1
|
Sardag I, Duvenci ZS, Belkaya S, Timucin E. Rational design of monomeric IL37 variants guided by stability and dynamical analyses of IL37 dimers. Comput Struct Biotechnol J 2024; 23:1854-1863. [PMID: 38882680 PMCID: PMC11177541 DOI: 10.1016/j.csbj.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
IL37 plays important roles in the regulation of innate immunity and its oligomeric status is critical to these roles. In its monomeric state, IL37 can effectively inhibit the inflammatory response of IL18 by binding to IL18Rα, a capacity lost in its dimeric form, underlining the pivotal role of the oligomeric status of IL37 in its anti-inflammatory action. Until now, two IL37 dimer structures have been deposited in PDB, reflecting a substantial difference in their dimer interfaces. Given this discrepancy, we analyzed the PDB structures of the IL37 dimer (PDB IDs: 6ncu, 5hn1) along with a AF2-multimer prediction by molecular dynamics (MD) simulations. Results showed that the 5hn1 and AF2-predicted dimers have the same interface and stably maintained their conformations throughout simulations, while the recent IL37 dimer (PDB ID: 6ncu) with a different interface did not, proposing a possible issue with the recent IL37 dimer structure (6ncu). Next, focusing on the stable dimer structures, we have identified five critical positions of V71/Y85/I86/E89/S114, three new positions compared to the literature, that would reduce dimer stability without affecting the monomer structure. Two quintuple mutants were tested by MD simulations and showed partial or complete dissociation of the dimer. Overall, the insights gained from this study reinforce the validity of the 5hn1 and AF2 multimer structures, while also advancing our understanding of the IL37 dimer interface through the generation of monomer-locked IL37 variants.
Collapse
Affiliation(s)
- Inci Sardag
- Bogazici University, Department of Molecular Biology and Genetics, Istanbul 34342, Turkey
| | - Zeynep Sevval Duvenci
- Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Department of Biostatistics and Bioinformatics, Istanbul 34752, Turkey
| | - Serkan Belkaya
- Bilkent University, Department of Molecular Biology and Genetics, Ankara 06800, Turkey
- Bilkent University, The National Nanotechnology Research Center (UNAM), Ankara 06800, Turkey
| | - Emel Timucin
- Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Department of Biostatistics and Bioinformatics, Istanbul 34752, Turkey
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Biostatistics and Medical Informatics, Istanbul 34752, Turkey
| |
Collapse
|
2
|
Khalid Z, Shamim A, Saadh MJ, Alafnan A, Alaraj M, Butt MH, Ashraf T. Identification of potential inhibitors against Corynebacterium diphtheriae MtrA response regulator protein; an in-silico drug discovery approach. J Mol Graph Model 2024; 133:108858. [PMID: 39232488 DOI: 10.1016/j.jmgm.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Corynebacterium diphtheriae is a multi-drug resistant bacteria responsible for the life-threatening respiratory illness, diphtheria which can lead to severe Nervous system disorders, mainly infecting the lungs, heart, and kidneys if left untreated. In the current study, Corynebacterium diphtheriae MtrA response regulator protein was targeted, which regulates a two-component system of bacterial pathogenesis, and initiates DNA replication and cell division. In the current study a computational approach have been described for drug development against C. diphtheriae infections by inhibiting MtrA protein by small molecules acting as potential inhibitors against it. Molecular docking analysis of the equilibrated MtrA protein revealed compound-0.2970, compound-0.3029, and compound-0.3016 from Asinex Library as the promising inhibitors based on their lowest binding energies (-9.8 kJ/mol, -9.2 kJ/mol, and -8.9 kJ/mol), highest gold scores (40.53, 47.41, and 48.41), drug-likeness and pharmacokinetic properties. The MD simulation studies of the identified top-ranked inhibitors at 100 ns elucidated the system stability and fluctuations in the binding pocket of MtrA protein. Molecular Dynamics Simulations of the top three docked complexes further revealed that the standard binding pocket was retained ensuring the system stability. The rearrangements of H-bonds, van der Waals, pi-pi, and solid hydrophobic interactions were also observed. The binding free energy calculations (MM/PBSA and MM/GBSA) suggested a fundamental binding capability of the ligand to the target receptor MtrA. Therefore, the current study has provided excellent candidates acting as potent inhibitors for developing therapeutic drugs against C. diphtheriae infections. However, in vivo and in vitro animal experiments and accurate clinical trials are needed to validate the potential inhibitory effect of these compounds.
Collapse
Affiliation(s)
- Zunera Khalid
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Amen Shamim
- Department of Computer Science, University of Agriculture Faisalabad, Pakistan; Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | | | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mohd Alaraj
- Faculty of Pharmacy, Jerash Private University, Jerash, Jordan
| | | | - Tehreem Ashraf
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
3
|
Wu M, Liao J, Meng F, Chen C. Calculating linear and nonlinear multi-ensemble slow collective variables for protein folding. J Chem Phys 2024; 161:184102. [PMID: 39513439 DOI: 10.1063/5.0232102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Traditional molecular dynamics simulation of biomolecules suffers from the conformational sampling problem. It is often difficult to produce enough valid data for post analysis such as free energy calculation and transition path construction. To improve the sampling, one practical solution is putting an adaptive bias potential on some predefined collective variables. The quality of collective variables strongly affects the sampling ability of a molecule in the simulation. In the past, collective variables were built with the sampling data at a constant temperature. This is insufficient because of the same sampling problem. In this work, we apply the standard weighted histogram analysis method to calculate the multi-ensemble averages of pairs of time-lagged features for the construction of both linear and nonlinear slow collective variables. Compared to previous single-ensemble methods, the presented method produces averages with much smaller statistical uncertainties. The generated collective variables help a peptide and a miniprotein fold to their near-native states in a short simulation time period. By using the method, enhanced sampling simulations could be more effective and productive.
Collapse
Affiliation(s)
- Mincong Wu
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Liao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Fanjun Meng
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Changjun Chen
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
4
|
Mitra A, Pandijothi V, Paul S. Computational insight into the peptide-based inhibition of α-cobratoxin. Phys Chem Chem Phys 2024; 26:28274-28287. [PMID: 39499553 DOI: 10.1039/d4cp03408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Snakebite envenoming results in the death of thousands of people each year and has been classified as a neglected tropical disease by the World Health Organization (WHO). The toxins released into the bloodstream of the victim bind to the nicotinic acetylcholine receptor and restrict transmission of nerve impulses leading to paralysis and cardiac arrest. Conventional antibody-based treatments often have adverse side effects or are difficult to perform. Hence, efforts are underway to devise alternative forms of treatment that address these therapeutic shortcomings. Peptide-based inhibitors have recently gained attention due to their high specificity and ease of preparation. Here, we explore the mechanism of a peptide inhibitor of α-cobratoxin using all-atom molecular dynamics (MD) simulations. We also quantify the energetics of the toxin-peptide dissociation process using the non-equilibrium steered MD technique. Our study reveals that the inhibitor migrates close to Loop-II of α-cobratoxin and alters its dimerization tendency. From energy studies, we found that the peptide first binds to one unit of α-cobratoxin in a particular orientation, followed by the binding of a second toxin molecule, which effectively masks the residues that interact with the nicotinic acetylcholine receptor. Our work provides atomic-level insight into the inhibition process that can be utilized in the future design of inhibitors with superior binding capabilities.
Collapse
Affiliation(s)
- Aritra Mitra
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Viswas Pandijothi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
5
|
MacAinsh M, Dey S, Zhou HX. Direct and indirect salt effects on homotypic phase separation. eLife 2024; 13:RP100282. [PMID: 39531035 PMCID: PMC11556789 DOI: 10.7554/elife.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by >100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we carried out all-atom molecular dynamics simulations of systems comprising multiple A1-LCD chains at NaCl concentrations from 50 to 1000 mM NaCl. The ions occupy first shell as well as more distant sites around the IDP chains, with Arg sidechains and backbone carbonyls the favored partners of Cl- and Na+, respectively. They play two direct roles in driving A1-LCD condensation. The first is to neutralize the high net charge of the protein (+9) by an excess of bound Cl- over Na+; the second is to bridge between A1-LCD chains, thereby fortifying the intermolecular interaction networks in the dense phase. At high concentrations, NaCl also indirectly strengthens π-π, cation-π, and amino-π interactions, by drawing water away from the interaction partners. Therefore, at low salt, A1-LCD is prevented from phase separation by net charge repulsion; at intermediate concentrations, NaCl neutralizes enough of the net charge while also bridging IDP chains to drive phase separation. This drive becomes even stronger at high salt due to strengthened π-type interactions. Based on this understanding, four classes of salt dependence of IDP phase separation can be predicted from amino-acid composition.
Collapse
Affiliation(s)
- Matt MacAinsh
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
| | - Souvik Dey
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
- Department of Physics, University of Illinois ChicagoChicagoUnited States
| |
Collapse
|
6
|
Wang H, Wang X, Zhong H, Cai L, Fu W, Chai X, Liao J, Sheng R, Shan L, Xu X, Xu L, Pan P, Hou T, Li D. Discovery of 5-Nitro- N-(3-(trifluoromethyl)phenyl) Pyridin-2-amine as a Novel Pure Androgen Receptor Antagonist against Antiandrogen Resistance. J Med Chem 2024. [PMID: 39508817 DOI: 10.1021/acs.jmedchem.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The transformation of clinical androgen receptor (AR) antagonists into agonists driven by AR mutations poses a significant challenge in treating prostate cancer (PCa). Novel anti-AR therapeutics combating mutation-induced resistance are required. Herein, by combining structure-based virtual screening and biological evaluation, a high-affinity agonist E10 was first discovered. Then guided by the representative conformation of State 1 at the free energy landscape, the structural optimization of E10 was performed, and pure AR antagonists EL15 (IC50 = 0.94 μM) and EF2 (IC50 = 0.30 μM) were successfully identified. Both can antagonize wild-type and variant drug-resistant ARs. Therein, EF2 demonstrated potent inhibition of the AR pathway and effectively suppressed tumor growth in a C4-2B xenograft mouse model following oral administration. Further molecular dynamics simulation and mutagenesis studies revealed atomic insights into the mode of action of EF2 which may serve as a novel lead compound for developing therapeutics against AR-driven PCa.
