1
|
Smutny T, Smutna L, Lochman L, Kamaraj R, Kucera R, Pavek P. Rifampicin and its derivatives: stability, disposition, and affinity towards pregnane X receptor employing 2D and 3D primary human hepatocytes. Biochem Pharmacol 2024; 229:116500. [PMID: 39179119 DOI: 10.1016/j.bcp.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Rifampicin is a model ligand of the pregnane X receptor (PXR), the nuclear receptor involved in the regulation of cytochrome P450 3A4 (CYP3A4). Rifampicin forms several degradation products and metabolites of which 25-desacetylrifampicin is the most abundant in vivo. Here, we aimed to study both the stability and metabolism of rifampicin in media and 2D and 3D primary human hepatocytes (PHHs). Additionally, we analyzed interactions of rifampicin derivatives with PXR. We described that rifampicin gradually degrades by more than 50 % in the medium partly into quinone over 72 h. We observed 25-desacetylrifampicin in 2D PHHs but not in 3D PHHs. Contrary, rifampicin was converted into quinone in a one-direction process in media of 3D PHHs. The potency of rifampicin and its derivatives to activate human PXR was arranged as follows: 3-formylrifamycin SV > rifampicin quinone > rifampicin > rifampicin N-oxide > 25-desacetylrifampicin, respectively, but none activates mouse and rat PXR. The binding differences between rifampicin and 25-desacetylrifampicin were modeled in silico. Finally, we showed that overexpressed uptake organic anion transporting polypeptide 1B1 (OATP1B1) potentiated activation of PXR by rifampicin and rifampicin quinone, but overexpressed efflux multidrug resistance protein 1 (MDR1) decreased PXR activation by all derivatives.
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic.
| | - Lucie Smutna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Lochman
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic.
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic.
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Wang C, Hwang M, Paulson B, Mhandire D, Ozair S, O'Connor TL, Gandhi S, Attwood KM, Hertz DL, Goey AKL. Potential association of SULT2A1 and ABCG2 variant alleles with increased risk for palbociclib toxicity. Pharmacogenomics 2024; 25:367-375. [PMID: 39092502 PMCID: PMC11418216 DOI: 10.1080/14622416.2024.2380240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Aim: This study evaluated associations between CYP3A4*22 and variants in other pharmacogenes (CYP3A5, SULT2A1, ABCB1, ABCG2, ERCC1) and the risk for palbociclib-associated toxicities.Materials & methods: Two hundred cancer patients who received standard-of-care palbociclib were genotyped and associations with toxicity were evaluated retrospectively.Results: No significant associations were found for CYP3A4*22, CYP3A5*3, ABCB1_rs1045642, ABCG2_rs2231142, ERCC1_rs3212986 and ERCC1_rs11615. Homozygous variant carriers of SULT2A1_rs182420 had higher incidence of dose modifications due to palbociclib toxicity (odds ratio [OR]: 4.334, 95% CI: 1.057-17.767, p = 0.042). ABCG2_rs2231137 variant carriers had borderline higher incidence of grade 3-4 neutropenia (OR: 4.14, 95% CI: 0.99-17.37, p = 0.052).Conclusion: Once validated, SULT2A1 and ABCG2 variants may be useful to individualize palbociclib dosing to minimize toxicities and improve treatment outcomes.
Collapse
Affiliation(s)
- Chong Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Mary Hwang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI48109, USA
| | - Brandon Paulson
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI48109, USA
| | - Doreen Mhandire
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Sadat Ozair
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Tracey L O'Connor
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Kristopher M Attwood
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI48109, USA
| | - Andrew KL Goey
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| |
Collapse
|
3
|
Yuan T, Bi F, Hu K, Zhu Y, Lin Y, Yang J. Clinical Trial Data-Driven Risk Assessment of Drug-Drug Interactions: A Rapid and Accurate Decision-Making Tool. Clin Pharmacokinet 2024; 63:1147-1165. [PMID: 39102093 DOI: 10.1007/s40262-024-01404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND In clinical practice, the vast array of potential drug combinations necessitates swift and accurate assessments of pharmacokinetic drug-drug interactions (DDIs), along with recommendations for adjustments. Current methodologies for clinical DDI evaluations primarily rely on basic extrapolations from clinical trial data. However, these methods are limited in accuracy owing to their lack of a comprehensive consideration of various critical factors, including the inhibitory potency, dosage, and type of the inhibitor, as well as the metabolic fraction and intestinal availability of the substrate. OBJECTIVE This study aims to propose an efficient and accurate clinical pharmacokinetic-mediated DDI assessment tool, which comprehensively considers the effects of inhibitory potency and dosage of inhibitors, intestinal availability and fraction metabolized of substrates on DDI outcomes. METHODS This study focuses on DDIs caused by cytochrome P450 3A4 enzyme inhibition, utilizing extensive clinical trial data to establish a methodology to calculate the metabolic fraction and intestinal availability for substrates, as well as the concentration and inhibitory potency for inhibitors ( K i ork inact / K I ). These parameters were then used to predict the outcomes of DDIs involving 33 substrates and 20 inhibitors. We also defined the risk index for substrates and the potency index for inhibitors to establish a clinical DDI risk scale. The training set for parameter calculation consisted of 73 clinical trials. The validation set comprised 89 clinical DDI trials involving 53 drugs. which was used to evaluate the reliability of in vivo values of K i andk inact / K I , the accuracy of DDI predictions, and the false-negative rate of risk scale. RESULTS First, the reliability of the in vivo K i andk inact / K I values calculated in this study was assessed using a basic static model. Compared with values obtained from other methods, this study values showed a lower geometric mean fold error and root mean square error. Additionally, incorporating these values into the physiologically based pharmacokinetic-DDI model facilitated a good fitting of the C-t curves when the substrate's metabolic enzymes are inhibited. Second, area under the curve ratio predictions of studied drugs were within a 1.5 × margin of error in 81% of cases compared with clinical observations in the validation set. Last, the clinical DDI risk scale developed in this study predicted the actual risks in the validation set with only a 5.6% incidence of serious false negatives. CONCLUSIONS This study offers a rapid and accurate approach for assessing the risk of pharmacokinetic-mediated DDIs in clinical practice, providing a foundation for rational combination drug use and dosage adjustments.
Collapse
Affiliation(s)
- Tong Yuan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing, 210009, People's Republic of China
| | - Fulin Bi
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing, 210009, People's Republic of China
| | - Kuan Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing, 210009, People's Republic of China
| | - Yuqi Zhu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan Lin
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmiandadao Rd, Nanjing, 211198, People's Republic of China.
| | - Jin Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
4
|
Cutrona MB, Wu J, Yang K, Peng J, Chen T. Pancreatic cancer organoid-screening captures personalized sensitivity and chemoresistance suppression upon cytochrome P450 3A5-targeted inhibition. iScience 2024; 27:110289. [PMID: 39055940 PMCID: PMC11269815 DOI: 10.1016/j.isci.2024.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 3A5 (CYP3A5) has been proposed as a predictor of therapy response in subtypes of pancreatic ductal adenocarcinoma cancer (PDAC). To validate CYP3A5 as a therapeutic target, we developed a high-content image organoid-based screen to quantify the phenotypic responses to the selective inhibition of CYP3A5 enzymatic activity by clobetasol propionate (CBZ), using a cohort of PDAC-derived organoids (PDACOs). The chemoresistance of PDACOs to a panel of standard-of-care drugs, alone or in combination with CBZ, was investigated. PDACO pharmaco-profiling revealed CBZ to have anti-cancer activity that was dependent on the CYP3A5 level. In addition, CBZ restored chemo-vulnerability to cisplatin in a subset of PDACOs. A correlative proteomic analysis established that CBZ caused the suppression of multiple cancer pathways sustained by or associated with a mutant form of p53. Limiting the active pool of CYP3A5 enables targeted and personalized therapy to suppress pro-oncogenic mechanisms that fuel chemoresistance in some PDAC tumors.
Collapse
Affiliation(s)
- Meritxell B. Cutrona
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Ka Yang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
5
|
Dąbrowski A, Nowicki M, Budzyńska A, Suchodolski J, Ogórek R, Chabowski M, Przywara K. Analysis of CYP1B1 Polymorphisms in Lung Cancer Patients Using Novel, Quick and Easy Methods Based on CAPS and ACRS-PCR Techniques. Int J Mol Sci 2024; 25:6676. [PMID: 38928381 PMCID: PMC11203417 DOI: 10.3390/ijms25126676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Within the sequence of the CYP1B1 gene, more than 50 polymorphisms, resulting from single-nucleotide polymorphisms (SNPs), have been described. Some of them play an important role as specific genetic markers in the process of carcinogenesis and for therapeutic purposes. In this publication, we present methods we have developed that enable the specific and unambiguous identification of four polymorphisms that result in amino acid changes: c. 142C > G, c. 355G > T, c. 1294C > G, and c. 1358A > G. Our studies are based on cleaved amplified polymorphic sequences (CAPSs) and artificially created restriction site (ACRS) PCR techniques; therefore, they require only basic laboratory equipment and low financial outlays. Utilizing the described methods allows for the reduction of research time and cost, and the minimization of errors. Their effectiveness and efficiency depend on the careful design of appropriate primers and the precise selection of suitable restriction enzymes. As a result, further confirmation by sequencing is not necessary. Using the developed method, we examined 63 patients diagnosed with lung cancer and observed a 1.5 to 2.1 times higher frequency of the analyzed single-nucleotide polymorphisms compared to the frequency in the European population.
