1
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
2
|
Chowdhury D, Das A, Mishra M, Khutere T, Bodakhe SH. Physiological markers for immunotherapeutics: a review. J Chemother 2024:1-24. [PMID: 39711144 DOI: 10.1080/1120009x.2024.2443701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Immunotherapy has been advanced through multiple approaches, including immunogenic cytokines, monoclonal antibodies, therapeutic vaccinations, adoptive cell transfer, stem cell transplantation, and oncolytic viruses. This review analyses various strategies in genomics, transcriptomics, single-cell techniques, computational analysis, big data, and imaging technologies for the identification of tumour microbiota and microenvironments. Immunotherapy is becoming acknowledged as a feasible cancer treatment method, facilitating innovative cancer medicines and personalized medicine techniques.
Collapse
Affiliation(s)
- Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Mrityunjay Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Trinkal Khutere
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
Wang Y, Wang F, Liu W, Geng Y, Shi Y, Tian Y, Zhang B, Luo Y, Sun X. New drug discovery and development from natural products: Advances and strategies. Pharmacol Ther 2024; 264:108752. [PMID: 39557343 DOI: 10.1016/j.pharmthera.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Natural products (NPs) have a long history as sources for drug discovery, more than half of approved drugs are related to NPs, which also exhibit multifaceted advantages in the clinical treatment of complex diseases. However, bioactivity screening of NPs, target identification, and design optimization require continuously improved strategies, the complexity of drug mechanism of action and the limitations of technological strategies pose numerous challenges to the development of new drugs. This review begins with an overview of bioactivity- and target-based drug development patterns for NPs, advances in NP screening and derivatization, and the advantages and problems of major targets such as genes and proteins. Then, target-based drugs as well as identification and validation methods are further discussed to elucidate their mechanism of action. Subsequently, the current status and development trend of the application of traditional and emerging technologies in drug discovery and development of NPs are systematically described. Finally, the collaborative strategy of multi-technology integration and multi-disciplinary intersection is emphasized for the challenges faced in the identification, optimization, activity evaluation, and clinical application of NPs. It is hoped to provide a systematic overview and inspiration for exploring new drugs from natural resources in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yahong Shi
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
4
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
5
|
Zhou Z, Zhang R, Zhou A, Lv J, Chen S, Zou H, Zhang G, Lin T, Wang Z, Zhang Y, Weng S, Han X, Liu Z. Proteomics appending a complementary dimension to precision oncotherapy. Comput Struct Biotechnol J 2024; 23:1725-1739. [PMID: 38689716 PMCID: PMC11058087 DOI: 10.1016/j.csbj.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Recent advances in high-throughput proteomic profiling technologies have facilitated the precise quantification of numerous proteins across multiple specimens concurrently. Researchers have the opportunity to comprehensively analyze the molecular signatures in plentiful medical specimens or disease pattern cell lines. Along with advances in data analysis and integration, proteomics data could be efficiently consolidated and employed to recognize precise elementary molecular mechanisms and decode individual biomarkers, guiding the precision treatment of tumors. Herein, we review a broad array of proteomics technologies and the progress and methods for the integration of proteomics data and further discuss how to better merge proteomics in precision medicine and clinical settings.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
6
|
Škrabálková E, Pejchar P, Potocký M. Exploring lipid-protein interactions in plant membranes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5251-5266. [PMID: 38708855 PMCID: PMC11389841 DOI: 10.1093/jxb/erae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Once regarded as mere membrane building blocks, lipids are now recognized as diverse and intricate players that mold the functions, identities, and responses of cellular membranes. Although the interactions of lipids with integral and peripheral membrane proteins are crucial for their localization, activity, and function, how proteins bind lipids is still far from being thoroughly explored. Describing and characterizing these dynamic protein-lipid interactions is thus essential to understanding the membrane-associated processes. Here we review the current range of experimental techniques employed to study plant protein-lipid interactions, integrating various methods. We summarize the principles, advantages, and limitations of classical in vitro biochemical approaches, including protein-lipid overlays and various liposome binding assays, and complement them with in vivo microscopic techniques centered around the use of genetically encoded lipid sensors and pharmacological or genetic membrane lipid manipulation tools. We also highlight several emerging techniques still awaiting their advancement into plant membrane research and emphasize the need to use complementary experimental strategies as key for elucidating the mechanistic roles of protein-lipid interactions in plant cell biology.
Collapse
Affiliation(s)
- Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Yang TH, Syu GD, Chen CS, Chen GR, Jhong SE, Lin PH, Lin PC, Wang YC, Shah P, Tseng YY, Wu WS. BAPCP: A comprehensive and user-friendly web tool for identifying biomarkers from protein microarray technologies. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108260. [PMID: 38878357 DOI: 10.1016/j.cmpb.2024.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/06/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Proteome microarrays are one of the popular high-throughput screening methods for large-scale investigation of protein interactions in cells. These interactions can be measured on protein chips when coupled with fluorescence-labeled probes, helping indicate potential biomarkers or discover drugs. Several computational tools were developed to help analyze the protein chip results. However, existing tools fail to provide a user-friendly interface for biologists and present only one or two data analysis methods suitable for limited experimental designs, restricting the use cases. METHODS In order to facilitate the biomarker examination using protein chips, we implemented a user-friendly and comprehensive web tool called BAPCP (Biomarker Analysis tool for Protein Chip Platforms) in this research to deal with diverse chip data distributions. RESULTS BAPCP is well integrated with standard chip result files and includes 7 data normalization methods and 7 custom-designed quality control/differential analysis filters for biomarker extraction among experiment groups. Moreover, it can handle cost-efficient chip designs that repeat several blocks/samples within one single slide. Using experiments of the human coronavirus (HCoV) protein microarray and the E. coli proteome chip that helps study the immune response of Kawasaki disease as examples, we demonstrated that BAPCP can accelerate the time-consuming week-long manual biomarker identification process to merely 3 min. CONCLUSIONS The developed BAPCP tool provides substantial analysis support for protein interaction studies and conforms to the necessity of expanding computer usage and exchanging information in bioscience and medicine. The web service of BAPCP is available at https://cosbi.ee.ncku.edu.tw/BAPCP/.
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan.
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan.
| | - Guan-Ru Chen
- Department of Electrical Engineering, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan.
| | - Song-En Jhong
- Department of Electrical Engineering, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan.
| | - Po-Heng Lin
- Department of Electrical Engineering, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan.
| | - Pei-Chun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan.
| | - Yun-Cih Wang
- Department of Electrical Engineering, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan.
| | - Pramod Shah
- Institute of Systems Biology and Bioinformatics, Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, No. 300, Zhongda Rd., Zhongli District, 320317 Taoyuan, Taiwan.
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, No. 1, University Road, 701 Tainan, Taiwan.
| |
Collapse
|
8
|
Saushkin NY, Samsonova JV, Presnova GV, Rubtsova MY, Osipov AP. Multiplex gradient immunochip for detection of post-vaccinal antibodies in poultry. Vet Res Commun 2024; 48:2805-2811. [PMID: 38795252 DOI: 10.1007/s11259-024-10424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/22/2024] [Indexed: 05/27/2024]
Abstract
Multiplex analysis as an immunochip-in-a well format for simultaneous detection of post-vaccinal antibodies to three poultry infections (Newcastle disease, infectious bronchitis and bursal disease) in one chicken sera was developed. The immunochip had a microarray format printed on the bottom of a standard microtiter plate well and consisted of 36 microspots (d = 400 μm each) with three lines of viral antigens absorbed in a gradient of five decreasing concentrations. Optimization of assay conditions revealed the necessity of careful choice of the reaction buffer due to the high tendency of chicken IgY to exhibit unspecific binding. The best results were obtained for PBS buffer (pH 6.0) supplied with 0.1% Tween 20. Assay results were visualized by a number of coloured microspots that were correlated with the specific antibody titre in the analysed serum. High (> 8000), medium (3000-8000) or low (1000-3000) antibody titre level for each of three infections could be quickly assessed in one probe visually or with the help of smartphone. ELISA results (antibody titres) and visual gradient immunochip results interpretation (high, medium, low antibody level/titre) for 63 chicken sera with multiple levels of post-vaccinal antibodies against Newcastle disease, infectious bronchitis and bursal disease were in good correlation.