Collapse
Affiliation(s)
- Huating Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xuwen Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haiyang Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lvtao Cai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weitao Fu
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, Anhui, China
| | - Xin Chai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jianing Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rong Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, Zhejiang, China
| | - Luhu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Xiaohong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China
| | - Peichen Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dan Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, Zhejiang, China
| |
Collapse
|
7
|
Samanta S, Sk MF, Koirala S, Kar P. Dynamic Interplay of Loop Motions Governs the Molecular Level Regulatory Dynamics in Spleen Tyrosine Kinase: Insights from Molecular Dynamics Simulations. J Phys Chem B 2024; 128:10565-10580. [PMID: 39432460 DOI: 10.1021/acs.jpcb.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The spleen tyrosine kinase (Syk) is a key regulator in immune cell signaling and is linked to various mechanisms in cancer and neurodegenerative diseases. Although most computational research on Syk focuses on novel drug design, the molecular-level regulatory dynamics remain unexplored. In this study, we utilized 5 × 1 μs all-atom molecular dynamics simulations of the Syk kinase domain, examining it in combinations of activation segment phosphorylated/unphosphorylated (at Tyr525, Tyr526) and the "DFG"-Asp protonated/deprotonated (at Asp512) states to investigate conformational variations and regulatory dynamics of various loops and motifs within the kinase domain. Our findings revealed that the formation and disruption of several electrostatic interactions among residues within and near the activation segment likely influenced its dynamics. The protein structure network analysis indicated that the N-terminal and C-terminal anchors were stabilized by connections with the nearby stable helical regions. The P-loop showed conformational variation characterized by movements toward and away from the conserved "HRD"-motif. Additionally, there was a significant correlation between the movement of the β3-αC loop and the P-loop, which controls the dimensions of the adenine-binding cavity of the C-spine region. Overall, understanding these significant motions of the Syk kinase domain enhances our knowledge of its functional regulatory mechanism and can guide future research.
Collapse
Affiliation(s)
- Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
8
|
Panbo P, Thubsuang U, Payaka A. Molecular dynamics simulations of hydrogen-bonded network structures of polybenzoxazines in the gas phase and aqueous solution. J Mol Graph Model 2024; 134:108893. [PMID: 39437626 DOI: 10.1016/j.jmgm.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The crucial role of the amine functional group at the Mannich bridge of polybenzoxazines (PBZs) has been reported to be responsible for their hydrogen-bonded network structures. However, they have not been thoroughly studied in an aqueous solution and at the atomistic level. In this study, molecular dynamics simulations were applied to investigate the formation of hydrogen bond interactions of PBZs prepared from bisphenol A/methylamine (m-PBZ), bisphenol A/aniline-based (a-PBZ), and bisphenol A/2-(methylamino)ethylamine (e-PBZ). Based on the simulation results, the hydrogen-bonded network structures of the PBZs interfered with water molecules, leading to less compaction of the PBZ structure in the aqueous solution. The hydrogen bonding species of the m-PBZ and a-PBZ structures consisted of the -OH…N (Mannich) and -OH…O intramolecular interactions. However, for e-PBZ, the -OH…O species was not present, but the 2-(ethylamino)ethylamine substituent formed more hydrogen bonding species than those of m-PBZ and a-PBZ. Additionally, the intermolecular hydrogen bond interactions of the PBZs and water molecules were not detected in any of the aqueous solution simulations.
Collapse
Affiliation(s)
- Pakuna Panbo
- School of Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Uthen Thubsuang
- School of Engineering and Technology, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Center of Excellence on Wood and Biomaterials, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Center of Excellence on Petrochemical and Materials Technology, Bangkok, 10330, Thailand
| | - Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
9
|
Hu G, Yu X, Li Z. Unveiling Putative Excited State and Transmission of Binding Information in the Fluoride Riboswitch. J Chem Inf Model 2024; 64:7555-7564. [PMID: 39342653 DOI: 10.1021/acs.jcim.4c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Riboswitches regulate downstream gene expression by binding to specific small molecules or ions with multiple mechanisms to transfer the binding information. In the case of the fluoride riboswitch, the transcription termination signal is conveyed through a transient excited state (ES). In this work, we performed conventional molecular dynamics (MD) simulations, totaling 180 μs, to obtain the ES structure and investigate the mechanism underlying information transmission in Mg2+/F- binding within the fluoride riboswitch aptamer. The Mg2+/F- binding pocket exhibits various conformations in its apo form. A series of ES structures were extracted from the MD trajectories of the apo form. The dynamics of the Mg2+/F- binding pocket influenced key pair A40-U48 in ES structures. The pathway connecting the binding pocket to the pair involves interactions between the phosphate groups of U7 and G8 and the nucleobases of G8-C47-U48. Our work presents a structural ensemble of the ES and elucidates a pathway for transferring Mg2+/F- binding information, thereby facilitating the understanding of how the holo-like apo state achieves transcriptional repression.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhaojun Li
- College of Computer and Information Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
10
|
Hu Y, Yang H, Li M, Zhong Z, Zhou Y, Bai F, Wang Q. Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400884. [PMID: 39387316 DOI: 10.1002/advs.202400884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/22/2024] [Indexed: 10/15/2024]
Abstract
Inspired by the success of deep learning in predicting static protein structures, researchers are now actively exploring other deep learning algorithms aimed at predicting the conformational changes of proteins. Currently, a major challenge in the development of such models lies in the limited training data characterizing different conformational transitions. To address this issue, molecular dynamics simulations is combined with enhanced sampling methods to create a large-scale database. To this end, the study simulates the conformational changes of 2635 proteins featuring two known stable states, and collects the structural information along each transition pathway. Utilizing this database, a general deep learning model capable of predicting the transition pathway for a given protein is developed. The model exhibits general robustness across proteins with varying sequence lengths (ranging from 44 to 704 amino acids) and accommodates different types of conformational changes. Great agreement is shown between predictions and experimental data in several systems and successfully apply this model to identify a novel allosteric regulation in an important biological system, the human β-cardiac myosin. These results demonstrate the effectiveness of the model in revealing the nature of protein conformational changes.
Collapse
Affiliation(s)
- Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Mingwei Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhicheng Zhong
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yongqi Zhou
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
11
|
Wang P, Cui J, Cheng G, Zhang D. Theoretical study on the selective binding of BH3-only protein BAD to anti-apoptotic protein BCL- xL instead of MCL-1. Phys Chem Chem Phys 2024; 26:25480-25487. [PMID: 39324232 DOI: 10.1039/d4cp02936d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In this study, molecular dynamics simulations were used to systematically explore the reason why BH3-only protein BAD binds to anti-apoptotic protein BCL-xL but not to MCL-1 to give more theoretical hints for the design of BAD mimetic inhibitors for the dual-targeting of BCL-xL and MCL-1. Starting with the difference in residue-based binding energy contributions, a series of analyses were conducted to identify the hotspot residues in MCL-1 that significantly affect the interaction with BAD. Among them, the insertion of the T residue in the loop between α4 and α5 domains of MCL-1 is considered to be the main cause of BAD selective binding. The inserted T residue reduces the stability of the loop and weakens the hydrogen bond interactions that originally bound E19 of BAD in BCL-xL/BAD, and the freed E19 severely interferes with the salt bridge between D16 and Arg53 by electrostatic repulsion. This salt-bridge is believed to be critical for maintaining the binding between BCL-xL and BAD. By clarifying the reasons for differential binding, we can more specifically optimize the BAD sequence to target both BCL-xL and MCL-1.
Collapse
Affiliation(s)
- Panpan Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China.
| | - Jinglan Cui
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Guojie Cheng
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China.
| | - Dawei Zhang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China.
| |
Collapse
|
12
|
Phulera S, Dickson CJ, Schwalen CJ, Khoshouei M, Cassell SJ, Sun Y, Condos T, Whicher J, Weihofen WA. Scorpion α-toxin LqhαIT specifically interacts with a glycan at the pore domain of voltage-gated sodium channels. Structure 2024; 32:1611-1620.e4. [PMID: 39181123 DOI: 10.1016/j.str.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Voltage-gated sodium (Nav) channels sense membrane potential and drive cellular electrical activity. The deathstalker scorpion α-toxin LqhαIT exerts a strong action potential prolonging effect on Nav channels. To elucidate the mechanism of action of LqhαIT, we determined a 3.9 Å cryoelectron microscopy (cryo-EM) structure of LqhαIT in complex with the Nav channel from Periplaneta americana (NavPas). We found that LqhαIT binds to voltage sensor domain 4 and traps it in an "S4 down" conformation. The functionally essential C-terminal epitope of LqhαIT forms an extensive interface with the glycan scaffold linked to Asn330 of NavPas that augments a small protein-protein interface between NavPas and LqhαIT. A combination of molecular dynamics simulations, structural comparisons, and prior mutagenesis experiments demonstrates the functional importance of this toxin-glycan interaction. These findings establish a structural basis for the specificity achieved by scorpion α-toxins and reveal the conserved glycan as an essential component of the toxin-binding epitope.
Collapse
Affiliation(s)
- Swastik Phulera
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Callum J Dickson
- Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Christopher J Schwalen
- Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Maryam Khoshouei
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Samantha J Cassell
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yishan Sun
- Neuroscience, Novartis Biomedical Research, 22 Windsor St, Cambridge, MA 02139, USA
| | - Tara Condos
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jonathan Whicher
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Wilhelm A Weihofen
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Thakuria S, Paul S. Salt-bridge mediated conformational dynamics in the figure-of-eight knotted ketol acid reductoisomerase (KARI). Phys Chem Chem Phys 2024; 26:24963-24974. [PMID: 39297222 DOI: 10.1039/d4cp02677b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The utility of knotted proteins in biological activities has been ambiguous since their discovery. From their evolutionary significance to their functionality in stabilizing the native protein structure, a unilateral conclusion hasn't been achieved yet. While most studies have been performed to understand the stabilizing effect of the knotted fold on the protein chain, more ideas are yet to emerge regarding the interactions in stabilizing the knot. Using classical molecular dynamics (MD) simulations, we have explored the dynamics of the figure-of-eight knotted domain present in ketol acid reductoisomerase (KARI). Our main focus was on the presence of a salt bridge network evident within the knotted region and its role in shaping the conformational dynamics of the knotted chain. Through the potential of mean forces (PMFs) calculation, we have also marked the specific salt bridges that are pivotal in stabilizing the knotted structure. The correlated motions have been further monitored with the help of principal component analysis (PCA) and dynamic cross-correlation maps (DCCM). Furthermore, mutation of the specific salt bridges led to a change in their conformational stability, vindicating their importance.
Collapse
Affiliation(s)
- Sanjib Thakuria
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Ferraro F, Merlino A, Gil J, Pérez-Silanes S, Corvo I, Cabrera M. Flavonoid-Quinoxaline Hybrid Compounds as Cathepsin Inhibitors Against Fascioliasis. ChemMedChem 2024; 19:e202400305. [PMID: 38871654 DOI: 10.1002/cmdc.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Fasciola hepatica is a parasitic trematode that infects livestock animals and humans, causing significant health and economic burdens worldwide. The extensive use of anthelmintic drugs has led to the emergence of resistant parasite strains, posing a threat to treatment success. The complex life cycle of the liver fluke, coupled with limited funding and research interest, have hindered progress in drug discovery. Our group has been working in drug development against this parasite using cathepsin proteases as molecular targets, finding promising compound candidates with in vitro and in vivo efficacy. Here, we evaluated hybrid molecules that combine two chemotypes, chalcones and quinoxaline 1,4-di- N-oxides, previously found to inhibit F. hepatica cathepsin Ls and tested their in vitro activity with the isolated targets and the parasites in culture. These molecules proved to be good cathepsin inhibitors and to kill the juvenile parasites at micromolar concentrations. Also, we performed molecular docking studies to analyze the compounds-cathepsins interface, finding that the best inhibitors interact at the active site cleft and contact the catalytic dyad and residues belonging to the substrate binding pockets. We conclude that the hybrid compounds constitute promising scaffolds for the further development of new fasciolicidal compounds.
