1
|
Sahu SC. A proposed in vitro cytotoxicity test battery to detect and predict hepatotoxicity via multiple mechanisms and pathways: a minireview. J Appl Toxicol 2024; 44:1868-1873. [PMID: 38686668 DOI: 10.1002/jat.4619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The 21st-century toxicity testing program recommends the use of cytotoxicity data from human cells in culture for rapid in vitro screening focusing on biological pathways of potential toxicants to predict in vivo toxicity. Liver is the major organ for both endogenous and exogenous chemical metabolism of xenobiotics. Therefore, this review was undertaken to evaluate side by side five different currently used commercial cytotoxicity assay kits for purpose of rapid predictive screening of potential hepatotoxicants. The test compounds for this review were selected from the NIH LiverTox and FDA Liver Toxicity Knowledge Base (LTKB) databases. Human liver HepG2, HepaRG, and rat liver Clone 9 cell cultures were used as the in vitro liver models. Five commercial assay kits representing different biomarkers or pathways were selected for this review. These kits are Vita-Orange Cell Viability Assay Kit (Sigma-Aldrich), CellTiter-Glo Cell Viability Assay Kit (Promega), CytoTox-ONE Homogeneous Membrane Integrity Assay Kit (Promega), DNA Quantitation Fluorescence Assay Kit (Sigma-Aldrich), and Neutral Red Based In Vitro Toxicology Assay Kit (Sigma-Aldrich). This review found that these kits can all be used for rapid predictive cytotoxicity screening of potential hepatotoxicants in human liver HepG2 and rat liver Clone 9 cells in culture as in vitro liver models without compromising quality and accuracy of endpoint measurements as well as the length of toxicity screening time. Unraveling the structure-activity relationship of potential hepatotoxins would help to classify their hepatotoxic effects. Therefore, in addition to the current regulatory hepatotoxicity testing strategies, development and regulatory approval of hepatotoxins need to be discussed in order to identify potential gaps in the safety assessment. The overall results of our study support the hypothesis that a battery of rapid, simple, and reliable assays is an excellent tool for predicting in vivo effects of suspected liver toxins. The human liver HepaRG cells do not appear to be an ideal in vitro liver model for this purpose.
Collapse
Affiliation(s)
- Saura C Sahu
- US Food and Drug Administration, Columbia, Maryland, USA
| |
Collapse
|
2
|
Liver Protective Effect of Fenofibrate in NASH/NAFLD Animal Models. PPAR Res 2022; 2022:5805398. [PMID: 35754743 PMCID: PMC9232374 DOI: 10.1155/2022/5805398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is initiated by excessive fat buildup in the liver, affecting around 35% of the world population. Various circumstances contribute to the initiation and progression of NAFLD, and it encompasses a wide range of disorders, from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Although several treatments have been proposed, there is no definitive cure for NAFLD. In recent decades, several medications related to other metabolic disorders have been evaluated in preclinical studies and in clinical trials due to the correlation of NAFLD with other metabolic diseases. Fenofibrate is a fibrate drug approved for dyslipidemia that could be used for modulation of hepatic fat accumulation, targeting peroxisome proliferator-activator receptors, and de novo lipogenesis. This drug offers potential therapeutic efficacy for NAFLD due to its capacity to decrease the accumulation of hepatic lipids, as well as its antioxidant, anti-inflammatory, and antifibrotic properties. To better elucidate the pathophysiological processes underlying NAFLD, as well as to test therapeutic agents/interventions, experimental animal models have been extensively used. In this article, we first reviewed experimental animal models that have been used to evaluate the protective effects of fenofibrate on NAFLD/NASH. Next, we investigated the impact of fenofibrate on the hepatic microcirculation in NAFLD and then summarized the beneficial effects of fenofibrate, as compared to other drugs, for the treatment of NAFLD. Lastly, we discuss possible adverse side effects of fenofibrate on the liver.
Collapse
|
3
|
Golovenko M. METABOLIC PROFILE AND MECHANISMS OF GABA-TARGETED RECEPTOR PROPOXAZEPAM METABOLIZATION IN HUMAN HEPATOCYTES. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to identify the Propoxazepam metabolites, formed by suspension of cryopreserved human hepatocytes, using the precise method of mass LC-MS/MS analysis. Methods. A suitable chromatographic method was developed for the profiling of Propoxazepam and its metabolites. Samples were analyzed using a Waters Vion high resolution LC-MS/MS instrument, and data were examined using Waters Unifi software to determine the identity of the most abundant metabolites. Following a 4-hour incubation with human hepatocytes, intact Propoxazepam molecule accounted for 96.0% of the profile. Its most abundant metabolite was the oxidize. Results. Propoxazepam (3-hydroxyderivative), which accounted for approximately 2.5% of the total peak response in the 4-hour sample. Two minor components were also found, each accounting for < 10% of the total peak response. Glucuronic conjugates have not been found under the experimental conditions. All metabolites formed represented less than 10% of the total chromatographic peak response. Coclusion. The data obtained indicate the absence of reactive electrophilic derivatives among the metabolites of Propoxazepam.
Collapse
|
4
|
Abdel-Wahhab MA, El-Nekeety AA, Mohammed HE, El-Messery TM, Roby MH, Abdel-Aziem SH, Hassan NS. Synthesis of encapsulated fish oil using whey protein isolate to prevent the oxidative damage and cytotoxicity of titanium dioxide nanoparticles in rats. Heliyon 2021; 7:e08456. [PMID: 34901503 PMCID: PMC8640477 DOI: 10.1016/j.heliyon.2021.e08456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Fish oil exhibited several beneficial effects on human health; however, its applications face several challenges such as its effects on the organoleptic properties of food and its susceptibility to oxidation. Titanium dioxide NPs (TiO2-NPs) are utilized widely in pharmaceutical and food applications although there are some reports about their oxidative damage to living organisms. The current work was undertaken to identify fatty acids content in mullet fish oil, encapsulation, and characterization of the oil, and to assess the protective efficiency of the encapsulated mullet fish oil (EMFO) against the oxidative damage and genotoxicity of TiO2-NPs in rats. Sixty female Sprague-Dawley rats were distributed to 6 groups and treated for 21 days included the control group; TiO2-NPs-treated group (50 mg/kg b.w); the groups treated with EMFO (50 or 100 mg/kg b.w) and the groups received TiO2-NPs plus EMFO at the low or high dose. Samples of blood, liver, and kidney were taken for different assays and histological studies. The GC-FID analysis showed that a total of 14 different fatty acids were found in Mullet fish oil included 41.4% polyunsaturated fatty acids (PUFAs), 31.1% monounsaturated fatty acids (MUFAs), and 25.1% saturated fatty acids (SFAs). The structure of EMFO was spherical with an average diameter of 234.5 nm and a zeta potential of -6.24 mV and was stable up to 10 days at 25 °C with EE of 81.08%. The PV of EMFO was decreased at 5 days then increased at 15 days; however, TBARS was increased throughout the storage time over 15 days. The biological evaluation showed that TiO2-NPs disturb the hepato-nephro functions, lipid profile, inflammatory cytokines, oxidative stress markers, antioxidant enzymes activity, and their corresponding gene expression along with severe pathological alterations in both hepatic and renal tissue. Co-administration of EMFO induced a strong antioxidant role, and the high level could normalize the majority of the parameters tested and the histological picture of the hepatic and renal tissues. These results pointed out that the encapsulation technology enhances the protective role of EMFO against oxidative stress and genotoxicity of TiO2-NPs through the prevention of ω-3 PUFAs oxidation and controlling their release.