Collapse
Affiliation(s)
- Adam Dąbrowski
- Laboratory of Molecular Diagnostics “Bio-Genetik” NZOZ, 50-525 Wrocław, Poland;
| | - Maciej Nowicki
- Department of Surgery, 4th Military Teaching Hospital, 53-114 Wroclaw, Poland; (M.N.); (M.C.)
| | - Aleksandra Budzyńska
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Jakub Suchodolski
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Rafał Ogórek
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 53-114 Wroclaw, Poland; (M.N.); (M.C.)
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 51-377 Wroclaw, Poland
| | - Katarzyna Przywara
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| |
Collapse
|
6
|
Li C, Li X, Fan A, He N, Wu D, Yu H, Wang K, Jiao W, Zhao X. Evidence for cytochrome P450 3A4-mediated metabolic activation of SCO-267. Biopharm Drug Dispos 2024; 45:30-42. [PMID: 38236698 DOI: 10.1002/bdd.2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 02/15/2024]
Abstract
SCO-267 is a potent G-protein-coupled receptor 40 agonist that is undergoing clinical development for the treatment of type 2 diabetes mellitus. The current work was undertaken to investigate the bioactivation potential of SCO-267 in vitro and in vivo. Three SCO-267-derived glutathione (GSH) conjugates (M1-M3) were found both in rat and human liver microsomal incubations supplemented with GSH and nicotinamide adenine dinucleotide phosphate. Two GSH conjugates (M1-M2) together with two N-acetyl-cysteine conjugates (M4-M5) were detected in the bile of rats receiving SCO-267 at 10 mg/kg. The identified conjugates suggested the generation of quinone-imine and ortho-quinone intermediates. CYP3A4 was demonstrated to primarily catalyze the bioactivation of SCO-267. In addition, SCO-267 concentration-, time-, and NADPH-dependently inactivated CYP3A in human liver microsomes using testosterone as a probe substrate, along with KI and kinact values of 4.91 μM and 0.036 min-1 , respectively. Ketoconazole (a competitive inhibitor of CYP3A) displayed no significant protective effect on SCO-267-induced CYP3A inactivation. However, inclusion of GSH showed significant protection. These findings revealed that SCO-267 undergoes a facile CYP3A4-catalyzed bioactivation with the generation of quinone-imine and ortho-quinone intermediates, which were assumed to be involved in SCO-267 induced CYP3A inactivation. These findings provide further insight into the bioactivation pathways involved in the generation of reactive, potentially toxic metabolites of SCO-267. Further studies are needed to evaluate the influence of SCO-267 metabolism on the safety of this drug in vivo.
Collapse
Affiliation(s)
- Cui Li
- Department of Pharmacy, Henan Province Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Xiaokun Li
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Ali Fan
- TriApex Laboratories Co. Ltd, Nanjing, China
| | - Ning He
- Department of Pharmacy, Henan Province Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Dongmei Wu
- Department of Pharmacy, Henan Province Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Hongyan Yu
- Department of Pharmacy, Henan Province Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Kun Wang
- Department of Pharmacy, Henan Province Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Weijie Jiao
- Department of Pharmacy, Henan Province Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Xu Zhao
- Department of Pharmacy, Henan Province Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| |
Collapse
|
7
|
Wang C, Cheng B, Wei W, Gui L, Zeng W, Wang Y, Wang Y, Chen Q, Xu L, Miao J, Lan K. Comparison of 1Beta- and 5Beta-hydroxylation of Deoxycholate and Glycodeoxycholate as In Vitro Index Reactions for Cytochrome P450 3A Activities. Drug Metab Dispos 2024; 52:126-134. [PMID: 38050044 DOI: 10.1124/dmd.123.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1β and C-5β This work aimed to compare the 1β- and 5β-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1β-hydroxyglycodeoxycholic acid and 5β-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1β-hydroxylation, DCA 5β-hydroxylation, and GDCA 5β-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1β-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1β- and 5β-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5β-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1β-hydroxylation exhibited higher reactivity than DCA 5β-hydroxylation. It is therefore suggested that DCA 1β- and 5β-hydroxylations may serve as alternatives to T 6β-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1β- and 5β-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1β-hydroxylation exhibited higher metabolic activity than DCA 5β-hydroxylation, DCA 5β-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1β-hydroxylation in individual liver microsomes.
Collapse
Affiliation(s)
- Cuitong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Bin Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Wei Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Lanlan Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Wushuang Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Yutong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Yixuan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Qi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Liang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Jia Miao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| |
Collapse
|
8
|
Ngeyvijit J, Nuansuwan S, Phoophiboon V. CYP3A4/P-glycoprotein inhibitors related colchicine toxicity mimicking septic shock. BMJ Case Rep 2023; 16:e257186. [PMID: 37813551 PMCID: PMC10565285 DOI: 10.1136/bcr-2023-257186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Colchicine toxicity is uncommon when patients receive a therapeutic dose regularly. However, inadvertent drug interactions can result in unpredicted adverse outcomes. The toxicity of colchicine can manifest in various ways, ranging from mild and non-specific symptoms to severe form known as multiple organ dysfunction syndrome. This case highlights (1) the diagnostic challenge that arises when distinguishing between the severe manifestation of colchicine toxicity and septic shock and (2) concomitant prescription of colchicine with potent CYP3A4 and P-glycoprotein inhibitors (ie, clarithromycin) can lead to colchicine toxicity despite normal renal and hepatic clearance. Unfortunately, specific tests of colchicine toxicity were not routinely available. A high index of clinical suspicion and recognition of drug interactions with their common presentations are crucial for making diagnosis and management. Failure to recognise drug toxicity can result in poor outcomes.
Collapse
Affiliation(s)
- Jinjuta Ngeyvijit
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chaophraya Abhaibhubejhr Hospital, Prachin Buri, Thailand
| | - Sopita Nuansuwan
- Department of Medicine, Chaophraya Abhaibhubejhr Hospital, Prachin Buri, Thailand
| | - Vorakamol Phoophiboon
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Critical Care Medicine, St.Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Teng F, Lu Z, Gao F, Liang J, Li J, Tian X, Wang X, Guan H, Wang J. Systems biology approaches to identify potential targets and inhibitors of the intestinal microbiota to treat depression. Sci Rep 2023; 13:11225. [PMID: 37433869 DOI: 10.1038/s41598-023-38444-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023] Open
Abstract
Depression is a common mental disease, with some patients exhibiting ideas and behaviors such as self-harm and suicide. The drugs currently used to treat depression have not achieved good results. It has been reported that metabolites produced by intestinal microbiota affect the development of depression. In this study, core targets and core compounds were screened by specific algorithms in the database, and three-dimensional structures of these compounds and proteins were simulated by molecular docking and molecular dynamics software to further study the influence of intestinal microbiota metabolites on the pathogenesis of depression. By analyzing the RMSD gyration radius and RMSF, it was finally determined that NR1H4 had the best binding effect with genistein. Finally, according to Lipinski's five rules, equol, genistein, quercetin and glycocholic acid were identified as effective drugs for the treatment of depression. In conclusion, the intestinal microbiota can affect the development of depression through the metabolites equol, genistein and quercetin, which act on the critical targets of DPP4, CYP3A4, EP300, MGAM and NR1H4.
Collapse
Affiliation(s)
- Fei Teng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhongwen Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Fei Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiawen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xuanhe Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xianshuai Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Haowei Guan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
10
|
Delgado A, Enkemann S. Three Layers of Personalized Medicine in the Use of Sirolimus and Its Derivatives for the Treatment of Cancer. J Pers Med 2023; 13:jpm13050745. [PMID: 37240915 DOI: 10.3390/jpm13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Rapamycin and its derivatives are mTOR inhibitors which are FDA-approved for use as immunosuppressants and chemotherapeutic agents. These agents are currently approved to treat renal cell carcinomas, soft tissue sarcomas, and other rare tumors. As tumor treatment paradigms are moving away from organ-based drug selection and moving towards tumor characteristics for individualized treatment it is important to identify as many properties as possible that impact the efficacy of the rapalogues. A review of the current literature was conducted to identify enzymes involved in the metabolism of Sirolimus, Everolimus, Ridaforolimus, and Temsirolimus along with characteristics of tumors that predict the efficacy of these agents. This review also sought to establish whether the genetic characteristics of the patient might influence the activity of the rapalogues or lead to side effects from these agents. Current evidence suggests that tumors with mutations in the mTOR signal transduction pathway are sensitive to rapalogue treatment; the rapalogues are metabolized by cytochromes such as CYP3A4, CYP3A5, and CYP2C8 and transported by ABC transporters that are known to vary in activity in individuals; and that tumors can express these transporters and detoxifying enzymes. This results in three levels of genetic analysis that could impact the effectiveness of the mTOR inhibitors.
