, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | - Thomas S Hoang
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health Houston and CellChorus INC, Houston, TX, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Hannah Carter
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jill P Mesirov
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Bogen KT. Ultrasensitive dose-response for asbestos cancer risk implied by new inflammation-mutation model. ENVIRONMENTAL RESEARCH 2023; 230:115047. [PMID: 36965808 DOI: 10.1016/j.envres.2022.115047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Alterations in complex cellular phenotype each typically involve multistep activation of an ultrasensitive molecular switch (e.g., to adaptively initiate an apoptosis, inflammasome, Nrf2-ARE anti-oxidant, or heat-shock activation pathway) that triggers expression of a suite of target genes while efficiently limiting false-positive switching from a baseline state. Such switches exhibit nonlinear signal-activation relationships. In contrast, a linear no-threshold (LNT) dose-response relationship is expected for damage that accumulates in proportion to dose, as hypothesized for increased risk of cancer in relation to genotoxic dose according to the multistage somatic mutation/clonal-expansion theory of cancer, e.g., as represented in the Moolgavkar-Venzon-Knudsen (MVK) cancer model by a doubly stochastic nonhomogeneous Poisson process. Mesothelioma and lung cancer induced by exposure to carcinogenic (e.g., certain asbestos) fibers in humans and experimental animals are thought to involve modes of action driven by mutations, cytotoxicity-associated inflammation, or both, rendering ambiguous expectations concerning the nature of model-implied shape of the low-dose response for above-background increase in risk of incurring these endpoints. A recent Inflammation Somatic Mutation (ISM) theory of cancer posits instead that tissue-damage-associated inflammation that epigenetically recruits, activates and orchestrates stem cells to engage in tissue repair does not merely promote cancer, but rather is a requisite co-initiator (acting together with as few as two somatic mutations) of the most efficient pathway to any type of cancer in any reparable tissue (Dose-Response 2019; 17(2):1-12). This theory is reviewed, implications of this theory are discussed in relation to mesothelioma and lung cancer associated with chronic asbestos inhalation, one of the two types of ISM-required mutations is here hypothesized to block or impede inflammation resolution (e.g., by doing so for GPCR-mediated signal transduction by one or more endogenous autacoid specialized pro-resolving mediators or SPMs), and supporting evidence for this hypothesis is discussed.
Collapse
Affiliation(s)
- Kenneth T Bogen
- 9832 Darcy Forest Drive, Silver Spring, MD, 20910, United States.
| |
Collapse
|
36
|
A GPCR checkpoint drives CD8 + T cell dysfunction and immunotherapy failure in mice. Nat Immunol 2023; 24:1232-1233. [PMID: 37460641 DOI: 10.1038/s41590-023-01567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
|
37
|
Guo C, Yu C, Gao W, Ren D, Zhang Y, Zheng P. A novel classifier combining G protein-coupled receptors and the tumor microenvironment is associated with survival status in glioblastoma. Front Pharmacol 2023; 14:1093263. [PMID: 37560473 PMCID: PMC10407249 DOI: 10.3389/fphar.2023.1093263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Background: Numerous studies have highlighted the crucial role of G protein-coupled receptors (GPCRs) in tumor microenvironment (TME) remodeling and their correlation with tumor progression. However, the association between GPCRs and the TME in glioblastoma (GBM) remains largely unexplored. Methods: In this study, we investigated the expression profile of GPCRs in GBM using integrated data from single-cell RNA sequencing and bulk sequencing. Surgical samples obtained from meningioma and GBM patients underwent single-cell RNA sequencing to examine GPCR levels and cell-cell interactions. Tumor microenvironment (TME) score is calculated by the infiltrated immune cells with CIBERSORT. Results: Our findings revealed a predominantly increased expression of GPCRs in GBM, and demonstrated that the classification of GPCRs and TME is an independent risk factor in GBM. Patients with high GPCR expression in the tumor tissue and low TME score exhibited the worst outcomes, suggesting a potentially aggressive tumor phenotype. On the other hand, patients with low GPCR expression in the tumor tissue and high TME score showed significantly better outcomes, indicating a potentially more favorable tumor microenvironment. Furthermore, the study found that T cells with high GPCR levels displayed extensive cell-cell connections with other tumor and immune cells in the single cell RNA analysis, indicating their potential involvement in immune escape. Conclusion: In conclusion, GPCRs in combination with TME classification can serve as prognostic markers for GBM. GPCRs play an essential role in tumor progression and the TME in GBM.