Collapse
Affiliation(s)
| | | | - Galina V Presnova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maya Yu Rubtsova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
9
|
Yuan C, Zhou F, Xu Z, Wu D, Hou P, Yang D, Pan L, Wang P. Functionalized DNA Origami-Enabled Detection of Biomarkers. Chembiochem 2024; 25:e202400227. [PMID: 38700476 DOI: 10.1002/cbic.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Biomarkers are crucial physiological and pathological indicators in the host. Over the years, numerous detection methods have been developed for biomarkers, given their significant potential in various biological and biomedical applications. Among these, the detection system based on functionalized DNA origami has emerged as a promising approach due to its precise control over sensing modules, enabling sensitive, specific, and programmable biomarker detection. We summarize the advancements in biomarker detection using functionalized DNA origami, focusing on strategies for DNA origami functionalization, mechanisms of biomarker recognition, and applications in disease diagnosis and monitoring. These applications are organized into sections based on the type of biomarkers - nucleic acids, proteins, small molecules, and ions - and concludes with a discussion on the advantages and challenges associated with using functionalized DNA origami systems for biomarker detection.
Collapse
Affiliation(s)
- Caiqing Yuan
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Zhou
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhihao Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dunkai Wu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Hou
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
10
|
Zhong Z, Sun MM, He M, Huang HP, Hu GY, Ma SQ, Zheng HZ, Li MY, Yao L, Cong DY, Wang HF. Proteomics and its application in the research of acupuncture: An updated review. Heliyon 2024; 10:e33233. [PMID: 39022010 PMCID: PMC11253069 DOI: 10.1016/j.heliyon.2024.e33233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/06/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
As a complementary and alternative therapy, acupuncture is widely used in the prevention and treatment of various diseases. However, the understanding of the mechanism of acupuncture effects is still limited due to the lack of systematic biological validation. Notably, proteomics technologies in the field of acupuncture are rapidly evolving, and these advances are greatly contributing to the research of acupuncture. In this study, we review the progress of proteomics research in analyzing the molecular mechanisms of acupuncture for neurological disorders, pain, circulatory disorders, digestive disorders, and other diseases, with an in-depth discussion around acupoint prescription and acupuncture manipulation modalities. The study found that proteomics has great potential in understanding the mechanisms of acupuncture. This study will help explore the mechanisms of acupuncture from a proteomic perspective and provide information to support future clinical decisions.
Collapse
Affiliation(s)
- Zhen Zhong
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Meng-Meng Sun
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Min He
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Hai-Peng Huang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Guan-Yu Hu
- The Third Affiliated Hospital of Southern Medical University, No.183, West of Zhongshan Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Shi-Qi Ma
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Hai-Zhu Zheng
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Meng-Yuan Li
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Lin Yao
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - De-Yu Cong
- Department of Tuina, Traditional Chinese Medicine Hospital of Jilin Province, 130000, Changchun, China
| | - Hong-Feng Wang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| |
Collapse
|
11
|
Jiang Y, DeBord D, Vitrac H, Stewart J, Haghani A, Van Eyk JE, Fert-Bober J, Meyer JG. The Future of Proteomics is Up in the Air: Can Ion Mobility Replace Liquid Chromatography for High Throughput Proteomics? J Proteome Res 2024; 23:1871-1882. [PMID: 38713528 PMCID: PMC11161313 DOI: 10.1021/acs.jproteome.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
The coevolution of liquid chromatography (LC) with mass spectrometry (MS) has shaped contemporary proteomics. LC hyphenated to MS now enables quantification of more than 10,000 proteins in a single injection, a number that likely represents most proteins in specific human cells or tissues. Separations by ion mobility spectrometry (IMS) have recently emerged to complement LC and further improve the depth of proteomics. Given the theoretical advantages in speed and robustness of IMS in comparison to LC, we envision that ongoing improvements to IMS paired with MS may eventually make LC obsolete, especially when combined with targeted or simplified analyses, such as rapid clinical proteomics analysis of defined biomarker panels. In this perspective, we describe the need for faster analysis that might drive this transition, the current state of direct infusion proteomics, and discuss some technical challenges that must be overcome to fully complete the transition to entirely gas phase proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Daniel DeBord
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Heidi Vitrac
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Jordan Stewart
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Ali Haghani
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Justyna Fert-Bober
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jesse G Meyer
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
12
|
Zhang J, Yang SG, Zhou FQ. Glycogen synthase kinase 3 signaling in neural regeneration in vivo. J Mol Cell Biol 2024; 15:mjad075. [PMID: 38059848 PMCID: PMC11063957 DOI: 10.1093/jmcb/mjad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) signaling plays important and broad roles in regulating neural development in vitro and in vivo. Here, we reviewed recent findings of GSK3-regulated axon regeneration in vivo in both the peripheral and central nervous systems and discussed a few controversial findings in the field. Overall, current evidence indicates that GSK3β signaling serves as an important downstream mediator of the PI3K-AKT pathway to regulate axon regeneration in parallel with the mTORC1 pathway. Specifically, the mTORC1 pathway supports axon regeneration mainly through its role in regulating cap-dependent protein translation, whereas GSK3β signaling might be involved in regulating N6-methyladenosine mRNA methylation-mediated, cap-independent protein translation. In addition, GSK3 signaling also plays a key role in reshaping the neuronal transcriptomic landscape during neural regeneration. Finally, we proposed some research directions to further elucidate the molecular mechanisms underlying the regulatory function of GSK3 signaling and discover novel GSK3 signaling-related therapeutic targets. Together, we hope to provide an updated and insightful overview of how GSK3 signaling regulates neural regeneration in vivo.
Collapse
Affiliation(s)
- Jing Zhang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shu-Guang Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Feng-Quan Zhou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
13
|
Porebski BT, Balmforth M, Browne G, Riley A, Jamali K, Fürst MJLJ, Velic M, Buchanan A, Minter R, Vaughan T, Holliger P. Rapid discovery of high-affinity antibodies via massively parallel sequencing, ribosome display and affinity screening. Nat Biomed Eng 2024; 8:214-232. [PMID: 37814006 DOI: 10.1038/s41551-023-01093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Developing therapeutic antibodies is laborious and costly. Here we report a method for antibody discovery that leverages the Illumina HiSeq platform to, within 3 days, screen in the order of 108 antibody-antigen interactions. The method, which we named 'deep screening', involves the clustering and sequencing of antibody libraries, the conversion of the DNA clusters into complementary RNA clusters covalently linked to the instrument's flow-cell surface on the same location, the in situ translation of the clusters into antibodies tethered via ribosome display, and their screening via fluorescently labelled antigens. By using deep screening, we discovered low-nanomolar nanobodies to a model antigen using 4 × 106 unique variants from yeast-display-enriched libraries, and high-picomolar single-chain antibody fragment leads for human interleukin-7 directly from unselected synthetic repertoires. We also leveraged deep screening of a library of 2.4 × 105 sequences of the third complementarity-determining region of the heavy chain of an anti-human epidermal growth factor receptor 2 (HER2) antibody as input for a large language model that generated new single-chain antibody fragment sequences with higher affinity for HER2 than those in the original library.
