1
|
Lin B, Fan Y, Yang X, Pathak JL, Zhong M. MMP-12 and Periodontitis: Unraveling the Molecular Pathways of Periodontal Tissue Destruction. J Inflamm Res 2024; 17:7793-7806. [PMID: 39494211 PMCID: PMC11529342 DOI: 10.2147/jir.s480466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Periodontal disease is a common disorder affecting a wide range of people and has a high prevalence globally. Periodontitis comprises a series of inflammatory conditions affecting periodontal support tissue, which could ultimately lead to tooth loss and reduce life quality and add to the financial burden of society. Matrix metalloproteinase-12 (MMP-12) is an elastase that is produced mostly by macrophages and could degrade a wide spectrum of extracellular matrix (ECM) and also contribute to several systematic pathological conditions. Recently, researchers have reported higher expression of MMP-12 in chronic periodontitis patients. However, there are few reports on the role of MMP-12 in periodontitis pathogenicity, and the interaction between MMP-12, periodontal pathogens, and periodontal tissues remains unclear. In this review, we introduce the potentially unique role of MMP-12 in the context of periodontal inflammation earlier, summarize the possible effects of MMP-12 on the pathological process of periodontitis and the interaction of host response under the challenge of various inflammatory factors, and provide possible diagnostic and therapeutic strategies targeting MMP-12 for the management of periodontitis. Future research and policies should focus on and implement effective chairside testing methods to reduce the prevalence of periodontal diseases.
Collapse
Affiliation(s)
- Bingpeng Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Yufei Fan
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Xuechao Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Mei Zhong
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
2
|
Ferreccio A, Byeon S, Cornell M, Oses-Prieto J, Deshpande A, Weiss LA, Burlingame A, Yadav S. TAOK2 Drives Opposing Cilia Length Deficits in 16p11.2 Deletion and Duplication Carriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617069. [PMID: 39416068 PMCID: PMC11482803 DOI: 10.1101/2024.10.07.617069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Copy number variation (CNV) in the 16p11.2 (BP4-BP5) genomic locus is strongly associated with autism. Carriers of 16p11.2 deletion and duplication exhibit several common behavioral and social impairments, yet, show opposing brain structural changes and body mass index. To determine cellular mechanisms that might contribute to these opposing phenotypes, we performed quantitative tandem mass tag (TMT) proteomics on human dorsal forebrain neural progenitor cells (NPCs) differentiated from induced pluripotent stem cells (iPSC) derived from 16p11.2 CNV carriers. Differentially phosphorylated proteins between unaffected individuals and 16p11.2 CNV carriers were significantly enriched for centrosomal and cilia proteins. Deletion patient-derived NPCs show increased primary cilium length compared to unaffected individuals, while stunted cilium growth was observed in 16p11.2 duplication NPCs. Through cellular shRNA and overexpression screens in human iPSC derived NPCs, we determined the contribution of genes within the 16p11.2 locus to cilium length. TAOK2, a serine threonine protein kinase, and PPP4C, a protein phosphatase, were found to regulate primary cilia length in a gene dosage-dependent manner. We found TAOK2 was localized at centrosomes and the base of the primary cilium, and NPCs differentiated from TAOK2 knockout iPSCs had longer cilia. In absence of TAOK2, there was increased pericentrin at the basal body, and aberrant accumulation of IFT88 at the ciliary distal tip. Further, pharmacological inhibition of TAO kinase activity led to increased ciliary length, indicating that TAOK2 negatively controls primary cilium length through its catalytic activity. These results implicate aberrant cilia length in the pathophysiology of 16p11.2 CNV, and establish the role of TAOK2 kinase as a regulator of primary cilium length.
Collapse
Affiliation(s)
- Amy Ferreccio
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
| | - Moira Cornell
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94195
| | - Aditi Deshpande
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94195
| | - Lauren A Weiss
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94195
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94195
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98106
| |
Collapse
|
3
|
Rombouts KB, van Merrienboer TAR, Henneman AA, Knol JC, Pham TV, Piersma SR, Jimenez CR, Bogunovic N, van der Velden J, Yeung KK. Insight in the (Phospho)proteome of Vascular Smooth Muscle Cells Derived From Patients With Abdominal Aortic Aneurysm Reveals Novel Disease Mechanisms. Arterioscler Thromb Vasc Biol 2024; 44:2226-2243. [PMID: 39206541 DOI: 10.1161/atvbaha.124.321087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is characterized by weakening and dilatation of the aortic wall in the abdomen. The aim of this study was to gain insight into cell-specific mechanisms involved in AAA pathophysiology by analyzing the (phospho)proteome of vascular smooth muscle cells derived from patients with AAA compared with those of healthy donors. METHODS A (phospho)proteomics analysis based on tandem mass spectrometry was performed on vascular smooth muscle cells derived from patients with AAA (n=24) and healthy, control individuals (C-SMC, n=8). Following protein identification and quantification using MaxQuant, integrative inferred kinase activity analysis was used to calculate kinase activity scores. RESULTS Expression differences between vascular smooth muscle cells derived from patients with AAA and healthy, control individuals were predominantly found in proteins involved in ECM (extracellular matrix) remodeling (THSD4 [thrombospondin type-1 domain-containing protein 4] and ADAMTS1 [A disintegrin and metalloproteinase with thrombospondin motifs 1]), energy metabolism (GYS1 [glycogen synthase 1] and PCK2 [phosphoenolpyruvate carboxykinase 2, mitochondrial]), and contractility (CACNA2D1 [calcium voltage-dependent channel subunit α-2/δ-1] and TPM1 [tropomyosin α-1 chain]). Phosphorylation patterns on proteins related to actin cytoskeleton organization dominated the phosphoproteome of vascular smooth muscle cells derived from patients with AAA . Besides, phosphorylation changes on proteins related to energy metabolism (GYS1), contractility (PARVA [α-parvin], PPP1R12A [protein phosphatase 1 regulatory subunit 12A], and CALD1 [caldesmon 1]), and intracellular communication (GJA1 [gap junction α-1 protein]) were seen. Kinase activity of NUAK1 (NUAK family SNF1-like kinase 1), FYN (tyrosine-protein kinase Fyn), MAPK7 (mitogen-activated protein kinase 7), and STK10 (serine/threonine kinase 10) was different in vascular smooth muscle cells derived from patients with AAA compared with those from healthy, control individuals. CONCLUSIONS This study revealed changes in expression and phosphorylation levels of proteins involved in various processes responsible for AAA progression and development (eg, energy metabolism, ECM remodeling, actin cytoskeleton organization, contractility, intracellular communication, and cell adhesion). These newly identified proteins, phosphosites, and related kinases provide further insight into the underlying mechanism of vascular smooth muscle cell dysfunction within the aneurysmal wall. Our omics data thereby offer the opportunity to study the relevance, either as drug target or biomarker, of these proteins in AAA development.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteomics/methods
- Male
- Aged
- Cells, Cultured
- Phosphorylation
- Case-Control Studies
- Proteome
- Female
- Vascular Remodeling
- Middle Aged
- Phosphoproteins/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Energy Metabolism
- Tandem Mass Spectrometry
- Signal Transduction
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Alex A Henneman
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Jaco C Knol
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Thang V Pham
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Sander R Piersma
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Connie R Jimenez
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| |
Collapse
|
4
|
Galhano ML, Jácome F, Huynh JY, Dias-Neto M. Circulating biomarkers in acute aortic dissection versus acute myocardial infarction: a systematic review. THE JOURNAL OF CARDIOVASCULAR SURGERY 2024; 65:383-389. [PMID: 38860700 DOI: 10.23736/s0021-9509.24.13062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
INTRODUCTION This systematic review aimed to discuss the current knowledge of possibly useful circulatory biomarkers (other than D-dimers) in the diagnosis of patients with an acute aortic dissection (AAD), to distinguish these patients from patients with Acute Myocardial Infarction (AMI). EVIDENCE ACQUISITION This study followed the PRISMA guidelines. The databases PubMed, EMBASE and Scopus were systematically searched from inception to May 2023. Studies were included if they presented measurements of biomarker(s) in the blood/plasma/serum samples from adult patients with AAD versus AMI. Articles were excluded if aortic dissection was subacute or chronic (>14 days), if they lack a control group (AMI), or if they were animal studies, revisions, or editorials. The main outcome was the identification of biomarkers that exhibited diagnostic potential to differentiate patients with AAD versus AMI. EVIDENCE SYNTHESIS The research query resulted in 1342 articles after the removal of duplicates, from which seven were included in the systematic review. The biomarkers identified included general blood assessment, metabolomics, products of the degradation of fibrin, extracellular matrix markers and an ischemia-associated molecule. Most studies lack diagnostic validity such as sensitivity and specificity. In six studies, the concentration of a total of six biomarkers showed significative differences between AAD and AMI group. CONCLUSIONS A great heterogeneity of molecules has been studied as putative diagnostic markers of AAD versus AMI. Studies of better quality are needed, presenting the diagnostic validity of the molecules under analysis and the putative synergic diagnostic value of the molecules identified so far.
Collapse
Affiliation(s)
- Maria L Galhano
- UnIC@RISE-Health, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal -
| | - Filipa Jácome
- Department of Angiology and Vascular Surgery, Local Unit of Health of São João, Porto, Portugal
| | - Jennifer Y Huynh
- Amsterdam Cardiovascular Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Marina Dias-Neto
- UnIC@RISE-Health, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Angiology and Vascular Surgery, Local Unit of Health of São João, Porto, Portugal
| |
Collapse
|
5
|
Maduka AO, Manohar S, Foster MW, Silva GM. Localized K63 ubiquitin signaling is regulated by VCP/p97 during oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.598218. [PMID: 38948861 PMCID: PMC11213022 DOI: 10.1101/2024.06.20.598218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote these concerted response mechanisms remain understudied. Here, we show that K63-linked ubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in non-cytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of non-cytosolic compartments expanded 10-fold the pool of proteins known to be ubiquitinated during arsenite stress (2,046) and revealed their involvement in pathways related to immune signaling and translation control. Moreover, subcellular proteome analyses revealed proteins that are recruited to non-cytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase VCP that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to non-cytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of non-cytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by cellular exposure to reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.