Collapse
Affiliation(s)
- Chunyu Guo
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Cong Yu
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Weizhen Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dabin Ren
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Yisong Zhang
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| |
Collapse
|
38
|
Matic M, Miglionico P, Tatsumi M, Inoue A, Raimondi F. GPCRome-wide analysis of G-protein-coupling diversity using a computational biology approach. Nat Commun 2023; 14:4361. [PMID: 37468476 DOI: 10.1038/s41467-023-40045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
GPCRs are master regulators of cell signaling by transducing extracellular stimuli into the cell via selective coupling to intracellular G-proteins. Here we present a computational analysis of the structural determinants of G-protein-coupling repertoire of experimental and predicted 3D GPCR-G-protein complexes. Interface contact analysis recapitulates structural hallmarks associated with G-protein-coupling specificity, including TM5, TM6 and ICLs. We employ interface contacts as fingerprints to cluster Gs vs Gi complexes in an unsupervised fashion, suggesting that interface residues contribute to selective coupling. We experimentally confirm on a promiscuous receptor (CCKAR) that mutations of some of these specificity-determining positions bias the coupling selectivity. Interestingly, Gs-GPCR complexes have more conserved interfaces, while Gi/o proteins adopt a wider number of alternative docking poses, as assessed via structural alignments of representative 3D complexes. Binding energy calculations demonstrate that distinct structural properties of the complexes are associated to higher stability of Gs than Gi/o complexes. AlphaFold2 predictions of experimental binary complexes confirm several of these structural features and allow us to augment the structural coverage of poorly characterized complexes such as G12/13.
Collapse
Affiliation(s)
- Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, 56126, Italy
| | - Pasquale Miglionico
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, 56126, Italy
| | - Manae Tatsumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, 56126, Italy.
| |
Collapse
|
39
|
Mattei F, George JT, Jolly MK. Editorial: Organoids, organs-on-chip, nanoparticles and in silico approaches to dissect the tumor-immune dynamics and to unveil the drug resistance mechanisms to therapy in the tumor microenvironment. Front Immunol 2023; 14:1253551. [PMID: 37533861 PMCID: PMC10392942 DOI: 10.3389/fimmu.2023.1253551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
40
|
Li S, Chen X, Chen J, Wu B, Liu J, Guo Y, Li M, Pu X. Multi-omics integration analysis of GPCRs in pan-cancer to uncover inter-omics relationships and potential driver genes. Comput Biol Med 2023; 161:106988. [PMID: 37201441 DOI: 10.1016/j.compbiomed.2023.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest drug target family. Unfortunately, applications of GPCRs in cancer therapy are scarce due to very limited knowledge regarding their correlations with cancers. Multi-omics data enables systematic investigations of GPCRs, yet their effective integration remains a challenge due to the complexity of the data. Here, we adopt two types of integration strategies, multi-staged and meta-dimensional approaches, to fully characterize somatic mutations, somatic copy number alterations (SCNAs), DNA methylations, and mRNA expressions of GPCRs in 33 cancers. Results from the multi-staged integration reveal that GPCR mutations cannot well predict expression dysregulation. The correlations between expressions and SCNAs are primarily positive, while correlations of the methylations with expressions and SCNAs are bimodal with negative correlations predominating. Based on these correlations, 32 and 144 potential cancer-related GPCRs driven by aberrant SCNA and methylation are identified, respectively. In addition, the meta-dimensional integration analysis is carried out by using deep learning models, which predict more than one hundred GPCRs as potential oncogenes. When comparing results between the two integration strategies, 165 cancer-related GPCRs are common in both, suggesting that they should be prioritized in future studies. However, 172 GPCRs emerge in only one, indicating that the two integration strategies should be considered concurrently to complement the information missed by the other such that obtain a more comprehensive understanding. Finally, correlation analysis further reveals that GPCRs, in particular for the class A and adhesion receptors, are generally immune-related. In a whole, the work is for the first time to reveal the associations between different omics layers and highlight the necessity of combing the two strategies in identifying cancer-related GPCRs.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Binjian Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jing Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
41
|
Santhanam B, Oikonomou P, Tavazoie S. Systematic assessment of prognostic molecular features across cancers. CELL GENOMICS 2023; 3:100262. [PMID: 36950380 PMCID: PMC10025453 DOI: 10.1016/j.xgen.2023.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Precision oncology promises accurate prediction of disease trajectories by utilizing molecular features of tumors. We present a systematic analysis of the prognostic potential of diverse molecular features across large cancer cohorts. We find that the mRNA expression of biologically coherent sets of genes (modules) is substantially more predictive of patient survival than single-locus genomic and transcriptomic aberrations. Extending our analysis beyond existing curated gene modules, we find a large novel class of highly prognostic DNA/RNA cis-regulatory modules associated with dynamic gene expression within cancers. Remarkably, in more than 82% of cancers, modules substantially improve survival stratification compared with conventional clinical factors and prominent genomic aberrations. The prognostic potential of cancer modules generalizes to external cohorts better than conventionally used single-gene features. Finally, a machine-learning framework demonstrates the combined predictive power of multiple modules, yielding prognostic models that perform substantially better than existing histopathological and clinical factors in common use.