Collapse
Affiliation(s)
- Mosaad A. Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
- Corresponding author.
| | - Aziza A. El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Hagar E. Mohammed
- Zoology Department, Faculty of Science, Al-Arish University, Al-Arish, Egypt
| | | | - Mohamed H. Roby
- Food Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Nabila S. Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
5
|
Abdel-Wahhab MA, El-Nekeety AA, Mohammed HE, Elshafey OI, Abdel-Aziem SH, Hassan NS. Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57640-57656. [PMID: 34089164 DOI: 10.1007/s11356-021-14723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The green synthesis of metal nanoparticles is growing dramatically; however, the toxicity of these biosynthesized particles against living organisms is not fully explored. Therefore, this study was designed to synthesize and characterize TiO2-NPs, encapsulation and characterization thyme essential oil (ETEO), and determination of the bioactive constituents of ETEO using GC-MS and evaluate their protective role against TiO2-NPs-induced oxidative damage and genotoxicity in rats. Six groups of rats were treated orally for 30 days including the control group, TiO2-NPs (300 mg/kg b.w)-treated group, ETEO at low (50 mg/kg b.w) or high dose (100 mg/kg b.w)-treated groups, and TiO2-NPs plus ETEO at the two doses-treated groups. Blood and tissues were collected for different assays. The GC-MS results indicated the presence of 21 compounds belonging to phenols, terpene derivatives, and heterocyclic compounds. The synthesized TiO2-NPs were 45 nm tetragonal particles with a zeta potential of -27.34 mV; however, ETEO were 119 nm round particles with a zeta potential of -28.33 mV. TiO2-NPs administration disturbs the liver and kidney markers, lipid profile, cytokines, oxidative stress parameters, the apoptotic and antioxidant hepatic mRNA expression, and induced histological alterations in the liver and kidney tissues. ETEO could improve all these parameters in a dose-dependent manner. It could be concluded that ETEO is a promising candidate for the protection against TiO2-NPs and can be applied safely in food applications.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Hagar E Mohammed
- Zoology Department, Faculty of Science, Arish University, Arish, Egypt
| | - Ola I Elshafey
- Physical Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Salman AS, Al-Shaikh TM, Hamza ZK, El-Nekeety AA, Bawazir SS, Hassan NS, Abdel-Wahhab MA. Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity, and reproductive disturbances in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39035-39051. [PMID: 33745051 DOI: 10.1007/s11356-021-13518-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Recently, bio-nanofabrication becomes one of the widest methods for synthesizing nanoparticles (NPs); however, there is scanty literature exploring the toxicity of these green NPs against living organisms. This study aimed to evaluate the potential protective role of encapsulated cinnamon oil (ECO) against titanium oxide nanoparticle (TiO2NP)-induced oxidative stress, DNA damage, chromosomal aberration, and reproductive disturbances in male mice. Sixty male Balb/c mice were distributed into six groups treated orally for 3 weeks and included control group, TiO2NP-treated group (25 mg/kg b.w), ECO at low or high dose-treated groups (50 or 100 mg/kg b.w), and the groups that received TiO2NPs plus ECO at a low or high dose. The results of GC-MS revealed the isolation of 21 compounds and the majority was cinnamaldehyde. The average size zeta potential of TiO2NPs and ECO were 28.9 and 321 nm and -33.97 and -17.35 mV, respectively. TiO2NP administration induced significant changes in liver and kidney function, decreased antioxidant capacity, and increased oxidative stress markers in liver and kidney, DNA damage in the hepatocytes, the number of chromosomal aberrations in the bone marrow and germ cells, and sperm abnormalities along with histological changes in the liver, kidney, and testis. Co-administration of TiO2NPs and ECO could alleviate these disturbances in a dose-dependent manner. It could be concluded that ECO is a promising and safe candidate for the protection against the health hazards of TiO2NPs.
Collapse
Affiliation(s)
- Asmaa S Salman
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Turki M Al-Shaikh
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Zeinab K Hamza
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Aziza A El-Nekeety
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Salwa S Bawazir
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabila S Hassan
- Department of Medical Pathology, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
7
|
Ooka M, Lynch C, Xia M. Application of In Vitro Metabolism Activation in High-Throughput Screening. Int J Mol Sci 2020; 21:ijms21218182. [PMID: 33142951 PMCID: PMC7663506 DOI: 10.3390/ijms21218182] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
In vitro methods which incorporate metabolic capability into the assays allow us to assess the activity of metabolites from their parent compounds. These methods can be applied into high-throughput screening (HTS) platforms, thereby increasing the speed to identify compounds that become active via the metabolism process. HTS was originally used in the pharmaceutical industry and now is also used in academic settings to evaluate biological activity and/or toxicity of chemicals. Although most chemicals are metabolized in our body, many HTS assays lack the capability to determine compound activity via metabolism. To overcome this problem, several in vitro metabolic methods have been applied to an HTS format. In this review, we describe in vitro metabolism methods and their application in HTS assays, as well as discuss the future perspectives of HTS with metabolic activity. Each in vitro metabolism method has advantages and disadvantages. For instance, the S9 mix has a full set of liver metabolic enzymes, but it displays high cytotoxicity in cell-based assays. In vitro metabolism requires liver fractions or the use of other metabolically capable systems, including primary hepatocytes or recombinant enzymes. Several newly developed in vitro metabolic methods, including HepaRG cells, three-dimensional (3D) cell models, and organ-on-a-chip technology, will also be discussed. These newly developed in vitro metabolism approaches offer significant progress in dissecting biological processes, developing drugs, and making toxicology studies quicker and more efficient.
Collapse
|
8
|
|
9
|
Nie J, Gao Q, Fu J, He Y. Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Adv Healthc Mater 2020; 9:e1901773. [PMID: 32125787 DOI: 10.1002/adhm.201901773] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
Abstract
The inadequacy of conventional cell-monolayer planar cultures and animal experiments in predicting the toxicity and clinical efficacy of drug candidates has led to an imminent need for in vitro methods with the ability to better represent in vivo conditions and facilitate the systematic investigation of drug candidates. Recent advances in 3D bioprinting have prompted the precise manipulation of cells and biomaterials, rendering it a promising technology for the construction of in vitro tissue/organ models and drug screening devices. This review presents state-of-the-art in vitro methods used for preclinical drug screening and discusses the limitations of these methods. In particular, the significance of constructing 3D in vitro tissue/organ models and microfluidic analysis devices for drug screening is emphasized, and a focus is placed on the grafting process of 3D bioprinting technology to the construction of such models and devices. The in vitro methods for drug screening are generalized into three types: mini-tissue, organ-on-a-chip, and tissue/organ construct. The revolutionary process of the in vitro methods is demonstrated in detail, and relevant studies are listed as examples. Specifically, the tumor model is adopted as a precedent to illustrate the possible grafting of 3D bioprinting to antitumor drug screening.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
10
|
Li S, Xia M. Review of high-content screening applications in toxicology. Arch Toxicol 2019; 93:3387-3396. [PMID: 31664499 PMCID: PMC7011178 DOI: 10.1007/s00204-019-02593-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
High-content screening (HCS) technology combining automated microscopy and quantitative image analysis can address biological questions in academia and the pharmaceutical industry. Various HCS experimental applications have been utilized in the research field of in vitro toxicology. In this review, we describe several HCS application approaches used for studying the mechanism of compound toxicity, highlight some challenges faced in the toxicological community, and discuss the future directions of HCS in regards to new models, new reagents, data management, and informatics. Many specialized areas of toxicology including developmental toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, and nephrotoxicity will be examined. In addition, several newly developed cellular assay models including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-on-a-chip will be discussed. New genome-editing technologies (e.g., CRISPR/Cas9), data analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the applications of machine learning to image processing will be explored. These new HCS approaches offer a huge step forward in dissecting biological processes, developing drugs, and making toxicology studies easier.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA.
| |
Collapse
|
11
|
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 2019; 19:131-148. [DOI: 10.1038/s41573-019-0048-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
12
|
Lindoso RS, Kasai-Brunswick TH, Monnerat Cahli G, Collino F, Bastos Carvalho A, Campos de Carvalho AC, Vieyra A. Proteomics in the World of Induced Pluripotent Stem Cells. Cells 2019; 8:cells8070703. [PMID: 31336746 PMCID: PMC6678893 DOI: 10.3390/cells8070703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/05/2023] Open
Abstract
Omics approaches have significantly impacted knowledge about molecular signaling pathways driving cell function. Induced pluripotent stem cells (iPSC) have revolutionized the field of biological sciences and proteomics and, in particular, has been instrumental in identifying key elements operating during the maintenance of the pluripotent state and the differentiation process to the diverse cell types that form organisms. This review covers the evolution of conceptual and methodological strategies in proteomics; briefly describes the generation of iPSC from a historical perspective, the state-of-the-art of iPSC-based proteomics; and compares data on the proteome and transcriptome of iPSC to that of embryonic stem cells (ESC). Finally, proteomics of healthy and diseased cells and organoids differentiated from iPSC are analyzed.
Collapse
Affiliation(s)
- Rafael Soares Lindoso
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
| | - Tais H Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
| | - Gustavo Monnerat Cahli
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Federica Collino
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Adriana Bastos Carvalho
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil
| | - Antonio Carlos Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil.