Collapse
Affiliation(s)
- Andres Delgado
- Aultman Hospital/NEOMED Program 1, Canton, OH 44710, USA
| | - Steven Enkemann
- Edward Via College of Osteopathic Medicine, 350 Howard St., Spartanburg, SC 29303, USA
| |
Collapse
|
11
|
Stępnicki P, Targowska-Duda KM, Martínez AL, Zięba A, Wronikowska-Denysiuk O, Wróbel MZ, Bartyzel A, Trzpil A, Wróbel TM, Chodkowski A, Mirecka K, Karcz T, Szczepańska K, Loza MI, Budzyńska B, Turło J, Handzlik J, Fornal E, Poleszak E, Castro M, Kaczor AA. Discovery of novel arylpiperazine-based DA/5-HT modulators as potential antipsychotic agents – Design, synthesis, structural studies and pharmacological profiling. Eur J Med Chem 2023; 252:115285. [PMID: 37027998 DOI: 10.1016/j.ejmech.2023.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Schizophrenia is a mental disorder with a complex pathomechanism involving many neurotransmitter systems. Among the currently used antipsychotics, classical drugs acting as dopamine D2 receptor antagonists, and drugs of a newer generation, the so-called atypical antipsychotics, can be distinguished. The latter are characterized by a multi-target profile of action, affecting, apart from the D2 receptor, also serotonin receptors, in particular 5-HT2A and 5-HT1A. Such profile of action is considered superior in terms of both efficacy in treating symptoms and safety. In the search for new potential antipsychotics of such atypical receptor profile, an attempt was made to optimize the arylpiperazine based virtual hit, D2AAK3, which in previous studies displayed an affinity for D2, 5-HT1A and 5-HT2A receptors, and showed antipsychotic activity in vivo. In this work, we present the design of D2AAK3 derivatives (1-17), their synthesis, and structural and pharmacological evaluation. The obtained compounds show affinities for the receptors of interest and their efficacy as antagonists/agonists towards them was confirmed in functional assays. For the selected compound 11, detailed structural studies were carried out using molecular modeling and X-ray methods. Additionally, ADMET parameters and in vivo antipsychotic activity, as well as influence on memory and anxiety processes were evaluated in mice, which indicated good therapeutic potential and safety profile of the studied compound.
Collapse
|
12
|
Sun LN, Shen Y, Yang YQ, Chen XL, Huang FR, Wang DJ, Zhang Y, Wang DW, Wang YQ. Simultaneous Determination of Cortisol and 6β-Hydroxycortisol in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr Sci 2023; 61:130-139. [PMID: 35589097 DOI: 10.1093/chromsci/bmac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/30/2022] [Accepted: 04/22/2021] [Indexed: 11/14/2022]
Abstract
The feasibility of taking the ratio of 6β-hydroxycortisol (6β-OHCOR) to cortisol (COR) in plasma as a biomarker to reflect CYP3A4 activity needs to be verified, but the low concentration of 6β-OHCOR which is an endogenous substance in plasma presents a challenge for determination. In this study, a Liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was established to simultaneously quantify the COR and 6β-OHCOR in plasma with COR-d4 and 6β-OHCOR-d4 as internal standards (ISs). Plasma samples were treated by protein precipitation using acetonitrile. Separation with a gradient elution within 5 min was achieved on C18+ column utilizing 5 mM ammonium formate and methanol. An API 4,000 MS in multiple reaction monitoring mode with transitions of 407.1 → 361.1 and 423.1 → 347.1 was utilized. Albumin solution was used as a surrogate matrix, with good linearities over the concentration of 1.20-300 ng/mL for COR and 0.0400-10.0 ng/mL for 6β-OHCOR. The precisions for intrarun and interrun were < 6.8%, and the accuracy was fell in the interval of -5.2 to 3.5%. Matrix effect was not found. Recovery was close to 100.0%. Stability was confirmed under the storage and processing conditions. The validated method was applied to evaluate the inhibitory effect of voriconazole to CYP3A by the ratio of 6β-OHCOR to COR.
Collapse
Affiliation(s)
- Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Ye Shen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu-Qing Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang-Long Chen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng-Ru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dun-Jian Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ye Zhang
- Department of Pharmacy, Nanjing Jinling Hospital, Nanjing 211166, China
| | - Da-Wei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
14
|
Assessment of potential drug–drug interactions among outpatients in a tertiary care hospital: focusing on the role of P-glycoprotein and CYP3a4 (retrospective observational study). Heliyon 2022; 8:e11278. [PMID: 36387483 PMCID: PMC9641194 DOI: 10.1016/j.heliyon.2022.e11278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/26/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Selecting a medicine has a significant impact on the quality of therapy including efficacy and safety. P-glycoprotein and CYP3A4 share several common substrates known as bi-substrates. Both play major role in the pharmacokinetics and pharmacodynamics when over or under expressed. Objective The study aimed to assess the Drug–Drug Interaction (DDI) related to P-glycoprotein (P-gp) and Cytochrome P450-3A4 (CYP3A4), to predict their clinical outcomes and also to discover prospective predictors of pDDIs. Methods The subjects in this retrospective study ranged in age from 18 to 95 years with polypharmacy prescriptions. Information was gathered through patient medical records. Based on Micromedex and previous literature studies, medications prescribed to the patients were observed for pDDIs according to risk rating scale for drug interactions. Results A total of 504 patients (160 males and 344 females) were included in the study. The mean of pDDI seen in the patients was 1.66 ± 1.48 and total 825 pDDIs were discovered. The factors significantly associated with having ≥1 pDDIs included: taking ≥5 medicines (OR 1.747), increased age (OR 1.026) increased comorbidities (OR 1.73). Conclusion In prescriptions, a considerable number of probable DDI were discovered. Therefore, careful selection of drugs and identification of mechanisms for DDI is needed to lower the frequency of pDDI.
Collapse
|
15
|
Reliably assessing the electronic structure of cytochrome P450 on today's classical computers and tomorrow's quantum computers. Proc Natl Acad Sci U S A 2022; 119:e2203533119. [PMID: 36095200 PMCID: PMC9499570 DOI: 10.1073/pnas.2203533119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chemical simulation is one of the most promising applications for future quantum computers. It is thought that quantum computers may enable accurate simulation for complex molecules that are otherwise impossible to simulate classically; that is, it displays quantum advantage. To better understand quantum advantage in chemical simulation, we explore what quantum and classical resources are required to simulate a series of pharmaceutically relevant molecules. Using classical methods, we show that reliable classical simulation of these molecules requires significant resources and therefore is a promising candidate for quantum simulation. We estimate the quantum resources, both in overall simulation time and the size. The insights from this study pave the way for future quantum simulation of complex molecules. An accurate assessment of how quantum computers can be used for chemical simulation, especially their potential computational advantages, provides important context on how to deploy these future devices. To perform this assessment reliably, quantum resource estimates must be coupled with classical computations attempting to answer relevant chemical questions and to define the classical algorithms simulation frontier. Herein, we explore the quantum computation and classical computation resources required to assess the electronic structure of cytochrome P450 enzymes (CYPs) and thus define a classical–quantum advantage boundary. This is accomplished by analyzing the convergence of density matrix renormalization group plus n-electron valence state perturbation theory (DMRG+NEVPT2) and coupled-cluster singles doubles with noniterative triples [CCSD(T)] calculations for spin gaps in models of the CYP catalytic cycle that indicate multireference character. The quantum resources required to perform phase estimation using qubitized quantum walks are calculated for the same systems. Compilation into the surface code provides runtime estimates to compare directly to DMRG runtimes and to evaluate potential quantum advantage. Both classical and quantum resource estimates suggest that simulation of CYP models at scales large enough to balance dynamic and multiconfigurational electron correlation has the potential to be a quantum advantage problem and emphasizes the important interplay between classical computations and quantum algorithms development for chemical simulation.
Collapse
|
16
|
Wu Q, Hu Y, Wang C, Wei W, Gui L, Zeng WS, Liu C, Jia W, Miao J, Lan K. Reevaluate In Vitro CYP3A Index Reactions of Benzodiazepines and Steroids between Humans and Dogs. Drug Metab Dispos 2022; 50:741-749. [DOI: 10.1124/dmd.122.000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
|
17
|
McBride GM, Meakin AS, Soo JY, Darby JRT, Varcoe TJ, Bradshaw EL, Lock MC, Holman SL, Saini BS, Macgowan CK, Seed M, Berry MJ, Wiese MD, Morrison JL. Intrauterine growth restriction alters the activity of drug metabolising enzymes in the maternal-placental-fetal unit. Life Sci 2021; 285:120016. [PMID: 34614415 DOI: 10.1016/j.lfs.2021.120016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Ten percent of pregnancies are affected by intrauterine growth restriction (IUGR), and evidence suggests that affected neonates have reduced activity of hepatic cytochrome P450 (CYP) drug metabolising enzymes. Given that almost all pregnant individuals take medications and additional medications are often required during an IUGR pregnancy, we aimed to determine the impact of IUGR on hepatic CYP activity in sheep fetuses and pregnant ewes. METHODS Specific probes were used to determine the impact of IUGR on the activity of several CYP isoenzymes (CYP1A2, CYP2C19, CYP2D6 and CYP3A) in sheep fetuses and pregnant ewes. Probes were administered intravenously to the ewe at 132 days (d) gestation (term 150 d), followed by blood sampling from the maternal and fetal circulation over 24 h. Maternal and fetal liver tissue was collected at 139-140 d gestation, from which microsomes were isolated and incubated with probes. Metabolite and maternal plasma cortisol concentrations were measured using Liquid Chromatography - tandem mass spectrometry (LC-MS/MS). RESULTS Maternal plasma cortisol concentration and maternal hepatic CYP1A2 and CYP3A activity was significantly higher in IUGR pregnancies. Maternal hepatic CYP activity was higher than fetal hepatic CYP activity for all CYPs tested, and there was minimal CYP1A2 or CYP3A activity in the late gestation fetus when assessed using in vitro methods. CONCLUSIONS The physiological changes to the maternal-placental-fetal unit in an IUGR pregnancy have significant effects on maternal drug metabolism, suggesting changes in medications and/or doses may be required to optimise maternal and fetal health.