Collapse
Affiliation(s)
| | | | | | - Aidan Riley
- Biologics Engineering, AstraZeneca, Cambridge, UK
| | | | - Maximillian J L J Fürst
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | | | - Ralph Minter
- Biologics Engineering, AstraZeneca, Cambridge, UK
- Alchemab Therapeutics, London, UK
| | | | | |
Collapse
|
14
|
Hu H, Hu W, Guo AD, Zhai L, Ma S, Nie HJ, Zhou BS, Liu T, Jia X, Liu X, Yao X, Tan M, Chen XH. Spatiotemporal and direct capturing global substrates of lysine-modifying enzymes in living cells. Nat Commun 2024; 15:1465. [PMID: 38368419 PMCID: PMC10874396 DOI: 10.1038/s41467-024-45765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/19/2024] Open
Abstract
Protein-modifying enzymes regulate the dynamics of myriad post-translational modification (PTM) substrates. Precise characterization of enzyme-substrate associations is essential for the molecular basis of cellular function and phenotype. Methods for direct capturing global substrates of protein-modifying enzymes in living cells are with many challenges, and yet largely unexplored. Here, we report a strategy to directly capture substrates of lysine-modifying enzymes via PTM-acceptor residue crosslinking in living cells, enabling global profiling of substrates of PTM-enzymes and validation of PTM-sites in a straightforward manner. By integrating enzymatic PTM-mechanisms, and genetically encoding residue-selective photo-crosslinker into PTM-enzymes, our strategy expands the substrate profiles of both bacterial and mammalian lysine acylation enzymes, including bacterial lysine acylases PatZ, YiaC, LplA, TmcA, and YjaB, as well as mammalian acyltransferases GCN5 and Tip60, leading to discovery of distinct yet functionally important substrates and acylation sites. The concept of direct capturing substrates of PTM-enzymes via residue crosslinking may extend to the other types of amino acid residues beyond lysine, which has the potential to facilitate the investigation of diverse types of PTMs and substrate-enzyme interactive proteomics.
Collapse
Affiliation(s)
- Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - An-Di Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Song Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Jun Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bin-Shan Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianxian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinglong Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and Hefei National Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China.
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
15
|
Karlo J, Dhillon AK, Siddhanta S, Singh SP. Reverse stable isotope labelling with Raman spectroscopy for microbial proteomics. JOURNAL OF BIOPHOTONICS 2024; 17:e202300341. [PMID: 38010366 DOI: 10.1002/jbio.202300341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Global proteome changes in microbes affect the survival and overall production of commercially relevant metabolites through different bioprocesses. The existing methods to monitor proteome level changes are destructive in nature. Stable isotope probing (SIP) coupled with Raman spectroscopy is a relatively new approach for proteome analysis. However, applying this approach for monitoring changes in a large culture volume is not cost-effective. In this study, for the first time we are presenting a novel method of combining reverse SIP using 13 C-glucose and Deuterium to monitor the proteome changes through Raman spectroscopy. The findings of the study revealed visible changes (blue shifts) in proteome related peaks that can be used for monitoring proteome dynamics, that is, synthesis of nascent amino acids and its turnover with time in a non-destructive, cost-effective, and label-free manner.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | | | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| |
Collapse
|
16
|
Herianto S, Subramani B, Chen BR, Chen CS. Recent advances in liposome development for studying protein-lipid interactions. Crit Rev Biotechnol 2024; 44:1-14. [PMID: 36170980 DOI: 10.1080/07388551.2022.2111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Boopathi Subramani
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Ruei Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Tsai PS, Du PX, Keskin BB, Lee NY, Wan SW, Lin YL, Su WY, Lin PC, Lin WH, Shih HC, Ho TS, Syu GD. Antibody Profiling of Dengue Severities Using Flavivirus Protein Microarrays. Anal Chem 2023; 95:15217-15226. [PMID: 37800729 DOI: 10.1021/acs.analchem.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dengue is a viral disease transmitted by Aedes aegypti mosquitoes. According to the World Health Organization, about half of the world's population is at risk of dengue. There are four serotypes of the dengue virus. After infection with one serotype, it will be immune to such a serotype. However, subsequent infection with other serotypes will increase the risk of severe outcomes, e.g., dengue hemorrhagic fever, dengue shock syndrome, and even death. Since severe dengue is challenging to predict and lacks molecular markers, we aim to build a multiplexed Flavivirus protein microarray (Flaviarray) that includes all of the common Flaviviruses to profile the humoral immunity and cross-reactivity in the dengue patients with different outcomes. The Flaviarrays we fabricated contained 17 Flavivirus antigens with high reproducibility (R-square = 0.96) and low detection limits (172-214 pg). We collected serums from healthy subjects (n = 36) and dengue patients within 7 days after symptom onset (mild dengue (n = 21), hospitalized nonsevere dengue (n = 29), and severe dengue (n = 36)). After profiling the serum antibodies using Flaviarrays, we found that patients with severe dengue showed higher IgG levels against multiple Flavivirus antigens. With logistic regression, we found groups of markers with high performance in distinguishing dengue patients from healthy controls as well as hospitalized from mild cases (AUC > 0.9). We further reported some single markers that were suitable to separate dengue patients from healthy controls (AUC > 0.9) and hospitalized from mild outcomes (AUC > 0.8). Together, Flaviarray is a valuable tool to profile antibody specificities, uncover novel markers for decision-making, and shed some light on early preventions and treatments.
Collapse
Affiliation(s)
- Pei-Shan Tsai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Chun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsi-Chang Shih
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan R.O.C
- Department of Pediatrics, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
18
|
Lin WH, Du PX, Tsai PS, Keskin BB, Su WY, Lee NY, Ko WC, Lin PC, Shih HC, Weng MY, Syu GD. Rituximab, but not other biologics, impairs humoral immunity in patients with rheumatoid arthritis-a study using CoVariant protein arrays. Rheumatol Adv Pract 2023; 7:rkad085. [PMID: 37937178 PMCID: PMC10627286 DOI: 10.1093/rap/rkad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023] Open
Abstract
Objectives RA is an autoimmune disease characterized by chronic inflammation and joint destruction. Biologics are crucial to achieving treat-to-target goals in patients with RA. The global spread and continuous variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitate the monitoring of variant-specific humoral responses post-vaccination. The aim of this study was to investigate how different biologic treatments for vaccinated RA patients might affect their neutralizing antibodies against multiple SARS-CoV-2 variants. Methods We recruited RA patients who had received three doses of conventional SARS-CoV-2 vaccines and were treated with various biologics, e.g. TNF inhibitor (etanercept), IL-6 inhibitor (tocilizumab), CTLA4-Ig (abatacept) or anti-CD20 (rituximab). Serum samples were used to profile the binding and neutralizing antibodies using our own SARS-CoV-2 variant (CoVariant) protein array, developed previously. Results Compared with healthy controls, only RA therapy with rituximab showed a reduction in neutralizing antibodies capable of targeting spike proteins in SARS-CoV-2 wild-type and most variants. This reduction was not observed in binding antibodies against SARS-CoV-2 wild-type or its variants. Conclusion After receiving three doses of SARS-CoV-2 vaccination, RA patients who underwent rituximab treatment generated sufficient antibodies but exhibited lower neutralizing activities against wild-type and multiple variants, including current Omicron. Other biological DMARDs, e.g. TNF inhibitor, IL-6 inhibitor and CTLA4-Ig, did not show obvious inhibition.