Collapse
Affiliation(s)
- Balaji Santhanam
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
42
|
Whole-genome CRISPR screening identifies PI3K/AKT as a downstream component of the oncogenic GNAQ-focal adhesion kinase signaling circuitry. J Biol Chem 2023; 299:102866. [PMID: 36596361 PMCID: PMC9922814 DOI: 10.1016/j.jbc.2022.102866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
G proteins and G protein-coupled receptors activate a diverse array of signal transduction pathways that promote cell growth and survival. Indeed, hot spot-activating mutations in GNAQ/GNA11, encoding Gαq proteins, are known to be driver oncogenes in uveal melanoma (UM), for which there are limited effective therapies currently available. Focal adhesion kinase (FAK) has been recently shown to be a central mediator of Gαq-driven signaling in UM, and as a result, is being explored clinically as a therapeutic target for UM, both alone and in combination therapies. Despite this, the repertoire of Gαq/FAK-regulated signaling mechanisms have not been fully elucidated. Here, we used a whole-genome CRISPR screen in GNAQ-mutant UM cells to identify mechanisms that, when overactivated, lead to reduced sensitivity to FAK inhibition. In this way, we found that the PI3K/AKT signaling pathway represented a major resistance driver. Our dissection of the underlying mechanisms revealed that Gαq promotes PI3K/AKT activation via a conserved signaling circuitry mediated by FAK. Further analysis demonstrated that FAK activates PI3K through the association and tyrosine phosphorylation of the p85 regulatory subunit of PI3K and that UM cells require PI3K/AKT signaling for survival. These findings establish a novel link between Gαq-driven signaling and the stimulation of PI3K as well as demonstrate aberrant activation of signaling networks underlying the growth and survival of UM and other Gαq-driven malignancies.
Collapse
|
43
|
An Update of G-Protein-Coupled Receptor Signaling and Its Deregulation in Gastric Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030736. [PMID: 36765694 PMCID: PMC9913146 DOI: 10.3390/cancers15030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) belong to a cell surface receptor superfamily responding to a wide range of external signals. The binding of extracellular ligands to GPCRs activates a heterotrimeric G protein and triggers the production of numerous secondary messengers, which transduce the extracellular signals into cellular responses. GPCR signaling is crucial and imperative for maintaining normal tissue homeostasis. High-throughput sequencing analyses revealed the occurrence of the genetic aberrations of GPCRs and G proteins in multiple malignancies. The altered GPCRs/G proteins serve as valuable biomarkers for early diagnosis, prognostic prediction, and pharmacological targets. Furthermore, the dysregulation of GPCR signaling contributes to tumor initiation and development. In this review, we have summarized the research progress of GPCRs and highlighted their mechanisms in gastric cancer (GC). The aberrant activation of GPCRs promotes GC cell proliferation and metastasis, remodels the tumor microenvironment, and boosts immune escape. Through deep investigation, novel therapeutic strategies for targeting GPCR activation have been developed, and the final aim is to eliminate GPCR-driven gastric carcinogenesis.