Collapse
Affiliation(s)
- Grace M McBride
- Early Origins of Adult Health Research Group, Australia; Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Ashley S Meakin
- Early Origins of Adult Health Research Group, Australia; Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Australia; Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, Australia; Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Australia; Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | | | - Brahmdeep S Saini
- The Hospital for Sick Children and University of Toronto, Toronto M5G 1X8, Canada
| | | | - Mike Seed
- The Hospital for Sick Children and University of Toronto, Toronto M5G 1X8, Canada
| | - Mary J Berry
- University of Otago, Wellington, NZ 6242, New Zealand
| | - Michael D Wiese
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
18
|
Smutny T, Bernhauerova V, Smutna L, Tebbens JD, Pavek P. Expression dynamics of pregnane X receptor-controlled genes in 3D primary human hepatocyte spheroids. Arch Toxicol 2021; 96:195-210. [PMID: 34689256 DOI: 10.1007/s00204-021-03177-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
The pregnane X receptor (PXR) is a ligand-activated nuclear receptor controlling hepatocyte expression of numerous genes. Although expression changes in xenobiotic-metabolizing, lipogenic, gluconeogenic and bile acid synthetic genes have been described after PXR activation, the temporal dynamics of their expression is largely unknown. Recently, 3D spheroids of primary human hepatocytes (PHHs) have been characterized as the most phenotypically relevant hepatocyte model. We used 3D PHHs to assess time-dependent expression profiles of 12 prototypic PXR-controlled genes in the time course of 168 h of rifampicin treatment (1 or 10 µM). We observed a similar bell-shaped time-induction pattern for xenobiotic-handling genes (CYP3A4, CYP2C9, CYP2B6, and MDR1). However, we observed either biphasic profiles for genes involved in endogenous metabolism (FASN, GLUT2, G6PC, PCK1, and CYP7A1), a decrease for SHP or oscillation for PDK4 and PXR. The rifampicin concentration determined the expression profiles for some genes. Moreover, we calculated half-lives of CYP3A4 and CYP2C9 mRNA under induced or basal conditions and we used a mathematical model to describe PXR-mediated regulation of CYP3A4 expression employing 3D PHHs. The study shows the importance of long-term time-expression profiling of PXR target genes in phenotypically stable 3D PHHs and provides insight into PXR function in liver beyond our knowledge from conventional 2D in vitro models.
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic.
| | - Veronika Bernhauerova
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Lucie Smutna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| |
Collapse
|
19
|
Villanueva-Bueno C, Escudero-Vilaplana V, Collado-Borrell R, Giménez-Manzorro Á, Ribed A, Marzal-Alfaro B, Revuelta-Herrero JL, Gonzalez-Haba E, Herranz A, Sanjurjo M. Medication guide for the perioperative management of oral antineoplastic agents in cancer patients. Expert Opin Drug Saf 2021; 21:107-119. [PMID: 34357828 DOI: 10.1080/14740338.2021.1965990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oral antineoplastic agents (OAAs) are high-risk drugs that may increase the risk of bleeding, difficulty in wound healing, or produce alterations in coagulation and/or platelet aggregation. These aspects had to be highly considered throughout the entire perioperative process. Our aim was to create a comprehensive management medication guide based on reconciliation and dose adjustment recommendations for OAAs in patients undergoing a surgical intervention. RESEARCH DESIGN AND METHODS We analyzed all OAAs approved by the EMA in November 2020. We assessed data related to dose adjustment, drug reconciliation, coagulation disturbances, or anticoagulant interactions from the FDA and EMA summary of product characteristics. RESULTS We analyzed 67 OAAs. We identified that 51 (76.2%) OAAs can produce alteration in the platelet count, 12 (17.9%) affect the wound healing and recovery process, and 32 (47.8%) require control and monitoring in case of combination with anticoagulants. Only 13 (19.4%) OAAs, most of them antiangiogenics, have specific recommendations for temporary suspension before surgery. CONCLUSIONS Most OAAs require perioperative monitoring. This review can serve as an easy (simple, effective) tool to help healthcare professionals involved in patient care to manage OAAs during the perioperative process.
Collapse
Affiliation(s)
- Cristina Villanueva-Bueno
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Vicente Escudero-Vilaplana
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Roberto Collado-Borrell
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Álvaro Giménez-Manzorro
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Almudena Ribed
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Belén Marzal-Alfaro
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - José Luis Revuelta-Herrero
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Eva Gonzalez-Haba
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ana Herranz
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Maria Sanjurjo
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
20
|
Liang J, Zbieg JR, Blake RA, Chang JH, Daly S, DiPasquale AG, Friedman LS, Gelzleichter T, Gill M, Giltnane JM, Goodacre S, Guan J, Hartman SJ, Ingalla ER, Kategaya L, Kiefer JR, Kleinheinz T, Labadie SS, Lai T, Li J, Liao J, Liu Z, Mody V, McLean N, Metcalfe C, Nannini MA, Oeh J, O'Rourke MG, Ortwine DF, Ran Y, Ray NC, Roussel F, Sambrone A, Sampath D, Schutt LK, Vinogradova M, Wai J, Wang T, Wertz IE, White JR, Yeap SK, Young A, Zhang B, Zheng X, Zhou W, Zhong Y, Wang X. GDC-9545 (Giredestrant): A Potent and Orally Bioavailable Selective Estrogen Receptor Antagonist and Degrader with an Exceptional Preclinical Profile for ER+ Breast Cancer. J Med Chem 2021; 64:11841-11856. [PMID: 34251202 DOI: 10.1021/acs.jmedchem.1c00847] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.
Collapse
Affiliation(s)
- Jun Liang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephen Daly
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Antonio G DiPasquale
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lori S Friedman
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas Gelzleichter
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew Gill
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Jennifer M Giltnane
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Simon Goodacre
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Jane Guan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J Hartman
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ellen Rei Ingalla
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lorn Kategaya
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James R Kiefer
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sharada S Labadie
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tommy Lai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Jun Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jiangpeng Liao
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Zhiguo Liu
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Vidhi Mody
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Neville McLean
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Ciara Metcalfe
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michelle A Nannini
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Oeh
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Martin G O'Rourke
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Daniel F Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yingqing Ran
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas C Ray
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Fabien Roussel
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Amy Sambrone
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Deepak Sampath
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leah K Schutt
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Maia Vinogradova
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Tao Wang
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Ingrid E Wertz
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jonathan R White
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Siew Kuen Yeap
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Amy Young
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Birong Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaoping Zheng
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Wei Zhou
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yu Zhong
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
21
|
Abdelhameed A, Feng M, Joice AC, Zywot EM, Jin Y, La Rosa C, Liao X, Meeds HL, Kim Y, Li J, McElroy CA, Wang MZ, Werbovetz KA. Synthesis and Antileishmanial Evaluation of Arylimidamide-Azole Hybrids Containing a Phenoxyalkyl Linker. ACS Infect Dis 2021; 7:1901-1922. [PMID: 33538576 DOI: 10.1021/acsinfecdis.0c00855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the limitations of existing medications, there is a critical need for new drugs to treat visceral leishmaniasis. Since arylimidamides and antifungal azoles both show oral activity in murine visceral leishmaniasis models, a molecular hybridization approach was employed where arylimidamide and azole groups were separated by phenoxyalkyl linkers in an attempt to capitalize on the favorable antileishmanial properties of both series. Among the target compounds synthesized, a greater antileishmanial potency against intracellular Leishmania donovani was observed as the linker length increased from two to eight carbons and when an imidazole ring was employed as the terminal group compared to a 1,2,4-triazole group. Compound 24c (N-(4-((8-(1H-imidazol-1-yl)octyl)oxy)-2-isopropoxyphenyl) picolinimidamide) displayed activity against L. donovani intracellular amastigotes with an IC50 value of 0.53 μM. When tested in a murine visceral leishmaniasis model, compound 24c at a dose of 75 mg/kg/day p.o. for five consecutive days resulted in a modest 33% decrease in liver parasitemia compared to the control group, indicating that further optimization of these molecules is needed. While potent hybrid compounds bearing an imidazole terminal group were also strong inhibitors of recombinant CYP51 from L. donovani, as assessed by a fluorescence-based assay, additional targets are likely to play an important role in the antileishmanial action of these compounds.