Collapse
Affiliation(s)
- Wei-Hsun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Shan Tsai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hsi-Chang Shih
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meng-Yu Weng
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Walter J, Eludin Z, Drabovich AP. Redefining serological diagnostics with immunoaffinity proteomics. Clin Proteomics 2023; 20:42. [PMID: 37821808 PMCID: PMC10568870 DOI: 10.1186/s12014-023-09431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades. The advantages of straightforward setup and manufacturing, analytical sensitivity and specificity, affordability, and high-throughput measurements were accompanied by limitations such as semi-quantitative measurements, lack of universal reference standards, potential cross-reactivity, and challenges with multiplexing the complete panel of human immunoglobulin isotypes and subclasses. Redesign of conventional serological tests to include multiplex quantification of immunoglobulin isotypes and subclasses, utilize universal reference standards, and minimize cross-reactivity and non-specific binding will facilitate the development of assays with higher diagnostic specificity. Improved serological assays with higher diagnostic specificity will enable screenings of asymptomatic populations and may provide earlier detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry and immunoaffinity proteomics for serological diagnostics. Finally, we explore the design of novel immunoaffinity-proteomic assays to evaluate cell-mediated immunity and advance the sequencing of clinically relevant immunoglobulins.
Collapse
Affiliation(s)
- Jonathan Walter
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zicki Eludin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
20
|
Aparna GM, Tetala KKR. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023; 13:602. [PMID: 37189350 PMCID: PMC10135839 DOI: 10.3390/biom13040602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies. The aim of this review is to explore the development of biomolecule-based microarray applications since 2018 onwards. Here, we have covered a different array of printing strategies, substrate surface modification, biomolecule immobilization strategies, detection techniques, and biomolecule-based microarray applications. The period of 2018-2022 focused on using biomolecule-based microarrays for the identification of biomarkers, detection of viruses, differentiation of multiple pathogens, etc. A few potential future applications of microarrays could be for personalized medicine, vaccine candidate screening, toxin screening, pathogen identification, and posttranslational modifications.
Collapse
Affiliation(s)
| | - Kishore K. R. Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India;
| |
Collapse
|
21
|
Yin J, Niu J, Huo J, Sun J, Huang J, Sun C. Construction and Evaluation of a Novel MAP Immunoassay for 9 Nutrition-and-Health-Related Protein Markers Based on Multiplex Liquid Protein Chip Technique. Nutrients 2023; 15:nu15061522. [PMID: 36986252 PMCID: PMC10059960 DOI: 10.3390/nu15061522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
We attempted to construct and evaluate a novel detection method to realize simultaneous detection based on a multiplex liquid protein chip technique for nine nutrition-and-health-related protein markers to meet the requirement of an accurate, simultaneous and comprehensive analysis of the proteomics of nutrition and health. The lower limits of detection, biological limits of detection and regression equations of serum ferritin (SF), soluble transferrin receptor (sTfR), c-reactive protein (CRP), retinol-binding protein4 (RBP4), apolipoprotein B (ApoB), alpha-fetoprotein (AFP), prealbumin (PA), carcino-embryonic antigen (CEA) and D-Dimmer (D-D) were determined after a series of optimal experiments. Then, the results of the methodological evaluation for this novel method indicated that the accuracies were between 70.12% and 127.07%, the within-run precisions were between 0.85% and 7.31%, the between-run precisions were between 3.53% and 19.07%, the correlation coefficients between this method and other methods were above 0.504 (p < 0.05), and the direct bilirubin (DBIL) of low concentration and the indirect bilirubin (IBIL) of high concentration could not interfere with the detected results of nine indicators. The novel multiplex detection method, which can increase accuracy and improve the ability of comprehensive analysis, can basically meet the requirement of detection and the diagnosis of the proteomics of nutrition and health.
Collapse
Affiliation(s)
- Jiyong Yin
- Key Laboratory of Trace Element Nutrition of National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiangping Niu
- Key Laboratory of Trace Element Nutrition of National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Junsheng Huo
- Key Laboratory of Trace Element Nutrition of National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing Sun
- Key Laboratory of Trace Element Nutrition of National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jian Huang
- Key Laboratory of Trace Element Nutrition of National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chaoqun Sun
- Key Laboratory of Trace Element Nutrition of National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
22
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023; 15:1579. [PMID: 36900369 PMCID: PMC10000663 DOI: 10.3390/cancers15051579] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
23
|
Waduge P, Tian H, Webster KA, Li W. Profiling disease-selective drug targets: From proteomics to ligandomics. Drug Discov Today 2023; 28:103430. [PMID: 36343915 PMCID: PMC9974940 DOI: 10.1016/j.drudis.2022.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Despite advancements in omics technologies, including proteomics and transcriptomics, identification of therapeutic targets remains challenging. Ligandomics recently emerged as a unique technology of functional proteomics for global profiling of cell-binding protein ligands. When applied to diseased versus healthy vasculatures, comparative ligandomics systematically maps novel disease-restricted ligands that allow selective targeting of pathological but not physiological pathways, providing high efficacy with intrinsic safety. In this review, we discuss the potential of cellular ligands as therapeutic targets and summarize the development of ligandomics. We further compare the advantages and limitations of different omics technologies for drug target discovery and discuss target selection criteria to improve drug R&D success rates.
Collapse
Affiliation(s)
- Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- LigandomicsRx, LLC, Houston, TX 77098, USA; Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; Vascular Biology Institute, Department of Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
25
|
Chu HW, Chang KP, Yen WC, Liu HP, Chan XY, Liu CR, Hung CM, Wu CC. Identification of salivary autoantibodies as biomarkers of oral cancer with immunoglobulin A enrichment combined with affinity mass spectrometry. Proteomics 2023; 23:e2200321. [PMID: 36625099 DOI: 10.1002/pmic.202200321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Globally, oral cavity squamous cell carcinoma (OSCC) is one of the most common fatal illnesses. Its high mortality is ascribed to the fact that the disease is often diagnosed at a late stage, which indicates an urgent need for approaches for the early detection of OSCC. The use of salivary autoantibodies (autoAbs) as OSCC biomarkers has numerous advantages such as easy access to saliva samples and efficient detection of autoAbs using well-established secondary reagents. To improve OSCC screening, we identified OSCC-associated autoAbs with the enrichment of salivary autoAbs combined with affinity mass spectrometry (MS). The salivary IgA of healthy individuals and OSCC patients was purified with peptide M-conjugated beads and then applied to immunoprecipitated antigens (Ags) in OSCC cells. Using tandem MS analysis and spectral counting-based quantitation, the level of 10 Ags increased in the OSCC group compared with the control group. Moreover, salivary levels of autoAbs to the 10 Ags were determined by a multiplexed bead-based immunoassay. Among them, seven were significantly higher in early-stage OSCC patients than in healthy individuals. A marker panel consisting of autoAbs to LMAN2, PTGR1, RAB13, and UQCRC2 was further developed to improve the early diagnosis of OSCC.