Collapse
|
44
|
Lyu C, Bhimani AK, Draus WT, Weigel R, Chen S. Active Gαi/o mutants accelerate breast tumor metastasis via the c-Src pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524334. [PMID: 36711612 PMCID: PMC9882124 DOI: 10.1101/2023.01.16.524334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Constitutively active mutations in the Gαi2 and GαoA subunits of heterotrimeric G proteins have been identified in several human cancers including breast cancer, but their functional significance in tumorigenesis and metastasis has not been well characterized. In this study, we show that expression of the constitutively active GαoAR243H and Gαi2R179C mutants alone was insufficient to induce mammary tumor formation in mice. However, in transgenic mouse models of breast cancer induced by Neu expression or PTEN loss, we found that the Gαi2R179C mutant enhanced spontaneous lung metastasis while having no effect on primary tumor initiation and growth. Additionally, we observed that ectopic expression of the GαoAR243H and Gαi2R179C mutants in tumor cells promote cell migration in vitro as well as dissemination into multiple organs in vivo by activating c-Src signaling. Thus, our study uncovers a critical function of Gαi/o signaling in accelerating breast cancer metastasis via the c-Src pathway. This work is clinically significant, as it can potentially pave the way to personalized therapies for patients who present with active Gαi/o mutations or elevated Gαi/o signaling by targeting c-Src to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Cancan Lyu
- The Department of Neuroscience and Pharmacology, University of Iowa
| | - Aarzoo K Bhimani
- The Department of Neuroscience and Pharmacology, University of Iowa
| | - William T Draus
- The Department of Neuroscience and Pharmacology, University of Iowa
| | | | - Songhai Chen
- The Department of Neuroscience and Pharmacology, University of Iowa
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| |
Collapse
|
45
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
46
|
Pan-cancer functional analysis of somatic mutations in G protein-coupled receptors. Sci Rep 2022; 12:21534. [PMID: 36513718 PMCID: PMC9747925 DOI: 10.1038/s41598-022-25323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
G Protein-coupled receptors (GPCRs) are the most frequently exploited drug target family, moreover they are often found mutated in cancer. Here we used a dataset of mutations found in patient samples derived from the Genomic Data Commons and compared it to the natural human variance as exemplified by data from the 1000 genomes project. We explored cancer-related mutation patterns in all GPCR classes combined and individually. While the location of the mutations across the protein domains did not differ significantly in the two datasets, a mutation enrichment in cancer patients was observed among class-specific conserved motifs in GPCRs such as the Class A "DRY" motif. A Two-Entropy Analysis confirmed the correlation between residue conservation and cancer-related mutation frequency. We subsequently created a ranking of high scoring GPCRs, using a multi-objective approach (Pareto Front Ranking). Our approach was confirmed by re-discovery of established cancer targets such as the LPA and mGlu receptor families, but also discovered novel GPCRs which had not been linked to cancer before such as the P2Y Receptor 10 (P2RY10). Overall, this study presents a list of GPCRs that are amenable to experimental follow up to elucidate their role in cancer.
Collapse
|
47
|
Bryan JG, Hoff PD. Smaller p-values in genomics studies using distilled auxiliary information. Biostatistics 2022; 24:193-208. [PMID: 34269373 DOI: 10.1093/biostatistics/kxaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022] Open
Abstract
Medical research institutions have generated massive amounts of biological data by genetically profiling hundreds of cancer cell lines. In parallel, academic biology labs have conducted genetic screens on small numbers of cancer cell lines under custom experimental conditions. In order to share information between these two approaches to scientific discovery, this article proposes a "frequentist assisted by Bayes" (FAB) procedure for hypothesis testing that allows auxiliary information from massive genomics datasets to increase the power of hypothesis tests in specialized studies. The exchange of information takes place through a novel probability model for multimodal genomics data, which distills auxiliary information pertaining to cancer cell lines and genes across a wide variety of experimental contexts. If the relevance of the auxiliary information to a given study is high, then the resulting FAB tests can be more powerful than the corresponding classical tests. If the relevance is low, then the FAB tests yield as many discoveries as the classical tests. Simulations and practical investigations demonstrate that the FAB testing procedure can increase the number of effects discovered in genomics studies while still maintaining strict control of type I error and false discovery rate.