Collapse
Affiliation(s)
- Florencia Ferraro
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Silvia Pérez-Silanes
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Campus Universitario, 31009, Pamplona, Spain
| | - Ileana Corvo
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Mauricio Cabrera
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| |
Collapse
|
15
|
Phukan A, Baruah D, Koirala S, Kar P, Boni T, Tamuly C. 'Bhim Kol (Musa Balbisiana)' Wine: Chemical Profiling and Antidiabetic Properties with MD Simulation Insights. Chem Biodivers 2024:e202401855. [PMID: 39279595 DOI: 10.1002/cbdv.202401855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/18/2024]
Abstract
Musa balbisiana (Bhim Kol), an exotic fruit that offers numerous benefits can be fermented to obtain a unique indigenous wine. This study explores the fermentation of Musa balbisiana (Bhim Kol) fruit to produce a unique indigenous wine using strain of Saccharomyces cerevisiae and sugar over a 21-day period. Chemical profiling via GC-MS analysis revealed the presence of major volatile compounds such as butan-1-ol, propanoic acid, 2-phenylethanol, oxolane-2,5-dione etc. The wine exhibited in vitro α-glucosidase inhibition activity with an IC50 value of 8.56±0.14 μg/mL and antioxidant properties (DPPH⋅ scavenging activity (AAR) of 1.29±0.18 mM TRE). Molecular docking and simulation studies indicated potential binding of volatile compounds like 4-Hydroxy-3-methoxybenzoic acid, 2-phenylethanol, butan-1-ol and butane-2,3-diol with α-glucosidase enzyme. The study suggests the medicinal potential of the wine and its suitability for commercial production in the winery industry. Further studies are warranted to explore its full medicinal benefits.
Collapse
Affiliation(s)
- Anurag Phukan
- CSIR-North East Institute of Science and Technology, Branch Itanagar, Arunachal Pradesh, 791110, India
| | - Debasish Baruah
- CSIR-North East Institute of Science and Technology, Branch Itanagar, Arunachal Pradesh, 791110, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Techi Boni
- CSIR-North East Institute of Science and Technology, Branch Itanagar, Arunachal Pradesh, 791110, India
| | - Chandan Tamuly
- CSIR-North East Institute of Science and Technology, Branch Itanagar, Arunachal Pradesh, 791110, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Raghuraman P, Park S. Molecular simulation reveals that pathogenic mutations in BTB/ANK domains of Arabidopsis thaliana NPR1 circumscribe the EDS1-mediated immune regulation. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154345. [PMID: 39353309 DOI: 10.1016/j.jplph.2024.154345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The NPR1 (nonexpressor of pathogenesis-related genes 1) is a key regulator of the salicylic-acid-mediated immune response caused by pathogens in Arabidopsis thaliana. Mutations C150Y and H334Y in the BTB/ANK domains of NPR1 inhibit the defense response, and transcriptional co-activity with enhanced disease susceptibility 1 (EDS1) has been revealed experimentally. This study examined the conformational changes and reduced NPR1-EDS1 interaction upon mutation using a molecular dynamics simulation. Initially, BTBC150YNPR1 and ANKH334YNPR1 were categorized as pathological mutations rather than others based on sequence conservation. A distant ortholog was used to map the common residues shared among the wild-type because the mutations were highly conserved. Overall, 179 of 373 residues were determining the secondary structures and fold versatility of conformations. In addition, the mutational hotspots Cys150, Asp152, Glu153, Cys155, His157, Cys160, His334, Arg339 and Lys370 were crucial for oligomer-to-monomer exchange. Subsequently, the atomistic simulations with free energy (MM/PB(GB)SA) calculations predicted structural displacements engaging in the N-termini α5133-178α7 linker connecting the central ANK regions (α13260-290α14 and α18320-390α22), where prominent long helices (α516) and short helices (α310) replaced with β-turns and loops disrupting hydrogen bonds and salt bridges in both mutants implicating functional regulation and activation. Furthermore, the mutation repositions the intact stability of multiple regions (L13C149-N356α20BTB/ANK-α17W301-E357α21N-ter/coiled-coil) compromising a dynamic interaction of NPR1-EDS1. By unveiling the transitions between the distinct functions of mutational perception, this study paves the way for future investigation to orchestrate additive host-adapted transcriptional reprogramming that controls defense-related regulatory mechanisms of NPR1s in plants.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
17
|
Muhammedkutty FNK, Zhou HX. Membrane-assisted Aβ40 aggregation pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611426. [PMID: 39282376 PMCID: PMC11398458 DOI: 10.1101/2024.09.05.611426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD) is caused by the assembly of amyloid-beta (Aβ) peptides into oligomers and fibrils. Endogenous Aβ aggregation may be assisted by cell membranes, which can accelerate the nucleation step enormously, but knowledge of membrane-assisted aggregation is still very limited. Here we used extensive MD simulations to structurally and energetically characterize key intermediates along the membrane-assisted aggregation pathways of Aβ40. Reinforcing experimental observations, the simulations reveal unique roles of GM1 ganglioside and cholesterol in stabilizing membrane-embedded β-sheets and of Y10 and K28 in the ordered release of a small oligomeric seed into solution. The same seed leads to either an open-shaped or R-shaped fibril, with significant stabilization provided by inter- or intra-subunit interfaces between a straight β-sheet (residues Q15-D23) and a bent β-sheet (residues A30-V36). This work presents the first comprehensive picture of membrane-assisted aggregation of Aβ40, with broad implications for developing AD therapies and rationalizing disease-specific polymorphisms of amyloidogenic proteins.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Sari IP, Ortiz CLD, Yang LW, Chen MH, Perng MD, Wu TY. Development of Fusion-Based Assay as a Drug Screening Platform for Nipah Virus Utilizing Baculovirus Expression Vector System. Int J Mol Sci 2024; 25:9102. [PMID: 39201788 PMCID: PMC11354753 DOI: 10.3390/ijms25169102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin's interaction with NiV-G's central hole and EphrinB2's G-H loop, which could be the possible reason for its fusion inhibitory activity.
Collapse
Affiliation(s)
- Indah Permata Sari
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Christopher Llynard D. Ortiz
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan; (C.L.D.O.); (L.-W.Y.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lee-Wei Yang
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan; (C.L.D.O.); (L.-W.Y.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Hsiang Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
19
|
Yancoskie M, Khaleghi R, Gururajan A, Raghunathan A, Gupta A, Diethelm S, Maritz C, Sturla S, Krishnan M, Naegeli H. ASH1L guards cis-regulatory elements against cyclobutane pyrimidine dimer induction. Nucleic Acids Res 2024; 52:8254-8270. [PMID: 38884271 PMCID: PMC11317172 DOI: 10.1093/nar/gkae517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
The histone methyltransferase ASH1L, first discovered for its role in transcription, has been shown to accelerate the removal of ultraviolet (UV) light-induced cyclobutane pyrimidine dimers (CPDs) by nucleotide excision repair. Previous reports demonstrated that CPD excision is most efficient at transcriptional regulatory elements, including enhancers, relative to other genomic sites. Therefore, we analyzed DNA damage maps in ASH1L-proficient and ASH1L-deficient cells to understand how ASH1L controls enhancer stability. This comparison showed that ASH1L protects enhancer sequences against the induction of CPDs besides stimulating repair activity. ASH1L reduces CPD formation at C-containing but not at TT dinucleotides, and no protection occurs against pyrimidine-(6,4)-pyrimidone photoproducts or cisplatin crosslinks. The diminished CPD induction extends to gene promoters but excludes retrotransposons. This guardian role against CPDs in regulatory elements is associated with the presence of H3K4me3 and H3K27ac histone marks, which are known to interact with the PHD and BRD motifs of ASH1L, respectively. Molecular dynamics simulations identified a DNA-binding AT hook of ASH1L that alters the distance and dihedral angle between neighboring C nucleotides to disfavor dimerization. The loss of this protection results in a higher frequency of C->T transitions at enhancers of skin cancers carrying ASH1L mutations compared to ASH1L-intact counterparts.
Collapse
Affiliation(s)
- Michelle N Yancoskie
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| | - Reihaneh Khaleghi
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| | - Anirvinya Gururajan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Aadarsh Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Aryan Gupta
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Sarah Diethelm
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| | - Corina Maritz
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| |
Collapse
|
20
|
Srivastava DK, Navratna V, Tosh DK, Chinn A, Sk MF, Tajkhorshid E, Jacobson KA, Gouaux E. Structure of the human dopamine transporter and mechanisms of inhibition. Nature 2024; 632:672-677. [PMID: 39112705 PMCID: PMC11324517 DOI: 10.1038/s41586-024-07739-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/19/2024] [Indexed: 08/16/2024]
Abstract
The neurotransmitter dopamine has central roles in mood, appetite, arousal and movement1. Despite its importance in brain physiology and function, and as a target for illicit and therapeutic drugs, the human dopamine transporter (hDAT) and mechanisms by which it is inhibited by small molecules and Zn2+ are without a high-resolution structural context. Here we determine the structure of hDAT in a tripartite complex with the competitive inhibitor and cocaine analogue, (-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane2 (β-CFT), the non-competitive inhibitor MRS72923 and Zn2+ (ref. 4). We show how β-CFT occupies the central site, approximately halfway across the membrane, stabilizing the transporter in an outward-open conformation. MRS7292 binds to a structurally uncharacterized allosteric site, adjacent to the extracellular vestibule, sequestered underneath the extracellular loop 4 (EL4) and adjacent to transmembrane helix 1b (TM1b), acting as a wedge, precluding movement of TM1b and closure of the extracellular gate. A Zn2+ ion further stabilizes the outward-facing conformation by coupling EL4 to EL2, TM7 and TM8, thus providing specific insights into how Zn2+ restrains the movement of EL4 relative to EL2 and inhibits transport activity.