Collapse
Affiliation(s)
- Hao-Wei Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chen Yen
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Xiu-Ya Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Rou Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Mi Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
26
|
Syu GD, Sutandy FXR, Chen K, Cheng Y, Chen CS, Shih JC. Autoantibody profiling of monoamine oxidase A knockout mice, an autism spectrum disorder model. Brain Behav Immun 2023; 107:193-200. [PMID: 36243286 DOI: 10.1016/j.bbi.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/04/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Monoamine oxidase A (MAO A) is the critical enzyme to degrade serotonin in the brain and the knockout mouse exhibits hyperserotonemia and abnormalities that are observed in autism spectrum disorder (ASD). Thus, the MAO A knockout mouse is a valuable model for studying neurological and behavioral impairments in ASD. Based on the immune dysfunction hypothesis, dysregulated humoral immunity may cause neurological impairments. To address this hypothesis, we use high-density proteome microarray to profile the serum antibodies in both wild-type and MAO A knockout mice. The distingue autoantibody signatures were observed in the MAO A knockout and wild-type controls and showed 165 up-regulated and 232 down-regulated autoantibodies. The up-regulated autoantibodies were prone to target brain tissues while down-regulated ones were enriched in sex organs. The identified autoantibodies help bridge the gap between ASD mouse models and humoral immunity, not only yielding insights into the pathological mechanisms but also providing potential biomarkers for translational research in ASD.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| | - F X Reymond Sutandy
- Institute for Biochemistry II, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Kevin Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, USA
| | - Yawei Cheng
- Department of Physical Medicine and Rehabilitation, National Yang-Ming University Hospital, Yilan, Taiwan; Institute of Neuroscience and Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, USA; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
27
|
Padinharayil H, Varghese J, John MC, Rajanikant GK, Wilson CM, Al-Yozbaki M, Renu K, Dewanjee S, Sanyal R, Dey A, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, George A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
28
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
29
|
Su WY, Du PX, Santos HM, Ho TS, Keskin BB, Pau CH, Yang AM, Chou YY, Shih HC, Syu GD. Antibody Profiling in COVID-19 Patients with Different Severities by Using Spike Variant Protein Microarrays. Anal Chem 2022; 94:6529-6539. [PMID: 35442638 PMCID: PMC9045038 DOI: 10.1021/acs.analchem.1c05567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
Abstract
The disease progression of COVID-19 varies from mild to severe, even death. However, the link between COVID-19 severities and humoral immune specificities is not clear. Here, we developed a multiplexed spike variant protein microarray (SVPM) and utilized it for quantifying neutralizing activity, drug screening, and profiling humoral immunity. First, we demonstrated the competition between antispike antibody and ACE2 on SVPM for measuring the neutralizing activity against multiple spike variants. Next, we collected the serums from healthy subjects and COVID-19 patients with different severities and profile the neutralizing activity as well as antibody isotypes. We identified the inhibition of ACE2 binding was stronger against multiple variants in severe compared to mild/moderate or critical patients. Moreover, the serum IgG against nonstructural protein 3 was elevated in severe but not in mild/moderate and critical cases. Finally, we evaluated two ACE2 inhibitors, Ramipril and Perindopril, and found the dose-dependent inhibition of ACE2 binding to all the spike variants except for B.1.617.3. Together, the SVPM and the assay procedures provide a tool for profiling neutralizing antibodies, antibody isotypes, and reagent specificities.
Collapse
Affiliation(s)
- Wen-Yu Su
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Xian Du
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Harvey M. Santos
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- School
of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines
| | - Tzong-Shiann Ho
- Department
of Pediatrics, National Cheng Kung University
Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center
of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
- Department
of Pediatrics, Tainan Hospital, Ministry
of Health and Welfare, Tainan 700, Taiwan
| | - Batuhan Birol Keskin
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi Ho Pau
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - An-Ming Yang
- Department
of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan
- Department
of Nursing, Yuanpei University of Medical
Technology, Hsinchu 300, Taiwan
| | - Yi-Yu Chou
- Department
of Nursing, Kaohsiung Armed Forces General
Hospital, Kaohsiung 802, Taiwan
| | - Hsi-Chang Shih
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Guan-Da Syu
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Research
Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Medical
Device Innovation Center, National Cheng
Kung University, Tainan 701, Taiwan
| |
Collapse
|
30
|
Ho TS, Du PX, Su WY, Santos HM, Lin YL, Chou YY, Keskin BB, Pau CH, Syu GD. Development of SARS-CoV-2 variant protein microarray for profiling humoral immunity in vaccinated subjects. Biosens Bioelectron 2022; 204:114067. [PMID: 35168024 PMCID: PMC8821029 DOI: 10.1016/j.bios.2022.114067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 is quickly evolving from wild-type to many variants and spreading around the globe. Since many people have been vaccinated with various types of vaccines, it is crucial to develop a high throughput platform for measuring the antibody responses and surrogate neutralizing activities against multiple SARS-CoV-2 variants. To meet this need, the present study developed a SARS-CoV-2 variant (CoVariant) array which consists of the extracellular domain of spike variants, e.g., wild-type, D614G, B.1.1.7, B.1.351, P.1, B.1.617, B.1.617.1, B.1.617.2, and B.1.617.3. A surrogate virus neutralization on the CoVariant array was established to quantify the bindings of antibody and host receptor ACE2 simultaneously to spike variants. By using a chimeric anti-spike antibody, we demonstrated a broad binding spectrum of antibodies while inhibiting the bindings of ACE2 to spike variants. To monitor the humoral immunities after vaccination, we collected serums from unvaccinated, partial, or fully vaccinated individuals with either mRNA-1273 or AZD1222 (ChAdOx1). The results showed partial vaccination increased the surrogate neutralization against all the mutants while full vaccination boosted the most. Although IgG, IgA, and IgM isotypes correlated with surrogate neutralizing activities, they behave differently throughout the vaccination processes. Overall, this study developed CoVariant arrays and assays for profiling the humoral responses which are useful for immune assessment, vaccine research, and drug development.
Collapse
Affiliation(s)
- Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan, ROC
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Harvey M Santos
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC; School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila, 1002, Philippines
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Yi-Yu Chou
- Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung, 802, Taiwan, ROC
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Chi Ho Pau
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
31
|
Jiang H, Chiang CY, Chen Z, Nathan S, D'Agostino G, Paulo JA, Song G, Zhu H, Gabelli SB, Cole PA. Enzymatic analysis of WWP2 E3 ubiquitin ligase using protein microarrays identifies autophagy-related substrates. J Biol Chem 2022; 298:101854. [PMID: 35331737 PMCID: PMC9034101 DOI: 10.1016/j.jbc.2022.101854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
WWP2 is a HECT E3 ligase that targets protein Lys residues for ubiquitination and is comprised of an N-terminal C2 domain, four central WW domains, and a C-terminal catalytic HECT domain. The peptide segment between the middle WW domains, the 2,3-linker, is known to autoinhibit the catalytic domain, and this autoinhibition can be relieved by phosphorylation at Tyr369. Several protein substrates of WWP2 have been identified, including the tumor suppressor lipid phosphatase PTEN, but the full substrate landscape and biological functions of WWP2 remain to be elucidated. Here, we used protein microarray technology and the activated enzyme phosphomimetic mutant WWP2Y369E to identify potential WWP2 substrates. We identified 31 substrate hits for WWP2Y369E using protein microarrays, of which three were known autophagy receptors (NDP52, OPTN, and SQSTM1). These three hits were validated with in vitro and cell-based transfection assays and the Lys ubiquitination sites on these proteins were mapped by mass spectrometry. Among the mapped ubiquitin sites on these autophagy receptors, many had been previously identified in the endogenous proteins. Finally, we observed that WWP2 KO SH-SH5Y neuroblastoma cells using CRISPR-Cas9 showed a defect in mitophagy, which could be rescued by WWP2Y369E transfection. These studies suggest that WWP2-mediated ubiquitination of the autophagy receptors NDP52, OPTN, and SQSTM1 may positively contribute to the regulation of autophagy.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Claire Y Chiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gabriel D'Agostino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
32
|
Fan R, He W, Fan Y, Xu W, Xu W, Yan G, Xu S. Recent advances in chemical synthesis, biocatalysis, and biological evaluation of diosgenin derivatives - A review. Steroids 2022; 180:108991. [PMID: 35217033 DOI: 10.1016/j.steroids.2022.108991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Extracting organic compounds from plants and developing derivatives are essential methods for drug discovery. Diosgenin, extracted from Dioscoreaceae plants, is a type of spirostan steroid with various biological effects, including anti-inflammation, neuro-protection, and apoptosis-induction. Many researchers committed their work to the chemical semi-synthesis of diosgenin derivatives to improve diosgenin's therapeutic bioavailability and expand its range of applications in disease treatment and prevention. Biotransformation, a mild whole-cell biocatalysis method, also made crucial contributions to the structural diversity of diosgenin analogs in recent years. Although the structural modification of diosgenin has made significant progress, it lacks a comprehensive review. Here, we review the chemical modification and biotransformation of diosgenin along with the biological evaluation of diosgenin derivatives to provide a reference for the structural modification strategy and pharmaceutical application of diosgenin derivatives.