Collapse
Affiliation(s)
| | - Sandhya Manohar
- Institute for Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Matthew W. Foster
- Proteomics and Metabolomics Core Facility, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
6
|
Gedney JR, Mattia V, Figueroa M, Barksdale C, Fannin E, Silverman J, Xiong Y, Mukherjee R, Jones JA, Ruddy JM. Biomechanical dysregulation of SGK-1 dependent aortic pathologic markers in hypertension. Front Cardiovasc Med 2024; 11:1359734. [PMID: 38903966 PMCID: PMC11187291 DOI: 10.3389/fcvm.2024.1359734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction In hypertension (HTN), biomechanical stress may drive matrix remodeling through dysfunctional VSMC activity. Prior evidence has indicated VSMC tension-induced signaling through the serum and glucocorticoid inducible kinase-1 (SGK-1) can impact cytokine abundance. Here, we hypothesize that SGK-1 impacts production of additional aortic pathologic markers (APMs) representing VSMC dysfunction in HTN. Methods Aortic VSMC expression of APMs was quantified by QPCR in cyclic biaxial stretch (Stretch) +/- AngiotensinII (AngII). APMs were selected to represent VSMC dedifferentiated transcriptional activity, specifically Interleukin-6 (IL-6), Cathepsin S (CtsS), Cystatin C (CysC), Osteoprotegerin (OPG), and Tenascin C (TNC). To further assess the effect of tension alone, abdominal aortic rings from C57Bl/6 WT mice were held in a myograph at experimentally derived optimal tension (OT) or OT + 30% +/-AngII. Dependence on SGK-1 was assessed by treating with EMD638683 (SGK-1 inhibitor) and APMs were measured by QPCR. Then, WT and smooth muscle cell specific SGK-1 heterozygous knockout (SMC-SGK-1KO+/-) mice had AngII-induced HTN. Systolic blood pressure and mechanical stress parameters were assessed on Day 0 and Day 21. Plasma was analyzed by ELISA to quantify APMs. Statistical analysis was performed by ANOVA. Results In cultured aortic VSMCs, expression of all APMs was increased in response to biomechanical stimuli (Stretch +/-AngII,). Integrating the matrix contribution to signal transduction in the aortic rings led to IL-6 and CysC demonstrating SGK-1 dependence in response to elevated tension and interactive effect with concurrent AngII stimulation. CtsS and TNC, on the other hand, primarily responded to AngII, and OPG expression was unaffected in aortic ring experimentation. Both mouse strains had >30% increase in blood pressure with AngII infusion, reduced aortic distensibility and increased PPV, indicating increased aortic stiffness. In WT + AngII mice, IL-6, CtsS, CysC, and TNC plasma levels were significantly elevated, but these APMs were unaffected by HTN in the SMC-SGK-1KO+/- +AngII mice, suggesting SGK-1 plays a major role in VSMC biomechanical signaling to promote dysfunctional production of selected APMs. Conclusion In HTN, changes in the plasma levels of markers associated with aortic matrix homeostasis can reflect remodeling driven by mechanobiologic signaling in dysfunctional VSMCs, potentially through the activity of SGK-1. Further defining these pathways may identify therapeutic targets to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- J. Ryan Gedney
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Christian Barksdale
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Ethan Fannin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jonah Silverman
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Healthcare System, Charleston, SC, United States
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Healthcare System, Charleston, SC, United States
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Rojas MG, Pereira-Simon S, Zigmond ZM, Varona Santos J, Perla M, Santos Falcon N, Stoyell-Conti FF, Salama A, Yang X, Long X, Duque JC, Salman LH, Tabbara M, Martinez L, Vazquez-Padron RI. Single-Cell Analyses Offer Insights into the Different Remodeling Programs of Arteries and Veins. Cells 2024; 13:793. [PMID: 38786017 PMCID: PMC11119253 DOI: 10.3390/cells13100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Arteries and veins develop different types of occlusive diseases and respond differently to injury. The biological reasons for this discrepancy are not well understood, which is a limiting factor for the development of vein-targeted therapies. This study contrasts human peripheral arteries and veins at the single-cell level, with a focus on cell populations with remodeling potential. Upper arm arteries (brachial) and veins (basilic/cephalic) from 30 organ donors were compared using a combination of bulk and single-cell RNA sequencing, proteomics, flow cytometry, and histology. The cellular atlases of six arteries and veins demonstrated a 7.8× higher proportion of contractile smooth muscle cells (SMCs) in arteries and a trend toward more modulated SMCs. In contrast, veins showed a higher abundance of endothelial cells, pericytes, and macrophages, as well as an increasing trend in fibroblasts. Activated fibroblasts had similar proportions in both types of vessels but with significant differences in gene expression. Modulated SMCs and activated fibroblasts were characterized by the upregulation of MYH10, FN1, COL8A1, and ITGA10. Activated fibroblasts also expressed F2R, POSTN, and COMP and were confirmed by F2R/CD90 flow cytometry. Activated fibroblasts from veins were the top producers of collagens among all fibroblast populations from both types of vessels. Venous fibroblasts were also highly angiogenic, proinflammatory, and hyper-responders to reactive oxygen species. Differences in wall structure further explain the significant contribution of fibroblast populations to remodeling in veins. Fibroblasts are almost exclusively located outside the external elastic lamina in arteries, while widely distributed throughout the venous wall. In line with the above, ECM-targeted proteomics confirmed a higher abundance of fibrillar collagens in veins vs. more basement ECM components in arteries. The distinct cellular compositions and transcriptional programs of reparative populations in arteries and veins may explain differences in acute and chronic wall remodeling between vessels. This information may be relevant for the development of antistenotic therapies.
Collapse
Affiliation(s)
- Miguel G. Rojas
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Simone Pereira-Simon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | | | - Javier Varona Santos
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Mikael Perla
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Nieves Santos Falcon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Filipe F. Stoyell-Conti
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Alghidak Salama
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiaochun Long
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Juan C. Duque
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Loay H. Salman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY 12208, USA
| | - Marwan Tabbara
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Laisel Martinez
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Roberto I. Vazquez-Padron
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
- Bruce W. Carter Veterans Affairs Medical Center, Miami, FL 33125, USA;
| |
Collapse
|
8
|
Rabia B, Thanigaimani S, Golledge J. The potential involvement of glycocalyx disruption in abdominal aortic aneurysm pathogenesis. Cardiovasc Pathol 2024; 70:107629. [PMID: 38461960 DOI: 10.1016/j.carpath.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm is a weakening and expansion of the abdominal aorta. Currently, there is no drug treatment to limit abdominal aortic aneurysm growth. The glycocalyx is the outermost layer of the cell surface, mainly composed of glycosaminoglycans and proteoglycans. OBJECTIVE The aim of this review was to identify a potential relationship between glycocalyx disruption and abdominal aortic aneurysm pathogenesis. METHODS A narrative review of relevant published research was conducted. RESULTS Glycocalyx disruption has been reported to enhance vascular permeability, impair immune responses, dysregulate endothelial function, promote extracellular matrix remodeling and modulate mechanotransduction. All these effects are implicated in abdominal aortic aneurysm pathogenesis. Glycocalyx disruption promotes inflammation through exposure of adhesion molecules and release of proinflammatory mediators. Glycocalyx disruption affects how the endothelium responds to shear stress by reducing nitric oxide availabilty and adversely affecting the storage and release of several antioxidants, growth factors, and antithromotic proteins. These changes exacerbate oxidative stress, stimulate vascular smooth muscle cell dysfunction, and promote thrombosis, all effects implicated in abdominal aortic aneurysm pathogenesis. Deficiency of key component of the glycocalyx, such as syndecan-4, were reported to promote aneurysm formation and rupture in the angiotensin-II and calcium chloride induced mouse models of abdominal aortic aneurysm. CONCLUSION This review provides a summary of past research which suggests that glycocalyx disruption may play a role in abdominal aortic aneurysm pathogenesis. Further research is needed to establish a causal link between glycocalyx disruption and abdominal aortic aneurysm development.
Collapse
Affiliation(s)
- Bibi Rabia
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Department of Pharmacy, Hazara University, Mansehra 21300, Pakistan
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland 4810, Australia.
| |
Collapse
|
9
|
Dang Z, Li H, Xue S, Shao B, Ning Y, Su G, Zhang F, Yu W, Leng S. Histone deacetylase 9-mediated phenotypic transformation of vascular smooth muscle cells is a potential target for treating aortic aneurysm/dissection. Biomed Pharmacother 2024; 173:116396. [PMID: 38460370 DOI: 10.1016/j.biopha.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Aortic aneurysm/dissection (AAD) is a serious cardiovascular condition characterized by rapid onset and high mortality rates. Currently, no effective drug treatment options are known for AAD. AAD pathogenesis is associated with the phenotypic transformation and abnormal proliferation of vascular smooth muscle cells (VSMCs). However, endogenous factors that contribute to AAD progression remain unclear. We aimed to investigate the role of histone deacetylase 9 (HDAC9) in AAD pathogenesis. HDAC9 expression was considerably increased in human thoracic aortic dissection specimens. Using RNA-sequencing (RNA-seq) and chromatin immunoprecipitation, we demonstrated that HDAC9 transcriptionally inhibited the expression of superoxide dismutase 2 and insulin-like growth factor-binding protein-3, which are critically involved in various signaling pathways. Furthermore, HDAC9 triggered the transformation of VSMCs from a systolic to synthetic phenotype, increasing their proliferation and migration abilities and suppressing their apoptosis. Consistent with these results, in vivo experiments revealed that TMP195, a pharmacological inhibitor of HDAC9, suppressed the formation of the β-aminopropionitrile-induced AAD phenotype in mice. Our findings indicate that HDAC9 may be a novel endogenous risk factor that promotes the onset of AAD by mediating the phenotypic transformation of VSMCs. Therefore, HDAC9 may serve as a potential therapeutic target for drug-based AAD treatment. Furthermore, TMP195 holds potential as a therapeutic agent for AAD treatment.
Collapse
Affiliation(s)
- Zhiqiao Dang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Haijie Li
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Shishan Xue
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Baowei Shao
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yansong Ning
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Fengquan Zhang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Wenqian Yu
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Shuai Leng
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
10
|
Fu Y, Zhou Y, Wang K, Li Z, Kong W. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res 2024; 134:931-949. [PMID: 38547250 DOI: 10.1161/circresaha.123.324055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics (Y.Z.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
11
|
Arbănaşi EM, Russu E, Arbănaşi EM, Ciucanu CC, Mureșan AV, Suzuki S, Chirilă TV. Effect of Ultraviolet Radiation on the Enzymolytic and Biomechanical Profiles of Abdominal Aortic Adventitia Tissue. J Clin Med 2024; 13:633. [PMID: 38276139 PMCID: PMC10817471 DOI: 10.3390/jcm13020633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The abdominal aortic aneurysm (AAA) is defined as an increase in aortic diameter by more than 50% and is associated with a high risk of rupture and mortality without treatment. The aim of this study is to analyze the role of aortic adventitial collagen photocrosslinking by UV-A irradiation on the biomechanical profile of the aortic wall. METHODS This experimental study is structured in two parts: the first part includes in vitro uniaxial biomechanical evaluation of porcine adventitial tissue subjected to either short-term elastolysis or long-term collagenolysis in an attempt to duplicate two extreme situations as putative stages of aneurysmal degeneration. In the second part, we included biaxial biomechanical evaluation of in vitro human abdominal aortic adventitia and human AAA adventitia specimens. Biomechanical profiles were examined for porcine and human aortic tissue before and after irradiation with UV-A light (365 nm wavelength). RESULTS On the porcine aortic sample, the enhancing effect of irradiation was evident both on the tissue subjected to elastolysis, which had a high collagen-to-elastin ratio, and on the tissue subjected to prolonged collagenolysis despite being considerably depleted in collagen. Further, the effect of irradiation was conclusively demonstrated in the human adventitia samples, where significant post-irradiation increases in Cauchy stress (longitudinal axis: p = 0.001, circumferential axis: p = 0.004) and Young's modulus (longitudinal axis: p = 0.03, circumferential axis: p = 0.004) were recorded. Moreover, we have a stronger increase in the strengthening of the AAA adventitia samples following the exposure to UV-A irradiation (p = 0.007) and a statistically significant but not very important increase (p = 0.021) regarding the stiffness in the circumferential axis. CONCLUSIONS The favorable effect of UV irradiation on the strength and stiffness of degraded aortic adventitia in experimental situations mimicking early and later stages of aneurysmal degeneration is essential for the development and potential success of procedures to prevent aneurysmal ruptures. The experiments on human normal and aneurysmal adventitial tissue confirmed the validity and potential success of a procedure based on exposure to UV-A radiation.
Collapse
Affiliation(s)
- Emil-Marian Arbănaşi
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures (UMFST), 540142 Targu Mures, Romania; (E.-M.A.); (E.-M.A.); (C.C.C.)
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (S.S.); (T.V.C.)
| | - Eliza Russu
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Eliza-Mihaela Arbănaşi
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures (UMFST), 540142 Targu Mures, Romania; (E.-M.A.); (E.-M.A.); (C.C.C.)
| | - Constantin Claudiu Ciucanu
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures (UMFST), 540142 Targu Mures, Romania; (E.-M.A.); (E.-M.A.); (C.C.C.)
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Adrian Vasile Mureșan
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Shuko Suzuki
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (S.S.); (T.V.C.)
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia
| | - Traian V. Chirilă
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (S.S.); (T.V.C.)