Collapse
Affiliation(s)
| | - Vikas Navratna
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audrey Chinn
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Md Fulbabu Sk
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
21
|
Wu S, Li M, Wang L, Yang L, Cui J, Li F, Wang Q, Shi Y, Lv M. Structural basis for TNIP1 binding to FIP200 during mitophagy. J Biol Chem 2024; 300:107605. [PMID: 39059492 PMCID: PMC11367644 DOI: 10.1016/j.jbc.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
TNIP1 has been increasingly recognized as a security check to finely adjust the rate of mitophagy by disrupting the recycling of the Unc-51-like kinase complex during autophagosome formation. Through tank-binding kinase 1-mediated phosphorylation of the TNIP1 FIP200 interacting region (FIR) motif, the binding affinity of TNIP1 for FIP200, a component of the Unc-51-like kinase complex, is enhanced, allowing TNIP1 to outcompete autophagy receptors. Consequently, FIP200 is released from the autophagosome, facilitating further autophagosome expansion. However, the molecular basis by which FIP200 utilizes its claw domain to distinguish the phosphorylation status of residues in the TNIP1 FIR motif for recognition is not well understood. Here, we elucidated multiple crystal structures of the complex formed by the FIP200 claw domain and various phosphorylated TNIP1 FIR peptides. Structural and isothermal titration calorimetry analyses identified the crucial residues in the FIP200 claw domain responsible for the specific recognition of phosphorylated TNIP1 FIR peptides. Additionally, utilizing structural comparison and molecular dynamics simulation data, we demonstrated that the C-terminal tail of TNIP1 peptide affected its binding to the FIP200 claw domain. Moreover, the phosphorylation of TNIP1 Ser123 enabled the peptide to effectively compete with the peptide p-CCPG1 (the FIR motif of the autophagy receptor CCPG1) for binding with the FIP200 claw domain. Overall, our work provides a comprehensive understanding of the specific recognition of phosphorylated TNIP1 by the FIP200 claw domain, marking an initial step toward fully understanding the molecular mechanism underlying the TNIP1-dependent inhibition of mitophagy.
Collapse
Affiliation(s)
- Shengmei Wu
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingwei Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Wang
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
| | - Lingna Yang
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Cui
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
| | - Fudong Li
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Yunyu Shi
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China.
| | - Mengqi Lv
- Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
22
|
Lv X, Wang J, Yuan Y, Pan L, Liu Q, Guo J. In Silico drug repurposing pipeline using deep learning and structure based approaches in epilepsy. Sci Rep 2024; 14:16562. [PMID: 39020064 PMCID: PMC11254927 DOI: 10.1038/s41598-024-67594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Due to considerable global prevalence and high recurrence rate, the pursuit of effective new medication for epilepsy treatment remains an urgent and significant challenge. Drug repurposing emerges as a cost-effective and efficient strategy to combat this disorder. This study leverages the transformer-based deep learning methods coupled with molecular binding affinity calculation to develop a novel in-silico drug repurposing pipeline for epilepsy. The number of candidate inhibitors against 24 target proteins encoded by gain-of-function genes implicated in epileptogenesis ranged from zero to several hundreds. Our pipeline has repurposed the medications with most anti-epileptic drugs and nearly half psychiatric medications, highlighting the effectiveness of our pipeline. Furthermore, Lomitapide, a cholesterol-lowering drug, first emerged as particularly noteworthy, exhibiting high binding affinity for 10 targets and verified by molecular dynamics simulation and mechanism analysis. These findings provided a novel perspective on therapeutic strategies for other central nervous system disease.
Collapse
Affiliation(s)
- Xiaoying Lv
- Global Health Drug Discovery Institute, Beijing, China
| | - Jia Wang
- Cipher Gene Limited, Beijing, China
| | - Ying Yuan
- Global Health Drug Discovery Institute, Beijing, China
| | - Lurong Pan
- Global Health Drug Discovery Institute, Beijing, China
| | - Qi Liu
- Global Health Drug Discovery Institute, Beijing, China
| | - Jinjiang Guo
- Global Health Drug Discovery Institute, Beijing, China.
| |
Collapse
|
23
|
Xia YL, Du WW, Li YP, Tao Y, Zhang ZB, Liu SM, Fu YX, Zhang KQ, Liu SQ. Computational Insights into SARS-CoV-2 Main Protease Mutations and Nirmatrelvir Efficacy: The Effects of P132H and P132H-A173V. J Chem Inf Model 2024; 64:5207-5218. [PMID: 38913174 PMCID: PMC11235099 DOI: 10.1021/acs.jcim.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.
Collapse
Affiliation(s)
- Yuan-Ling Xia
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Editorial
Office of Journal of Yunnan University (Natural Sciences Edition), Yunnan University, Kunming, Yunnan 650091, China
| | - Wen-Wen Du
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Yong-Ping Li
- School
of Agriculture, Yunnan University, Kunming, Yunnan 650091, China
| | - Yan Tao
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Yunnan
University Library, Yunnan University, Kunming, Yunnan 650091, China
| | - Zhi-Bi Zhang
- Yunnan
Key Laboratory of Stem Cell and Regenerative Medicine & Biomedical
Engineering Research Center, Kunming Medical
University, Kunming, Yunnan 650500, China
| | - Song-Ming Liu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Yun-Xin Fu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Human Genetics
Center and Department of Biostatistics and Data Science, School of
Public Health, The University of Texas Health
Science Center, Houston, Texas 77030, United States
| | - Ke-Qin Zhang
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Shu-Qun Liu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| |
Collapse
|
24
|
Du Y, Kobashigawa Y, Okazaki K, Ogawa M, Kawaguchi T, Sato T, Morioka H. Structure-based design, biophysical characterization, and biochemical application of the heterodimeric affinity purification tag based on the Schistosoma japonicum glutathione-S-transferase (SjGST) homodimer. J Biochem 2024; 176:69-80. [PMID: 38471515 DOI: 10.1093/jb/mvae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Schistosoma japonicum glutathione-S-transferase (SjGST), the so-called GST-tag, is one of the most widely used protein tags for the purification of recombinant proteins by affinity chromatography. Attachment of SjGST enables the purification of a protein of interest (POI) using commercially available glutathione-immobilizing resins. Here we produced an SjGST mutant pair that forms heterodimers by adjusting the salt bridge pairs in the homodimer interface of SjGST. An MD study confirmed that the SjGST mutant pair did not disrupt the heterodimer formation. The modified SjGST protein pair coexpressed in Escherichia coli was purified by glutathione-immobilized resin. The stability of the heterodimeric form of the SjGST mutant pair was further confirmed by size exclusion chromatography. Surface plasmon resonance measurements unveiled the selective formation of heterodimers within the pair, accompanied by a significant suppression of homodimerization. The heterodimeric SjGST exhibited enzymatic activity in assays employing a commercially available fluorescent substrate. By fusing one member of the heterodimeric SjGST pair with a fluorescent protein and the other with the POI, we were able to conveniently and sensitively detect protein-protein interactions using fluorescence spectroscopy in the pull-down assays. Thus, utilization of the heterodimeric SjGST would be a useful tag for protein science.
Collapse
Affiliation(s)
- Yan Du
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kyo Okazaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mizuki Ogawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tomoyuki Kawaguchi
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
25
|
Guo M, Lin Y, Obi CD, Zhao P, Dailey HA, Medlock AE, Shen Y. Impact of Phosphorylation at Various Sites on the Active Pocket of Human Ferrochelatase: Insights from Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:6360. [PMID: 38928065 PMCID: PMC11203519 DOI: 10.3390/ijms25126360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at T116 increases. However, it remains unclear whether the T116 site and other potential phosphorylation modification sites collaboratively regulate the activity of FECH. In this study, we identified a new phosphorylation site, T218, and explored the allosteric effects of unphosphorylated (UP), PT116, PT218, and PT116 + PT218 states on FECH in the presence and absence of substrates (PPIX and Heme) using molecular dynamics (MD) simulations. Binding free energies were evaluated with the MM/PBSA method. Our findings indicate that the PT116 + PT218 state exhibits the lowest binding free energy with PPIX, suggesting the strongest binding affinity. Additionally, this state showed a higher binding free energy with Heme compared to UP, which facilitates Heme release. Moreover, employing multiple analysis methods, including free energy landscape (FEL), principal component analysis (PCA), dynamic cross-correlation matrix (DCCM), and hydrogen bond interaction analysis, we demonstrated that phosphorylation significantly affects the dynamic behavior and binding patterns of substrates to FECH. Insights from this study provide valuable theoretical guidance for treating conditions related to disrupted heme metabolism, such as various porphyrias and iron-related disorders.
Collapse
Affiliation(s)
- Mingshan Guo
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuhong Lin
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Yong Shen
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Rehman AU, Zhao C, Wu Y, Zhu Q, Luo R. Targeting SHP2 Cryptic Allosteric Sites for Effective Cancer Therapy. Int J Mol Sci 2024; 25:6201. [PMID: 38892388 PMCID: PMC11172685 DOI: 10.3390/ijms25116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
SHP2, a pivotal component downstream of both receptor and non-receptor tyrosine kinases, has been underscored in the progression of various human cancers and neurodevelopmental disorders. Allosteric inhibitors have been proposed to regulate its autoinhibition. However, oncogenic mutations, such as E76K, convert SHP2 into its open state, wherein the catalytic cleft becomes fully exposed to its ligands. This study elucidates the dynamic properties of SHP2 structures across different states, with a focus on the effects of oncogenic mutation on two known binding sites of allosteric inhibitors. Through extensive modeling and simulations, we further identified an alternative allosteric binding pocket in solution structures. Additional analysis provides insights into the dynamics and stability of the potential site. In addition, multi-tier screening was deployed to identify potential binders targeting the potential site. Our efforts to identify a new allosteric site contribute to community-wide initiatives developing therapies using multiple allosteric inhibitors to target distinct pockets on SHP2, in the hope of potentially inhibiting or slowing tumor growth associated with SHP2.
Collapse
Affiliation(s)
| | | | | | | | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, CA 92697, USA; (A.U.R.)
| |
Collapse
|
27
|
Laurien M, Mende L, Luhrmann L, Frederiksen A, Aldag M, Spiecker L, Clemmesen C, Solov'yov IA, Gerlach G. Magnetic orientation in juvenile Atlantic herring ( Clupea harengus) could involve cryptochrome 4 as a potential magnetoreceptor. J R Soc Interface 2024; 21:20240035. [PMID: 38835248 DOI: 10.1098/rsif.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
The Earth's magnetic field can provide reliable directional information, allowing migrating animals to orient themselves using a magnetic compass or estimate their position relative to a target using map-based orientation. Here we show for the first time that young, inexperienced herring (Clupea harengus, Ch) have a magnetic compass when they migrate hundreds of kilometres to their feeding grounds. In birds, such as the European robin (Erithacus rubecula), radical pair-based magnetoreception involving cryptochrome 4 (ErCRY4) was demonstrated; the molecular basis of magnetoreception in fish is still elusive. We show that cry4 expression in the eye of herring is upregulated during the migratory season, but not before, indicating a possible use for migration. The amino acid structure of herring ChCRY4 shows four tryptophans and a flavin adenine dinucleotide-binding site, a prerequisite for a magnetic receptor. Using homology modelling, we successfully reconstructed ChCRY4 of herring, DrCRY4 of zebrafish (Danio rerio) and StCRY4 of brown trout (Salmo trutta) and showed that ChCRY4, DrCRY4 and ErCRY4a, but not StCRY4, exhibit very comparable dynamic behaviour. The electron transfer could take place in ChCRY4 in a similar way to ErCRY4a. The combined behavioural, transcriptomic and simulation experiments provide evidence that CRY4 could act as a magnetoreceptor in Atlantic herring.