Collapse
Affiliation(s)
- Ruolan Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Weishen He
- Biology Department, Boston College, Brighton, MA 02135, USA
| | - Yong Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China.
| | - Guohong Yan
- Pharmacy Department, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, PR China.
| | - Shaohua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China.
| |
Collapse
|
33
|
Ding Z, Wang N, Ji N, Chen ZS. Proteomics technologies for cancer liquid biopsies. Mol Cancer 2022; 21:53. [PMID: 35168611 PMCID: PMC8845389 DOI: 10.1186/s12943-022-01526-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations in DNAs could not reveal what happened in proteins. The accumulated alterations of DNAs would change the manifestation of proteins. Therefore, as is the case in cancer liquid biopsies, deep proteome profiling will likely provide invaluable and clinically relevant information in real-time throughout all stages of cancer progression. However, due to the great complexity of proteomes in liquid biopsy samples and the limitations of proteomic technologies compared to high-plex sequencing technologies, proteomic discoveries have yet lagged behind their counterpart, genomic technologies. Therefore, novel protein technologies are in urgent demand to fulfill the goals set out for biomarker discovery in cancer liquid biopsies.Notably, conventional and innovative technologies are being rapidly developed for proteomic analysis in cancer liquid biopsies. These advances have greatly facilitated early detection, diagnosis, prognosis, and monitoring of cancer evolution, adapted or adopted in response to therapeutic interventions. In this paper, we review the high-plex proteomics technologies that are capable of measuring at least hundreds of proteins simultaneously from liquid biopsy samples, ranging from traditional technologies based on mass spectrometry (MS) and antibody/antigen arrays to innovative technologies based on aptamer, proximity extension assay (PEA), and reverse phase protein arrays (RPPA).
Collapse
Affiliation(s)
- Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Bldg. 2, Rm. 2201, Jinan City, Shandong Province 250101 P. R. China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Bldg. 2, Rm. 2201, Jinan City, Shandong Province 250101 P. R. China
| | - Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John’s University, 8000 Utopia Parkway, Queens, New York, 11439 USA
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John’s University, 8000 Utopia Parkway, Queens, New York, 11439 USA
| |
Collapse
|
34
|
Salguero AL, Chen M, Balana AT, Chu N, Jiang H, Palanski BA, Bae H, Wright KM, Nathan S, Zhu H, Gabelli SB, Pratt MR, Cole PA. Multifaceted Regulation of Akt by Diverse C-Terminal Post-translational Modifications. ACS Chem Biol 2022; 17:68-76. [PMID: 34941261 DOI: 10.1021/acschembio.1c00632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Akt is a Ser/Thr protein kinase that regulates cell growth and metabolism and is considered a therapeutic target for cancer. Regulation of Akt by membrane recruitment and post-translational modifications (PTMs) has been extensively studied. The most well-established mechanism for cellular Akt activation involves phosphorylation on its activation loop on Thr308 by PDK1 and on its C-terminal tail on Ser473 by mTORC2. In addition, dual phosphorylation on Ser477 and Thr479 has been shown to activate Akt. Other C-terminal tail PTMs have been identified, but their functional impacts have not been well-characterized. Here, we investigate the regulatory effects of phosphorylation of Tyr474 and O-GlcNAcylation of Ser473 on Akt. We use expressed protein ligation as a tool to produce semisynthetic Akt proteins containing phosphoTyr474 and O-GlcNAcSer473 to dissect the enzymatic functions of these PTMs. We find that O-GlcNAcylation at Ser473 and phosphorylation at Tyr474 can also partially increase Akt's kinase activity toward both peptide and protein substrates. Additionally, we performed kinase assays employing human protein microarrays to investigate global substrate specificity of Akt, comparing phosphorylated versus O-GlcNAcylated Ser473 forms. We observed a high similarity in the protein substrates phosphorylated by phosphoSer473 Akt and O-GlcNAcSer473 Akt. Two Akt substrates identified using microarrays, PPM1H, a protein phosphatase, and NEDD4L, an E3 ubiquitin ligase, were validated in solution-phase assays and cell transfection experiments.
Collapse
Affiliation(s)
- Antonieta L. Salguero
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Maggie Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Aaron T. Balana
- Department of Chemistry, University of Southern California, Los Angeles, California 90089 United States
| | - Nam Chu
- Department of Cancer Biology and Genetics, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Brad A. Palanski
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hwan Bae
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Katharine M. Wright
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The Center for High-Throughput Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Matthew R. Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90089 United States
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
35
|
How Far Are We from the Completion of the Human Protein Interactome Reconstruction? Biomolecules 2022; 12:biom12010140. [PMID: 35053288 PMCID: PMC8774112 DOI: 10.3390/biom12010140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
After more than fifteen years from the first high-throughput experiments for human protein–protein interaction (PPI) detection, we are still wondering how close the completion of the genome-scale human PPI network reconstruction is, what needs to be further explored and whether the biological insights gained from the holistic investigation of the current network are valid and useful. The unique structure of PICKLE, a meta-database of the human experimentally determined direct PPI network developed by our group, presently covering ~80% of the UniProtKB/Swiss-Prot reviewed human complete proteome, enables the evaluation of the interactome expansion by comparing the successive PICKLE releases since 2013. We observe a gradual overall increase of 39%, 182%, and 67% in protein nodes, PPIs, and supporting references, respectively. Our results indicate that, in recent years, (a) the PPI addition rate has decreased, (b) the new PPIs are largely determined by high-throughput experiments and mainly concern existing protein nodes and (c), as we had predicted earlier, most of the newly added protein nodes have a low degree. These observations, combined with a largely overlapping k-core between PICKLE releases and a network density increase, imply that an almost complete picture of a structurally defined network has been reached. The comparative unsupervised application of two clustering algorithms indicated that exploring the full interactome topology can reveal the protein neighborhoods involved in closely related biological processes as transcriptional regulation, cell signaling and multiprotein complexes such as the connexon complex associated with cancers. A well-reconstructed human protein interactome is a powerful tool in network biology and medicine research forming the basis for multi-omic and dynamic analyses.
Collapse
|
36
|
Amadi EV, Venkataraman A, Papadopoulos C. Nanoscale self-assembly: concepts, applications and challenges. NANOTECHNOLOGY 2022; 33. [PMID: 34874297 DOI: 10.1088/1361-6528/ac3f54] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/02/2021] [Indexed: 05/09/2023]
Abstract
Self-assembly offers unique possibilities for fabricating nanostructures, with different morphologies and properties, typically from vapour or liquid phase precursors. Molecular units, nanoparticles, biological molecules and other discrete elements can spontaneously organise or form via interactions at the nanoscale. Currently, nanoscale self-assembly finds applications in a wide variety of areas including carbon nanomaterials and semiconductor nanowires, semiconductor heterojunctions and superlattices, the deposition of quantum dots, drug delivery, such as mRNA-based vaccines, and modern integrated circuits and nanoelectronics, to name a few. Recent advancements in drug delivery, silicon nanoelectronics, lasers and nanotechnology in general, owing to nanoscale self-assembly, coupled with its versatility, simplicity and scalability, have highlighted its importance and potential for fabricating more complex nanostructures with advanced functionalities in the future. This review aims to provide readers with concise information about the basic concepts of nanoscale self-assembly, its applications to date, and future outlook. First, an overview of various self-assembly techniques such as vapour deposition, colloidal growth, molecular self-assembly and directed self-assembly/hybrid approaches are discussed. Applications in diverse fields involving specific examples of nanoscale self-assembly then highlight the state of the art and finally, the future outlook for nanoscale self-assembly and potential for more complex nanomaterial assemblies in the future as technological functionality increases.