Collapse
Affiliation(s)
- Ahmed Abdelhameed
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| | - April C. Joice
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emilia M. Zywot
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| | - Chris La Rosa
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoping Liao
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Heidi L. Meeds
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yena Kim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig A. McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas 66047, United States
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Chen J, Liu J, Huang Y, Li R, Ma C, Zhang B, Wu F, Yu W, Zuo X, Liang Y, Wang Q. Insights into oral bioavailability enhancement of therapeutic herbal constituents by cytochrome P450 3A inhibition. Drug Metab Rev 2021; 53:491-507. [PMID: 33905669 DOI: 10.1080/03602532.2021.1917598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herbal plants typically have complex compositions and diverse mechanisms. Among them, bioactive constituents with relatively high exposure in vivo are likely to exhibit therapeutic efficacy. On the other hand, their bioavailability may be influenced by the synergistic effects of different bioactive components. Cytochrome P450 3A (CYP3A) is one of the most abundant CYP enzymes, responsible for the metabolism of 50% of approved drugs. In recent years, many therapeutic herbal constituents have been identified as CYP3A substrates. It is more evident that CYP3A inhibition derived from the herbal formula plays a critical role in improving the oral bioavailability of therapeutic constituents. CYP3A inhibition may be the mechanism of the synergism of herbal formula. In this review, we explored the multiplicity of CYP3A, summarized herbal monomers with CYP3A inhibitory effects, and evaluated herb-mediated CYP3A inhibition, thereby providing new insights into the mechanisms of CYP3A inhibition-mediated oral herb bioavailability.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyue Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fanchang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqian Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Zuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Liu Y, Mapa MST, Sprando RL. Anthraquinones inhibit cytochromes P450 enzyme activity in silico and in vitro. J Appl Toxicol 2021; 41:1438-1445. [PMID: 33438235 DOI: 10.1002/jat.4134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023]
Abstract
Anthraquinones exhibit various pharmacological activities (e.g., antioxidant and laxative) and are commonly found in consumer products including foods, dietary supplements, drugs, and traditional medicines. Despite their widespread use, there are limited data available on their toxicokinetic properties. Cytochrome P450 enzymes (CYPs) in the liver play major roles in metabolizing exogenous chemicals (e.g., pharmaceuticals, food ingredients, and environmental pollutants) and endogenous biomolecules (e.g., steroid hormones and cholesterol). Inhibition of CYP activities may lead to serious interactions among these compounds. Here, in silico (quantitative structure-activity relationship modeling) and in vitro (human recombinant enzymes and liver microsomes) methods were used to identify inhibitors of five major CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) among 22 anthraquinones. First, in silico prediction and in vitro human recombinant enzyme assays were conducted for all compounds, and results showed that most of the anthraquinones were potent CYP1A2 inhibitors. Second, five selected anthraquinones (emodin, aloe-emodin, rhein, purpurin, and rubiadin) were further evaluated in human liver microsomes. Finally, plasma concentrations of the five anthraquinones in animal and humans were identified in the literature and compared to their in vitro inhibition potency (IC50 values) towards CYP activities. Emodin, rhein, and aloe-emodin inhibited activities of multiple CYPs in human liver microsomes and potential in vivo inhibition may occur due to their high plasma concentrations. These in silico and in vitro results enabled rapid identification of potential CYP inhibitors and prioritized future in-depth studies.
Collapse
Affiliation(s)
- Yitong Liu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Mapa S T Mapa
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
24
|
Liu Y, Liu C, Liu Y, Ge Q, Sun C. Cytochrome P450 Mediated Bioactivation of Rutaevin, a Bioactive and Potentially Hepatotoxic Component of Evodia Rutaecarpa. Chem Res Toxicol 2020; 33:3054-3064. [PMID: 33305580 DOI: 10.1021/acs.chemrestox.0c00475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yutao Liu
- Department of Drug Clinical Trial Institution, Yantaishan Hospital, No. 91 Jiefang Road, Yantai 26400, Shandong Province, China
| | - Chang Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong Province, China
| | - Yamei Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong Province, China
| | - Quanli Ge
- Department of Pharmacy, Yantaishan Hospital, No. 91 Jiefang Road, Yantai 26400, Shandong Province, China
| | - Chen Sun
- Department of Internal Medicine, Yantai Municipal Government Hospital, No. 16 Yuhuangding West Road, Yantai 264000, Shandong Province, China
| |
Collapse
|
25
|
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020; 16:769-782. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Serge Moudio
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium.,Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Djamila Chaib Eddour
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| |
Collapse
|
26
|
Kim KH, Park JW, Yang YM, Song KD, Cho BW. Effect of methylsulfonylmethane on oxidative stress and CYP3A93 expression in fetal horse liver cells. Anim Biosci 2020; 34:312-319. [PMID: 32898949 PMCID: PMC7876717 DOI: 10.5713/ajas.20.0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Stress-induced cytotoxicity caused by xenobiotics and endogenous metabolites induces the production of reactive oxygen species and often results in damage to cellular components such as DNA, proteins, and lipids. The cytochrome P450 (CYP) family of enzymes are most abundant in hepatocytes, where they play key roles in regulating cellular stress responses. We aimed to determine the effects of the antioxidant compound, methylsulfonylmethane (MSM), on oxidative stress response, and study the cytochrome P450 family 3 subfamily A (CYP3A) gene expression in fetal horse hepatocytes. Methods The expression of hepatocyte markers and CYP3A family genes (CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, and CYP3A97) were assessed in different organ tissues of the horse and fetal horse liver-derived cells (FHLCs) using quantitative reverse transcription polymerase chain reaction. To elucidate the antioxidant effects of MSM on FHLCs, cell viability, levels of oxidative markers, and gene expression of CYP3A were investigated in H2O2-induced oxidative stress in the presence and absence of MSM. Results FHLCs exhibited features of liver cells and simultaneously maintained the typical genetic characteristics of normal liver tissue; however, the expression profiles of some liver markers and CYP3A genes, except that of CYP3A93, were different. The expression of CYP3A93 specifically increased after the addition of H2O2 to the culture medium. MSM treatment reduced oxidative stress as well as the expression of CYP3A93 and heme oxygenase 1, an oxidative marker in FHLCs. Conclusion MSM could reduce oxidative stress and hepatotoxicity in FHLCs by altering CYP3A93 expression and related signaling pathways.
Collapse
Affiliation(s)
- Kyoung Hwan Kim
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea.,Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea
| | - Ki-Duk Song
- Department of Agriculture Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea.,Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
27
|
Composite midazolam and 1'-OH midazolam population pharmacokinetic model for constitutive, inhibited and induced CYP3A activity. J Pharmacokinet Pharmacodyn 2020; 47:527-542. [PMID: 32772302 PMCID: PMC7652802 DOI: 10.1007/s10928-020-09704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/12/2020] [Indexed: 11/17/2022]
Abstract
CYP3A plays an important role in drug metabolism and, thus, can be a considerable liability for drug-drug interactions. Population pharmacokinetics may be an efficient tool for detecting such drug-drug interactions. Multiple models have been developed for midazolam, the typical probe substrate for CYP3A activity, but no population pharmacokinetic models have been developed for use with inhibition or induction. The objective of the current analysis was to develop a composite parent-metabolite model for midazolam which could adequately describe CYP3A drug-drug interactions. As an exploratory objective, parameters were assessed for potential cut-points which may allow for determination of drug-drug interactions when a baseline profile is not available. The final interaction model adequately described midazolam and 1′-OH midazolam concentrations for constitutive, inhibited, and induced CYP3A activity. The model showed good internal and external validity, both with full profiles and limited sampling (2, 2.5, 3, and 4 h), and the model predicted parameters were congruent with values found in clinical studies. Assessment of potential cut-points for model predicted parameters to assess drug-drug interaction liability with a single profile suggested that midazolam clearance may reasonably be used to detect inhibition (4.82–16.4 L/h), induction (41.8–88.9 L/h), and no modulation (16.4–41.8 L/h), with sensitivities for potent inhibition and induction of 87.9% and 83.3%, respectively, and a specificity of 98.2% for no modulation. Thus, the current model and cut-points could provide efficient and accurate tools for drug-drug liability detection, both during drug development and in the clinic, following prospective validation in healthy volunteers and patient populations.
Collapse
|
28
|
Chanteux H, Rosa M, Delatour C, Nicolaï J, Gillent E, Dell'Aiera S, Ungell AL. Application of Azamulin to Determine the Contribution of CYP3A4/5 to Drug Metabolic Clearance Using Human Hepatocytes. Drug Metab Dispos 2020; 48:778-787. [PMID: 32532738 DOI: 10.1124/dmd.120.000017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022] Open
Abstract
Early determination of CYP3A4/5 contribution to the clearance of new chemical entities is critical to inform on the risk of drug-drug interactions with CYP3A inhibitors and inducers. Several in vitro approaches (recombinant P450 enzymes, correlation analysis, chemical and antibody inhibition in human liver microsomes) are available, but they are usually labor-intensive and/or suffer from specific limitations. In the present study, we have validated the use of azamulin as a specific CYP3A inhibitor in human hepatocytes. Azamulin (3 µM) was found to significantly inhibit CYP3A4/5 (>90%), whereas other P450 enzymes were not affected (less than 20% inhibition). Because human hepatocytes were used as a test system, the effect of azamulin on other key drug-metabolizing enzymes (aldehyde oxidase, carboxylesterase, UGT, flavin monooxygenase, and sulfotransferase) was also investigated. Apart from some UGTs showing minor inhibition (∼20%-30%), none of these non-P450 enzymes were inhibited by azamulin. Use of CYP3A5-genotyped human hepatocyte batches in combination with CYP3cide demonstrated that azamulin (at 3 µM) inhibits both CYP3A4 and CYP3A5 enzymes. Finally, 11 compounds with known in vivo CYP3A4/5 contribution have been evaluated in this human hepatocyte assay. Results showed that the effect of azamulin on the in vitro intrinsic clearance of these known CYP3A4/5 substrates was predictive of the in vivo CYP3A4/5 contribution. Overall, the study showed that human hepatocytes treated with azamulin provide a fast and accurate estimation of CYP3A4/5 contribution in metabolic clearance of new chemical entities. SIGNIFICANCE STATEMENT: Accurate estimation of CYP3A4/5 contribution in drug clearance is essential to anticipate risk of drug-drug interactions and select the appropriate candidate for clinical development. The present study validated the use of azamulin as selective CYP3A4/5 inhibitor in suspended human hepatocytes and demonstrated that this novel approach provides a direct and accurate determination of the contribution of CYP3A4/5 (fraction metabolized by CYP3A4/5) in the metabolic clearance of new chemical entities.