Collapse
Affiliation(s)
- Malien Laurien
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Lara Mende
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Lena Luhrmann
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Anders Frederiksen
- Institute of Physics, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Mandus Aldag
- Institute of Physics, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Lisa Spiecker
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Catriona Clemmesen
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel 24105, Germany
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| |
Collapse
|
28
|
Chatterjee H, Mahapatra AJ, Zacharias M, Sengupta N. Helical reorganization in the context of membrane protein folding: Insights from simulations with bacteriorhodopsin (BR) fragments. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184333. [PMID: 38740122 DOI: 10.1016/j.bbamem.2024.184333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Membrane protein folding is distinct from folding of soluble proteins. Conformational acquisition in major membrane protein subclasses can be delineated into insertion and folding processes. An exception to the "two stage" folding, later developed to "three stage" folding, is observed within the last two helices in bacteriorhodopsin (BR), a system that serves as a model membrane protein. We employ a reductionist approach to understand interplay of molecular factors underlying the apparent defiance. Leveraging available solution NMR structures, we construct, sample in silico, and analyze partially (PIn) and fully inserted (FIn) BR membrane states. The membrane lateral C-terminal helix (CH) in PIn is markedly prone to transient structural distortions over microsecond timescales; a disorder prone region (DPR) is thereby identified. While clear transmembrane propensities are not acquired, the distortions induce alterations in local membrane curvature and area per lipid. Importantly, energetic decompositions reveal that overall, the N-terminal helix (NH) is thermodynamically more stable in the PIn. Higher overall stability of the FIn arises from favorable interactions between the NH and the CH. Our results establish lack of spontaneous transition of the PIn to the FIn, and attributes their partitioning to barriers that exceed those accessible with thermal fluctuations. This work paves the way for further detailed studies aimed at determining the thermo-kinetic roles of the initial five helices, or complementary external factors, in complete helical folding and insertion in BR. We comment that complementing such efforts with the growing field of machine learning assisted energy landscape searches may offer unprecedented insights.
Collapse
Affiliation(s)
- Hindol Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Anshuman J Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Martin Zacharias
- Center for Functional Protein Assemblies, TUM School of Natural Sciences Technical University Munich, Ernst-Otto-Fischer-Straße 8, 85748 Garching, Germany.
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
29
|
Brossard EE, Corcelli SA. Mechanism of Daunomycin Intercalation into DNA from Enhanced Sampling Simulations. J Phys Chem Lett 2024; 15:5770-5778. [PMID: 38776167 DOI: 10.1021/acs.jpclett.4c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Daunomycin is a widely used anticancer drug, yet the mechanism underlying how it binds to DNA remains contested. 469 all-atom trajectories of daunomycin binding to the DNA oligonucleotide d(GCG CAC GTG CGC) were collected using weighted ensemble (WE)-enhanced sampling. Mechanistic insights were revealed through analysis of the ensemble of trajectories. Initially, the binding process involves a ubiquitous hydrogen bond between the DNA backbone and the NH3+ group on daunomycin. During the binding process, most trajectories exhibited similar structural changes to DNA, including DNA base pair rise, bending, and minor groove width changes. Variability within the ensemble of binding trajectories illuminates differences in the orientation of daunomycin as it initially intercalates; around 10% of trajectories needed minimal rearrangement from intercalation to reaching the fully bound configuration, whereas most needed an additional 1-5 ns to rearrange. The results here emphasize the utility of generating an ensemble of trajectories to discern biomolecular binding mechanisms.
Collapse
Affiliation(s)
- E E Brossard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - S A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
30
|
Nayak AK, Chakraborty A, Shukla S, Kumar N, Samanta S. An immunoinformatic approach for developing a multi-epitope subunit vaccine against Monkeypox virus. In Silico Pharmacol 2024; 12:42. [PMID: 38746047 PMCID: PMC11089034 DOI: 10.1007/s40203-024-00220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
An in-silico approach was implemented to develop a multi-epitope subunit vaccine construct against the recent outbreak of the Monkeypox virus. The contribution of 10 different antigenic proteins based on their antigenicity led to the selection of 10 HTL, 9 CTL, and 6 BCL epitopes. The construct was further investigated for its allergenicity, antigenicity, and physio-chemical properties using servers such as AllerTOP and Allergen FP, VaxiJen and ANTIGENPro, and ProtParam respectively. The secondary structure of the vaccine was predicted using the SOPMA server followed by I-TASSER for the 3D structure. After refinement and validation of structural stability of the modelled vaccine, a molecular docking assay was implemented to study the interaction of the known TLR4 receptor with that of the constructed vaccine using the ClusPro server. The docked vaccine and TLR4 receptor were studied using the molecular dynamics (MD) simulation to validate the stability of the complex. After codon optimization the cDNA was constructed and in-silico cloning of the vaccine construct was carried out. The vaccine was also subjected to computational immune assay which predicted a powerful immune response against the Monkeypox virus validating that the developed multi-epitope vaccine construct can be a potent vaccine candidate. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00220-5.
Collapse
Affiliation(s)
- Ashmad Kumar Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| | - Aritra Chakraborty
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| | - Sakshi Shukla
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| | - Nikhil Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh India
| |
Collapse
|
31
|
Peng C, Lv X, Zhang Z, Lin J, Li D. The Recognition Pathway of the SARS-CoV-2 Spike Receptor-Binding Domain to Human Angiotensin-Converting Enzyme 2. Molecules 2024; 29:1875. [PMID: 38675695 PMCID: PMC11054751 DOI: 10.3390/molecules29081875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
COVID-19 caused by SARS-CoV-2 has spread around the world. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 is a critical component that directly interacts with host ACE2. Here, we simulate the ACE2 recognition processes of RBD of the WT, Delta, and OmicronBA.2 variants using our recently developed supervised Gaussian accelerated molecular dynamics (Su-GaMD) approach. We show that RBD recognizes ACE2 through three contact regions (regions I, II, and III), which aligns well with the anchor-locker mechanism. The higher binding free energy in State d of the RBDOmicronBA.2-ACE2 system correlates well with the increased infectivity of OmicronBA.2 in comparison with other variants. For RBDDelta, the T478K mutation affects the first step of recognition, while the L452R mutation, through its nearby Y449, affects the RBDDelta-ACE2 binding in the last step of recognition. For RBDOmicronBA.2, the E484A mutation affects the first step of recognition, the Q493R, N501Y, and Y505H mutations affect the binding free energy in the last step of recognition, mutations in the contact regions affect the recognition directly, and other mutations indirectly affect recognition through dynamic correlations with the contact regions. These results provide theoretical insights for RBD-ACE2 recognition and may facilitate drug design against SARS-CoV-2.
Collapse
Affiliation(s)
- Can Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China; (C.P.); (X.L.)
| | - Xinyue Lv
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China; (C.P.); (X.L.)
| | - Zhiqiang Zhang
- Xiongan Institute of Innovation, Xiong’an New Area 070001, China;
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China; (C.P.); (X.L.)
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China; (C.P.); (X.L.)
| |
Collapse
|
32
|
Luo S, Xiong D, Tang B, Liu B, Zhao X, Duan L. Evaluating mAbs binding abilities to Omicron subvariant RBDs: implications for selecting effective mAb therapies. Phys Chem Chem Phys 2024; 26:11414-11428. [PMID: 38591159 DOI: 10.1039/d3cp05893j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The ongoing evolution of the Omicron lineage of SARS-CoV-2 has led to the emergence of subvariants that pose challenges to antibody neutralization. Understanding the binding dynamics between the receptor-binding domains (RBD) of these subvariants spike and monoclonal antibodies (mAbs) is pivotal for elucidating the mechanisms of immune escape and for advancing the development of therapeutic antibodies. This study focused on the RBD regions of Omicron subvariants BA.2, BA.5, BF.7, and XBB.1.5, employing molecular dynamics simulations to unravel their binding mechanisms with a panel of six mAbs, and subsequently analyzing the origins of immune escape from energetic and structural perspectives. Our results indicated that the antibody LY-COV1404 maintained binding affinities across all studied systems, suggesting the resilience of certain antibodies against variant-induced immune escape, as seen with the mAb 1D1-Fab. The newly identified mAb 002-S21F2 showed a similar efficacy profile to LY-COV1404, though with a slightly reduced binding to BF.7. In parallel, mAb REGN-10933 emerged as a potential therapeutic candidate against BF.7 and XBB.1.5, reflecting the importance of identifying variant-specific antibody interactions, akin to the binding optimization observed in BA.4/5 and XBB.1.5. And key residues that facilitate RBD-mAb binding were identified (T345, L441, K444, V445, and T500), alongside residues that hinder protein-protein interactions (D420, L455, K440, and S446). Particularly noteworthy was the inhibited binding of V445 and R509 with mAbs in the presence of mAb 002-S21F2, suggesting a mechanism for immune escape, especially through the reduction of V445 hydrophobicity. These findings enhance our comprehension of the binding interactions between mAbs and RBDs, contributing to the understanding of immune escape mechanisms. They also lay the groundwork for the design and optimization of antiviral drugs and have significant implications for the development of treatments against current and future coronaviruses.
Collapse
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bangyu Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
33
|
Li M, Hu Y, Wang Q. Exploring the Super-Relaxed State of Human Cardiac β-Myosin by Molecular Dynamics Simulations. J Phys Chem B 2024; 128:3113-3120. [PMID: 38516963 DOI: 10.1021/acs.jpcb.3c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Human β-cardiac myosin plays a critical role in generating the mechanical forces necessary for cardiac muscle contraction. This process relies on a delicate dynamic equilibrium between the disordered relaxed state (DRX) and the super-relaxed state (SRX) of myosin. Disruptions in this equilibrium due to mutations can lead to heart diseases. However, the structural characteristics of SRX and the molecular mechanisms underlying pathogenic mutations have remained elusive. To bridge this gap, we conducted molecular dynamics simulations and free energy calculations to explore the conformational changes in myosin. Our findings indicate that the size of the phosphate-binding pocket can serve as a valuable metric for characterizing the transition from the DRX to SRX state. Importantly, we established a global dynamic coupling network within the myosin motor head at the residue level, elucidating how the pathogenic mutation E483K impacts the equilibrium between SRX and DRX through allosteric effects. Our work illuminates molecular details of SRX and offers valuable insights into disease treatment through the regulation of SRX.