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Yong J, Wang R, Song F, Wang T. The protective effects of pirfenidone in preventing abdominal aortic aneurysm formation. J Biochem Mol Toxicol 2023; 37:e23514. [PMID: 37691532 DOI: 10.1002/jbt.23514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/07/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
Vascular endothelial growth factor (VEGF)-mediated angiogenesis participates in the initiation and progression of abdominal aortic aneurysm (AAA). Pirfenidone is a compound that has anti-inflammatory and antioxidant properties and suppresses angiogenesis. Pirfenidone targets the extracellular matrix (ECM) and has therapeutic effects on fibrotic diseases. Therefore, we speculated that pirfenidone might have meaningful therapeutic effects in AAA, and the current study was designed to investigate this capacity. An AAA model was constructed in mice using a long-term injection of angiotensin II (Ang II), followed by a 28-day administration of 200 mg/kg/day pirfenidone. Increased maximal external diameter of the abdominal artery, promoted levels of VEGF-A and its receptor VEGF-R2, upregulated matrix metallopeptidases (MMP)-2 and MMP-9, and elevated release of pro-inflammatory cytokines were observed in AAA mice, which were extremely repressed by 200 mg/kg pirfenidone. Human aortic endothelial cells (HAECs) were stimulated with Ang II for 1 day, in the presence or absence of pirfenidone (100 nM). Elevated expression of VEGF-A and VEGF-R2, facilitated proliferation, increased tube formation ability, and upregulated MMP-2 and MMP-9 were observed in Ang II-stimulated HAECs, all of which were significantly rescued by 100 nM pirfenidone. Finally, the elevated levels of myeloid differentiation primary response 88 and phosphorylated nuclear factor-kappa-B subunit p65 observed in Ang II-stimulated HAECs were repressed by pirfenidone. Collectively, pirfenidone alleviated AAA by inhibiting ECM degradation and ameliorating endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Yong
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Rui Wang
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Fubo Song
- Department of Medical Records Room, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Tao Wang
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
13
|
Katoh K. Effects of Mechanical Stress on Endothelial Cells In Situ and In Vitro. Int J Mol Sci 2023; 24:16518. [PMID: 38003708 PMCID: PMC10671803 DOI: 10.3390/ijms242216518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Endothelial cells lining blood vessels are essential for maintaining vascular homeostasis and mediate several pathological and physiological processes. Mechanical stresses generated by blood flow and other biomechanical factors significantly affect endothelial cell activity. Here, we review how mechanical stresses, both in situ and in vitro, affect endothelial cells. We review the basic principles underlying the cellular response to mechanical stresses. We also consider the implications of these findings for understanding the mechanisms of mechanotransducer and mechano-signal transduction systems by cytoskeletal components.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
14
|
Yang M, Zhou X, Pearce SW, Yang Z, Chen Q, Niu K, Liu C, Luo J, Li D, Shao Y, Zhang C, Chen D, Wu Q, Cutillas PR, Zhao L, Xiao Q, Zhang L. Causal Role for Neutrophil Elastase in Thoracic Aortic Dissection in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1900-1920. [PMID: 37589142 PMCID: PMC10521802 DOI: 10.1161/atvbaha.123.319281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Thoracic aortic dissection (TAD) is a life-threatening aortic disease without effective medical treatment. Increasing evidence has suggested a role for NE (neutrophil elastase) in vascular diseases. In this study, we aimed at investigating a causal role for NE in TAD and exploring the molecular mechanisms involved. METHODS β-aminopropionitrile monofumarate was administrated in mice to induce TAD. NE deficiency mice, pharmacological inhibitor GW311616A, and adeno-associated virus-2-mediated in vivo gene transfer were applied to explore a causal role for NE and associated target gene in TAD formation. Multiple functional assays and biochemical analyses were conducted to unravel the underlying cellular and molecular mechanisms of NE in TAD. RESULTS NE aortic gene expression and plasma activity was significantly increased during β-aminopropionitrile monofumarate-induced TAD and in patients with acute TAD. NE deficiency prevents β-aminopropionitrile monofumarate-induced TAD onset/development, and GW311616A administration ameliorated TAD formation/progression. Decreased levels of neutrophil extracellular traps, inflammatory cells, and MMP (matrix metalloproteinase)-2/9 were observed in NE-deficient mice. TBL1x (F-box-like/WD repeat-containing protein TBL1x) has been identified as a novel substrate and functional downstream target of NE in TAD. Loss-of-function studies revealed that NE mediated inflammatory cell transendothelial migration by modulating TBL1x-LTA4H (leukotriene A4 hydrolase) signaling and that NE regulated smooth muscle cell phenotype modulation under TAD pathological condition by regulating TBL1x-MECP2 (methyl CpG-binding protein 2) signal axis. Further mechanistic studies showed that TBL1x inhibition decreased the binding of TBL1x and HDAC3 (histone deacetylase 3) to MECP2 and LTA4H gene promoters, respectively. Finally, adeno-associated virus-2-mediated Tbl1x gene knockdown in aortic smooth muscle cells confirmed a regulatory role for TBL1x in NE-mediated TAD formation. CONCLUSIONS We unravel a critical role of NE and its target TBL1x in regulating inflammatory cell migration and smooth muscle cell phenotype modulation in the context of TAD. Our findings suggest that the NE-TBL1x signal axis represents a valuable therapeutic for treating high-risk TAD patients.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Xinmiao Zhou
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.Z.)
| | - Stuart W.A. Pearce
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Zhisheng Yang
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Qishan Chen
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
| | - Kaiyuan Niu
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Chenxin Liu
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Dan Li
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, China (D.L., L. Zhao)
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Pedro R. Cutillas
- Faculty of Medicine and Dentistry, Centre for Haemato-Oncology, Barts Cancer Institute (P.R.C.), Queen Mary University of London, United Kingdom
| | - Lin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, China (D.L., L. Zhao)
| | - Qingzhong Xiao
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, China (Q.X.)
| | - Li Zhang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
| |
Collapse
|
15
|
Atkinson G, Bianco R, Di Gregoli K, Johnson JL. The contribution of matrix metalloproteinases and their inhibitors to the development, progression, and rupture of abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1248561. [PMID: 37799778 PMCID: PMC10549934 DOI: 10.3389/fcvm.2023.1248561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) account for up to 8% of deaths in men aged 65 years and over and 2.2% of women. Patients with AAAs often have atherosclerosis, and intimal atherosclerosis is generally present in AAAs. Accordingly, AAAs are considered a form of atherosclerosis and are frequently referred to as atherosclerotic aneurysms. Pathological observations advocate inflammatory cell infiltration alongside adverse extracellular matrix degradation as key contributing factors to the formation of human atherosclerotic AAAs. Therefore, macrophage production of proteolytic enzymes is deemed responsible for the damaging loss of ECM proteins, especially elastin and fibrillar collagens, which characterise AAA progression and rupture. Matrix metalloproteinases (MMPs) and their regulation by tissue inhibitors metalloproteinases (TIMPs) can orchestrate not only ECM remodelling, but also moderate the proliferation, migration, and apoptosis of resident aortic cells, alongside the recruitment and subsequent behaviour of inflammatory cells. Accordingly, MMPs are thought to play a central regulatory role in the development, progression, and eventual rupture of abdominal aortic aneurysms (AAAs). Together, clinical and animal studies have shed light on the complex and often diverse effects MMPs and TIMPs impart during the development of AAAs. This dichotomy is underlined from evidence utilising broad-spectrum MMP inhibition in animal models and clinical trials which have failed to provide consistent protection from AAA progression, although more encouraging results have been observed through deployment of selective inhibitors. This review provides a summary of the supporting evidence connecting the contribution of individual MMPs to AAA development, progression, and eventual rupture. Topics discussed include structural, functional, and cell-specific diversity of MMP members; evidence from animal models of AAA and comparisons with findings in humans; the dual role of MMPs and the requirement to selectively target individual MMPs; and the advances in identifying aberrant MMP activity. As evidenced, our developing understanding of the multifaceted roles individual MMPs perform during the progression and rupture of AAAs, should motivate clinical trials assessing the therapeutic potential of selective MMP inhibitors, which could restrict AAA-related morbidity and mortality worldwide.
Collapse
Affiliation(s)
| | | | | | - Jason L. Johnson
- Laboratory of Cardiovascular Pathology, Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Theofilatos K, Stojkovic S, Hasman M, van der Laan SW, Baig F, Barallobre-Barreiro J, Schmidt LE, Yin S, Yin X, Burnap S, Singh B, Popham J, Harkot O, Kampf S, Nackenhorst MC, Strassl A, Loewe C, Demyanets S, Neumayer C, Bilban M, Hengstenberg C, Huber K, Pasterkamp G, Wojta J, Mayr M. Proteomic Atlas of Atherosclerosis: The Contribution of Proteoglycans to Sex Differences, Plaque Phenotypes, and Outcomes. Circ Res 2023; 133:542-558. [PMID: 37646165 PMCID: PMC10498884 DOI: 10.1161/circresaha.123.322590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Using proteomics, we aimed to reveal molecular types of human atherosclerotic lesions and study their associations with histology, imaging, and cardiovascular outcomes. METHODS Two hundred nineteen carotid endarterectomy samples were procured from 120 patients. A sequential protein extraction protocol was employed in conjunction with multiplexed, discovery proteomics. To focus on extracellular proteins, parallel reaction monitoring was employed for targeted proteomics. Proteomic signatures were integrated with bulk, single-cell, and spatial RNA-sequencing data, and validated in 200 patients from the Athero-Express Biobank study. RESULTS This extensive proteomics analysis identified plaque inflammation and calcification signatures, which were inversely correlated and validated using targeted proteomics. The inflammation signature was characterized by the presence of neutrophil-derived proteins, such as S100A8/9 (calprotectin) and myeloperoxidase, whereas the calcification signature included fetuin-A, osteopontin, and gamma-carboxylated proteins. The proteomics data also revealed sex differences in atherosclerosis, with large-aggregating proteoglycans versican and aggrecan being more abundant in females and exhibiting an inverse correlation with estradiol levels. The integration of RNA-sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages, and the calcification and sex signatures to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in plaques, such as fetuin-A. Dimensionality reduction and machine learning techniques were applied to identify 4 distinct plaque phenotypes based on proteomics data. A protein signature of 4 key proteins (calponin, protein C, serpin H1, and versican) predicted future cardiovascular mortality with an area under the curve of 75% and 67.5% in the discovery and validation cohort, respectively, surpassing the prognostic performance of imaging and histology. CONCLUSIONS Plaque proteomics redefined clinically relevant patient groups with distinct outcomes, identifying subgroups of male and female patients with elevated risk of future cardiovascular events.
Collapse
Affiliation(s)
- Konstantinos Theofilatos
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Stefan Stojkovic
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
| | - Maria Hasman
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands (S.W.v.d.L., G.P.)
| | - Ferheen Baig
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Javier Barallobre-Barreiro
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Lukas Emanuel Schmidt
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Siqi Yin
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Xiaoke Yin
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Sean Burnap
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Bhawana Singh
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Jude Popham
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
| | - Olesya Harkot
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
| | - Stephanie Kampf
- Division of Vascular Surgery, Department of Surgery (S.K., C.N.), Medical University of Vienna, Austria
| | | | - Andreas Strassl
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-Guided Therapy (A.S., C.L.), Medical University of Vienna, Austria
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-Guided Therapy (A.S., C.L.), Medical University of Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine (S.D.), Medical University of Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery (S.K., C.N.), Medical University of Vienna, Austria
| | - Martin Bilban
- Core Facilities (M.B.), Medical University of Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
| | - Kurt Huber
- Third Medical Department, Wilhelminenspital, and Sigmund Freud University, Medical Faculty, Vienna, Austria (K.H.)
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands (S.W.v.d.L., G.P.)
| | - Johann Wojta
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria (J.W.)
| | - Manuel Mayr
- King’s British Heart Foundation Centre, Kings College London, United Kingdom (K.T., M.H., F.B., J.B.B., L.E.S., S.Y., X.Y., S.B., B.S., J.P., M.M.)