Collapse
Affiliation(s)
- Eberechukwu Victoria Amadi
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Anusha Venkataraman
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Chris Papadopoulos
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
37
|
Signore M, Manganelli V. Reverse Phase Protein Arrays in cancer stem cells. Methods Cell Biol 2022; 171:33-61. [DOI: 10.1016/bs.mcb.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Tan HW, Xu YM, Lau ATY. Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Rev Proteomics 2021; 18:925-938. [PMID: 34812694 DOI: 10.1080/14789450.2021.2010549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The outbreak of the newly discovered human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has disrupted the normal life of almost every civilization worldwide. Studies have shown that the coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 can affect multiple human organs and physiological systems, but the respiratory system remains the primary location for viral infection. AREAS COVERED We summarize how omics technologies are used in SARS-CoV-2 research and specifically review the current knowledge of COVID-19 from the aspect of human bronchial-pulmonary proteomics. Also, knowledge gaps in COVID-19 that can be fulfilled by proteomics are discussed. EXPERT OPINION Overall, human bronchial-pulmonary proteomics plays an important role in revealing the dynamics, functions, tropism, and pathogenicity of SARS-CoV-2, which is crucial for COVID-19 biomarker and therapeutic target discoveries. To more fully understand the impact of COVID-19, research from various angles using multi-omics approaches should also be conducted on the lungs as well as other organs.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
39
|
Du PX, Chou YY, Santos HM, Keskin BB, Hsieh MH, Ho TS, Wang JY, Lin YL, Syu GD. Development and Application of Human Coronavirus Protein Microarray for Specificity Analysis. Anal Chem 2021; 93:7690-7698. [PMID: 34011150 PMCID: PMC8146142 DOI: 10.1021/acs.analchem.1c00614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus is an enveloped RNA virus that causes mild to severe respiratory diseases in humans, including HKU1-CoV, 229E-CoV, NL63-CoV, OC43-CoV, SARS-CoV, MERS-CoV, and SARS-CoV-2. Due to the outbreak of SARS-CoV-2, it is important to identify the patients and investigate their immune responses. Protein microarray is one of the best platforms to profile the antibodies in the blood because of its fast, multiplexed, and sensitive nature. To fully understand the immune responses and biological specificities, this study developed a human coronavirus (HCoV) protein microarray and included all seven human coronaviruses and three influenza viruses. Each protein was printed in triplicate and formed 14 identical blocks per array. The HCoV protein microarray showed high reproducibility and sensitivity to the monoclonal antibodies against spike and nucleocapsid protein with detection limits of 10-200 pg. The HCoV proteins that were immobilized on the array were properly folded and functional by showing interactions with a known human receptor, e.g., ACE2. By profiling the serum IgG and IgA from 32 COVID-19 patients and 36 healthy patients, the HCoV protein microarray demonstrated 97% sensitivity and 97% specificity with two biomarkers. The results also showed the cross-reactivity of IgG and IgA in COVID-19 patients to spike proteins from various coronaviruses, including that from SARS-CoV, HKU1-CoV, and OC43-CoV. Finally, an innate immune protein named surfactant protein D showed broad affinities to spike proteins in all human coronaviruses. Overall, the HCoV protein microarray is multiplexed, sensitive, and specific, which is useful in diagnosis, immune assessment, biological development, and drug screening.
Collapse
Affiliation(s)
- Pin-Xian Du
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Yi-Yu Chou
- Department
of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan, ROC
| | - Harvey M. Santos
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Batuhan Birol Keskin
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Miao-Hsi Hsieh
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Tzong-Shiann Ho
- Department
of Pediatrics, National Cheng Kung University Hospital, College of
Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Center
of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Jiu-Yao Wang
- Department
of Pediatrics, National Cheng Kung University Hospital, College of
Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Center for
Allergy and Clinical Immunology Research (ACIR), College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Yi-Ling Lin
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Guan-Da Syu
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
- International
Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan, ROC
- Research
Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
| |
Collapse
|
40
|
Li S, Song G, Bai Y, Song N, Zhao J, Liu J, Hu C. Applications of Protein Microarrays in Biomarker Discovery for Autoimmune Diseases. Front Immunol 2021; 12:645632. [PMID: 34012435 PMCID: PMC8126629 DOI: 10.3389/fimmu.2021.645632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Dysregulated autoantibodies and cytokines were deemed to provide important cues for potential illnesses, such as various carcinomas and autoimmune diseases. Increasing biotechnological approaches have been applied to screen and identify the specific alterations of these biomolecules as distinctive biomarkers in diseases, especially autoimmune diseases. As a versatile and robust platform, protein microarray technology allows researchers to easily profile dysregulated autoantibodies and cytokines associated with autoimmune diseases using various biological specimens, mainly serum samples. Here, we summarize the applications of protein microarrays in biomarker discovery for autoimmune diseases. In addition, the key issues in the process of using this approach are presented for improving future studies.
Collapse
Affiliation(s)
- Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yina Bai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Ning Song
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jian Liu
- Department of Rheumatology, Aerospace Center Hospital, Aerospace, Clinical Medical College, Peking University, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
41
|
Korzhikova-Vlakh E, Antipchik M, Tennikova T. Macroporous Polymer Monoliths in Thin Layer Format. Polymers (Basel) 2021; 13:1059. [PMID: 33801786 PMCID: PMC8037505 DOI: 10.3390/polym13071059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, macroporous polymer monoliths represent widely used stationary phases for a number of dynamic interphase mass exchange processes such as high-performance liquid chromatography, gas chromatography, electrochromatography, solid-phase extraction, and flow-through solid-state biocatalysis. This review represents the first summary in the field of current achievements on the preparation of macroporous polymer monolithic layers, as well as their application as solid phases for thin-layer chromatography and different kinds of microarray.
Collapse
Affiliation(s)
- Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| | - Mariia Antipchik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Unversitetskiy pr. 26, Petergof, 198584 St. Petersburg, Russia;
| |
Collapse
|
42
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
43
|
Dousti M, Manzano-Román R, Rashidi S, Barzegar G, Ahmadpour NB, Mohammadi A, Hatam G. A proteomic glimpse into the effect of antimalarial drugs on Plasmodium falciparum proteome towards highlighting possible therapeutic targets. Pathog Dis 2021; 79:ftaa071. [PMID: 33202000 DOI: 10.1093/femspd/ftaa071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
There is no effective vaccine against malaria; therefore, chemotherapy is to date the only choice to fight against this infectious disease. However, there is growing evidences of drug-resistance mechanisms in malaria treatments. Therefore, the identification of new drug targets is an urgent need for the clinical management of the disease. Proteomic approaches offer the chance of determining the effects of antimalarial drugs on the proteome of Plasmodium parasites. Accordingly, we reviewed the effects of antimalarial drugs on the Plasmodium falciparum proteome pointing out the relevance of several proteins as possible drug targets in malaria treatment. In addition, some of the P. falciparum stage-specific altered proteins and parasite-host interactions might play important roles in pathogenicity, survival, invasion and metabolic pathways and thus serve as potential sources of drug targets. In this review, we have identified several proteins, including thioredoxin reductase, helicases, peptidyl-prolyl cis-trans isomerase, endoplasmic reticulum-resident calcium-binding protein, choline/ethanolamine phosphotransferase, purine nucleoside phosphorylase, apical membrane antigen 1, glutamate dehydrogenase, hypoxanthine guanine phosphoribosyl transferase, heat shock protein 70x, knob-associated histidine-rich protein and erythrocyte membrane protein 1, as promising antimalarial drugs targets. Overall, proteomic approaches are able to partially facilitate finding possible drug targets. However, the integration of other 'omics' and specific pharmaceutical techniques with proteomics may increase the therapeutic properties of the critical proteins identified in the P. falciparum proteome.