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-102, Brazil.
- Graduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias 25071-202, Brazil.
| |
Collapse
|
13
|
Weyers C, Dingle LMK, Wilhelmi BS, Edkins AL, Veale CGL. Use of a non-hepatic cell line highlights limitations associated with cell-based assessment of metabolically induced toxicity. Drug Chem Toxicol 2019; 43:656-662. [PMID: 30880486 DOI: 10.1080/01480545.2019.1585869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metabolically induced drug-toxicity is a major cause of drug failure late in drug optimization phases. Accordingly, in vitro metabolic profiling of compounds is being introduced at earlier stages of the drug discovery pipeline. An increasingly common method to obtain these profiles is through overexpression of key CYP450 metabolic enzymes in immortalized liver cells, to generate competent hepatocyte surrogates. Enhanced cytotoxicity is presumed to be due to toxic metabolite production via the overexpressed enzyme. However, metabolically induced toxicity is a complex multi-parameter phenomenon and the potential background contribution to metabolism arising from the use of liver cells which endogenously express CYP450 isoforms is consistently overlooked. In this study, we sought to reduce the potential background interference by applying this methodology in kidney-derived HEK293 cells which lack endogenous CYP450 expression. Overexpression of CYP3A4 resulted in increased HEK293 proliferation, while exposure to four compounds with reported metabolically induced cytotoxicity in liver-derived cells overexpressing CYP3A4 resulted in no increase in cytotoxicity. Our results indicate that overexpression of a single CYP450 isoform in hepatic cell lines may not be a reliable method to discriminate which enzymes are responsible for metabolic induced cytotoxicity.
Collapse
Affiliation(s)
- Carli Weyers
- Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, South Africa
| | - Laura M K Dingle
- Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, South Africa.,Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Brendan S Wilhelmi
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, South Africa.,Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Scottsville, South Africa
| |
Collapse
|
14
|
Hurrell T, Segeritz CP, Vallier L, Lilley KS, Cromarty AD. A proteomic time course through the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. Sci Rep 2019; 9:3270. [PMID: 30824743 PMCID: PMC6397265 DOI: 10.1038/s41598-019-39400-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023] Open
Abstract
Numerous in vitro models endeavour to mimic the characteristics of primary human hepatocytes for applications in regenerative medicine and pharmaceutical science. Mature hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (hiPSCs) are one such in vitro model. Due to insufficiencies in transcriptome to proteome correlation, characterising the proteome of HLCs is essential to provide a suitable framework for their continual optimization. Here we interrogated the proteome during stepwise differentiation of hiPSCs into HLCs over 40 days. Whole cell protein lysates were collected and analysed using stabled isotope labelled mass spectrometry based proteomics. Quantitative proteomics identified over 6,000 proteins in duplicate multiplexed labelling experiments across two different time course series. Inductive cues in differentiation promoted sequential acquisition of hepatocyte specific markers. Analysis of proteins classically assigned as hepatic markers demonstrated trends towards maximum relative abundance between differentiation day 30 and 32. Characterisation of abundant proteins in whole cells provided evidence of the time dependent transition towards proteins corresponding with the functional repertoire of the liver. This data highlights how far the proteome of undifferentiated precursors have progressed to acquire a hepatic phenotype and constructs a platform for optimisation and improved maturation of HLC differentiation.
Collapse
Affiliation(s)
- Tracey Hurrell
- Department of Pharmacology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa. .,Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom.
| | - Charis-Patricia Segeritz
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK.,University of Cambridge, Robinson Way, Cambridge, CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK.,University of Cambridge, Robinson Way, Cambridge, CB2 0SZ, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Kathryn S Lilley
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom
| | - Allan D Cromarty
- Department of Pharmacology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| |
Collapse
|
15
|
Mansoorifar A, Koklu A, Beskok A. Quantification of Cell Death Using an Impedance-Based Microfluidic Device. Anal Chem 2019; 91:4140-4148. [PMID: 30793881 DOI: 10.1021/acs.analchem.8b05890] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dielectric spectroscopy is a nondestructive method to characterize dielectric properties by measuring impedance data over a frequency spectrum. This method has been widely used for various applications such as counting, sizing, and monitoring biological cells and particles. Recently, utilization of this method has been suggested in various stages of the drug discovery process due to low sample consumption and fast analysis time. In this study, we used a previously developed microfluidic system to confine single PC-3 cells in microwells using dielectrophoretic forces and perform the impedance measurements. PC-3 cells are treated with 100 μM Enzalutamide drug, and their impedance response is recorded until the cells are totally dead as predicted with viability tests. Four different approaches are used to analyze the impedance spectrum. Equivalent circuit modeling is used to extract the cell electrical properties as a function of time. Principal component analysis (PCA) is used to quantify cellular response to drug as a function of time. Single frequency measurements are conducted to observe how the cells respond over time. Finally, opacity ratio is defined as an additional quantification method. This device is capable of quantitatively measuring drug effects on biological cells and detecting cell death. The results show that the proposed microfluidic system has the potential to be used in early stages of the drug discovery process.
Collapse
Affiliation(s)
- Amin Mansoorifar
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75205 , United States
| | - Anil Koklu
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75205 , United States
| | - Ali Beskok
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75205 , United States
| |
Collapse
|
16
|
Fu B, Wang N, Tan HY, Li S, Cheung F, Feng Y. Multi-Component Herbal Products in the Prevention and Treatment of Chemotherapy-Associated Toxicity and Side Effects: A Review on Experimental and Clinical Evidences. Front Pharmacol 2018; 9:1394. [PMID: 30555327 PMCID: PMC6281965 DOI: 10.3389/fphar.2018.01394] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy is nowadays the main treatment of human cancers. Chemotherapeutic agents target rapidly dividing cancer cells to suppress tumor progression, however, their non-specific cytotoxicity often leads to significant side effects that might be intolerable to cancer patients. Multi-component herbal products have been used for thousands of years for the treatment of multiple human diseases. This study aims to systematically summarize and evaluate the experimental and clinical evidences of the efficacy of multi-component herbal products in improving chemotherapy-induced side effect. Literature was retrieved from PubMed database and evaluated based on the side effects described. Multi-component herbal products were found to be effective in ameliorating the neurotoxicity, gastrointestinal toxicity, hematological toxicity, cardiotoxicity, hepatotoxicity and nephrotoxicity. Both experimental and clinical evidences were found, indicating the potential of applying multicomponent herbal products in the clinical treatment of chemotherapy-induced side effects. However, the lack of mechanistic and pharmacokinetic studies, inconsistency in product quality, as well as insufficient clinical evidence suggested that more investigations are urgently necessary. In all, our review shed light on the potential of using multi-component herbal products in the clinical management of chemotherapy-induced toxicity and side effects. We also discussed the potential threats of natural products for cancer treatment and compared the advantages of using herbs to conventional chemical drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Yu H, Fu QR, Huang ZJ, Lin JY, Chen QX, Wang Q, Shen DY. Apoptosis induced by ursodeoxycholic acid in human melanoma cells through the mitochondrial pathway. Oncol Rep 2018; 41:213-223. [PMID: 30542709 PMCID: PMC6278461 DOI: 10.3892/or.2018.6828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/10/2018] [Indexed: 01/29/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a type of hydrophilic bile acid extracted from animal bile with a wide range of biological functions. The present results demonstrated that UDCA could effectively inhibit the proliferation of two human melanoma cell line (M14 and A375) with time‑ and concentration‑dependence. Following exposure to various concentrations of UDCA, M14 cells exhibited typical morphological changes and weaker ability of colony forming. Flow cytometry analysis demonstrated that UDCA could induce a decrease of mitochondrial membrane potential and an increase in reactive oxygen species (ROS) levels in M14 cells. The cell cycle was arrested in the G2/M phase, which was confirmed by the decrease of cyclin‑dependent kinase 1 and cyclinB1 at the protein level. However, when M14 cells were treated with UDCA and Z‑VAD‑FMK (caspase inhibitor) synchronously, the apoptosis rate of the cells was reduced significantly. In addition, it was demonstrated that UDCA induced apoptosis of human melanoma M14 cells through the ROS‑triggered mitochondrial‑associated pathway, which was indicated by the increased expression of cleaved‑caspase‑3, cleaved‑caspase‑9, apoptotic protease activating factor‑1, cleaved‑poly (ADP‑ribose) polymerase 1 and the elevation of B cell lymphoma‑2 (Bcl‑2) associated X protein/Bcl‑2 ratio associated with apoptosis. Therefore, UDCA may be a potential drug for the treatment of human melanoma.