Collapse
Affiliation(s)
| | - Maria Rosa
- UCB Biopharma SRL, Braine-l'Alleud, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
Wiebe ST, Huennemeyer A, Kadus W, Goettel M, Jambrecina A, Schultz A, Vinisko R, Schlieker L, Herich L, Mikus G. Midazolam microdosing applied in early clinical development for drug-drug interaction assessment. Br J Clin Pharmacol 2020; 87:178-188. [PMID: 32436239 DOI: 10.1111/bcp.14389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023] Open
Abstract
AIMS We aimed to incorporate a pharmacologically inactive midazolam microdose into early clinical studies for the assessment of CYP3A drug-drug interaction liability. METHODS Three early clinical studies were conducted with substances (Compounds A, B and C) which gave positive CYP3A perpetrator signals in vitro. A 75 μg dose of midazolam was administered alone (baseline CYP3A activity) followed by administration with the highest dose groups tested for each compound on Day 1/3 and Day 14 or Day 17. Midazolam exposure (AUC0-∞ , Cmax ) during administration with the test substances was compared to baseline data via an analysis of variance on log-transformed data. Partial AUC2-4 ratios were also compared to AUC0-∞ ratios using linear regression on log-transformed data. RESULTS Test compound Cmax values exceeded relevant thresholds for drug-drug interaction liability. Midazolam concentrations were quantifiable over the full profiles for all subjects in all studies. Point estimates of the midazolam AUC0-∞ gMean ratios ranged from 108.3 to 127.1% for Compound A, from 93.3 to 114.5% for Compound B, and from 92.0 to 96.7% for the two highest dose groups of Compound C. Cmax gMean ratios were in the same range. Thus, no relevant drug-drug interactions were evident, based on the results of midazolam microdosing. AUC2-4 ratios from these studies were comparable to the AUC0-∞ ratios. CONCLUSION Midazolam microdosing incorporated into early clinical studies is a feasible tool for reducing dedicated drug-drug interaction studies, meaning reduced subject burden. Limited sampling could further reduce subject burden, costs and needed resources.
Collapse
Affiliation(s)
- Sabrina T Wiebe
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Werner Kadus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Markus Goettel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Alen Jambrecina
- CTC North GmbH & Co KG, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Armin Schultz
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Laura Schlieker
- Staburo GmbH, München, Germany on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG
| | - Lena Herich
- Staburo GmbH, München, Germany on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Wiernikowski JT, Bernhardt MB. Review of nutritional status, body composition, and effects of antineoplastic drug disposition. Pediatr Blood Cancer 2020; 67 Suppl 3:e28207. [PMID: 32083372 DOI: 10.1002/pbc.28207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
The overall survival for children with cancer in high income countries is excellent. However, there are many disparities that may negatively affect survival, which are particularly problematic in low income countries, such as nutritional status at diagnosis and throughout therapy. Nutritional status as well as concomitant foods, supplements, and medications may play a role in overall exposure and response to chemotherapy. Emerging science around the microbiome may also play a role and should be further explored as a contributor to disease progression and therapeutic response. This article highlights some of these issues and proposes additional areas of research relevant to nutritional status and pharmacology that are needed in pediatric oncology.
Collapse
Affiliation(s)
- John T Wiernikowski
- Division of Paediatric Haematology/Oncology, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Brooke Bernhardt
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
31
|
Hendriks DFG, Vorrink SU, Smutny T, Sim SC, Nordling Å, Ullah S, Kumondai M, Jones BC, Johansson I, Andersson TB, Lauschke VM, Ingelman-Sundberg M. Clinically Relevant Cytochrome P450 3A4 Induction Mechanisms and Drug Screening in Three-Dimensional Spheroid Cultures of Primary Human Hepatocytes. Clin Pharmacol Ther 2020; 108:844-855. [PMID: 32320483 DOI: 10.1002/cpt.1860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 (CYP) 3A4 induction is an important cause of drug-drug interactions, making early identification of drug candidates with CYP3A4 induction liability in drug development a prerequisite. Here, we present three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs) as a novel CYP3A4 induction screening model. Screening of 25 drugs (12 known CYP3A4 inducers in vivo and 13 negative controls) at physiologically relevant concentrations revealed a 100% sensitivity and 100% specificity of the system. Three of the in vivo CYP3A4 inducers displayed much higher CYP3A4 induction capacity in 3D spheroid cultures as compared with in two-dimensional (2D) monolayer cultures. Among those, we identified AZD1208, a proviral integration site for Moloney murine leukemia virus (PIM) kinase inhibitor terminated in phase I of development due to unexpected CYP3A4 autoinduction, as a CYP3A4 inducer only active in 3D spheroids but not in 2D monolayer cultures. Gene knockdown experiments revealed that AZD1208 requires pregnane X receptor (PXR) to induce CYP3A4. Rifampicin requires solely PXR to induce CYP3A4 and CYP2B6, while phenobarbital-mediated induction of these CYPs did not show absolute dependency on either PXR or constitutive androstane receptor (CAR), suggesting its ability to switch nuclear receptor activation. Mechanistic studies into AZD1208 uncovered an involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in CYP3A4 induction that is sensitive to the culture format used, as revealed by its inhibition of ERK1/2 Tyrosine 204 phosphorylation and sensitivity to epidermal growth factor (EGF) pressure. In line, we also identified lapatinib, a dual epidermal growth factor receptor/human epidermal growth factor receptor 2 (EGFR/HER2) inhibitor, as another CYP3A4 inducer only active in 3D spheroid culture. Our findings offer insights into the pathways involved in CYP3A4 induction and suggest PHH spheroids for preclinical CYP3A4 induction screening.
Collapse
Affiliation(s)
- Delilah F G Hendriks
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden.,Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
| | - Sabine U Vorrink
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Smutny
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah C Sim
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Nordling
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Shahid Ullah
- Division of Clinical Pharmacology, Karolinska University Hospital Laboratory, Stockholm, Sweden
| | - Masaki Kumondai
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Inger Johansson
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Li X, Junge L, Taubert M, von Georg A, Dahlinger D, Starke C, Frechen S, Stelzer C, Kinzig M, Sörgel F, Jaehde U, Töx U, Goeser T, Fuhr U. A Novel Study Design Using Continuous Intravenous and Intraduodenal Infusions of Midazolam and Voriconazole for Mechanistic Quantitative Assessment of Hepatic and Intestinal CYP3A Inhibition. J Clin Pharmacol 2020; 60:1237-1253. [PMID: 32427354 DOI: 10.1002/jcph.1619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
The extent of a drug-drug interaction (DDI) mediated by cytochrome P450 (CYP) 3A inhibitors is highly variable during a dosing interval, as it depends on the temporal course of victim and perpetrator drug concentrations at intestinal and hepatic CYP3A expression sites. Capturing the time course of inhibition is therefore difficult using standard DDI studies assessing changes in area under the curve; thus, a novel design was developed. In a 4-period changeover pilot study, 6 healthy men received intraduodenal or intravenous infusions of the CYP3A substrate midazolam (MDZ) at a rate of 0.26 mg/h for 24 hours. This was combined with intraduodenal or intravenous infusion of the CYP3A inhibitor voriconazole (VRZ), administered at rates of 7.5 mg/h from 8 to 16 hours and of 15 mg/h from 16 to 24 hours, after starting midazolam administration. Plasma and urine concentrations of VRZ, MDZ, and its major metabolites were quantified by liquid chromatography-tandem mass spectrometry and analyzed by semiphysiological population pharmacokinetic nonlinear mixed-effects modeling. A model including mechanism-based inactivation of the metabolizing enzymes (maximum inactivation rate constant kinact , 2.83 h-1 ; dissociation rate constant K I , 9.33 μM) described the pharmacokinetics of VRZ well. By introducing competitive inhibition by VRZ on primary and secondary MDZ metabolism, concentration-time profiles, MDZ and its metabolites were captured appropriately. The model provides estimates of local concentrations of substrate and inhibitor at the major CYP3A expression sites and thus of the respective dynamic extent of inhibition. A combination of intravenous and intraduodenal infusions of inhibitors and substrates has the potential to provide a more accurate assessment of DDIs occurring in both gut wall and liver.