- Division of Cardiology, Department of Internal Medicine II (S.S., O.H., C.H., J.W., M.M.), Medical University of Vienna, Austria
| |
Collapse
|
17
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
18
|
Chen M, Cavinato C, Hansen J, Tanaka K, Ren P, Hassab A, Li DS, Youshao E, Tellides G, Iyengar R, Humphrey JD, Schwartz MA. FN (Fibronectin)-Integrin α5 Signaling Promotes Thoracic Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e132-e150. [PMID: 36994727 PMCID: PMC10133209 DOI: 10.1161/atvbaha.123.319120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Marfan syndrome, caused by mutations in the gene for fibrillin-1, leads to thoracic aortic aneurysms (TAAs). Phenotypic modulation of vascular smooth muscle cells (SMCs) and ECM (extracellular matrix) remodeling are characteristic of both nonsyndromic and Marfan aneurysms. The ECM protein FN (fibronectin) is elevated in the tunica media of TAAs and amplifies inflammatory signaling in endothelial and SMCs through its main receptor, integrin α5β1. We investigated the role of integrin α5-specific signals in Marfan mice in which the cytoplasmic domain of integrin α5 was replaced with that of integrin α2 (denoted α5/2 chimera). METHODS We crossed α5/2 chimeric mice with Fbn1mgR/mgR mice (mgR model of Marfan syndrome) to evaluate the survival rate and pathogenesis of TAAs among wild-type, α5/2, mgR, and α5/2 mgR mice. Further biochemical and microscopic analysis of porcine and mouse aortic SMCs investigated molecular mechanisms by which FN affects SMCs and subsequent development of TAAs. RESULTS FN was elevated in the thoracic aortas from Marfan patients, in nonsyndromic aneurysms, and in mgR mice. The α5/2 mutation greatly prolonged survival of Marfan mice, with improved elastic fiber integrity, mechanical properties, SMC density, and SMC contractile gene expression. Furthermore, plating of wild-type SMCs on FN decreased contractile gene expression and activated inflammatory pathways whereas α5/2 SMCs were resistant. These effects correlated with increased NF-kB activation in cultured SMCs and mgR aortas, which was alleviated by the α5/2 mutation or NF-kB inhibition. CONCLUSIONS FN-integrin α5 signaling is a significant driver of TAA in the mgR mouse model. This pathway thus warrants further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Minghao Chen
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Keiichiro Tanaka
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Pengwei Ren
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Abdulrahman Hassab
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Eric Youshao
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - George Tellides
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Martin A Schwartz
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Departments of Medicine (Cardiology) and Cell Biology (M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| |
Collapse
|
19
|
Naba A. 10 years of extracellular matrix proteomics: Accomplishments, challenges, and future perspectives. Mol Cell Proteomics 2023; 22:100528. [PMID: 36918099 PMCID: PMC10152135 DOI: 10.1016/j.mcpro.2023.100528] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins forming the architectural scaffold of multicellular organisms. In addition to its structural role, the ECM conveys signals orchestrating cellular phenotypes. Alterations of ECM composition, abundance, structure, or mechanics, have been linked to diseases and disorders affecting all physiological systems, including fibrosis and cancer. Deciphering the protein composition of the ECM and how it changes in pathophysiological contexts is thus the first step toward understanding the roles of the ECM in health and disease and toward the development of therapeutic strategies to correct disease-causing ECM alterations. Potentially, the ECM also represents a vast, yet untapped reservoir of disease biomarkers. ECM proteins are characterized by unique biochemical properties that have hindered their study: they are large, heavily and uniquely post-translationally modified, and highly insoluble. Overcoming these challenges, we and others have devised mass-spectrometry-based proteomic approaches to define the ECM composition, or "matrisome", of tissues. This review provides a historical overview of ECM proteomics research and presents the latest advances that now allow the profiling of the ECM of healthy and diseased tissues. The second part highlights recent examples illustrating how ECM proteomics has emerged as a powerful discovery pipeline to identify prognostic cancer biomarkers. The third part discusses remaining challenges limiting our ability to translate findings to clinical application and proposes approaches to overcome them. Last, the review introduces readers to resources available to facilitate the interpretation of ECM proteomics datasets. The ECM was once thought to be impenetrable. MS-based proteomics has proven to be a powerful tool to decode the ECM. In light of the progress made over the past decade, there are reasons to believe that the in-depth exploration of the matrisome is within reach and that we may soon witness the first translational application of ECM proteomics.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
20
|
Alonso-Nocelo M, Ruiz-Cañas L, Sancho P, Görgülü K, Alcalá S, Pedrero C, Vallespinos M, López-Gil JC, Ochando M, García-García E, David Trabulo SM, Martinelli P, Sánchez-Tomero P, Sánchez-Palomo C, Gonzalez-Santamaría P, Yuste L, Wörmann SM, Kabacaoğlu D, Earl J, Martin A, Salvador F, Valle S, Martin-Hijano L, Carrato A, Erkan M, García-Bermejo L, Hermann PC, Algül H, Moreno-Bueno G, Heeschen C, Portillo F, Cano A, Sainz B. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma. Gut 2023; 72:345-359. [PMID: 35428659 PMCID: PMC9872246 DOI: 10.1136/gutjnl-2021-325564] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.
Collapse
Affiliation(s)
- Marta Alonso-Nocelo
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Ruiz-Cañas
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patricia Sancho
- Translational Research Unit, Hospital Miguel Servet, Instituto de Investigacion Sanitaria Aragon, Zaragoza, Spain
| | - Kıvanç Görgülü
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Sonia Alcalá
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Coral Pedrero
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mireia Vallespinos
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Carlos López-Gil
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marina Ochando
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elena García-García
- Departamento de Anatomía Patológica, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Sara Maria David Trabulo
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paola Martinelli
- Institute for Cancer Research, Comprehensive Cancer Center, Medizinische Universitat Wien, Wien, Austria
| | - Patricia Sánchez-Tomero
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Sánchez-Palomo
- Departamento de Anatomía, Histologia y Neurociencia, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia Gonzalez-Santamaría
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Lourdes Yuste
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Sonja Maria Wörmann
- Ahmed Cancer Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Derya Kabacaoğlu
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Alberto Martin
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Fernando Salvador
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Sandra Valle
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Martin-Hijano
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
- Alcala University, Madrid, Spain
| | - Mert Erkan
- University Research Center for Translational Medicine - KUTTAM, Istanbul, Turkey
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area 4, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Gema Moreno-Bueno
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
- Fundación MD Anderson Internacional, Madrid, Spain
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Francisco Portillo
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Amparo Cano
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Bruno Sainz
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| |
Collapse
|
21
|
Bai L, Ge L, Zhang B, Zhang Y, Gu J, Liu L, Song Y. CtBP proteins transactivate matrix metalloproteinases and proinflammatory cytokines to mediate the pathogenesis of abdominal aortic aneurysm. Exp Cell Res 2022; 421:113386. [PMID: 36244410 DOI: 10.1016/j.yexcr.2022.113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disorder that occurs in the aorta. The inflammatory thickness of the aneurysm wall and perianeurysmal fibrosis are two main causes of AAA pathogenesis; however, the molecular mechanisms involved in these two processes are still unclear. We discovered that C-terminal binding protein 1 (CtBP1) and CtBP2 were overexpressed in the aortas of AAA-model mice created by treatment with CaCl2 and elastase. Molecular analyses revealed that the CtBP heterodimer couples with histone acetyltransferase p300 and transcription factor AP1 (activator protein 1) to transactivate a set of matrix metalloproteinases (MMPs, including MMP1a, 3, 7, 9, and 12) and proinflammatory cytokines, including interleukin-1 β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α). Knockdown of CtBPs or AP1 subunits or blockage of CtBPs with specific small molecule inhibitors significantly suppressed the in vitro expression of MMPs and proinflammatory cytokines. The administration of CtBP inhibitors in AAA-model mice also inhibited MMPs and proinflammatory cytokines, thereby improving the AAA outcome. Taken together, our results revealed a new regulatory mechanism involving MMPs and proinflammatory cytokines in the pathogenesis of AAA. This discovery suggests that targeting CtBPs may be a therapeutic strategy for AAA by attenuating the inflammatory response and matrix destruction.
Collapse
Affiliation(s)
- Lei Bai
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Lijuan Ge
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Bin Zhang
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yujing Zhang
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jiwei Gu
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Li Liu
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yanyan Song
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
22
|
Lim C, Pratama MY, Rivera C, Silvestro M, Tsao PS, Maegdefessel L, Gallagher KA, Maldonado T, Ramkhelawon B. Linking single nucleotide polymorphisms to signaling blueprints in abdominal aortic aneurysms. Sci Rep 2022; 12:20990. [PMID: 36470918 PMCID: PMC9722707 DOI: 10.1038/s41598-022-25144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
Abdominal aortic aneurysms (AAA) is a multifactorial complex disease with life-threatening consequences. While Genome-wide association studies (GWAS) have revealed several single nucleotide polymorphisms (SNPs) located in the genome of individuals with AAA, the link between SNPs with the associated pathological signals, the influence of risk factors on their distribution and their combined analysis is not fully understood. We integrated 86 AAA SNPs from GWAS and clinical cohorts from the literature to determine their phenotypical vulnerabilities and association with AAA risk factors. The SNPs were annotated using snpXplorer AnnotateMe tool to identify their chromosomal position, minor allele frequency, CADD (Combined Annotation Dependent Depletion), annotation-based pathogenicity score, variant consequence, and their associated gene. Gene enrichment analysis was performed using Gene Ontology and clustered using REVIGO. The plug-in GeneMANIA in Cytoscape was applied to identify network integration with associated genes and functions. 15 SNPs affecting 20 genes with a CADD score above ten were identified. AAA SNPs were predominantly located on chromosome 3 and 9. Stop-gained rs5516 SNP obtained high frequency in AAA and associated with proinflammatory and vascular remodeling phenotypes. SNPs presence positively correlated with hypertension, dyslipidemia and smoking history. GO showed that AAA SNPs and their associated genes could regulate lipid metabolism, extracellular matrix organization, smooth muscle cell proliferation, and oxidative stress, suggesting that part of these AAA traits could stem from genetic abnormalities. We show a library of inborn SNPs and associated genes that manifest in AAA. We uncover their pathological signaling trajectories that likely fuel AAA development.
Collapse
Affiliation(s)
- Chrysania Lim
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, USA
- Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Muhammad Yogi Pratama
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, USA
- Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
- Department of Cell Biology, New York University Langone Medical Center, New York, USA
| | - Cristobal Rivera
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, USA
- Department of Cell Biology, New York University Langone Medical Center, New York, USA
| | - Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, USA
- Department of Cell Biology, New York University Langone Medical Center, New York, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Thomas Maldonado
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, USA
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, USA.
- Department of Cell Biology, New York University Langone Medical Center, New York, USA.
| |
Collapse
|
23
|
Li Z, Zhang H, Baraghtha S, Mu J, Matniyaz Y, Jiang X, Wang K, Wang D, Xue YX. Short- and Mid-Term Survival Prediction in Patients with Acute Type A Aortic Dissection Undergoing Surgical Repair: Based on the Systemic Immune-Inflammation Index. J Inflamm Res 2022; 15:5785-5799. [PMID: 36238764 PMCID: PMC9553311 DOI: 10.2147/jir.s382573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose The postoperative survival of patients with acute type A aortic dissection (aTAAD) remains unsatisfactory. The current study developed an easy-to-use survival prediction model and calculator. Methods A total of 496 patients with aTAAD undergoing surgical repair were included in this study. The systemic immune-inflammation index (SII) and other clinical features were collected and subjected to logistic and Cox regression analyses. The survival prediction model was based on Cox regression analyses and exhibited as a nomogram. For convenience of use, the nomogram was further developed into calculator software. Results We demonstrated that a higher preoperative SII was associated with in-hospital death (OR: 4.116, p < 0.001) and a higher postoperative overall survival rate (HR: 2.467, p < 0.001) in aTAAD patients undergoing surgical repair. A survival prediction model and calculator based on SII and four other clinical features were developed. The overall C-index of the model was 0.743. The areas under the curves (AUCs) of the 1- and 3-month and 1- and 3-year survival probabilities were 0.73, 0.71, 0.71 and 0.72, respectively. The model also showed good calibration and clinical utility. Conclusion Preoperative SII is significantly associated with postoperative survival. Based on SII and other clinical features, we created the first easy-to-use prediction model and calculator for predicting the postoperative survival rate in aTAAD patients, which showed good prediction performance.