Collapse
Affiliation(s)
- Huan Yu
- Key Laboratory of The Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Qi-Rui Fu
- Key Laboratory of The Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhi-Jie Huang
- Key Laboratory of The Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Jia-Yu Lin
- Key Laboratory of The Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Qing-Xi Chen
- Key Laboratory of The Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Qin Wang
- Key Laboratory of The Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Dong-Yan Shen
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
18
|
Subchronic Toxicity Studies of Cortex Dictamni Extracts in Mice and Its Potential Hepatotoxicity Mechanisms in Vitro. Molecules 2018; 23:molecules23102486. [PMID: 30274140 PMCID: PMC6222383 DOI: 10.3390/molecules23102486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Cortex Dictamni is a commonly-used traditional Chinese herbal medicine for the treatment of skin inflammation, tinea, and eczema. Recently, some studies reported that Cortex Dictamni might induce liver injury, suggesting more attention to its safety. The current study was designed to investigate subchronic toxicity of Cortex Dictamni aqueous extract (CDAE) and ethanol extract (CDEE) in mice and the potential hepatotoxicity mechanisms in vitro. Firstly, CDAE or CDEE groups were administrated with varying dosages (2.3, 4.6, or 9.2 g/kg/day, p.o.) in mice for 28 days in subchronic toxicity studies. General clinical signs and biochemical parameters were examined, and morphological analyses were conducted. Secondly, we identified the different constituents of CDAE and CDEE using HPLC-MS/MS and chose major components for further study. In order to determine the toxic components, we investigated the cytotoxicity of extracts and chosen components using CCK-8 assay in HepG2 cells. Furthermore, we explored the possible hepatotoxicity mechanisms of Cortex Dictamni using a high content analysis (HCA). The results showed that no significant differences of general clinical signs were observed in mice. Aspartate alanine aminotransferase (ALT) and aminotransferase (AST) were significantly increased in the high-dose CDAE and CDEE groups compared to the control group. Meanwhile, the absolute and relative liver weights and liver/brain ratio were significantly elevated, and histological examination of liver demonstrated cellular enlargement or nuclear shrinkage. In UPLC analysis, we compared the chemical constituents between CDAE and CDEE, and chose dictamnine, obakunone, and fraxinellone for hepatotoxicity evaluation in the in vitro studies. In the CCK-8 assay, CDAE, CDEE, dictamnine, obakunone, and fraxinellone decreased the cell viability in a dose-dependent manner after treatment for 48 h. Furthermore, the cell number decreased, while the nuclear intensity, cell membrane permeability, and concentration of reactive oxygen species were shown to increase, meanwhile, mitochondrial membrane potential was also changed in HepG2 cells following 48 h of compounds treatment using HCA. Our studies suggested that CDAE and CDEE have potential hepatotoxicity, and that the alcohol extraction process could increase toxicity. Dictamnine, obakunone, and fraxinellone may be the possible toxic components in Cortex Dictamni with dictamnine as the most potentially hepatotoxic component, whose potential hepatotoxicity mechanism may be associated with cell apoptosis. Moreover, this study could provide valuable data for clinical drug safety research of Cortex Dictamni and a good example for safety study of other Chinese herbal medicines.
Collapse
|
19
|
Zhao YY, Chu Q, Shi XE, Zheng XD, Shen XT, Zhang YZ. Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures. J Zhejiang Univ Sci B 2018; 19:159-167. [PMID: 29405043 DOI: 10.1631/jzus.b1600482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To address the controversial issue of the toxicity of dental alloys and silver nanoparticles in medical applications, an in vivo-like LO2 3-D model was constructed within polyvinylidene fluoride hollow fiber materials to mimic the microenvironment of liver tissue. The use of microscopy methods and the measurement of liver-specific functions optimized the model for best cell performances and also proved the superiority of the 3-D LO2 model when compared with the traditional monolayer model. Toxicity tests were conducted using the newly constructed model, finding that four dental castings coated with silver nanoparticles were toxic to human hepatocytes after cell viability assays. In general, the toxicity of both the castings and the coated silver nanoparticles aggravated as time increased, yet the nanoparticles attenuated the general toxicity by preventing metal ion release, especially at high concentrations.
Collapse
Affiliation(s)
- Yi-Ying Zhao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Hangzhou 310058, China
| | - Qiang Chu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Hangzhou 310058, China
| | - Xu-Er Shi
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Hangzhou 310058, China
| | - Xiao-Dong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Hangzhou 310058, China
| | - Xiao-Ting Shen
- Huajiachi Dental Center, Stomatology Hospital Affiliated to Zhejiang University of Medicine, Hangzhou 310006, China
| | - Yan-Zhen Zhang
- Department of General Dentistry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310012, China
| |
Collapse
|
20
|
Kenna JG, Uetrecht J. Do In Vitro Assays Predict Drug Candidate Idiosyncratic Drug-Induced Liver Injury Risk? Drug Metab Dispos 2018; 46:1658-1669. [PMID: 30021844 DOI: 10.1124/dmd.118.082719] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022] Open
Abstract
In vitro assays are commonly used during drug discovery to try to decrease the risk of idiosyncratic drug-induced liver injury (iDILI). But how effective are they at predicting risk? One of the most widely used methods evaluates cell cytotoxicity. Cytotoxicity assays that used cell lines that are very different from normal hepatocytes, and high concentrations of drug, were not very accurate at predicting idiosyncratic drug reaction risk. Even cytotoxicity assays that use more biologically normal cells resulted in many false-positive and false-negative results. Assays that quantify reactive metabolite formation, mitochondrial injury, and bile salt export pump (BSEP) inhibition have also been described. Although evidence suggests that reactive metabolite formation and BSEP inhibition can play a role in the mechanism of iDILI, these assays are not very accurate at predicting risk. In contrast, inhibition of the mitochondrial electron transport chain appears not to play an important role in the mechanism of iDILI, although other types of mitochondrial injury may do so. It is likely that there are many additional mechanisms by which drugs can cause iDILI. However, simply measuring more parameters is unlikely to provide better predictive assays unless those parameters are actually involved in the mechanism of iDILI. Hence, a better mechanistic understanding of iDILI is required; however, mechanistic studies of iDILI are very difficult. There is substantive evidence that most iDILI is immune mediated; therefore, the most accurate assays may involve those that determine immune responses to drugs. New methods to manipulate immune tolerance may greatly facilitate development of more suitable methods.