Collapse
Affiliation(s)
- Xia Li
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Lisa Junge
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Max Taubert
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Anabelle von Georg
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Dominik Dahlinger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Chris Starke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Sebastian Frechen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Christoph Stelzer
- IMBP-Institute for Biomedical and Pharmaceutical Research, Nurnberg-Heroldsberg, Germany
| | - Martina Kinzig
- IMBP-Institute for Biomedical and Pharmaceutical Research, Nurnberg-Heroldsberg, Germany
| | - Fritz Sörgel
- IMBP-Institute for Biomedical and Pharmaceutical Research, Nurnberg-Heroldsberg, Germany.,Institute of Pharmacology, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Jaehde
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Ulrich Töx
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| |
Collapse
|
33
|
Validation of Reference Genes for Gene Expression Studies by RT-qPCR in HepaRG Cells during Toxicity Testing and Disease Modelling. Cells 2020; 9:cells9030770. [PMID: 32245194 PMCID: PMC7140694 DOI: 10.3390/cells9030770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Gene expression analysis by quantitative real-time polymerase chain reaction (RT-qPCR) is routinely used in biomedical studies. The reproducibility and reliability of the data fundamentally depends on experimental design and data interpretation. Despite the wide application of this assay, there is significant variation in the validation process of gene expression data from research laboratories. Since the validity of results depends on appropriate normalisation, it is crucial to select appropriate reference gene(s), where transcription of the selected gene is unaffected by experimental setting. In this study we have applied geNorm technology to investigate the transcription of 12 ‘housekeeping’ genes for use in the normalisation of RT-qPCR data acquired using a widely accepted HepaRG hepatic cell line in studies examining models of pre-clinical drug testing. geNorm data identified a number of genes unaffected by specific drug treatments and showed that different genes remained invariant in response to different drug treatments, whereas the transcription of ‘classical’ reference genes such as GAPDH (glyceralde- hyde-3-phosphate dehydrogenase) was altered by drug treatment. Comparing data normalised using the reference genes identified by geNorm with normalisation using classical housekeeping genes demonstrated substantial differences in the final results. In light of cell therapy application, RT-qPCR analyses has to be carefully evaluated to accurately interpret data obtained from dynamic cellular models undergoing sequential stages of phenotypic change.
Collapse
|
34
|
Avila C, Breakspear I, Hawrelak J, Salmond S, Evans S. A systematic review and quality assessment of case reports of adverse events for borage (Borago officinalis), coltsfoot (Tussilago farfara) and comfrey (Symphytum officinale). Fitoterapia 2020; 142:104519. [PMID: 32105669 DOI: 10.1016/j.fitote.2020.104519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Symphytum officinale (comfrey), Tussilago farfara (coltsfoot) and Borago officinalis (borage) have long histories of therapeutic use, but their safety has been questioned due to the presence of unsaturated pyrrolizidine alkaloids (PAs). The evidence base underlying these concerns relies in part on case reports. This systematic review assesses these case reports for their reliability to inform this debate. METHOD Study selection was restricted to case reports describing possible pyrrolizidine alkaloid related harm and ingestion of comfrey, coltsfoot or borage. An extensive search of academic databases was conducted. Papers meeting the criteria were critically appraised. RESULTS The search resulted in 11 appropriate case reports, none of which involved borage. Nine reports were assessed for causality and indicated some degree of association between the material ingested and the adverse event. Lack of unequivocal identification of the species ingested compromised attribution and was a significant source of uncertainty. Three levels of identity confusions were found; misidentification or substitution at the level of the whole herb; omission of appropriate botanical identification and attribution of a specific PA to either comfrey or coltsfoot when it is a constituent found in other plants of established toxicity. CONCLUSION These cases are an unreliable body of evidence on which to draw conclusions about the safety of the oral consumption of Symphytum officinale and Tussilago farfara. Toxicological studies based on oral ingestion of phytochemically-complex preparations of these herbs may be the most accurate methodology for assessing clinical risk.
Collapse
Affiliation(s)
| | | | - Jason Hawrelak
- University of Tasmania, Australia; Australian Research Centre for Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | | | | |
Collapse
|
35
|
Wright WC, Chenge J, Wang J, Girvan HM, Yang L, Chai SC, Huber AD, Wu J, Oladimeji PO, Munro AW, Chen T. Clobetasol Propionate Is a Heme-Mediated Selective Inhibitor of Human Cytochrome P450 3A5. J Med Chem 2020; 63:1415-1433. [PMID: 31965799 PMCID: PMC7087482 DOI: 10.1021/acs.jmedchem.9b02067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5 metabolize most drugs and have high similarities in their structure and substrate preference. Whereas CYP3A4 is predominantly expressed in the liver, CYP3A5 is upregulated in cancer, contributing to drug resistance. Selective inhibitors of CYP3A5 are, therefore, critical to validating it as a therapeutic target. Here we report clobetasol propionate (clobetasol) as a potent and selective CYP3A5 inhibitor identified by high-throughput screening using enzymatic and cell-based assays. Molecular dynamics simulations suggest a close proximity of clobetasol to the heme in CYP3A5 but not in CYP3A4. UV-visible spectroscopy and electron paramagnetic resonance analyses confirmed the formation of an inhibitory type I heme-clobetasol complex in CYP3A5 but not in CYP3A4, thus explaining the CYP3A5 selectivity of clobetasol. Our results provide a structural basis for selective CYP3A5 inhibition, along with mechanistic insights, and highlight clobetasol as an important chemical tool for target validation.
Collapse
Affiliation(s)
- William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
- Integrated Biomedical Sciences Program, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jude Chenge
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Hazel M. Girvan
- Manchester Institute of Biotechnology, School of Natural
Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN,
UK
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Sergio C. Chai
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Peter O. Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of Natural
Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN,
UK
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
36
|
Berlińska A, Świątkowska-Stodulska R, Sworczak K. Factors Affecting Dexamethasone Suppression Test Results. Exp Clin Endocrinol Diabetes 2019; 128:667-671. [PMID: 31652475 DOI: 10.1055/a-1017-3217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Dexamethasone suppression tests are basic tools in diagnostics of hypercortisolemia. Low-dose tests play major role in screening and initial assessment. High-dose tests are aimed at more elaborate diagnostics, however their clinical value is questionable. Dexamethasone is a highly potent, synthetic steroid. It is metabolized by cytochrome P450 3A4 (CYP3A4), and so are various other xenobiotics. Due to wide spectrum of substances processed by CYP3A4, interferences and interactions are not uncommon. Physicians should be familiar with drugs modifying dexamethasone metabolism, and therefore the results of dynamic tests. Other important concerns are: drugs enhancing cortisol-binding globulin production, organ dysfunction, pseudo-Cushing states, pregnancy and other physiological conditions leading to elevated blood cortisol, cyclic Cushing disease. To properly assess and assist patients, it is crucial for health professionals to understand and be able to overcome such clinical dilemmas.
Collapse
Affiliation(s)
- A Berlińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - R Świątkowska-Stodulska
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - K Sworczak
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
37
|
Taguchi R, Naito T, Kubono N, Ogawa N, Itoh H, Kawakami J. Relationships between endogenous CYP3A markers and plasma amlodipine exposure and metabolism in early postpartum and non-peripartum women with hypertension. Pregnancy Hypertens 2019; 17:209-215. [PMID: 31487643 DOI: 10.1016/j.preghy.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/02/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This study aimed to evaluate the relationship between endogenous CYP3A markers and plasma amlodipine (AML) exposure and metabolism parameters in early postpartum and non-peripartum women. METHODS Twenty-four AML-treated early postpartum women with hypertensive disorders of pregnancy and 30 non-peripartum women with essential hypertension were enrolled. Blood samples for determination of CYP3A markers including total cholesterol-adjusted 4β-hydroxycholesterol (4β-OHC/TC), 25-hydroxyvitamin D (25-OHD), and AML and its metabolites in plasma were collected at 24 h after the AML treatment. RESULTS The plasma 4β-OHC/TC in postpartum women was higher than that in non-peripartum women, while the plasma 25-OHD was lower. The postpartum women had a lower plasma AML concentration and its metabolic ratio was higher. The plasma 4β-OHC/TC decreased as the number of days post-delivery increased. The plasma AML concentration increased as the number of days post-delivery increased, while the metabolic ratio of AML declined slightly. Tendency toward negative correlations between the plasma 4β-OHC/TC but not 25-OHD, and AML concentration were observed in both postpartum and non-peripartum women. In both groups, the plasma 4β-OHC/TC was correlated with the metabolic ratio of AML. CONCLUSIONS The early postpartum women had higher plasma 4β-OHC and AML metabolism. The plasma 4β-OHC had positive relationships with amlodipine metabolism in both women groups. AML metabolism and plasma 4β-OHC may be useful as CYP3A markers in early postpartum and non-peripartum women.