Collapse
Affiliation(s)
- Zeshi Li
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Nanjing, People’s Republic of China,Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China,Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - He Zhang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Nanjing, People’s Republic of China,Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China,Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Sulaiman Baraghtha
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China,International School, University of Mannheim, Mannheim, Baden-Württemberg, Federal Republic of Germany
| | - Jiabao Mu
- School of Data Science, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yusanjan Matniyaz
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xinyi Jiang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Nanjing, People’s Republic of China,Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China,Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Kuo Wang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China,Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of XuZhou Medical University, Nanjing, People’s Republic of China
| | - Dongjin Wang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Nanjing, People’s Republic of China,Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China,Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China,Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of XuZhou Medical University, Nanjing, People’s Republic of China
| | - Yun Xing Xue
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China,Correspondence: Yun Xing Xue; Dongjin Wang, Email ;
| |
Collapse
|
24
|
Morgan S, Lee LH, Halu A, Nicolau JS, Higashi H, Ha AH, Wen JR, Daugherty A, Libby P, Cameron SJ, Mix D, Aikawa E, Owens AP, Singh SA, Aikawa M. Identifying novel mechanisms of abdominal aortic aneurysm via unbiased proteomics and systems biology. Front Cardiovasc Med 2022; 9:889994. [PMID: 35990960 PMCID: PMC9382335 DOI: 10.3389/fcvm.2022.889994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA), characterized by a continued expansion of the aorta, leads to rupture if not surgically repaired. Mice aid the study of disease progression and its underlying mechanisms since sequential studies of aneurysm development are not feasible in humans. The present study used unbiased proteomics and systems biology to understand the molecular relationship between the mouse models of AAA and the human disease. Methods and results Aortic tissues of developing and established aneurysms produced by either angiotensin II (AngII) infusion in Apoe -/- and Ldlr -/- mice or intraluminal elastase incubation in wildtype C57BL/6J mice were examined. Aortas were dissected free and separated into eight anatomical segments for proteomics in comparison to their appropriate controls. High-dimensional proteome cluster analyses identified site-specific protein signatures in the suprarenal segment for AngII-infused mice (159 for Apoe -/- and 158 for Ldlr -/-) and the infrarenal segment for elastase-incubated mice (173). Network analysis revealed a predominance of inflammatory and coagulation factors in developing aneurysms, and a predominance of fibrosis-related pathways in established aneurysms for both models. To further substantiate our discovery platform, proteomics was performed on human infrarenal aortic aneurysm tissues as well as aortic tissue collected from age-matched controls. Protein processing and inflammatory pathways, particularly neutrophil-associated inflammation, dominated the proteome of the human aneurysm abdominal tissue. Aneurysmal tissue from both mouse and human had inflammation, coagulation, and protein processing signatures, but differed in the prevalence of neutrophil-associated pathways, and erythrocyte and oxidative stress-dominated networks in the human aneurysms. Conclusions Identifying changes unique to each mouse model will help to contextualize model-specific findings. Focusing on shared proteins between mouse experimental models or between mouse and human tissues may help to better understand the mechanisms for AAA and establish molecular bases for novel therapies.
Collapse
Affiliation(s)
- Stephanie Morgan
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lang Ho Lee
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Arda Halu
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jessica S. Nicolau
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Hideyuki Higashi
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna H. Ha
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jennifer R. Wen
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Peter Libby
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Scott J. Cameron
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Doran Mix
- Division of Vascular Surgery, Department of Surgery, University of Rochester School of Medicine, Rochester, NY, United States
| | - Elena Aikawa
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sasha A. Singh
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Li Z, Cong X, Kong W. Matricellular proteins: Potential biomarkers and mechanistic factors in aortic aneurysms. J Mol Cell Cardiol 2022; 169:41-56. [DOI: 10.1016/j.yjmcc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
26
|
Ledford BT, Akerman AW, Sun K, Gillis DC, Weiss JM, Vang J, Willcox S, Clemons TD, Sai H, Qiu R, Karver MR, Griffith JD, Tsihlis ND, Stupp SI, Ikonomidis JS, Kibbe MR. Peptide Amphiphile Supramolecular Nanofibers Designed to Target Abdominal Aortic Aneurysms. ACS NANO 2022; 16:7309-7322. [PMID: 35504018 PMCID: PMC9733406 DOI: 10.1021/acsnano.1c06258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a localized dilation of the aorta located in the abdomen that poses a severe risk of death when ruptured. The cause of AAA is not fully understood, but degradation of medial elastin due to elastolytic matrix metalloproteinases is a key step leading to aortic dilation. Current therapeutic interventions are limited to surgical repair to prevent catastrophic rupture. Here, we report the development of injectable supramolecular nanofibers using peptide amphiphile molecules designed to localize to AAA by targeting fragmented elastin, matrix metalloproteinase 2 (MMP-2), and membrane type 1 matrix metalloproteinase. We designed four targeting peptide sequences from X-ray crystallographic data and incorporated them into PA molecules via solid phase peptide synthesis. After coassembling targeted and diluent PAs at different molar ratios, we assessed their ability to form nanofibers using transmission electron microscopy and to localize to AAA in male and female Sprague-Dawley rats using light sheet fluorescence microscopy. We found that three formulations of the PA nanofibers were able to localize to AAA tissue, but the MMP-2 targeting PA substantially outperformed the other nanofibers. Additionally, we demonstrated that the MMP-2 targeting PA nanofibers had an optimal dose of 5 mg (∼12 mg/kg). Our results show that there was not a significant difference in targeting between male and female Sprague-Dawley rats. Given the ability of the MMP-2 targeting PA nanofiber to localize to AAA tissue, future studies will investigate potential diagnostic and targeted drug delivery applications for AAA.
Collapse
Affiliation(s)
- Benjamin T. Ledford
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adam W. Akerman
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kui Sun
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David C. Gillis
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenna M. Weiss
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Johnny Vang
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan D. Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Mark R. Karver
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nick D. Tsihlis
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John S. Ikonomidis
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melina R. Kibbe
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Kanaan R, Medlej-Hashim M, Jounblat R, Pilecki B, Sorensen GL. Microfibrillar-associated protein 4 in health and disease. Matrix Biol 2022; 111:1-25. [DOI: 10.1016/j.matbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
28
|
Zalghout S, Vo S, Arocas V, Jadoui S, Hamade E, Badran B, Oudar O, Charnaux N, Longrois D, Boulaftali Y, Bouton MC, Richard B. Syndecan-1 Is Overexpressed in Human Thoracic Aneurysm but Is Dispensable for the Disease Progression in a Mouse Model. Front Cardiovasc Med 2022; 9:839743. [PMID: 35548440 PMCID: PMC9082175 DOI: 10.3389/fcvm.2022.839743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosaminoglycans (GAGs) pooling has long been considered as one of the histopathological characteristics defining thoracic aortic aneurysm (TAA) together with smooth muscle cells (SMCs) apoptosis and elastin fibers degradation. However, little information is known about GAGs composition or their potential implication in TAA pathology. Syndecan-1 (SDC-1) is a heparan sulfate proteoglycan that is implicated in extracellular matrix (ECM) interaction and assembly, regulation of SMCs phenotype, and various aspects of inflammation in the vascular wall. Therefore, the aim of this study was to determine whether SDC-1 expression was regulated in human TAA and to analyze its role in a mouse model of this disease. In the current work, the regulation of SDC-1 was examined in human biopsies by RT-qPCR, ELISA, and immunohistochemistry. In addition, the role of SDC-1 was evaluated in descending TAA in vivo using a mouse model combining both aortic wall weakening and hypertension. Our results showed that both SDC-1 mRNA and protein are overexpressed in the media layer of human TAA specimens. RT-qPCR experiments revealed a 3.6-fold overexpression of SDC-1 mRNA (p = 0.0024) and ELISA assays showed that SDC-1 protein was increased 2.3 times in TAA samples compared with healthy counterparts (221 ± 24 vs. 96 ± 33 pg/mg of tissue, respectively, p = 0.0012). Immunofluorescence imaging provided evidence that SMCs are the major cell type expressing SDC-1 in TAA media. Similarly, in the mouse model used, SDC-1 expression was increased in TAA specimens compared to healthy samples. Although its protective role against abdominal aneurysm has been reported, we observed that SDC-1 was dispensable for TAA prevalence or rupture. In addition, SDC-1 deficiency did not alter the extent of aortic wall dilatation, elastin degradation, collagen deposition, or leukocyte recruitment in our TAA model. These findings suggest that SDC-1 could be a biomarker revealing TAA pathology. Future investigations could uncover the underlying mechanisms leading to regulation of SDC-1 expression in TAA.
Collapse
Affiliation(s)
- Sara Zalghout
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Villetaneuse, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Sophie Vo
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Véronique Arocas
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | - Soumaya Jadoui
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Olivier Oudar
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Nathalie Charnaux
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Dan Longrois
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | - Yacine Boulaftali
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | | | - Benjamin Richard
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
- *Correspondence: Benjamin Richard
| |
Collapse
|
29
|
Rastogi V, Stefens SJM, Houwaart J, Verhagen HJM, de Bruin JL, van der Pluijm I, Essers J. Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne) 2022; 9:814123. [PMID: 35492343 PMCID: PMC9051391 DOI: 10.3389/fmed.2022.814123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
Aortic aneurysms (AAs) are dilations of the aorta, that are often fatal upon rupture. Diagnostic radiological techniques such as ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT) are currently used in clinical practice for early diagnosis as well as clinical follow-up for preemptive surgery of AA and prevention of rupture. However, the contemporary imaging-based risk prediction of aneurysm enlargement or life-threatening aneurysm-rupture remains limited as these are restricted to visual parameters which fail to provide a personalized risk assessment. Therefore, new insights into early diagnostic approaches to detect AA and therefore to prevent aneurysm-rupture are crucial. Multiple new techniques are developed to obtain a more accurate understanding of the biological processes and pathological alterations at a (micro)structural and molecular level of aortic degeneration. Advanced anatomical imaging combined with molecular imaging, such as molecular MRI, or positron emission tomography (PET)/CT provides novel diagnostic approaches for in vivo visualization of targeted biomarkers. This will aid in the understanding of aortic aneurysm disease pathogenesis and insight into the pathways involved, and will thus facilitate early diagnostic analysis of aneurysmal disease. In this study, we reviewed these molecular imaging modalities and their association with aneurysm growth and/or rupture risk and their limitations. Furthermore, we outline recent pre-clinical and clinical developments in molecular imaging of AA and provide future perspectives based on the advancements made within the field. Within the vastness of pre-clinical markers that have been studied in mice, molecular imaging targets such as elastin/collagen, albumin, matrix metalloproteinases and immune cells demonstrate promising results regarding rupture risk assessment within the pre-clinical setting. Subsequently, these markers hold potential as a future diagnosticum of clinical AA assessment. However currently, clinical translation of molecular imaging is still at the onset. Future human trials are required to assess the effectivity of potentially viable molecular markers with various imaging modalities for clinical rupture risk assessment.