Collapse
Affiliation(s)
- J Gerry Kenna
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| | - Jack Uetrecht
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| |
Collapse
|
21
|
Status and Future of 3D Cell Culture in Toxicity Testing. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Light DS, Aleo MD, Kenna JG. Interpretation, Integration, and Implementation of In Vitro Assay Data: The Predictive Toxicity Challenge. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Bi L, Yan X, Chen W, Gao J, Qian L, Qiu S. Antihepatocellular Carcinoma Potential of Tetramethylpyrazine Induces Cell Cycle Modulation and Mitochondrial-Dependent Apoptosis: Regulation of p53 Signaling Pathway in HepG2 Cells In Vitro. Integr Cancer Ther 2017; 15:226-36. [PMID: 27179035 DOI: 10.1177/1534735416637424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/06/2016] [Indexed: 12/23/2022] Open
Abstract
Tetramethylpyrazine (TMP) was originally isolated from a traditional Chinese herbal medicine, Ligusticum chuanxiong In the present study, TMP exhibits potent antitumor activities in vitro. However, the molecular mechanisms remain to be defined. Hence, this study aims to investigate the antiproliferative and apoptotic effects of TMP on HepG2 and elucidate the underlying mechanisms. Analyses using Cell Counting Kit-8 and real-time cell analyzer indicated that TMP significantly inhibited HepG2 cell proliferation. We also observed that TMP induced cell cycle arrest at the G0/G1 checkpoint and apoptosis, using flow cytometry and high-content screening. Furthermore, our results predicted that TMP could directly decrease mitochondrial membrane potential (Δψm), increase the release of cytochrome c, and increase caspase activation, indicating that mitochondrial pathway apoptosis could be the mechanism for TMP within HepG2 cells. Moreover, TMP altered expression of p53 and the Bcl-2/Bax protein ratio, which revealed that TMP induced cell cycle arrest and caspase-dependent mitochondrial apoptosis in HepG2 cells in vitro. These studies provided mechanistic insights into the antitumor properties of TMP, which may be explored as a potential option for treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lei Bi
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojing Yan
- Changzhou Affiliated Hospital, Nanjing University of Chinese Medicine, Changzhou, China
| | - Weiping Chen
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Gao
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Qian
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuang Qiu
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Tolosa L, Jiménez N, Pérez G, Castell JV, Gómez-Lechón MJ, Donato MT. Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol 2017; 92:383-399. [PMID: 28762043 PMCID: PMC5773651 DOI: 10.1007/s00204-017-2036-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury (DILI) has a considerable impact on human health and is a major challenge in drug safety assessments. DILI is a frequent cause of liver injury and a leading reason for post-approval drug regulatory actions. Considerable variations in the expression levels of both cytochrome P450 (CYP) and conjugating enzymes have been described in humans, which could be responsible for increased susceptibility to DILI in some individuals. We herein explored the feasibility of the combined use of HepG2 cells co-transduced with multiple adenoviruses that encode drug-metabolising enzymes, and a high-content screening assay to evaluate metabolism-dependent drug toxicity and to identify metabolic phenotypes with increased susceptibility to DILI. To this end, HepG2 cells with different expression levels of specific drug-metabolism enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, GSTM1 and UGT2B7) were exposed to nine drugs with reported hepatotoxicity. A panel of pre-lethal mechanistic parameters (mitochondrial superoxide production, mitochondrial membrane potential, ROS production, intracellular calcium concentration, apoptotic nuclei) was used. Significant differences were observed according to the level of expression and/or the combination of several drug-metabolism enzymes in the cells created ad hoc according to the enzymes implicated in drug toxicity. Additionally, the main mechanisms implicated in the toxicity of the compounds were also determined showing also differences between the different types of cells employed. This screening tool allowed to mimic the variability in drug metabolism in the population and showed a highly efficient system for predicting human DILI, identifying the metabolic phenotypes associated with increased DILI risk, and indicating the mechanisms implicated in their toxicity.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Jiménez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Gabriela Pérez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain.
| |
Collapse
|
26
|
Proctor WR, Foster AJ, Vogt J, Summers C, Middleton B, Pilling MA, Shienson D, Kijanska M, Ströbel S, Kelm JM, Morgan P, Messner S, Williams D. Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch Toxicol 2017; 91:2849-2863. [PMID: 28612260 PMCID: PMC5515971 DOI: 10.1007/s00204-017-2002-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023]
Abstract
Drug-induced liver injury (DILI) continues to be a major source of clinical attrition, precautionary warnings, and post-market withdrawal of drugs. Accordingly, there is a need for more predictive tools to assess hepatotoxicity risk in drug discovery. Three-dimensional (3D) spheroid hepatic cultures have emerged as promising tools to assess mechanisms of hepatotoxicity, as they demonstrate enhanced liver phenotype, metabolic activity, and stability in culture not attainable with conventional two-dimensional hepatic models. Increased sensitivity of these models to drug-induced cytotoxicity has been demonstrated with relatively small panels of hepatotoxicants. However, a comprehensive evaluation of these models is lacking. Here, the predictive value of 3D human liver microtissues (hLiMT) to identify known hepatotoxicants using a panel of 110 drugs with and without clinical DILI has been assessed in comparison to plated two-dimensional primary human hepatocytes (PHH). Compounds were treated long-term (14 days) in hLiMT and acutely (2 days) in PHH to assess drug-induced cytotoxicity over an 8-point concentration range to generate IC50 values. Regardless of comparing IC50 values or exposure-corrected margin of safety values, hLiMT demonstrated increased sensitivity in identifying known hepatotoxicants than PHH, while specificity was consistent across both assays. In addition, hLiMT out performed PHH in correctly classifying hepatotoxicants from different pharmacological classes of molecules. The hLiMT demonstrated sufficient capability to warrant exploratory liver injury biomarker investigation (miR-122, HMGB1, α-GST) in the cell-culture media. Taken together, this study represents the most comprehensive evaluation of 3D spheroid hepatic cultures up to now and supports their utility for hepatotoxicity risk assessment in drug discovery.
Collapse
Affiliation(s)
- William R Proctor
- Investigative Toxicology, Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alison J Foster
- Drug Safety and Metabolism, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. .,Cambridge Science Park, Cambridge, Cambridgeshire, CB4 0WG, UK.
| | - Jennifer Vogt
- Investigative Toxicology, Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Claire Summers
- Drug Safety and Metabolism, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Cambridge Science Park, Cambridge, Cambridgeshire, CB4 0WG, UK
| | - Brian Middleton
- Discovery Sciences, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Cambridge Science Park, Cambridge, Cambridgeshire, CB4 0WG, UK
| | - Mark A Pilling
- Discovery Sciences, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Cambridge Science Park, Cambridge, Cambridgeshire, CB4 0WG, UK
| | - Daniel Shienson
- Non-clinical Biostatistics, Product Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Monika Kijanska
- InSphero AG, Wagistrasse 27, CH-8952, Schlieren, Switzerland
| | - Simon Ströbel
- InSphero AG, Wagistrasse 27, CH-8952, Schlieren, Switzerland
| | - Jens M Kelm
- InSphero AG, Wagistrasse 27, CH-8952, Schlieren, Switzerland
| | - Paul Morgan
- Drug Safety and Metabolism, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Cambridge Science Park, Cambridge, Cambridgeshire, CB4 0WG, UK
| | - Simon Messner
- InSphero AG, Wagistrasse 27, CH-8952, Schlieren, Switzerland
| | - Dominic Williams
- Drug Safety and Metabolism, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Cambridge Science Park, Cambridge, Cambridgeshire, CB4 0WG, UK
| |
Collapse
|
27
|
Yu F, Zhuo S, Qu Y, Choudhury D, Wang Z, Iliescu C, Yu H. On chip two-photon metabolic imaging for drug toxicity testing. BIOMICROFLUIDICS 2017; 11:034108. [PMID: 28529673 PMCID: PMC5426952 DOI: 10.1063/1.4983615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/03/2017] [Indexed: 05/03/2023]
Abstract
We have developed a microfluidic system suitable to be incorporated with a metabolic imaging method to monitor the drug response of cells cultured on a chip. The cells were perfusion-cultured to mimic the blood flow in vivo. Label-free optical measurements and imaging of nicotinamide adenine dinucleotide and flavin adenine dinucleotide fluorescence intensity and morphological changes were evaluated non-invasively. Drug responses calculated using redox ratio imaging were compared with the drug toxicity testing results obtained with a traditional well-plate system. We found that our method can accurately monitor the cell viability and drug response and that the IC50 value obtained from imaging analysis was sensitive and comparable with a commonly used cell viability assay: MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium) assay. Our method could serve as a fast, non-invasive, and reliable way for drug screening and toxicity testing as well as enabling real-time monitoring of in vitro cultured cells.
Collapse
Affiliation(s)
| | | | | | - Deepak Choudhury
- Singapore Institute of Manufacturing Technology, ASTAR, 71 Nanyang Dr, Singapore, Singapore, 638075
| | - Zhiping Wang
- Singapore Institute of Manufacturing Technology, ASTAR, 71 Nanyang Dr, Singapore, Singapore, 638075
| | | | | |
Collapse
|
28
|
Lagorce D, Douguet D, Miteva MA, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep 2017; 7:46277. [PMID: 28397808 PMCID: PMC5387685 DOI: 10.1038/srep46277] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.