Collapse
Affiliation(s)
- Mingwei Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Zeng J, Lu C, Huang X, Li Y. The human eIF4E:4E-BP2 complex structure for studying hyperphosphorylation. Phys Chem Chem Phys 2024; 26:10660-10672. [PMID: 38511550 DOI: 10.1039/d3cp05736d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The cap-dependent mRNA translation is dysregulated in many kinds of cancers. The interaction between eIF4E and eIF4G through a canonical eIF4E-binding motif (CEBM) determines the efficacy of the cap-dependent mRNA translation. eIF4E-binding proteins (4E-BPs) share the CEBM and compete with eIF4G for the same binding surface of eIF4E and then inhibit the mRNA translation. 4E-BPs function as tumor repressors in nature. Hyperphosphorylation of 4E-BPs regulates the structure folding and causes the dissociation of 4E-BPs from eIF4E. However, until now, there has been no structure of the full-length 4E-BPs in complex with eIF4E. The regulation mechanism of phosphorylation is still unclear. In this work, we first investigate the interactions of human eIF4E with the CEBM and an auxiliary eIF4E-binding motif (AEBM) in eIF4G and 4E-BPs. The results unravel that the structure and interactions of the CEBM are highly conserved between eIF4G and 4E-BPs. However, the extended CEBM (ECEBM) in 4E-BPs forms a longer helix than that in eIF4G. The residue R62 in the ECEBM of 4E-BP2 forms salt bridges with E32 and E70 of eIF4E. The residue R63 of 4E-BP2 forms two special hydrogen bonds with N77 of eIF4E. Both of these interactions are missing in eIF4G. The AEBM of 4E-BPs folds into a β-sheet conformation, which protects V81 inside a hydrophobic core in 4E-BP2. In eIF4G, the AEBM exists in a random coil state. The hydrophilic residues S637 and D638 of eIF4G open the hydrophobic core for solvents. The results show that the ECEBM and AEBM may be responsible for the competing advantage of 4E-BP2. Finally, based on our previous work (J. Zeng, F. Jiang and Y. D. Wu, J. Chem. Theory Comput., 2017, 13, 320), the human eIF4E:4E-BP2 complex (eIF4E:BP2P18-I88) including all reported phosphorylation sites is predicted. The eIF4E:BP2P18-I88 complex is different from the existing experimental eIF4E:eIF4G complex and provides an important structure for further studying the regulation mechanism of phosphorylation in 4E-BPs.
Collapse
Affiliation(s)
- Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - CuiMin Lu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - Xuan Huang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - Yang Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China.
| |
Collapse
|
35
|
Andac CA, Hornemann U, Noyanalpan N, Stringfellow TC. Synthesis, NMR kinetics and dynamic structure of a 17-mer heptaloop RNA hairpin carrying a 3- N-methyluridine nucleotide residue in the loop region. J Biomol Struct Dyn 2024; 42:3659-3681. [PMID: 37278223 DOI: 10.1080/07391102.2023.2214231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
A 17-mer RNA hairpin (5'GGGAGUXAGCGGCUCCC3') carrying 3-N-methyluridine (m3U) at position X (m3U7-RNA), designed to represent the anticodon stem-loop (ACSL) region of tRNAs to study an open loop state (O-state), was synthesized, purified by HPLC, and characterized by MALDI-ToF_MS and NMR methods. 1H-NMR data revealed primary (P-state in 56.1%), secondary (S-state in 43.9%) and tertiary (∼5-6%) ACSL conformations. Exchange rate constant (kex) for interconversion between P and S states is 112 sec-1 (<Δω ∼454 rad/sec), confirming a slow exchange regime between the two states. Forward (kPS) and backward (kSP) rate constants are 49.166 sec-1 and 62.792 sec-1, respectively, leading to a longer life-time (20.339 msec) for the P-state and a shorter life-time (15.926 msec) for the S-state. In accordance with conformational populations determined by 1H-NMR, dynamics of the P/S/tertiary states of m3U7-RNA and its wild-type counterpart (wt-RNA) were studied by three independent MD production simulations. Cluster analysis revealed that wt-RNA reflects the structural characteristics of the ACSL region of tRNAs. The P-state of m3U7-RNA was found to be structurally similar to wt-RNA but lacks an intraloop H-bond between m3U7 and C10 (U33 and nt36 in tRNAs). In the S-state of m3U7-RNA, m3U7 flips out of the loop region. O-state loop conformations of m3U7-RNA were also clustered (4.8%), wherein the loop nucleotides m3U7.A8.G9.C10.G11 stack one after another. We propose that the O-state of m3U7-RNA is the most suitable conformation that makes the loop accessible for complementary nucleotides and for non-enzymatic primordial replication of small circular RNAs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cenk A Andac
- Department of Medical Pharmacology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Ulfert Hornemann
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Ningur Noyanalpan
- Department of Medicinal Chemistry, School of Pharmacy, Gazi University, Ankara, Turkiye
| | | |
Collapse
|
36
|
Finci LI, Chakrabarti M, Gulten G, Finney J, Grose C, Fox T, Yang R, Nissley DV, McCormick F, Esposito D, Balius TE, Simanshu DK. Structural dynamics of RAF1-HSP90-CDC37 and HSP90 complexes reveal asymmetric client interactions and key structural elements. Commun Biol 2024; 7:260. [PMID: 38431713 PMCID: PMC10908828 DOI: 10.1038/s42003-024-05959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
RAF kinases are integral to the RAS-MAPK signaling pathway, and proper RAF1 folding relies on its interaction with the chaperone HSP90 and the cochaperone CDC37. Understanding the intricate molecular interactions governing RAF1 folding is crucial for comprehending this process. Here, we present a cryo-EM structure of the closed-state RAF1-HSP90-CDC37 complex, where the C-lobe of the RAF1 kinase domain binds to one side of the HSP90 dimer, and an unfolded N-lobe segment of the RAF1 kinase domain threads through the center of the HSP90 dimer. CDC37 binds to the kinase C-lobe, mimicking the N-lobe with its HxNI motif. We also describe structures of HSP90 dimers without RAF1 and CDC37, displaying only N-terminal and middle domains, which we term the semi-open state. Employing 1 μs atomistic simulations, energetic decomposition, and comparative structural analysis, we elucidate the dynamics and interactions within these complexes. Our quantitative analysis reveals that CDC37 bridges the HSP90-RAF1 interaction, RAF1 binds HSP90 asymmetrically, and that HSP90 structural elements engage RAF1's unfolded region. Additionally, N- and C-terminal interactions stabilize HSP90 dimers, and molecular interactions in HSP90 dimers rearrange between the closed and semi-open states. Our findings provide valuable insight into the contributions of HSP90 and CDC37 in mediating client folding.
Collapse
Affiliation(s)
- Lorenzo I Finci
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mayukh Chakrabarti
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gulcin Gulten
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph Finney
- National Cryo-EM Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Carissa Grose
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tara Fox
- National Cryo-EM Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Renbin Yang
- Center for Molecular Microscopy, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
37
|
Truong A, Barton M, Tran U, Mellody M, Berger D, Madory D, Hitch E, Jibrael B, Nikolaidis N, Luchko T, Keppetipola N. Unstructured linker regions play a role in the differential splicing activities of paralogous RNA binding proteins PTBP1 and PTBP2. J Biol Chem 2024; 300:105733. [PMID: 38336291 PMCID: PMC10914480 DOI: 10.1016/j.jbc.2024.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.
Collapse
Affiliation(s)
- Anthony Truong
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California, USA
| | - Michael Barton
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California, USA
| | - Uyenphuong Tran
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California, USA
| | - Montana Mellody
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California, USA
| | - Devon Berger
- Department of Biological Sciences, California State University Fullerton, Fullerton, California, USA
| | - Dean Madory
- Department of Biological Science, Santa Ana College, Santa Ana, California, USA
| | - Elizabeth Hitch
- Department of Biological Sciences, California State University Fullerton, Fullerton, California, USA
| | - Basma Jibrael
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California, USA
| | - Nikolas Nikolaidis
- Department of Biological Sciences, California State University Fullerton, Fullerton, California, USA
| | - Tyler Luchko
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California, USA.
| | - Niroshika Keppetipola
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California, USA.
| |
Collapse
|
38
|
Binoy A, Kothari M, Sahadevan R, Poddar S, Kar P, Sadhukhan S. Protein S-palmitoylation is markedly inhibited by 4″-alkyl ether lipophilic derivatives of EGCG, the major green tea polyphenol: In vitro and in silico studies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184264. [PMID: 38104647 DOI: 10.1016/j.bbamem.2023.184264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
S-palmitoylation is a dynamic lipid-based protein post-translational modification facilitated by a family of protein acyltransferases (PATs) commonly known as DHHC-PATs or DHHCs. It is the only lipid modification that is reversible, and this very fact uniquely qualifies it for therapeutic interventions through the development of DHHC inhibitors. Herein, we report that 4″-alkyl ether lipophilic derivatives of EGCG can effectively inhibit protein S-palmitoylation in vitro. With the help of metabolic labeling followed by copper(I)-catalyzed azide-alkyne cycloaddition Click reaction, we demonstrate that 4″-C14 EGCG and 4″-C16 EGCG markedly inhibited S-palmitoylation in various mammalian cells including HEK 293T, HeLa, and MCF-7 using both in gel fluorescence as well as confocal microscopy. Further, these EGCG derivatives were able to attenuate the S-palmitoylation to the basal level in DHHC3-overexpressed cells, suggesting that they are plausibly targeting DHHCs. Confocal microscopy data qualitatively reflected spatial and temporal distribution of S-palmitoylated proteins in different sub-cellular compartments and the inhibitory effects of 4″-C14 EGCG and 4″-C16 EGCG were clearly observed in the native cellular environment. Our findings were further substantiated by in silico analysis which revealed promising binding affinity and interactions of 4″-C14 EGCG and 4″-C16 EGCG with key amino acid residues present in the hydrophobic cleft of the DHHC20 enzyme. We also demonstrated the successful inhibition of S-palmitoylation of GAPDH by 4″-C16 EGCG. Taken together, our in vitro and in silico data strongly suggest that 4″-C14 EGCG and 4″-C16 EGCG can act as potent inhibitors for S-palmitoylation and can be employed as a complementary tool to investigate S-palmitoylation.