Collapse
Affiliation(s)
- Vinamr Rastogi
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Houwaart
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hence J. M. Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jorg L. de Bruin
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Jeroen Essers
| |
Collapse
|
30
|
Liu DB, He YF, Chen GJ, Huang H, Xie XL, Lin WJ, Peng ZJ. Construction of a circRNA-Mediated ceRNA Network Reveals Novel Biomarkers for Aortic Dissection. Int J Gen Med 2022; 15:3951-3964. [PMID: 35437351 PMCID: PMC9013255 DOI: 10.2147/ijgm.s355906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/18/2022] [Indexed: 12/26/2022] Open
Abstract
Background Aortic dissection (AD) is a rare and lethal disorder with its genetic basis remains largely unknown. Many studies have confirmed that circRNAs play important roles in various physiological and pathological processes. However, the roles of circRNAs in AD are still unclear and need further investigation. The present study aimed to elucidate the underlying molecular mechanisms of circRNAs regulation in AD based on the circRNA-associated competing endogenous RNA (ceRNA) network. Methods Expression profiles of circRNAs (GSE97745), miRNAs (GSE92427), and mRNAs (GSE52093) were downloaded from Gene Expression Omnibus (GEO) databases, and the differentially expressed RNAs (DERNAs) were subsequently identified by bioinformatics analysis. CircRNA–miRNA–mRNA ceRNA network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to predict the potential functions of circRNA-associated ceRNA network. RNA was isolated from human arterial blood samples after which qRT-PCR was performed to confirm the DERNAs. Results We identified 14 (5 up-regulated and 9 down-regulated) differentially expressed circRNAs (DEcircRNAs), 17 (8 up-regulated and 9 down-regulated) differentially expressed miRNAs (DEmiRNAs) and 527 (297 up-regulated and 230 down-regulated) differentially expressed mRNAs (DEmRNAs) (adjusted P-value <0.05 and | log2FC | > 1.0). KEGG pathway analysis indicated that DEmRNAs were related to focal adhesion and extracellular matrix receptor interaction signaling pathways. Simultaneously, the present study constructed a ceRNA network based on 1 circRNAs (hsa_circRNA_082317), 1 miRNAs (hsa-miR-149-3p) and 10 mRNAs (MLEC, ENTPD7, SLC16A3, SLC7A8, TBC1D16, PAQR4, MAPK13, PIK3R2, ITGA5, SERPINA1). qRT-PCR demonstrated that hsa_circRNA_082317 and ITGA5 were significantly up-regulated, and hsa-miR-149-3p was dramatically down-regulated in AD (n = 3). Conclusion This is the first study to demonstrate the circRNA-associated ceRNA network is altered in AD, implying that circRNAs may play important roles in regulating the onset and progression and thus may serve as potential biomarkers for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- De-Bin Liu
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - You-Fu He
- Department of Cardiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, People’s Republic of China
- Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, Guizhou Province, People’s Republic of China
- Medical College, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Gui-Jian Chen
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Hua Huang
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Xu-Ling Xie
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Wan-Jun Lin
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Zhi-Jian Peng
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
- Correspondence: Zhi-Jian Peng, Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, 515000, Guangdong Province, People’s Republic of China, Tel +86 18316056382, Fax +86-754 88983534, Email
| |
Collapse
|
31
|
Hossack M, Fisher R, Torella F, Madine J, Field M, Akhtar R. Micromechanical and Ultrastructural Properties of Abdominal Aortic Aneurysms. Artery Res 2022. [DOI: 10.1007/s44200-022-00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AbstractAbdominal aortic aneurysms are a common condition of uncertain pathogenesis that can rupture if left untreated. Current recommended thresholds for planned repair are empirical and based entirely on diameter. It has been observed that some aneurysms rupture before reaching the threshold for repair whilst other larger aneurysms do not rupture. It is likely that geometry is not the only factor influencing rupture risk. Biomechanical indices aiming to improve and personalise rupture risk prediction require, amongst other things, knowledge of the material properties of the tissue and realistic constitutive models. These depend on the composition and organisation of the vessel wall which has been shown to undergo drastic changes with aneurysmal degeneration, with loss of elastin, smooth muscle cells, and an accumulation of isotropically arranged collagen. Most aneurysms are lined with intraluminal thrombus, which has an uncertain effect on the underlying vessel wall, with some authors demonstrating a reduction in wall stress and others a reduction in wall strength. The majority of studies investigating biomechanical properties of ex vivo abdominal aortic aneurysm tissues have used low-resolution techniques, such as tensile testing, able to measure the global material properties at the macroscale. High-resolution engineering techniques such as nanoindentation and atomic force microscopy have been modified for use in soft biological tissues and applied to vascular tissues with promising results. These techniques have the potential to advance the understanding and improve the management of abdominal aortic aneurysmal disease.
Collapse
|
32
|
Berman AG, Romary DJ, Kerr KE, Gorazd NE, Wigand MM, Patnaik SS, Finol EA, Cox AD, Goergen CJ. Experimental aortic aneurysm severity and growth depend on topical elastase concentration and lysyl oxidase inhibition. Sci Rep 2022; 12:99. [PMID: 34997075 PMCID: PMC8742076 DOI: 10.1038/s41598-021-04089-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) formation and expansion is highly complex and multifactorial, and the improvement of animal models is an important step to enhance our understanding of AAA pathophysiology. In this study, we explore our ability to influence aneurysm growth in a topical elastase plus β-Aminopropionitrile (BAPN) mouse model by varying elastase concentration and by altering the cross-linking capability of the tissue. To do so, we assess both chronic and acute effects of elastase concentration using volumetric ultrasound. Our results suggest that the applied elastase concentration affects initial elastin degradation, as well as long-term vessel expansion. Additionally, we assessed the effects of BAPN by (1) removing it to restore the cross-linking capability of tissue after aneurysm formation and (2) adding it to animals with stable aneurysms to interrupt cross-linking. These results demonstrate that, even after aneurysm formation, lysyl oxidase inhibition remains necessary for continued expansion. Removing BAPN reduces the aneurysm growth rate to near zero, resulting in a stable aneurysm. In contrast, adding BAPN causes a stable aneurysm to expand. Altogether, these results demonstrate the ability of elastase concentration and BAPN to modulate aneurysm growth rate and severity. The findings open several new areas of investigation in a murine model that mimics many aspects of human AAA.
Collapse
Affiliation(s)
- Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Daniel J Romary
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Katherine E Kerr
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Natalyn E Gorazd
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Morgan M Wigand
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Sourav S Patnaik
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ender A Finol
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
33
|
Nagel F, Schaefer AK, Gonçalves IF, Acar E, Oszwald A, Kaiser P, Kain R, Trescher K, Eilenberg WH, Brostjan C, Santer D, Kiss A, Podesser BK. OUP accepted manuscript. Interact Cardiovasc Thorac Surg 2022; 34:841-848. [PMID: 35137102 PMCID: PMC9070497 DOI: 10.1093/icvts/ivac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Felix Nagel
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, University Hospital St. Pölten, Karl Landsteiner University, St. Pölten, Austria
| | - Anne-Kristin Schaefer
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Inês Fonseca Gonçalves
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Andre Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Philipp Kaiser
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Karola Trescher
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, University Hospital St. Pölten, Karl Landsteiner University, St. Pölten, Austria
| | - Wolf H Eilenberg
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - David Santer
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, University Hospital Basel, Basel, Switzerland
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, University Hospital St. Pölten, Karl Landsteiner University, St. Pölten, Austria
- Corresponding author. Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Vienna, Austria. Tel: +43-140400-52210; fax: +43-140400-52290; e-mail: (B.K. Podesser)
| |
Collapse
|
34
|
Wang S, Yuan Q, Zhao W, Zhou W. Circular RNA RBM33 contributes to extracellular matrix degradation via miR-4268/EPHB2 axis in abdominal aortic aneurysm. PeerJ 2021; 9:e12232. [PMID: 34820156 PMCID: PMC8603816 DOI: 10.7717/peerj.12232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a complex vascular disease involving expansion of the abdominal aorta. Extracellular matrix (ECM) degradation is crucial to AAA pathogenesis, however, the specific molecular mechanism remains unclear. This study aimed to investigate differentially expressed circular RNAs (DEcircRNAs) involved in ECM degradation of AAA. Methods Transcriptome sequencing was used to analyze the DEcircRNAs between the AAA tissues and normal tissues. The expression of circRNAs in tissues and cells was validated using quantitative reverse transcription PCR (RT-qPCR). Overexpression of circRNAs in vascular smooth muscle cells (VSMCs) treated with angiotensin II (Ang II) was employed to explore its effect on ECM degradation of AAA. Bioinformatic technology, luciferase reporter gene assay, RT-qPCR, and rescue experiment were employed to evaluate the regulatory mechanism of circRNA. Results We identified 65 DEcircRNAs in AAA tissues compared with normal abdominal aortic tissues, including 30 up-regulated and 35 down-regulated circRNAs, which were mainly involved in inflammation and ECM-related functions and pathways. Moreover, circRBM33 was significantly increased in AAA tissues and Ang II-induced VSMCs compared with control samples. Overexpression of circRBM33 increased the expression of ECM-related molecule matrix metalloproteinase-2 and reduced the tissue inhibitor of matrix metalloproteinases-1 expression. Mechanistically, miR-4268 targeted binding to circRBM33 and inhibited the luciferase activity of circRBM33. Overexpression of circRBM33 induced the expression of EPH receptor B2 (EPHB2), and this effect was countered by miR-4268 mimics. Conclusions Overall, our data suggest that circRBM33 might be involved in AAA progression by regulating ECM degradation via the miR-4268/EPHB2 axis.
Collapse
Affiliation(s)
- Shizhi Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingwen Yuan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenpeng Zhao
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
36
|
Steffensen LB, Iversen XES, Hansen RS, Jensen PS, Thorsen ASF, Lindholt JS, Riber LPS, Beck HC, Rasmussen LM. Basement membrane proteins in various arterial beds from individuals with and without type 2 diabetes mellitus: a proteome study. Cardiovasc Diabetol 2021; 20:182. [PMID: 34496837 PMCID: PMC8428091 DOI: 10.1186/s12933-021-01375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Basement membrane (BM) accumulation is a hallmark of micro-vessel disease in diabetes mellitus (DM). We previously reported marked upregulation of BM components in internal thoracic arteries (ITAs) from type 2 DM (T2DM) patients by mass spectrometry. Here, we first sought to determine if BM accumulation is a common feature of different arteries in T2DM, and second, to identify other effects of T2DM on the arterial proteome. METHODS Human arterial samples collected during heart and vascular surgery from well-characterized patients and stored in the Odense Artery Biobank were analysed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We included ascending thoracic aortas (ATA) (n = 10 (type 2 DM, T2DM) and n = 10 (non-DM)); laser capture micro-dissected plaque- and media compartments from carotid plaques (n = 10 (T2DM) and n = 9 (non-DM)); and media- and adventitia compartments from ITAs (n = 9 (T2DM) and n = 7 (non-DM)). RESULTS We first extended our previous finding of BM accumulation in arteries from T2DM patients, as 7 of 12 pre-defined BM proteins were significantly upregulated in bulk ATAs consisting of > 90% media. Although less pronounced, BM components tended to be upregulated in the media of ITAs from T2DM patients, but not in the neighbouring adventitia. Overall, we did not detect effects on BM proteins in carotid plaques or in the plaque-associated media. Instead, complement factors, an RNA-binding protein and fibrinogens appeared to be regulated in these tissues from T2DM patients. CONCLUSION Our results suggest that accumulation of BM proteins is a general phenomenon in the medial layer of non-atherosclerotic arteries in patients with T2DM. Moreover, we identify additional T2DM-associated effects on the arterial proteome, which requires validation in future studies.
Collapse
Affiliation(s)
- Lasse Bach Steffensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Xenia Emilie Sinding Iversen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Rasmus Søgaard Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Pia Søndergaard Jensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Anne-Sofie Faarvang Thorsen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Jes Sanddal Lindholt
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Lars Peter Schødt Riber
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark. .,Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
37
|
Zhong A, Ding N, Zhou Y, Yang G, Peng Z, Zhang H, Chai X. Identification of Hub Genes Associated with the Pathogenesis of Intracranial Aneurysm via Integrated Bioinformatics Analysis. Int J Gen Med 2021; 14:4039-4050. [PMID: 34354366 PMCID: PMC8331219 DOI: 10.2147/ijgm.s320396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND At present, the pathogenesis of intracranial aneurysms (IA) remains unclear, which significantly hinders the development of novel strategies for the clinical treatment. In this study, bioinformatics methods were used to identify the potential hub genes and pathways associated with the pathogenesis of IA. METHODS The gene expression datasets of patients with intracranial aneurysm were downloaded from the Gene Expression Database (GEO), and the different data sets were integrated by the robust rank aggregation (RRA) method to identify the differentially expressed genes between patients with intracranial aneurysm and the controls. The functional enrichment analyses of the significant differentially expressed genes (DEGs) were performed and the protein-protein interaction (PPI) network was constructed; thereafter, the hub genes were screened by cytoHubba plug-in of Cytoscape, and finally sequencing dataset GSE122897 was used to verify the hub genes. RESULTS The GSE15629, GSE75436, GSE26969, and GSE6551 expression profiles have been included in this study, including 34 intracranial aneurysm samples and 26 control samples. The four datasets obtained 136 significant DEGs (45 up-regulated, 91 down-regulated). Enrichment analysis showed that the extracellular matrix structural constituent and the ECM-receptor interaction were closely related to the occurrence of IA. It was finally determined that eight hub genes associated with the development of IA, including VCAN, COL1A1, COL11A1, COL5A1, COL5A2, POSTN, THBS2, and CDH2. CONCLUSION The discovery of potential hub genes and pathways could enhance the understanding of the molecular mechanisms associated with the development of IA. These hub genes may be potential therapeutic targets for the management and new biomarker for the diagnosis of IA.