Collapse
Affiliation(s)
- David Lagorce
- INSERM, U973, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dominique Douguet
- CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Maria A. Miteva
- INSERM, U973, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
29
|
Ott LM, Ramachandran K, Stehno-Bittel L. An Automated Multiplexed Hepatotoxicity and CYP Induction Assay Using HepaRG Cells in 2D and 3D. SLAS DISCOVERY 2017; 22:614-625. [PMID: 28346810 DOI: 10.1177/2472555217701058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drug-induced liver injury (DILI) and drug-drug interactions (DDIs) are concerns when developing safe and efficacious compounds. We have developed an automated multiplex assay to detect hepatotoxicity (i.e., ATP depletion) and metabolism (i.e., cytochrome P450 1A [CYP1A] and cytochrome P450 3A4 [CYP3A4] enzyme activity) in two-dimensional (2D) and three-dimensional (3D) cell cultures. HepaRG cells were cultured in our proprietary micromold plates and produced spheroids. HepaRG cells, in 2D or 3D, expressed liver-specific proteins throughout the culture period, although 3D cultures consistently exhibited higher albumin secretion and CYP1A/CYP3A4 enzyme activity than 2D cultures. Once the spheroid hepatic quality was assessed, 2D and 3D HepaRGs were challenged to a panel of DILI- and CYP-inducing compounds for 7 days. The 3D HepaRG model had a 70% sensitivity to liver toxins at 7 days, while the 2D model had a 60% sensitivity. In both the 2D and 3D HepaRG models, 83% of compounds were predicted to be CYP inducers after 7 days of compound exposure. Combined, our results demonstrate that an automated multiplexed liver spheroid system is a promising cell-based method to evaluate DILI and DDI for early-stage drug discovery.
Collapse
Affiliation(s)
| | | | - Lisa Stehno-Bittel
- 1 Likarda, LLC, Kansas City, KS, USA.,2 University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
30
|
Kenna JG. Human biology-based drug safety evaluation: scientific rationale, current status and future challenges. Expert Opin Drug Metab Toxicol 2017; 13:567-574. [PMID: 28150517 DOI: 10.1080/17425255.2017.1290082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Animal toxicity studies used to assess the safety of new candidate pharmaceuticals prior to their progression into human clinical trials are unable to assess the risk of non-pharmacologically mediated idiosyncratic adverse drug reactions (ADRs), the most frequent of which are drug-induced liver injury and cardiotoxicity. Idiosyncratic ADRs occur only infrequently and in certain susceptible humans, but are caused by many hundreds of different drugs and may lead to serious illness. Areas covered: Idiosyncratic ADRs are initiated by drug-related chemical insults, which cause toxicity due to susceptibility factors that manifest only in certain patients. The chemical insults can be detected using in vitro assays. These enable useful discrimination between drugs that cause high versus low levels of idiosyncratic ADR concern. Especially promising assays, which have been described recently in peer-reviewed scientific literature, are highlighted. Expert opinion: Effective interpretation of in vitro toxicity data requires integration of endpoints from multiple assays, which each address different mechanisms, and must also take account of human systemic and tissue drug exposure in vivo. Widespread acceptance and use of such assays has been hampered by the lack of correlation between idiosyncratic human ADR risk and toxicities observed in vivo in animals.
Collapse
|
31
|
Funk C, Roth A. Current limitations and future opportunities for prediction of DILI from in vitro. Arch Toxicol 2016; 91:131-142. [DOI: 10.1007/s00204-016-1874-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
|
32
|
Shakeel M, Jabeen F, Qureshi NA, Fakhr-E-Alam M. Toxic Effects of Titanium Dioxide Nanoparticles and Titanium Dioxide Bulk Salt in the Liver and Blood of Male Sprague-Dawley Rats Assessed by Different Assays. Biol Trace Elem Res 2016; 173:405-26. [PMID: 27008428 DOI: 10.1007/s12011-016-0677-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/14/2016] [Indexed: 01/18/2023]
Abstract
This study evaluated the toxic effects of titanium dioxide (TiO2) bulk salt as well as its nanoparticles (NPs) in anatase phase with mean crystallite size of 36.15 nm in male Sprague-Dawley rats by subcutaneous injections at four different dose levels of either control (0), 50, 100 or 150 mg/kg of body weight (BW) of rat for 28 days on alternate days. Animal mortality, haematology, micronucleus assay, liver histology and activities of liver tissue damage markers like, alkaline phosphate (ALP), alanine transaminase (ALT), aspartate transaminase (AST), as well as oxidative stress indicators like superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) were investigated. The study revealed significant differences (P < 0.05) among control and experimental groups in all the haematological parameters at the end of experiment. Significantly elevated levels (P < 0.05) of ALT, AST and ALP were found for the group treated with TiO2 NPs at the dose of 150 mg/kg of body weight as compared to control. TiO2 and TiO2 NPs caused dose-dependent genotoxicity in the blood cells of the treated rat as revealed by micronuclei test. The highest frequency of micronuclei was observed in rats treated with NPs at the dose of 150 mg/kg BW which was significantly different (P < 0.001) from all other experimental groups after 28 days of exposure. Similarly, all the treatments showed dose-dependent oxidative stress in the treated rats. However, the significantly high decline in the activities of CAT, SOD, and GST as well as elevation in malondialdehyde and GSH was observed in the group receiving NPs at the rate of 150 mg/kg BW. TiO2 also caused histological alterations in the liver. The study revealed that higher dose of TiO2 NPs exerted significantly harmful effects on liver and blood as compared to its lower doses as well as from all other doses of their bulk counterparts.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad, Pakistan.
| | | | | |
Collapse
|
33
|
Shibany KA, Tötemeyer S, Pratt SL, Paine SW. Equine hepatocytes: isolation, cryopreservation, and applications to in vitro drug metabolism studies. Pharmacol Res Perspect 2016; 4:e00268. [PMID: 27713829 PMCID: PMC5045944 DOI: 10.1002/prp2.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/27/2016] [Indexed: 11/15/2022] Open
Abstract
Despite reports of the successful isolation of primary equine hepatocytes, there are no published data regarding the successful cryopreservation of these isolated cells. In this study, a detailed description of the procedures for isolation, cryopreservation, and recovery of equine hepatocytes are presented. Furthermore, the intrinsic clearance (Clint) and production of metabolites for three drugs were compared between freshly isolated and recovered cryopreserved hepatocytes. Primary equine hepatocytes were isolated using a two‐step collagenase perfusion method, with an average cell yield of 2.47 ± 2.62 × 106 cells/g of perfused liver tissue and viability of 84.1 ± 2.62%. These cells were cryopreserved with William's medium E containing 10% fetal bovine serum with 10% DMSO. The viability of recovered cells, after a 30% Percoll gradient, was 77 ± 11% and estimated recovery rate was approximately 27%. These purified cells were used to determine the in vitro Clint of three drugs used in equine medicine; omeprazole, flunixin, and phenylbutazone, via the substrate depletion method. Cryopreserved suspensions gave a comparable estimation of Clint compared to fresh cells for these three drugs as well as producing the same metabolites. This work paves the way for establishing a bank of cryopreserved equine hepatocytes that can be used for estimating pharmacokinetic parameters such as the hepatic metabolic in vivo clearance of a drug as well as producing horse‐specific drug metabolites.
Collapse
Affiliation(s)
- Khaled A Shibany
- School of Veterinary Medicine and Sciences University of Nottingham College Road Sutton Bonington Leicestershire LE12 5RD United Kingdom
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Sciences University of Nottingham College Road Sutton Bonington Leicestershire LE12 5RD United Kingdom
| | - Stefanie L Pratt
- School of Veterinary Medicine and Sciences University of Nottingham College Road Sutton Bonington Leicestershire LE12 5RD United Kingdom
| | - Stuart W Paine
- School of Veterinary Medicine and Sciences University of Nottingham College Road Sutton Bonington Leicestershire LE12 5RD United Kingdom
| |
Collapse
|
34
|
Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9737920. [PMID: 27689095 PMCID: PMC5027328 DOI: 10.1155/2016/9737920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of late-stage clinical drug attrition, market withdrawal, black-box warnings, and acute liver failure. Consequently, it has been an area of focus for toxicologists and clinicians for several decades. In spite of considerable efforts, limited improvements in DILI prediction have been made and efforts to improve existing preclinical models or develop new test systems remain a high priority. While prediction of intrinsic DILI has improved, identifying compounds with a risk for idiosyncratic DILI (iDILI) remains extremely challenging because of the lack of a clear mechanistic understanding and the multifactorial pathogenesis of idiosyncratic drug reactions. Well-defined clinical diagnostic criteria and risk factors are also missing. This paper summarizes key data interpretation challenges, practical considerations, model limitations, and the need for an integrated risk assessment. As demonstrated through selected initiatives to address other types of toxicities, opportunities exist however for improvement, especially through better concerted efforts at harmonization of current, emerging and novel in vitro systems or through the establishment of strategies for implementation of preclinical DILI models across the pharmaceutical industry. Perspectives on the incorporation of newer technologies and the value of precompetitive consortia to identify useful practices are also discussed.