Collapse
Affiliation(s)
- Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Manan Kothari
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India; Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala 678623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678623, India.
| |
Collapse
|
39
|
Poddar S, Roy R, Kar P. The conformational dynamics of Hepatitis C Virus E2 glycoprotein with the increasing number of N-glycosylation unraveled by molecular dynamics simulations. J Biomol Struct Dyn 2024:1-16. [PMID: 38393644 DOI: 10.1080/07391102.2024.2319679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
The Hepatitis C Virus (HCV), responsible for causing hepatitis and a significant contributor to liver disorders, presents a challenge for treatment due to its high genetic variability. Despite efforts, there is still no effective medication available for this virus. One of the promising targets for drug development involves targeting glycoprotein E2. However, our understanding of the dynamic behavior of E2 and its associated glycans remains limited. In this study, we investigated the dynamic characteristics of E2 with varying degrees of glycosylation using all-atom molecular dynamics simulations. We also explored glycan's interactions with the protein and among themselves. An overall increase in correlation between the vital protein regions was observed with an increase in glycan number. The protein dynamics is followed by the analysis of glycan dynamics, where the flexibility of the individual glycans was analyzed in their free and bound state, which revealed a decrease in their fluctuation in some cases. Furthermore, we generated the free energy landscape of individual N-glycan linkages in both free and bound states and observed both increases and decreases in flexibility, which can be attributed to the formation and breakage of hydrogen bonds with amino acids. Finally, we found that for a high glycosylation system, glycans interact with glycoprotein and form hydrogen bonds among themselves. Moreover, the hydrogen bond profiles of a given glycan can vary when influenced by other glycans. In summary, our study provides valuable insights into the dynamics of the core region of HCV E2 glycoprotein and its associated glycans.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
40
|
Zhou M, Zhao F, Yu L, Liu J, Wang J, Zhang JZH. An Efficient Approach to the Accurate Prediction of Mutational Effects in Antigen Binding to the MHC1. Molecules 2024; 29:881. [PMID: 38398632 PMCID: PMC10892774 DOI: 10.3390/molecules29040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The major histocompatibility complex (MHC) can recognize and bind to external peptides to generate effective immune responses by presenting the peptides to T cells. Therefore, understanding the binding modes of peptide-MHC complexes (pMHC) and predicting the binding affinity of pMHCs play a crucial role in the rational design of peptide vaccines. In this study, we employed molecular dynamics (MD) simulations and free energy calculations with an Alanine Scanning with Generalized Born and Interaction Entropy (ASGBIE) method to investigate the protein-peptide interaction between HLA-A*02:01 and the G9209 peptide derived from the melanoma antigen gp100. The energy contribution of individual residue was calculated using alanine scanning, and hotspots on both the MHC and the peptides were identified. Our study shows that the pMHC binding is dominated by the van der Waals interactions. Furthermore, we optimized the ASGBIE method, achieving a Pearson correlation coefficient of 0.91 between predicted and experimental binding affinity for mutated antigens. This represents a significant improvement over the conventional MM/GBSA method, which yields a Pearson correlation coefficient of 0.22. The computational protocol developed in this study can be applied to the computational screening of antigens for the MHC1 as well as other protein-peptide binding systems.
Collapse
Affiliation(s)
- Mengchen Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China;
| | - Fanyu Zhao
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of AI and DL, NYU Shanghai, 567 West Yangsi Road, Shanghai 200126, China;
| | - Lan Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Wang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China;
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of AI and DL, NYU Shanghai, 567 West Yangsi Road, Shanghai 200126, China;
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Department of Chemistry, New York University, New York, NY 10003, USA
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
41
|
Hu F, Wang Y, Zeng J, Deng X, Xia F, Xu X. Unveiling the State Transition Mechanisms of Ras Proteins through Enhanced Sampling and QM/MM Simulations. J Phys Chem B 2024; 128:1418-1427. [PMID: 38323538 DOI: 10.1021/acs.jpcb.3c07666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In cells, wild-type RasGTP complexes exist in two distinct states: active State 2 and inactive State 1. These complexes regulate their functions by transitioning between the two states. However, the mechanisms underlying this state transition have not been clearly elucidated. To address this, we conducted a detailed simulation study to characterize the energetics of the stable states involved in the state transitions of the HRasGTP complex, specifically from State 2 to State 1. This was achieved by employing multiscale quantum mechanics/molecular mechanics and enhanced sampling molecular dynamics methods. Based on the simulation results, we constructed the two-dimensional free energy landscapes that provide crucial information about the conformational changes of the HRasGTP complex from State 2 to State 1. Furthermore, we also explored the conformational changes from the intermediate state to the product state during guanosine triphosphate hydrolysis. This study on the conformational changes involved in the HRas state transitions serves as a valuable reference for understanding the corresponding events of both KRas and NRas as well.
Collapse
Affiliation(s)
- Fangchen Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yiqiu Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
42
|
Kurnikov IV, Pereyaslavets L, Kamath G, Sakipov SN, Voronina E, Butin O, Illarionov A, Leontyev I, Nawrocki G, Darkhovskiy M, Olevanov M, Ivahnenko I, Chen Y, Lock CB, Levitt M, Kornberg RD, Fain B. Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties. J Chem Theory Comput 2024; 20:1347-1357. [PMID: 38240485 PMCID: PMC11042917 DOI: 10.1021/acs.jctc.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.
Collapse
Affiliation(s)
- Igor V Kurnikov
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Leonid Pereyaslavets
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ganesh Kamath
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Serzhan N Sakipov
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ekaterina Voronina
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Oleg Butin
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Alexey Illarionov
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Igor Leontyev
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Grzegorz Nawrocki
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Mikhail Darkhovskiy
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Michael Olevanov
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ilya Ivahnenko
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - YuChun Chen
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Christopher B Lock
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Boris Fain
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| |
Collapse
|
43
|
Yang K, Chen G, Yu F, Fang X, Zhang J, Zhang Z, Shi Y, Zhang L. Molecular mechanism of specific HLA-A mRNA recognition by the RNA-binding-protein hMEX3B to promote tumor immune escape. Commun Biol 2024; 7:158. [PMID: 38326406 PMCID: PMC10850505 DOI: 10.1038/s42003-024-05845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Immunotherapy, including immune checkpoint inhibitors and adoptive cell transfer, has obtained great progress, but their efficiencies vary among patients due to the genetic and epigenetic differences. Human MEX3B (hMEX3B) protein is an RNA-binding protein that contains two KH domains at the N-terminus and a RING domain at its C-terminus, which has the activity of E3 ubiquitin ligase and is essential for RNA degradation. Current evidence suggests that hMEX3B is involved in many important biological processes, including tumor immune evasion and HLA-A regulation, but the sequence of substrate RNA recognized by hMEX3B and the functional molecular mechanisms are unclear. Here, we first screened the optimized hMEX3B binding sequence on the HLA-A mRNA and reported that the two tandem KH domains can bind with their substrate one hundred times more than the individual KH domains. We systematically investigated the binding characteristics between the two KH domains and their RNA substrates by nuclear magnetic resonance (NMR). Based on this information and the small-angle X-ray scattering (SAXS) data, we used molecular dynamics simulations to obtain structural models of KH domains in complex with their corresponding RNAs. By analyzing the models, we noticed that on the KH domains' variable loops, there were two pairs of threonines and arginines that can disrupt the recognition of the RNA completely, and this influence had also been verified both in vitro and in vivo. Finally, we presented a functional model of the hMEX3B protein, which indicated that hMEX3B regulated the degradation of its substrate mRNAs in many biological processes. Taken together, our research illustrated how the hMEX3B protein played a key role in translation inhibition during the immune response to tumor cells and provided an idea and a lead for the study of the molecular mechanism and function of other MEX3 family proteins.
Collapse
Affiliation(s)
- Kanglong Yang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Guanglin Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Fan Yu
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Jiahai Zhang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Zhiyong Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Yunyu Shi
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China.
| | - Liang Zhang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
44
|
Tang B, Luo S, Wang Q, Gao P, Duan L. Advanced molecular mechanisms of modified DRV compounds in targeting HIV-1 protease mutations and interrupting monomer dimerization. Phys Chem Chem Phys 2024; 26:4989-5001. [PMID: 38258432 DOI: 10.1039/d3cp05702j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
HIV-1 protease (PR) plays a crucial role in the treatment of HIV as a key target. The global issue of emerging drug resistance is escalating, and PR mutations pose a substantial challenge to the effectiveness of inhibitors. HIV-1 PR is an ideal model for studying drug resistance to inhibitors. The inhibitor, darunavir (DRV), exhibits a high genetic barrier to viral resistance, but with mutations of residues in the PR, there is also some resistance to DRV. Inhibitors can impede PR in two ways: one involves binding to the active site of the dimerization protease, and the other involves binding to the PR monomer, thereby preventing dimerization. In this study, we aimed to investigate the inhibitory effect of DRV with a modified inhibitor on PR, comparing the differences between wild-type and mutated PR, using molecular dynamics simulations. The inhibitory effect of the inhibitors on PR monomers was subsequently investigated. And molecular mechanics Poisson-Boltzmann surface area evaluated the binding free energy. The energy contribution of individual residues in the complex was accurately calculated by the alanine scanning binding interaction entropy method. The results showed that these inhibitors had strong inhibitory effects against PR mutations, with GRL-142 exhibiting potent inhibition of both the PR monomer and dimer. Improved inhibitors could strengthen hydrogen bonds and interactions with PR, thereby boosting inhibition efficacy. The binding of the inhibitor and mutation of the PR affected the distance between D25 and I50, preventing their dimerization and the development of drug resistance. This study could accelerate research targeting HIV-1 PR inhibitors and help to further facilitate drug design targeting both mechanisms.
Collapse
Affiliation(s)
- Bolin Tang
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| | - Song Luo
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| | - Qihang Wang
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| | - Pengfei Gao
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandogfng Normal University, Jinan, 250014, China.
| |
Collapse
|
45
|
Velazquez Toledano J, Bello M, Correa Basurto J, Guerrero González I, Pacheco-Yépez J, Rosales Hernández MC. Determining Structural Changes for Ligand Recognition between Human and Rat Phosphorylated BACE1 in Silico and Its Phosphorylation by GSK3β at Thr252 by in Vitro Studies. ACS Chem Neurosci 2024; 15:629-644. [PMID: 38227464 DOI: 10.1021/acschemneuro.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting older adults. AD pathogenesis involves the production of the highly neurotoxic amyloid-β peptide 1-42 (Aβ1-42) from β-site amyloid precursor protein cleaving enzyme 1 (BACE1). The phosphorylation of BACE1 at Thr252 increases its enzymatic activity. This study examined the phosphorylation of BACE1 from human and rat BACE1 in silico through phosphorylation predictors. Besides, we explored how phosphorylation at various sites affected the BACE1 structure and its affinity with amyloid precursor protein (APP) and six BACE1 inhibitors. Additionally, we evaluated the phosphorylation of Thr252-BACE1 by glycogen synthase kinase 3 β (GSK3β) in vitro. The phosphorylation predictors showed that Thr252, Ser59, Tyr76, Ser71, and Ser83 could be phosphorylated. Also, Ser127 in rat BACE1 can be phosphorylated, but human BACE1 has a Gly at this position. Molecular dynamics simulations showed that Ser127 plays an important role in the open and closed BACE1 conformational structures. Docking studies and the molecular mechanics generalized Born surface area (MMGBSA) approach showed that human BACE1 phosphorylated at Thr252 and rat BACE1 phosphorylated at Ser71 have the best binding and free energy with APP, forming hydrogen bonds with Asp672. Importantly, inhibitors have a higher affinity for the phosphorylated rat BACE1 than for its human counterpart, which could explain their failure during clinical trials. Finally, in vitro experiments showed that GSK3β could phosphorylate BACE1. In conclusion, BACE1 phosphorylation influences the BACE1 conformation and its recognition of ligands and substrates. Thus, these features should be carefully considered in the design of BACE1 inhibitors.