Collapse
Affiliation(s)
- Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ning Ding
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhenyu Peng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongliang Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
38
|
Garcia-Arguinzonis M, Diaz-Riera E, Peña E, Escate R, Juan-Babot O, Mata P, Badimon L, Padro T. Alternative C3 Complement System: Lipids and Atherosclerosis. Int J Mol Sci 2021; 22:ijms22105122. [PMID: 34066088 PMCID: PMC8151937 DOI: 10.3390/ijms22105122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is increasingly associated with inflammation, a phenotype that persists despite treatment with lipid lowering therapies. The alternative C3 complement system (C3), as a key inflammatory mediator, seems to be involved in the atherosclerotic process; however, the relationship between C3 and lipids during plaque progression remains unknown. The aim of the study was to investigate by a systems biology approach the role of C3 in relation to lipoprotein levels during atherosclerosis (AT) progression and to gain a better understanding on the effects of C3 products on the phenotype and function of human lipid-loaded vascular smooth muscle cells (VSMCs). By mass spectrometry and differential proteomics, we found the extracellular matrix (ECM) of human aortas to be enriched in active components of the C3 complement system, with a significantly different proteomic signature in AT segments. Thus, C3 products were more abundant in AT-ECM than in macroscopically normal segments. Furthermore, circulating C3 levels were significantly elevated in FH patients with subclinical coronary AT, evidenced by computed tomographic angiography. However, no correlation was identified between circulating C3 levels and the increase in plaque burden, indicating a local regulation of the C3 in AT arteries. In cell culture studies of human VSMCs, we evidenced the expression of C3, C3aR (anaphylatoxin receptor) and the integrin αMβ2 receptor for C3b/iC3b (RT-PCR and Western blot). C3mRNA was up-regulated in lipid-loaded human VSMCs, and C3 protein significantly increased in cell culture supernatants, indicating that the C3 products in the AT-ECM have a local vessel-wall niche. Interestingly, C3a and iC3b (C3 active fragments) have functional effects on VSMCs, significantly reversing the inhibition of VSMC migration induced by aggregated LDL and stimulating cell spreading, organization of F-actin stress fibers and attachment during the adhesion of lipid-loaded human VSMCs. This study, by using a systems biology approach, identified molecular processes involving the C3 complement system in vascular remodeling and in the progression of advanced human atherosclerotic lesions.
Collapse
MESH Headings
- Adult
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Adhesion
- Cells, Cultured
- Complement C3/metabolism
- Female
- Humans
- Hyperlipoproteinemia Type II/immunology
- Hyperlipoproteinemia Type II/metabolism
- Hyperlipoproteinemia Type II/pathology
- Male
- Middle Aged
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteome/analysis
- Proteome/metabolism
- Vascular Remodeling
- Wound Healing
- Young Adult
Collapse
Affiliation(s)
- Maisa Garcia-Arguinzonis
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Elisa Diaz-Riera
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Esther Peña
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Escate
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oriol Juan-Babot
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, 28010 Madrid, Spain;
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935-565-886; Fax: +34-935-565-559
| |
Collapse
|
39
|
Muniappan L, Okuyama M, Javidan A, Thiagarajan D, Jiang W, Moorleghen JJ, Yang L, Balakrishnan A, Howatt DA, Uchida HA, Saido TC, Subramanian V. Inducible Depletion of Calpain-2 Mitigates Abdominal Aortic Aneurysm in Mice. Arterioscler Thromb Vasc Biol 2021; 41:1694-1709. [PMID: 33761765 PMCID: PMC8062307 DOI: 10.1161/atvbaha.120.315546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Angiotensin II
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Rupture/chemically induced
- Aortic Rupture/enzymology
- Aortic Rupture/genetics
- Aortic Rupture/prevention & control
- Calpain/deficiency
- Calpain/genetics
- Calpain/metabolism
- Cells, Cultured
- Cytoskeleton/enzymology
- Cytoskeleton/pathology
- Dilatation, Pathologic
- Disease Models, Animal
- Extracellular Matrix/enzymology
- Extracellular Matrix/pathology
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Rats
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Latha Muniappan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Michihiro Okuyama
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Devi Thiagarajan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | - Lihua Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Haruhito A. Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceuticals Sciences, Okayama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
40
|
Wu J, Wang W, Chen Z, Xu F, Zheng Y. Proteomics applications in biomarker discovery and pathogenesis for abdominal aortic aneurysm. Expert Rev Proteomics 2021; 18:305-314. [PMID: 33840337 DOI: 10.1080/14789450.2021.1916473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Abdominal aortic aneurysm (AAA) is a common, complex, and life-threatening disease. Currently, the pathogenesis of AAA is not well understood. No biomarkers or specific drugs are available for AAA in clinical applications. Proteomics is a powerful tool in biomarker discovery, exploration of pathogenesis, and drug target identification.Areas covered: We review the application of mass spectrometry-based proteome analysis in AAA patients within the last ten years. Differentially expressed proteins associated with AAA were identified in multiple sample sources, including vascular tissue, intraluminal thrombus, tissue secretome, blood, and cells. Some potential disease biomarkers, pathogenic mechanisms, or therapeutic targets for AAA were discovered using proteome analysis. The challenges and prospects of proteomics applied to AAA are also discussed.Expert opinion: Since most of the previous proteomic studies used relatively small sample sizes, some promising biomarkers need to be validated in multicenter cohorts to accelerate their clinical application. With the rapid development of mass spectrometry technology, modification-specific proteomics and multi-omics research in the future will enhance our understanding of the pathogenesis of AAA and promote biomarker discovery and drug development for clinical translation.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoran Chen
- Department of Geriatrics, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fang Xu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Ghadie NM, St-Pierre JP, Labrosse MR. The Contribution of Glycosaminoglycans/Proteoglycans to Aortic Mechanics in Health and Disease: A Critical Review. IEEE Trans Biomed Eng 2021; 68:3491-3500. [PMID: 33872141 DOI: 10.1109/tbme.2021.3074053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While elastin and collagen have received a lot of attention as major contributors to aortic biomechanics, glycosaminoglycans (GAGs) and proteoglycans (PGs) recently emerged as additional key players whose roles must be better elucidated if one hopes to predict aortic ruptures caused by aneurysms and dissections more reliably. GAGs are highly negatively charged polysaccharide molecules that exist in the extracellular matrix (ECM) of the arterial wall. In this critical review, we summarize the current understanding of the contributions of GAGs/PGs to the biomechanics of the normal aortic wall, as well as in the case of aortic diseases such as aneurysms and dissections. Specifically, we describe the fundamental swelling behavior of GAGs/PGs and discuss their contributions to residual stresses and aortic stiffness, thereby highlighting the importance of taking these polyanionic molecules into account in mathematical and numerical models of the aorta. We suggest specific lines of investigation to further the acquisition of experimental data to complement simulations and solidify our current understanding. We underscore different potential roles of GAGs/PGs in thoracic aortic aneurysm (TAAD) and abdominal aortic aneurysm (AAA). Namely, we report findings according to which the accumulation of GAGs/PGs in TAAD causes stress concentrations which may be sufficient to initiate and propagate delamination. On the other hand, there seems to be no clear indication of a relationship between the marked reduction in GAG/PG content and the stiffening and weakening of the aortic wall in AAA.
Collapse
|
42
|
Adams L, Brangsch J, Hamm B, Makowski MR, Keller S. Targeting the Extracellular Matrix in Abdominal Aortic Aneurysms Using Molecular Imaging Insights. Int J Mol Sci 2021; 22:ijms22052685. [PMID: 33799971 PMCID: PMC7962044 DOI: 10.3390/ijms22052685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
This review outlines recent preclinical and clinical advances in molecular imaging of abdominal aortic aneurysms (AAA) with a focus on molecular magnetic resonance imaging (MRI) of the extracellular matrix (ECM). In addition, developments in pharmacologic treatment of AAA targeting the ECM will be discussed and results from animal studies will be contrasted with clinical trials. Abdominal aortic aneurysm (AAA) is an often fatal disease without non-invasive pharmacologic treatment options. The ECM, with collagen type I and elastin as major components, is the key structural component of the aortic wall and is recognized as a target tissue for both initiation and the progression of AAA. Molecular imaging allows in vivo measurement and characterization of biological processes at the cellular and molecular level and sets forth to visualize molecular abnormalities at an early stage of disease, facilitating novel diagnostic and therapeutic pathways. By providing surrogate criteria for the in vivo evaluation of the effects of pharmacological therapies, molecular imaging techniques targeting the ECM can facilitate pharmacological drug development. In addition, molecular targets can also be used in theranostic approaches that have the potential for timely diagnosis and concurrent medical therapy. Recent successes in preclinical studies suggest future opportunities for clinical translation. However, further clinical studies are needed to validate the most promising molecular targets for human application.
Collapse
Affiliation(s)
- Lisa Adams
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-627-376
| | - Julia Brangsch
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| | - Bernd Hamm
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| | - Marcus R. Makowski
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sarah Keller
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| |
Collapse
|
43
|
Wang D, Rabhi N, Yet SF, Farmer SR, Layne MD. Aortic carboxypeptidase-like protein regulates vascular adventitial progenitor and fibroblast differentiation through myocardin related transcription factor A. Sci Rep 2021; 11:3948. [PMID: 33597582 PMCID: PMC7889889 DOI: 10.1038/s41598-021-82941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The vascular adventitia contains numerous cell types including fibroblasts, adipocytes, inflammatory cells, and progenitors embedded within a complex extracellular matrix (ECM) network. In response to vascular injury, adventitial progenitors and fibroblasts become activated and exhibit increased proliferative capacity and differentiate into contractile cells that remodel the ECM. These processes can lead to vascular fibrosis and disease progression. Our previous work established that the ECM protein aortic carboxypeptidase-like protein (ACLP) promotes fibrotic remodeling in the lung and is activated by vascular injury. It is currently unknown what controls vascular adventitial cell differentiation and if ACLP has a role in this process. Using purified mouse aortic adventitia Sca1+ progenitors, ACLP repressed stem cell markers (CD34, KLF4) and upregulated smooth muscle actin (SMA) and collagen I expression. ACLP enhanced myocardin-related transcription factor A (MRTFA) activity in adventitial cells by promoting MRTFA nuclear translocation. Sca1 cells from MRTFA-null mice exhibited reduced SMA and collagen expression induced by ACLP, indicating Sca1 cell differentiation is regulated in part by the ACLP-MRTFA axis. We determined that ACLP induced vessel contraction and increased adventitial collagen in an explant model. Collectively these studies identified ACLP as a mediator of adventitial cellular differentiation, which may result in pathological vessel remodeling.
Collapse
Affiliation(s)
- Dahai Wang
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA.,Department of Hematology, Boston Children's Hospital, Boston, MA, USA
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, 02118, USA.
| |
Collapse
|
44
|
DAPT, a potent Notch inhibitor regresses actively growing abdominal aortic aneurysm via divergent pathways. Clin Sci (Lond) 2020; 134:1555-1572. [PMID: 32490531 DOI: 10.1042/cs20200456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a localized pathological dilation of the aorta exceeding the normal diameter (∼20 mm) by more than 50% of its original size (≥30 mm), accounting for approximately 150000-200000 deaths worldwide per year. We previously reported that Notch inhibition does not decrease the size of pre-established AAA at late stage of the disease. Here, we examined whether a potent pharmacologic inhibitor of Notch signaling (DAPT (N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester)), regresses an actively growing AAA. In a mouse model of an aneurysm (Apoe-/- mice; n=44); DAPT (n=17) or vehicle (n=17) was randomly administered at day 14 of angiotensin II (AngII; 1 µg/min/kg), three times a week and mice were killed on day 42. Progressive increase in aortic stiffness and maximal intraluminal diameter (MILD) was observed in the AngII + vehicle group, which was significantly prevented by DAPT (P<0.01). The regression of aneurysm with DAPT was associated with reduced F4/80+Cd68+ (cluster of differentiation 68) inflammatory macrophages. DAPT improved structural integrity of aorta by reducing collagen fibrils abnormality and restoring their diameter. Mechanistically, C-C chemokine receptor type 7 (Ccr7)+F4/80- dendritic cells (DCs), implicated in the regression of aneurysm, were increased in the aorta of DAPT-treated mice. In the macrophages stimulated with AngII or lipopolysaccharide (LPS), DAPT reverted the expression of pro-inflammatory genes Il6 and Il12 back to baseline within 6 h compared with vehicle (P<0.05). DAPT also significantly increased the expression of anti-inflammatory genes, including c-Myc, Egr2, and Arg1 at 12-24 h in the LPS-stimulated macrophages (P<0.05). Overall, these regressive effects of Notch signaling inhibitor emphasize its therapeutic implications to prevent the progression of active AAAs.