Collapse
Affiliation(s)
- Majid Dousti
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Barzegar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Mohammadi
- Department of Disease Control, Komijan Treatment and Health Network, Arak University of Medical Science, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
45
|
Huergo MAC, Thanh NTK. Current advances in the detection of COVID-19 and evaluation of the humoral response. Analyst 2021; 146:382-402. [PMID: 33410826 DOI: 10.1039/d0an01686a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The new outbreak caused by coronavirus SARS-CoV-2 started at the end of 2019 and was declared a pandemic in March 2020. Since then, several diagnostic approaches have been re-adapted, and also improved from the previous detections of SARS and MERS coronavirus. The best strategy to handle this situation seems to rely on a triad of detection methods: (i) highly sensitive and specific techniques as the gold standard method, (ii) easier and faster point of care tests accessible for large population screening, and (iii) serology assays to complement the direct detection and to use for surveillance. In this study, we assessed the techniques and tests described in the literature, their advantages and disadvantages, and the interpretation of the results. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) is undoubtedly the gold standard technique utilized not only for diagnostics, but also as a standard for comparison and validation of newer approaches. Other nucleic acid amplification methods have been shown to be adequate as point of care (POC) diagnostic tests with similar performance as RT-qPCR. The analysis of seroconversion with immunotests shows the complexity of the immune response to COVID-19. The detection of anti-SARS-CoV-2 antibodies can also help to detect previously infected asymptomatic individuals with negative RT-qPCR tests. Nevertheless, more controlled serology cohort studies should be performed as soon as possible to understand the immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Maria Ana Cristina Huergo
- Theoretical and Applied Physical Chemical Research Institute (INIFTA), National Univesity of La Plata (UNLP), CONICET. Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina.
| | | |
Collapse
|
46
|
Olaya-Abril A, Rodríguez-Ortega MJ. Glass Slide-Printed Protein Arrays as a Platform to Discover Serodiagnostic Antigens Against Bacterial Infections. Methods Mol Biol 2021; 2344:151-161. [PMID: 34115358 DOI: 10.1007/978-1-0716-1562-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infectious diseases represent a major cause of morbidity and mortality worldwide. Early detection of infections is capital for managing life-threatening cases. So far, traditional diagnostic methods such as microbiological cultures are slow and, sometimes, inaccurate. In the molecular era, high-throughput techniques are essential for providing tools that are able to diagnose in a fast and reliable way, as well as they can be used for monitoring the humoral response of groups of people in a program of epidemiological surveillance when an outbreak occurs, or when a vaccine is being evaluated. Antigen-based protein microarrays are an ideal means for these purposes, as they can carry up to thousands of protein antigens from pathogenic sources and be probed with sera from different human groups (acute or chronic infected people, convalescent, controls). For the diagnosis of bacterial infections, the best antigens are in principle the surface proteins, as they have the highest chances to raise an effective immune response. Here we describe a general protocol for fabricating a glass slide-based protein microarray using recombinant bacterial surface antigens, according to our own expertise in the study of pneumococcal disease. The probing with human sera aims to evaluate differences between diseased and healthy people, in order to discover discriminating antigens that can be used, after appropriate validation, in further easy-to-use formats such as immunostrips.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio "Severo Ochoa" Planta Baja, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Edificio "Severo Ochoa" Planta Baja, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
- Campus de Excelencia Internacional CeiA3, Córdoba, Spain.
| |
Collapse
|
47
|
Valles DJ, Zholdassov YS, Braunschweig AB. Evolution and applications of polymer brush hypersurface photolithography. Polym Chem 2021. [DOI: 10.1039/d1py01073e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypersurface photolithography creates arbitrary polymer brush patterns with independent control over feature diameter, height, and spacing between features, while controlling composition along a polymer chain and between features.
Collapse
Affiliation(s)
- Daniel J. Valles
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Yerzhan S. Zholdassov
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
48
|
Hu L, Liu Y, Wei C, Jin H, Mei L, Wu C. SERPINH1, Targeted by miR-29b, Modulated Proliferation and Migration of Human Retinal Endothelial Cells Under High Glucose Conditions. Diabetes Metab Syndr Obes 2021; 14:3471-3483. [PMID: 34377003 PMCID: PMC8350151 DOI: 10.2147/dmso.s307771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
AIM In the present study, we performed bioinformatics studies and in vitro functional assays to explore the underlying role of serpin family H member 1 (SERPINH1) in the diabetic retinopathy. METHODS Common differentially expressed genes (DEGs) between diabetic retinal tissues and normal retinal tissues were analyzed using Gene Expression Omnibus (GEO) database. The proliferation and migration of human retinal endothelial cells (HRECs) was evaluated by MTS, EdU and wound healing assays, respectively; the miRNA and mRNAs expression levels of hub genes in HRECs were determined using quantitative real-time PCR (qRT-PCR). Protein levels were determined using a Western blot assay. RESULTS A total of 189 common DEGs were screened between two GEO datasets (GSE60436 and GSE94019), and ten potential hub genes that may link to the progression of diabetic retinopathy were detected. The qRT-PCR results showed that collagen, type I, alpha 1 (COL1A1), Collagen, type I, alpha 2 (COL1A2) and serpin family H member 1 (SERPINH1) mRNA expression levels were up-regulated in the HRECs after being exposed to high glucose for 48 h. Silence of SERPINH1 repressed the high glucose-induced increase in proliferation and migration of HRECs. SERPINH1 was a target of miR-29b and was suppressed by miR-29 in HRECs. SERPINH1 overexpression promoted HREC proliferation and migration. Furthermore, miR-29b suppressed HREC proliferation and migration under high-glucose stimulation, which was significantly attenuated by enforced expression of SERPINH1. CONCLUSION In conclusion, by performing the integrated bioinformatics analysis, the present study suggested that 3 hub genes (COL1A1, COL1A2 and SERPINH1) may be associated with diabetic retinopathy pathophysiology. Further mechanistic studies indicated that miR-29b/SERPINH1 signaling participated in high glucose-induced enhancement in the proliferation and migration of HRECs.
Collapse
Affiliation(s)
- Lingfei Hu
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Yinping Liu
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Chaobing Wei
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Huixiang Jin
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Lixin Mei
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Changfan Wu
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
- Correspondence: Changfan Wu Tel +86- 13909632351 Email
| |
Collapse
|
49
|
Gupta S, Banerjee A, Syed P, Srivastava S. Profiling Autoantibody Responses to Devise Novel Diagnostic and Prognostic Markers Using High-Density Protein Microarrays. Methods Mol Biol 2021; 2344:191-208. [PMID: 34115361 DOI: 10.1007/978-1-0716-1562-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Protein microarrays are a diverse and high-throughput platform for screening biomolecular interactions, autoantigens, and protein expression profiles across tissues, etc. Autoantibodies produced against aberrant protein expression are often observed in malignancies which makes protein microarrays a powerful platform to elucidate biomarkers of translational interest. Early diagnosis of malignancies is an enduring clinical problem that has a direct impact on disease prognosis. Here, we provide an overview of a method employed to screen autoantibodies using patient sera in brain tumors. In case of brain malignancies, early diagnosis is particularly challenging and often requires highly invasive brain biopsies as a confirmatory test. This chapter summarizes the various considerations for applying a serum-based autoantibody biomarker discovery pipeline that could provide a minimally invasive initial diagnostic screen, potentiating classical diagnostic approaches.
Collapse
Affiliation(s)
- Shabarni Gupta
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
50
|
Nice EC. The separation sciences, the front end to proteomics: An historical perspective. Biomed Chromatogr 2020; 35:e4995. [DOI: 10.1002/bmc.4995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Edouard C. Nice
- Department of Biochemistry and Molecular Biology Monash University Clayton Victoria Australia
| |
Collapse
|