Collapse
|
35
|
Kumar RP, Abraham A. PVP- coated naringenin nanoparticles for biomedical applications - In vivo toxicological evaluations. Chem Biol Interact 2016; 257:110-8. [PMID: 27417253 DOI: 10.1016/j.cbi.2016.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 12/18/2022]
Abstract
Naringenin (NAR) is one of the naturally occurring flavonoids found in citrus fruits and exerts a wide variety of pharmacological activities. The clinical relevance of naringenin is limited by its low solubility and minimal bioavailability, owing to its largely hydrophobic ring structure. The aim of the present study is to develop a novel naringenin nanoparticle system (NAR NP) using simple nanoprecipitation technique with polyvinylpyrrolidone (PVP) as the hydrophilic carrier. The synthesized nanoparticles were characterized using XRD, FTIR, SEM and EDX. The characterization study revealed the nanoscale properties and the interactions between NAR and PVP. In vivo toxicological evaluations were carried out at various doses (1, 5, 10 & 50 mg/kg body wt) in male Sprague-Dawley rats in comparison with silver nanoparticle (AgNP) at toxic concentration (50 mg/kg body wt). The altered hepatotoxicity markers, hematology parameters and antioxidant defense system were observed in AgNP- treated rats. But NAR NP - treated rats did not show any biochemical alterations and improved the antioxidant defense indices when compared to control group, by virtue of the pharmacological properties exerted by NAR. The modulatory effect of NAR NP over inflammatory and stress signaling cascades were confirmed by the normalized mRNA expressions of NF-κB, TNF-α and IL-6. The histopathological analysis of liver, kidney and heart reinforce our findings. These studies provide preliminary answers to some of the key biological issues raised over the use and safety of nanoparticles for diagnostic and therapeutic applications. Consequently, we suggest that the safe NAR NP can be used to reduce the dosage of NAR, improve its bioavailability and merits further investigation for therapeutic applications.
Collapse
Affiliation(s)
- R Pradeep Kumar
- Centre for Nanoscience and Nanotechnology, Kariavattom Campus, University of Kerala, Thiruvananthapuram, Kerala, India.
| | - Annie Abraham
- Department of Biochemistry, Kariavattom Campus, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
36
|
Hasspieler B, Haffner D, Stelljes M, Adeli K. Toxicological assessment of industrial solvents using human cell bioassays: assessment of short-term cytotoxicity and long-term genotoxicity potential. Toxicol Ind Health 2016; 22:301-15. [PMID: 17022437 DOI: 10.1177/0748233706070312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is an increasing demand for simple toxicological screening methods to assess the human health risk associated with exposure to environmental toxicants. Such screening tools should allow for risk evaluation in terms of both short-term/acute toxicity and longer-term genetic damage, which may lead to mutagenicity and carcinogenicity. We employed a battery of human cell bioassays using the human hepatoma cell-line, HepG2, to assess the cytotoxic and genotoxic potential of environmental pollutants. Here, we demonstrate direct application of these human cell bioassays to the toxicological assessment of a number of industrial solvents that are in common use worldwide. HepG2 cells were exposed to various solvents at concentrations ranging from 25 to 500 ppm. The cells were then analysed using specific protocols for four different adverse effects: cell death/acute cytotoxicity using a neutral red uptake assay, altered enzyme function (often an indicator of cell stress) using the ethoxyresorufin O-deethylase (EROD) bioassay, DNA single strand breaks (SSB), and DNA repair induction, which evaluates mutagenic activity. Using the positive controls, linear dose-response curves were achieved for all four bioassays. The high sensitivity of the tests allowed for environmentally meaningful assessments, and precision studies showed excellent reproducibility for all four bioassays. Comparing the results of the four bioassays on each of 16 industrial solvents allowed for ranking of the anticipated relative human toxicity of these solvents, which were comparable with data from standard toxicity tests and human occupational data. Overall, the study clearly supports the application of the HepG2 cell bioassay system for rapid toxicological screening of many candidate toxicants for both short- and long-term toxicity potential.
Collapse
|
37
|
Gómez-Lechón MJ, Tolosa L, Donato MT. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol 2015; 36:752-68. [PMID: 26691983 DOI: 10.1002/jat.3277] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/21/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is a significant leading cause of hepatic dysfunction, drug failure during clinical trials and post-market withdrawal of approved drugs. Many cases of DILI are unexpected reactions of an idiosyncratic nature that occur in a small group of susceptible individuals. Intensive research efforts have been made to understand better the idiosyncratic DILI and to identify potential risk factors. Metabolic bioactivation of drugs to form reactive metabolites is considered an initiation mechanism for idiosyncratic DILI. Reactive species may interact irreversibly with cell macromolecules (covalent binding, oxidative damage), and alter their structure and activity. This review focuses on proposed in vitro screening strategies to predict and reduce idiosyncratic hepatotoxicity associated with drug bioactivation. Compound incubation with metabolically competent biological systems (liver-derived cells, subcellular fractions), in combination with methods to reveal the formation of reactive intermediates (e.g., formation of adducts with liver proteins, metabolite trapping or enzyme inhibition assays), are approaches commonly used to screen the reactivity of new molecules in early drug development. Several cell-based assays have also been proposed for the safety risk assessment of bioactivable compounds. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Activation, Metabolic
- Animals
- Cell Culture Techniques/trends
- Cell Line
- Cells, Cultured
- Chemical and Drug Induced Liver Injury/epidemiology
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/pathology
- Coculture Techniques/trends
- Drug Evaluation, Preclinical/trends
- Drugs, Investigational/adverse effects
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacokinetics
- Humans
- In Vitro Techniques/trends
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Microfluidics/methods
- Microfluidics/trends
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Microsomes, Liver/metabolism
- Models, Biological
- Pluripotent Stem Cells/cytology
- Pluripotent Stem Cells/drug effects
- Pluripotent Stem Cells/metabolism
- Pluripotent Stem Cells/pathology
- Recombinant Proteins/metabolism
- Risk Assessment
- Risk Factors
- Tissue Scaffolds/trends
Collapse
Affiliation(s)
- M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- CIBEREHD, FIS, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- CIBEREHD, FIS, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| |
Collapse
|
38
|
Hu B, Gifford E, Wang H, Bailey W, Johnson T. Analysis of the ToxCast Chemical-Assay Space Using the Comparative Toxicogenomics Database. Chem Res Toxicol 2015; 28:2210-23. [PMID: 26505644 DOI: 10.1021/acs.chemrestox.5b00369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many studies have attempted to predict in vivo hazards based on the ToxCast in vitro assay results with the goal of using these predictions to prioritize compounds for conventional toxicity testing. Most of these conventional studies rely on in vivo end points observed using preclinical species (e.g., mice and rats). Although the preclinical animal studies provide valuable insights, there can often be significant disconnects between these studies and safety concerns in humans. One way to address these concerns, for an admittedly more limited set of compounds, is to explore relationships between the in vitro data from human cell lines and observations from human related studies. The Comparative Toxicogenomics Database (CTD; http://ctdbase.org ) is a rich source of data linking chemicals to human diseases/adverse events and pathways. In this study we explored the relationships between ToxCast chemicals, their ToxCast in vitro test results, and their annotations of human disease/adverse event end points as captured in the CTD database. We mined these associations to identify potentially interesting, statistically significant in vitro assay and in vivo toxicity correlations. To the best of our knowledge, this is one of the first studies analyzing the relationships between the ToxCast in vitro assays results and the CTD disease/adverse event end point annotations. The in vitro profiles identified in this analysis may prove useful for prioritizing compounds for toxicity testing, suggesting mechanisms of toxicity, and forecasting potential in vivo human drug induced injury.