Collapse
|
45
|
Adams LC, Brangsch J, Reimann C, Kaufmann JO, Buchholz R, Karst U, Botnar RM, Hamm B, Makowski MR. Simultaneous molecular MRI of extracellular matrix collagen and inflammatory activity to predict abdominal aortic aneurysm rupture. Sci Rep 2020; 10:15206. [PMID: 32939002 PMCID: PMC7494914 DOI: 10.1038/s41598-020-71817-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with an up to 80% mortality in case of rupture. Current biomarkers fail to account for size-independent risk of rupture. By combining the information of different molecular probes, multi-target molecular MRI holds the potential to enable individual characterization of AAA. In this experimental study, we aimed to examine the feasibility of simultaneous imaging of extracellular collagen and inflammation for size-independent prediction of risk of rupture in murine AAA. The study design consisted of: (1) A outcome-based longitudinal study with imaging performed once after one week with follow-up and death as the end-point for assessment of rupture risk. (2) A week-by-week study for the characterization of AAA development with imaging after 1, 2, 3 and 4 weeks. For both studies, the animals were administered a type 1 collagen-targeted gadolinium-based probe (surrogate marker for extracellular matrix (ECM) remodeling) and an iron oxide-based probe (surrogate marker for inflammatory activity), in one imaging session. In vivo measurements of collagen and iron oxide probes showed a significant correlation with ex vivo histology (p < 0.001) and also corresponded well to inductively-coupled plasma-mass spectrometry and laser-ablation inductively-coupled plasma mass spectrometry. Combined evaluation of collagen-related ECM remodeling and inflammatory activity was the most accurate predictor for AAA rupture (sensitivity 80%, specificity 100%, area under the curve 0.85), being superior to information from the individual probes alone. Our study supports the feasibility of a simultaneous assessment of collagen-related extracellular matrix remodeling and inflammatory activity in a murine model of AAA.
Collapse
Affiliation(s)
- Lisa C Adams
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Julia Brangsch
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, Building 21, 14163, Berlin, Germany
| | - Carolin Reimann
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, Building 21, 14163, Berlin, Germany
| | - Jan O Kaufmann
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Rene M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital Westminster Bridge Road, London, SE1 7EH, UK.,Wellcome Trust/EPSRC Centre for Medical Engineering, King's College London, London, UK.,BHF Centre of Excellence, King's College London, Denmark Hill Campus, 125 Coldharbour Lane, London, SE5 9NU, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernd Hamm
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus R Makowski
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital Westminster Bridge Road, London, SE1 7EH, UK.,Wellcome Trust/EPSRC Centre for Medical Engineering, King's College London, London, UK.,School of Medicine, Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
46
|
Lindquist Liljeqvist M, Hultgren R, Bergman O, Villard C, Kronqvist M, Eriksson P, Roy J. Tunica-Specific Transcriptome of Abdominal Aortic Aneurysm and the Effect of Intraluminal Thrombus, Smoking, and Diameter Growth Rate. Arterioscler Thromb Vasc Biol 2020; 40:2700-2713. [PMID: 32907367 DOI: 10.1161/atvbaha.120.314264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE There is no medical treatment to prevent abdominal aortic aneurysm (AAA) growth and rupture, both of which are linked to smoking. Our objective was to map the tunica-specific pathophysiology of AAA with consideration of the intraluminal thrombus, age, and sex, and to subsequently identify which mechanisms were linked to smoking and diameter growth rate. Approach and Results: Microarray analyses were performed on 246 samples from 76 AAA patients and 13 controls. In media and adventitia, there were 5889 and 2701 differentially expressed genes, respectively. Gene sets related to adaptive and innate immunity were upregulated in both tunicas. Media-specific gene sets included increased matrix disassembly and angiogenesis, as well as decreased muscle cell development, contraction, and differentiation. Genes implicated in previous genome-wide association studies were dysregulated in media. The intraluminal thrombus had a pro-proteolytic and proinflammatory effect on the underlying media. Active smoking resulted in increased inflammation, oxidative stress, and angiogenesis in all tissues and enriched lipid metabolism in adventitia. Processes enriched with active smoking in control aortas overlapped to a high extent with those differentially expressed between AAAs and controls. The AAA diameter growth rate (n=24) correlated with T- and B-cell expression in media, as well as lipid-related processes in the adventitia. CONCLUSIONS This tunica-specific analysis of gene expression in a large study enabled the detection of features not previously described in AAA disease. Smoking was associated with increased expression of aneurysm-related processes, of which adaptive immunity and lipid metabolism correlated with growth rate.
Collapse
Affiliation(s)
- Moritz Lindquist Liljeqvist
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden (R.H., J.R.)
| | - Otto Bergman
- Department of Medicine (O.B., P.E.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Villard
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Department of Medicine (O.B., P.E.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joy Roy
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden (R.H., J.R.)
| |
Collapse
|
47
|
Reilly MJ, Larsen NK, Agrawal S, Thankam FG, Agrawal DK, Fitzgibbons RJ. Selected conditions associated with an increased incidence of incisional hernia: A review of molecular biology. Am J Surg 2020; 221:942-949. [PMID: 32977928 DOI: 10.1016/j.amjsurg.2020.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Incisional hernias (IH) following a laparotomy, on average, occur in 10-20% of patients, however, little is known about its molecular basis. Thus, a better understanding of the molecular mechanisms could lead to the identification of key target(s) to intervene pre-and post-operatively. METHODS We examined the current literature describing the molecular mechanisms of IH and overlap these factors with smoking, abdominal aortic aneurysm, obesity, diabetes mellitus, and diverticulitis. RESULTS The expression levels of collagen I and III, matrix metalloproteinases, and tissue inhibitors of metalloproteases are abnormal in the extracellular matrix (ECM) of IH patients and ECM disorganization has an overlap with these comorbid conditions. CONCLUSION Understanding the pathophysiology of IH development and associated risk factors will allow physicians to identify patients that may be at increased risk for IH and to possibly act preemptively to decrease the incidence of IH.
Collapse
Affiliation(s)
| | | | - Swati Agrawal
- Creighton University School of Medicine, Omaha, NE, 68178, USA; Department of Surgery, Creighton University Medical Center, Omaha, NE, 68131, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Robert J Fitzgibbons
- Department of Surgery, Creighton University Medical Center, Omaha, NE, 68131, USA.
| |
Collapse
|
48
|
Cheng M, Yang Y, Xin H, Li M, Zong T, He X, Yu T, Xin H. Non-coding RNAs in aortic dissection: From biomarkers to therapeutic targets. J Cell Mol Med 2020; 24:11622-11637. [PMID: 32885591 PMCID: PMC7578866 DOI: 10.1111/jcmm.15802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Aortic dissection (AD) is the rupture of the aortic intima, causing the blood in the cavity to enter the middle of the arterial wall. Without urgent and proper treatment, the mortality rate increases to 50% within 48 hours. Most patients present with acute onset of symptoms, including sudden severe pain and complex and variable clinical manifestations, which can be easily misdiagnosed. Despite this, the molecular mechanisms underlying AD are still unknown. Recently, non‐coding RNAs have emerged as novel regulators of gene expression. Previous studies have proven that ncRNAs can regulate several cardiovascular diseases; therefore, their potential as clinical biomarkers and novel therapeutic targets for AD has aroused widespread interest. To date, several studies have reported that microRNAs are crucially involved in AD progression. Additionally, several long non‐coding RNAs and circular RNAs have been found to be differentially expressed in AD samples, suggesting their potential roles in vascular physiology and disease. In this review, we discuss the functions of ncRNAs in AD pathophysiology and highlight their potential as biomarkers and therapeutic targets for AD. Meanwhile, we present the animal models previously used for AD research, as well as the specific methods for constructing mouse or rat AD models.
Collapse
Affiliation(s)
- Mengdie Cheng
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hai Xin
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqiang He
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Mayer L, Pechlaner R, Barallobre-Barreiro J, Boehme C, Toell T, Lynch M, Yin X, Willeit J, Gizewski ER, Perco P, Ratzinger G, Kiechl S, Mayr M, Knoflach M. Extracellular matrix protein signature of recurrent spontaneous cervical artery dissection. Neurology 2020; 95:e2047-e2055. [PMID: 32887783 DOI: 10.1212/wnl.0000000000010710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To assess whether connective tissue disorder is evident in patients with spontaneous cervical artery dissection and therefore identify patients at risk of recurrence using a cutting-edge quantitative proteomics approach. METHODS In the ReSect study, all patients with spontaneous cervical artery dissection treated at the Innsbruck University Hospital since 1996 were invited to attend a standardized clinical follow-up examination. Protein abundance in skin punch biopsies (n = 50) was evaluated by a cutting-edge quantitative proteomics approach (liquid chromatography-mass spectrometry) that has hitherto not been applied to such patients. RESULTS Patients with 1-time single-vessel (n = 19) or multiple-vessel (n = 13) dissections did not differ between each other or compared to healthy controls (n = 12) in protein composition. Patients with recurrent spontaneous cervical artery dissection (n = 6), however, showed significantly different expression of 25 proteins compared to the other groups combined. Literature review and Gene Ontology term annotation check revealed that 13 of the differently expressed proteins play a major role in the structural integrity of connective tissue or are linked to connective tissue disorders. These proteins showed clustering to a collagen/elastin cluster and one consisting of desmosome related proteins. CONCLUSION This study unravels an extracellular matrix protein signature of recurrent spontaneous cervical artery dissection. In the long run and after large-scale validation, our findings may well assist in identifying patients at risk of recurrent spontaneous cervical artery dissection and thus guide therapy.
Collapse
Affiliation(s)
- Lukas Mayer
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Raimund Pechlaner
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Javier Barallobre-Barreiro
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Christian Boehme
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Thomas Toell
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Marc Lynch
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Xiaoke Yin
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Johann Willeit
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Elke R Gizewski
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Paul Perco
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Gudrun Ratzinger
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Stefan Kiechl
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Manuel Mayr
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Michael Knoflach
- From the Departments of Neurology (L.M., R.P., C.B., T.T., J.W., S.K., M.K.), Neuroradiology (E.R.G.), Internal Medicine IV (P.P.), and Dermatology (G.R.), Medical University Innsbruck, Austria; King's British Heart Foundation Centre (J.B.-B., M.L., X.Y., M.M.), King's College London, London, UK; and VASCage (S.K.), Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria.
| |
Collapse
|
50
|
Abstract
Aggrecan is a large proteoglycan that forms giant hydrated aggregates with hyaluronan in the extracellular matrix (ECM). The extraordinary resistance of these aggregates to compression explains their abundance in articular cartilage of joints where they ensure adequate load-bearing. In the brain, they provide mechanical buffering and contribute to formation of perineuronal nets, which regulate synaptic plasticity. Aggrecan is also present in cardiac jelly, developing heart valves, and blood vessels during cardiovascular development. Whereas aggrecan is essential for skeletal development, its function in the developing cardiovascular system remains to be fully elucidated. An excess of aggrecan was demonstrated in cardiovascular tissues in aortic aneurysms, atherosclerosis, vascular re-stenosis after injury, and varicose veins. It is a product of vascular smooth muscle and is likely to be an important component of pericellular matrix, where its levels are regulated by proteases. Aggrecan can contribute to specific biophysical and regulatory properties of cardiovascular ECM via the diverse interactions of its domains, and its accumulation is likely to have a significant role in developmental and disease pathways. Here, the established biological functions of aggrecan, its cardiovascular associations, and potential roles in cardiovascular development and disease are discussed.
Collapse
Affiliation(s)
- Christopher D Koch
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Chan Mi Lee
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|