Collapse
Affiliation(s)
- Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, México
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - José Correa Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Isaac Guerrero González
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, México
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México
| | - Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, México
| |
Collapse
|
46
|
Zhang X, Guseinov AA, Jenkins L, Li K, Tikhonova IG, Milligan G, Zhang C. Structural basis for the ligand recognition and signaling of free fatty acid receptors. SCIENCE ADVANCES 2024; 10:eadj2384. [PMID: 38198545 PMCID: PMC10780892 DOI: 10.1126/sciadv.adj2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Free fatty acid receptors 1 to 4 (FFA1 to FFA4) are class A G protein-coupled receptors (GPCRs). FFA1 to FFA3 share substantial sequence similarity, whereas FFA4 is unrelated. However, FFA1 and FFA4 are activated by long-chain fatty acids, while FFA2 and FFA3 respond to short-chain fatty acids generated by intestinal microbiota. FFA1, FFA2, and FFA4 are potential drug targets for metabolic and inflammatory conditions. Here, we determined the active structures of FFA1 and FFA4 bound to docosahexaenoic acid, FFA4 bound to the synthetic agonist TUG-891, and butyrate-bound FFA2, each complexed with an engineered heterotrimeric Gq protein (miniGq), by cryo-electron microscopy. Together with computational simulations and mutagenesis studies, we elucidated the similarities and differences in the binding modes of fatty acid ligands to their respective GPCRs. Our findings unveiled distinct mechanisms of receptor activation and G protein coupling. We anticipate that these outcomes will facilitate structure-based drug development and underpin future research on this group of GPCRs.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abdul-Akim Guseinov
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Laura Jenkins
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Kunpeng Li
- Cryo-EM Core Facility, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Irina G. Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
47
|
Park E, Izadi S. Molecular surface descriptors to predict antibody developability: sensitivity to parameters, structure models, and conformational sampling. MAbs 2024; 16:2362788. [PMID: 38853585 PMCID: PMC11168226 DOI: 10.1080/19420862.2024.2362788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
In silico assessment of antibody developability during early lead candidate selection and optimization is of paramount importance, offering a rapid and material-free screening approach. However, the predictive power and reproducibility of such methods depend heavily on the selection of molecular descriptors, model parameters, accuracy of predicted structure models, and conformational sampling techniques. Here, we present a set of molecular surface descriptors specifically designed for predicting antibody developability. We assess the performance of these descriptors by benchmarking their correlations with an extensive array of experimentally determined biophysical properties, including viscosity, aggregation, hydrophobic interaction chromatography, human pharmacokinetic clearance, heparin retention time, and polyspecificity. Further, we investigate the sensitivity of these surface descriptors to methodological nuances, such as the choice of interior dielectric constant, hydrophobicity scales, structure prediction methods, and the impact of conformational sampling. Notably, we observe systematic shifts in the distribution of surface descriptors depending on the structure prediction method used, driving weak correlations of surface descriptors across structure models. Averaging the descriptor values over conformational distributions from molecular dynamics mitigates the systematic shifts and improves the consistency across different structure prediction methods, albeit with inconsistent improvements in correlations with biophysical data. Based on our benchmarking analysis, we propose six in silico developability risk flags and assess their effectiveness in predicting potential developability issues for a set of case study molecules.
Collapse
Affiliation(s)
- Eliott Park
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
48
|
Li T, Yan Z, Zhou W, Liu Q, Liu J, Hua H. Discovery of a Potential Allosteric Site in the SARS-CoV-2 Spike Protein and Targeting Allosteric Inhibitor to Stabilize the RBD Down State using a Computational Approach. Curr Comput Aided Drug Des 2024; 20:784-797. [PMID: 37493168 DOI: 10.2174/1573409919666230726142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide public health crisis. At present, the development of effective drugs and/or related therapeutics is still the most urgent and important task for combating the virus. The viral entry and associated infectivity mainly rely on its envelope spike protein to recognize and bind to the host cell receptor angiotensin-converting enzyme 2 (ACE2) through a conformational switch of the spike receptor binding domain (RBD) from inactive to active state. Thus, it is of great significance to design an allosteric inhibitor targeting spike to lock it in the inactive and ACE2-inaccessible state. OBJECTIVE This study aims to discover the potential broad-spectrum allosteric inhibitors capable of binding and stabilizing the diverse spike variants, including the wild type, Delta, and Omicron, in the inactive RBD down state. METHODS In this work, we first detected a potential allosteric pocket within the SARS-CoV-2 spike protein. Then, we performed large-scale structure-based virtual screening by targeting the putative allosteric pocket to identify allosteric inhibitors that could stabilize the spike inactive state. Molecular dynamics simulations were further carried out to evaluate the effects of compound binding on the stability of spike RBD. RESULTS Finally, we identified three potential allosteric inhibitors, CPD3, CPD5, and CPD6, against diverse SARS-CoV-2 variants, including Wild-type, Delta, and Omicron variants. Our simulation results showed that the three compounds could stably bind the predicted allosteric site and effectively stabilize the spike in the inactive state. CONCLUSION The three compounds provide novel chemical structures for rational drug design targeting spike protein, which is expected to greatly assist in the development of new drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Tong Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Yan
- The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine, Jiangyin 214400, China
| | - Wei Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qun Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinfeng Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haibing Hua
- The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine, Jiangyin 214400, China
| |
Collapse
|
49
|
Heisler J, Kovner D, Izadi S, Zarzar J, Carter PJ. Modulation of the high concentration viscosity of IgG 1 antibodies using clinically validated Fc mutations. MAbs 2024; 16:2379560. [PMID: 39028186 PMCID: PMC11262234 DOI: 10.1080/19420862.2024.2379560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
The self-association of therapeutic antibodies can result in elevated viscosity and create problems in manufacturing and formulation, as well as limit delivery by subcutaneous injection. The high concentration viscosity of some antibodies has been reduced by variable domain mutations or by the addition of formulation excipients. In contrast, the impact of Fc mutations on antibody viscosity has been minimally explored. Here, we studied the effect of a panel of common and clinically validated Fc mutations on the viscosity of two closely related humanized IgG1, κ antibodies, omalizumab (anti-IgE) and trastuzumab (anti-HER2). Data presented here suggest that both Fab-Fab and Fab-Fc interactions contribute to the high viscosity of omalizumab, in a four-contact model of self-association. Most strikingly, the high viscosity of omalizumab (176 cP) was reduced 10.7- and 2.2-fold by Fc modifications for half-life extension (M252Y:S254T:T256E) and aglycosylation (N297G), respectively. Related single mutations (S254T and T256E) each reduced the viscosity of omalizumab by ~6-fold. An alternative half-life extension Fc mutant (M428L:N434S) had the opposite effect in increasing the viscosity of omalizumab by 1.5-fold. The low viscosity of trastuzumab (8.6 cP) was unchanged or increased by ≤ 2-fold by the different Fc variants. Molecular dynamics simulations provided mechanistic insight into the impact of Fc mutations in modulating electrostatic and hydrophobic surface properties as well as conformational stability of the Fc. This study demonstrates that high viscosity of some IgG1 antibodies can be mitigated by Fc mutations, and thereby offers an additional tool to help design future antibody therapeutics potentially suitable for subcutaneous delivery.
Collapse
Affiliation(s)
- Joel Heisler
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Daniel Kovner
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Zarzar
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
50
|
Shahab M, Aiman S, Alshammari A, Alasmari AF, Alharbi M, Khan A, Wei DQ, Zheng G. Immunoinformatics-based potential multi-peptide vaccine designing against Jamestown Canyon Virus (JCV) capable of eliciting cellular and humoral immune responses. Int J Biol Macromol 2023; 253:126678. [PMID: 37666399 DOI: 10.1016/j.ijbiomac.2023.126678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Jamestown Canyon virus (JCV) is a deadly viral infection transmitted by various mosquito species. This mosquito-borne virus belongs to Bunyaviridae family, posing a high public health threat in the in tropical regions of the United States causing encephalitis in humans. Common symptoms of JCV include fever, headache, stiff neck, photophobia, nausea, vomiting, and seizures. Despite the availability of resources, there is currently no vaccine or drug available to combat JCV. The purpose of this study was to develop an epitope-based vaccine using immunoinformatics approaches. The vaccine aimed to be secure, efficient, bio-compatible, and capable of stimulating both innate and adaptive immune responses. In this study, the protein sequence of JCV was obtained from the NCBI database. Various bioinformatics methods, including toxicity evaluation, antigenicity testing, conservancy analysis, and allergenicity assessment were utilized to identify the most promising epitopes. Suitable linkers and adjuvant sequences were used in the design of vaccine construct. 50s ribosomal protein sequence was used as an adjuvant at the N-terminus of the construct. A total of 5 CTL, 5 HTL, and 5 linear B cell epitopes were selected based on non-allergenicity, immunological potential, and antigenicity scores to design a highly immunogenic multi-peptide vaccine construct. Strong interactions between the proposed vaccine and human immune receptors, i.e., TLR-2 and TLR-4, were revealed in a docking study using ClusPro software, suggesting their possible relevance in the immunological response to the vaccine. Immunological and physicochemical properties assessment ensured that the proposed vaccine demonstrated high immunogenicity, solubility and thermostability. Molecular dynamics simulations confirmed the strong binding affinities, as well as dynamic and structural stability of the proposed vaccine. Immune simulation suggest that the vaccine has the potential to effectively stimulate cellular and humoral immune responses to combat JCV infection. Experimental and clinical assays are required to validate the results of this study.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key laboratories of chemical Resources Engineering Beijing University of chemical technology, Beijing 100029, China
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abbas Khan
- Deparment of Biostatistics and Bioinformatics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Dong-Qing Wei
- Deparment of Biostatistics and Bioinformatics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Guojun Zheng
- State key laboratories of chemical Resources Engineering Beijing University of chemical technology, Beijing 100029, China.
| |
Collapse
|