Collapse
Affiliation(s)
- Bingjie Hu
- Structural Chemistry, Merck Research Laboratories, Merck & Co. , West Point, Pennsylvania 19486, United States
| | - Eric Gifford
- Structural Chemistry, Merck Research Laboratories, Merck & Co. , West Point, Pennsylvania 19486, United States
| | - Huijun Wang
- Structural Chemistry, Merck Research Laboratories, Merck & Co. , Kenilworth, New Jersey 07033, United States
| | - Wendy Bailey
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, Merck & Co. , West Point, Pennsylvania 19486, United States
| | - Timothy Johnson
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, Merck & Co. , West Point, Pennsylvania 19486, United States
| |
Collapse
|
39
|
Dose-response analysis of the effects of persistent organic pollutants (POPs) on gene expression in human hepatocytes. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0032-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Decellularized skeletal muscle as an in vitro model for studying drug-extracellular matrix interactions. Biomaterials 2015; 64:108-14. [PMID: 26125502 DOI: 10.1016/j.biomaterials.2015.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/12/2015] [Accepted: 06/18/2015] [Indexed: 01/16/2023]
Abstract
Several factors can affect drug absorption after intramuscular (IM) injection: drug solubility, drug transport across cell membranes, and drug metabolism at the injection site. We found that potential interactions between the drug and the extracellular matrix (ECM) at the injection site can also affect the rate of absorption post-injection. Using decellularized skeletal muscle, we developed a simple method to model drug absorption after IM injection, and showed that the nature of the drug-ECM interaction could be investigated by adding compounds that alter binding. We validated the model using the vitamin B12 analog cobinamide with different bound ligands. Cobinamide is being developed as an IM injectable treatment for cyanide poisoning, and we found that the in vitro binding data correlated with previously published in vivo drug absorption in animals. Commercially available ECM products, such as collagen and GelTrex, did not recapitulate drug binding behavior. While decellularized ECM has been widely studied in fields such as tissue engineering, this work establishes a novel use of skeletal muscle ECM as a potential in vitro model to study drug-ECM interactions during drug development.
Collapse
|
41
|
Moulin F, Flint O. In VitroModels for the Prediction of Drug-Induced Liver Injury in Lead Discovery. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/9783527673643.ch07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Salvianolic acid A attenuates TNF-α- and d-GalN-induced ER stress-mediated and mitochondrial-dependent apoptosis by modulating Bax/Bcl-2 ratio and calcium release in hepatocyte LO2 cells. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:817-30. [DOI: 10.1007/s00210-015-1116-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
|
44
|
High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch Toxicol 2015; 89:1007-22. [PMID: 25787152 DOI: 10.1007/s00204-015-1503-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 01/13/2023]
Abstract
High-content screening is the application of automated microscopy and image analysis to both cell biology and drug discovery. Over the last decade, this technique has emerged as a useful technology that allows the simultaneous measurement of different parameters at a single-cell level. Hepatotoxicity is a compelling reason for drug nonapprovals and withdrawals. It is recognized that the safety of a compound cannot be based on a single in vitro assay, and existing methods are not predictive of drug-induced toxicity. However, different HCS assays have been recently demonstrated as being powerful for identifying different mechanisms implicated in drug-induced toxicity with high sensitivity and specificity. These assays integrate the data obtained from different cell function indicators and can be easily incorporated into basic screening processes for the safety evaluation and selection of drug candidates; thus, they contribute greatly to lessen the likelihood of drug failure. Exploring the use of cellular imaging technology in drug-induced liver injury by reviewing the different tests proposed provides evidence that this technology has a strong impact on drug discovery.
Collapse
|
45
|
Bachmann A, Moll M, Gottwald E, Nies C, Zantl R, Wagner H, Burkhardt B, Sánchez JJM, Ladurner R, Thasler W, Damm G, Nussler AK. 3D Cultivation Techniques for Primary Human Hepatocytes. MICROARRAYS (BASEL, SWITZERLAND) 2015; 4:64-83. [PMID: 27600213 PMCID: PMC4996383 DOI: 10.3390/microarrays4010064] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 01/27/2023]
Abstract
One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device.
Collapse
Affiliation(s)
- Anastasia Bachmann
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Matthias Moll
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Eric Gottwald
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany.
| | - Cordula Nies
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany.
| | - Roman Zantl
- GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany.
| | - Helga Wagner
- GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany.
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Juan J Martínez Sánchez
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Ruth Ladurner
- Clinic for General, Visceral and Transplantation Surgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Wolfgang Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, 81377 Munich, Germany.
| | - Georg Damm
- Department for General, Visceral and Transplantation Surgery, Charité Medical University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Andreas K Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| |
Collapse
|
46
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 2015; 1250:53-76. [PMID: 26272134 PMCID: PMC4579543 DOI: 10.1007/978-1-4939-2074-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium,
| | | | | | | |
Collapse
|
47
|
Abstract
Metabolites as an end product of metabolism possess a wealth of information about altered metabolic control and homeostasis that is dependent on numerous variables including age, sex, and environment. Studying significant changes in the metabolite patterns has been recognized as a tool to understand crucial aspects in drug development like drug efficacy and toxicity. The inclusion of metabonomics into the OMICS study platform brings us closer to define the phenotype and allows us to look at alternatives to improve the diagnosis of diseases. Advancements in the analytical strategies and statistical tools used to study metabonomics allow us to prevent drug failures at early stages of drug development and reduce financial losses during expensive phase II and III clinical trials. This chapter introduces metabonomics along with the instruments used in the study; in addition relevant examples of the usage of metabonomics in the drug development process are discussed along with an emphasis on future directions and the challenges it faces.
Collapse
Affiliation(s)
- Pranov Ramana
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2 PB 923, Herestraat 49, 3000, Leuven, Belgium
| | | | | | | |
Collapse
|
48
|
Abstract
Nonclinical safety pharmacology and toxicology testing of drug candidates assess the potential adverse effects caused by the drug in relation to its intended use in humans. Hazards related to a drug have to be identified and the potential risks at the intended exposure have to be evaluated in comparison to the potential benefit of the drug. Preclinical safety is thus an integral part of drug discovery and drug development. It still causes significant attrition during drug development.Therefore, there is a need for smart selection of drug candidates in drug discovery including screening of important safety endpoints. In the recent years,there was significant progress in computational and in vitro technology allowing in silico assessment as well as high-throughput screening of some endpoints at very early stages of discovery. Despite all this progress, in vivo evaluation of drug candidates is still an important part to safety testing. The chapter provides an overview on the most important areas of nonclinical safety screening during drug discovery of small molecules.
Collapse
|
49
|
Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol 2014; 10:1553-68. [PMID: 25297626 DOI: 10.1517/17425255.2014.967680] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The liver is the most important target for drug-induced toxicity. This vulnerability results from functional liver features and its role in the metabolic elimination of most drugs. Drug-induced liver injury is a significant leading cause of acute, chronic liver disease and an important safety issue when developing new drugs. AREAS COVERED This review describes the advantages and limitations of hepatic cell-based models for early safety risk assessment during drug development. These models include hepatocytes cultured as monolayer, collagen-sandwich; emerging complex 3D configuration; liver-derived cell lines; stem cell-derived hepatocytes. EXPERT OPINION In vitro toxicity assays performed in hepatocytes or hepatoma cell lines can potentially provide rapid and cost-effective early feedback to identify toxic candidates for compound prioritization. However, their capacity to predict hepatotoxicity depends critically on cells' functional performance. In an attempt to improve and prolong functional properties of cultured cells, different strategies to recreate the in vivo hepatocyte environment have been explored. 3D cultures, co-cultures of hepatocytes with other cell types and microfluidic devices seem highly promising for toxicological studies. Moreover, hepatocytes derived from human pluripotent stem cells are emerging cell-based systems that may provide a stable source of hepatocytes to reliably screen metabolism and toxicity of candidate compounds.
Collapse
Affiliation(s)
- M José Gómez-Lechón
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe (IIS LA Fe) , Torre A Avda. Fernando Abril Martorell 106, 46026 Valencia , Spain +34 961246619 ;
| | | | | | | |
Collapse
|
50
|
Sinz MW, Kim S. Stem cells, immortalized cells and primary cells in ADMET assays. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 3:79-85. [PMID: 24980105 DOI: 10.1016/j.ddtec.2006.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell-based assays are beginning to replace traditional absorption, distribution, metabolism, elimination and toxicology (ADMET) models employing subcellular fractions in high throughput drug discovery screening and drug development where drugs are characterized and predictions are formulated to forecast in vivo biological outcomes. Significant and continuing advances in stem cell research, new immortalized cell lines and our enhanced ability to predict outcomes from primary cells have increased the ability to employ cell-based assays to study ADMET properties of new drugs.:
Collapse
Affiliation(s)
- Michael W Sinz
- Department of Metabolism and Pharmacokinetics, Pharmaceutical Candidate Optimization, Bristol Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Sean Kim
- Department of Metabolism and Pharmacokinetics, Pharmaceutical Candidate Optimization, Bristol Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|