Collapse
Affiliation(s)
- Jordan G Bryan
- Department of Statistical Science, Duke University, 415 Chapel Drive, Durham, NC 27708, USA
| | - Peter D Hoff
- Department of Statistical Science, Duke University, 415 Chapel Drive, Durham, NC 27708, USA
| |
Collapse
|
48
|
Kwon Y, Mehta S, Clark M, Walters G, Zhong Y, Lee HN, Sunahara RK, Zhang J. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 2022; 611:173-179. [PMID: 36289326 PMCID: PMC10031817 DOI: 10.1038/s41586-022-05343-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival1. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood2-4. Here we investigated how spatially organized β2-adrenergic receptor (β2AR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors5, we show that β2AR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gαs and requires ligand-stimulated β2AR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gαs, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal β2AR and Gαs signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.
Collapse
Affiliation(s)
- Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mary Clark
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Geneva Walters
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Sharp AK, Newman D, Libonate G, Borns-Stern M, Bevan DR, Brown AM, Anandakrishnan R. Biophysical insights into OR2T7: Investigation of a potential prognostic marker for glioblastoma. Biophys J 2022; 121:3706-3718. [PMID: 35538663 PMCID: PMC9617130 DOI: 10.1016/j.bpj.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and prevalent form of brain cancer, with an expected survival of 12-15 months following diagnosis. GBM affects the glial cells of the central nervous system, which impairs regular brain function including memory, hearing, and vision. GBM has virtually no long-term survival even with treatment, requiring novel strategies to understand disease progression. Here, we identified a somatic mutation in OR2T7, a G-protein-coupled receptor (GPCR), that correlates with reduced progression-free survival for glioblastoma (log rank p-value = 0.05), suggesting a possible role in tumor progression. The mutation, D125V, occurred in 10% of 396 glioblastoma samples in The Cancer Genome Atlas, but not in any of the 2504 DNA sequences in the 1000 Genomes Project, suggesting that the mutation may have a deleterious functional effect. In addition, transcriptome analysis showed that the p38α mitogen-activated protein kinase (MAPK), c-Fos, c-Jun, and JunB proto-oncogenes, and putative tumor suppressors RhoB and caspase-14 were underexpressed in glioblastoma samples with the D125V mutation (false discovery rate < 0.05). Molecular modeling and molecular dynamics simulations have provided preliminary structural insight and indicate a dynamic helical movement network that is influenced by the membrane-embedded, cytofacial-facing residue 125, demonstrating a possible obstruction of G-protein binding on the cytofacial exposed region. We show that the mutation impacts the "open" GPCR conformation, potentially affecting Gα-subunit binding and associated downstream activity. Overall, our findings suggest that the Val125 mutation in OR2T7 could affect glioblastoma progression by downregulating GPCR-p38 MAPK tumor-suppression pathways and impacting the biophysical characteristics of the structure that facilitates Gα-subunit binding. This study provides the theoretical basis for further experimental investigation required to confirm that the D125V mutation in OR2T7 is not a passenger mutation. With validation, the aforementioned mutation could represent an important prognostic marker and a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Amanda K Sharp
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia
| | - David Newman
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - Gianna Libonate
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - Mary Borns-Stern
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - David R Bevan
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Anne M Brown
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia.
| | - Ramu Anandakrishnan
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia; Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia; Gibbs Cancer Center and Research Institute, Spartanburg, South Carolina.
| |
Collapse
|
50
|
Kim H, Baek IY, Seong J. Genetically encoded fluorescent biosensors for GPCR research. Front Cell Dev Biol 2022; 10:1007893. [PMID: 36247000 PMCID: PMC9559200 DOI: 10.3389/fcell.2022.1007893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate a wide range of physiological and pathophysiological cellular processes, thus it is important to understand how GPCRs are activated and function in various cellular contexts. In particular, the activation process of GPCRs is dynamically regulated upon various extracellular stimuli, and emerging evidence suggests the subcellular functions of GPCRs at endosomes and other organelles. Therefore, precise monitoring of the GPCR activation process with high spatiotemporal resolution is required to investigate the underlying molecular mechanisms of GPCR functions. In this review, we will introduce genetically encoded fluorescent biosensors that can precisely monitor the real-time GPCR activation process in live cells. The process includes the binding of extracellular GPCR ligands, conformational change of GPCR, recruitment of G proteins or β-arrestin, GPCR internalization and trafficking, and the GPCR-related downstream signaling events. We will introduce fluorescent GPCR biosensors based on a variety of strategies such as fluorescent resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), circular permuted fluorescent protein (cpFP), and nanobody. We will discuss the pros and cons of these GPCR biosensors as well as their applications in GPCR research.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - In-Yeop Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|