Collapse
Affiliation(s)
- Reina Taguchi
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Naoko Kubono
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyoshi Ogawa
- Department of Rheumatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
38
|
Phenotyping of Human CYP450 Enzymes by Endobiotics: Current Knowledge and Methodological Approaches. Clin Pharmacokinet 2019; 58:1373-1391. [DOI: 10.1007/s40262-019-00783-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Association between CYP3A4 gene rs4646437 polymorphism and the risk of hypertension in Chinese population: a case-control study. Biosci Rep 2019; 39:BSR20190296. [PMID: 30910847 PMCID: PMC6470406 DOI: 10.1042/bsr20190296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Using a case–control design, we assessed the association between single nucleotide polymorphisms of CYP3A4 gene rs4646437 polymorphism and the risk of hypertension in Chinese population. We recruited 450 hypertension patients from The First Clinical College, Henan University of Chinese Medicine between June 2017 and May 2018. There was a significant difference in genotype distribution between case group and control group (χ2=18.169, P=0.000). The minor A allele was significantly higher in the case group than that in the control group (31.0 vs 24.8%, P=0.000, odds ratio [OR]=1.36, 95% confidence interval [95% CI]: 1.12–1.66). Significant differences were also observed in other gene models: the GA/AA genotype did not increase the risk of hypertension compared with GG genotype (OR=1.16, 95% CI: 0.90–1.49, P=0.259). Compared with GG/GA genotype, the AA genotype also increased the risk of hypertension (OR=2.34, 95% CI: 1.56–3.50, P=0.000). For additive model, the AA genotype was significantly associated with GG genotype (OR=2.25, 95% CI: 1.49–3.42, P=0.000). The same results were found for AA vs GA (OR=2.50, 95% CI: 1.60–3.89, P=0.000). For the allele genotype, the A allele frequency was significantly higher in the case group than that in the control group (31.0 vs 24.8%, P=0.002). The A allele of CYP3A4 rs4646437 was associated with an increased risk for hypertension (OR=1.36, 95% CI: 1.12–1.66, P=0.002). Our results revealed a possible genetic association between CYP3A4 gene rs4646437 and hypertension, and the AA genotype of rs4646437 increased the risk of hypertension in Chinese Han population, and this effect could be confirmed by multivariable analyses.
Collapse
|
40
|
Chen YJ, Zhang J, Zhu PP, Tan XW, Lin QH, Wang WX, Yin SS, Gao LZ, Su MM, Liu CX, Xu L, Jia W, Sevrioukova IF, Lan K. Stereoselective Oxidation Kinetics of Deoxycholate in Recombinant and Microsomal CYP3A Enzymes: Deoxycholate 19-Hydroxylation Is an In Vitro Marker of CYP3A7 Activity. Drug Metab Dispos 2019; 47:574-581. [PMID: 30918015 DOI: 10.1124/dmd.119.086637] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
The primary bile acids (BAs) synthesized from cholesterol in the liver are converted to secondary BAs by gut microbiota. It was recently disclosed that the major secondary BA, deoxycholate (DCA) species, is stereoselectively oxidized to tertiary BAs exclusively by CYP3A enzymes. This work subsequently investigated the in vitro oxidation kinetics of DCA at C-1β, C-3β, C-4β, C-5β, C-6α, C-6β, and C-19 in recombinant CYP3A enzymes and naive enzymes in human liver microsomes (HLMs). The stereoselective oxidation of DCA fit well with Hill kinetics at 1-300 μM in both recombinant CYP3A enzymes and pooled HLMs. With no contributions or trace contributions from CYP3A5, CYP3A7 favors oxidation at C-19, C-4β, C-6α, C-3β, and C-1β, whereas CYP3A4 favors the oxidation at C-5β and C-6β compared with each other. Correlation between DCA oxidation and testosterone 6β-hydroxylation in 14 adult single-donor HLMs provided proof-of-concept evidence that DCA 19-hydroxylation is an in vitro marker reaction for CYP3A7 activity, whereas oxidation at other sites represents mixed indicators for CYP3A4 and CYP3A7 activities. Deactivation caused by DCA-induced cytochrome P450-cytochrome P420 conversion, as shown by the spectral titrations of isolated CYP3A proteins, was observed when DCA levels were near or higher than the critical micelle concentration (about 1500 μM). Unlike CYP3A4, CYP3A7 showed abnormally elevated activities at 500 and 750 μM, which might be associated with an altered affinity for DCA multimers. The disclosed kinetic and functional roles of CYP3A isoforms in disposing of the gut bacteria-derived DCA may help in understanding the structural and functional mechanisms of CYP3A.
Collapse
Affiliation(s)
- Yu-Jie Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Ping-Ping Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Xian-Wen Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Qiu-Hong Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Wen-Xia Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Shan-Shan Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Ling-Zhi Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Ming-Ming Su
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Chang-Xiao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Liang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Wei Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Irina F Sevrioukova
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China (Y.-J.C., J.Z., P.-P.Z., X.-W.T., Q.-H.L., W.W., S.-S.Y., L.-Z.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); Department of Molecular Biology and Biochemistry, University of California, Irvine, California (I.F.S.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, People's Republic of China (S.-S.Y., K.L.)
| |
Collapse
|
41
|
Xue Y, Li J, Wu Z, Liu G, Tang Y, Li W. Computational insights into the different catalytic activities of CYP3A4 and CYP3A5 toward schisantherin E. Chem Biol Drug Des 2019; 93:854-864. [PMID: 30637977 DOI: 10.1111/cbdd.13475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
Abstract
The cytochromes CYP3A4 and CYP3A5 share 84% sequence identity, but they exhibit different catalytic activities toward some substrates. Schisantherin E (SE) was recently identified as a selective substrate of CYP3A5, which exhibited catalytic efficiency that was more than 23 times higher than CYP3A4. At present, however, the structural determinants responsible for the different catalytic activities of the two enzymes toward SE have not been fully understood. In this study, a combination of molecular docking, molecular dynamic simulations, and binding free energy calculation was performed on the CYP3A4/CYP3A5-SE systems to investigate the issue. The results demonstrate that Ser119 in CYP3A4 and Glu374 in CYP3A5 formed direct hydrogen bonding with SE, respectively. Additionally, one water molecule located between the B-C loop and the I helix mediated different hydrogen-bonding networks between CYP3A4/3A5 and SE. The residue differences (Phe/Leu108 and Leu/Phe210) triggered the distinct conformational changes of the Phe-cluster residues, especially Phe213 and Phe215, which formed stronger hydrophobic interactions with SE in CYP3A5. The calculated binding free energies were consistent with the experimental results.
Collapse
Affiliation(s)
- Yuhan Xue
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Junhao Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
42
|
Xiao K, Gao J, Weng SJ, Fang Y, Gao N, Wen Q, Jin H, Qiao HL. CYP3A4/5 Activity Probed with Testosterone and Midazolam: Correlation between Two Substrates at the Microsomal and Enzyme Levels. Mol Pharm 2018; 16:382-392. [PMID: 30517006 DOI: 10.1021/acs.molpharmaceut.8b01043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Testosterone (TST) and midazolam (MDZ) are widely used as probes to detect CYP3A4/5 activity, but the data acquired with these two substrates do not correlate well at the microsomal level (per milligram of microsomal protein), and the reason is unclear. In this study, CYP3A4/5 activity was probed with TST and MDZ at the microsomal and enzyme levels (per picomole of CYP3A4/5) in 72 human liver samples. Correlation coefficients were lower in Vmax and CLint at the microsomal level, as compared with those at the enzyme level ( Vmax 0.658 vs 0.883; CLint no correlation vs 0.796). Compared with TST, MDZ was found to correlate better with the content of CYP3A4/5 (no correlation vs 0.431) and CYP3A5 (no correlation vs 0.447), and huge variations in enzyme content existed among different genotypes, which explained the lower degree of correlation at the microsomal level. In addition, different genotypes had varying effects on activity at the enzyme level, whereas the difference between activity at the enzyme level probed with TST and that probed with MDZ was not obvious ( P > 0.05), indicating that the effect of gene polymorphisms on correlation between activity probed with these two substrates was limited at the enzyme level. In conclusion, our study demonstrates a high degree of correlation between CYP3A4/5 activity probed with TST and MDZ at the enzyme level but not at the microsomal level and allows us to correctly understand the influence of gene polymorphisms on the correlations.
Collapse
Affiliation(s)
- Kang Xiao
- Institute of Clinical Pharmacology , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| | - Jie Gao
- Institute of Clinical Pharmacology , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| | - Shi-Jia Weng
- Institute of Clinical Pharmacology , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| | - Yan Fang
- Institute of Clinical Pharmacology , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| | - Na Gao
- Institute of Clinical Pharmacology , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| | - Qiang Wen
- Institute of Clinical Pharmacology , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| | - Han Jin
- Institute of Clinical Pharmacology , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| | - Hai-Ling Qiao
- Institute of Clinical Pharmacology , Zhengzhou University , Zhengzhou , Henan 450052 , People's Republic of China
| |
Collapse
|
43
|
Mandal M, Mitra K, Grotz D, Lin X, Palamanda J, Kumari P, Buevich A, Caldwell JP, Chen X, Cox K, Favreau L, Hyde L, Kennedy ME, Kuvelkar R, Liu X, Mazzola RD, Parker E, Rindgen D, Sherer E, Wang H, Zhu Z, Stamford AW, Cumming JN. Overcoming Time-Dependent Inhibition (TDI) of Cytochrome P450 3A4 (CYP3A4) Resulting from Bioactivation of a Fluoropyrimidine Moiety. J Med Chem 2018; 61:10700-10708. [DOI: 10.1021/acs.jmedchem.8b01326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr Drug Metab 2018; 19:513-522. [PMID: 29380698 PMCID: PMC6182932 DOI: 10.2174/1389200219666180129151948] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023]
Abstract
Background: Tacrolimus (Tac, or FK506), a calcineurin inhibitor (CNI), is the first-line immu-nosuppressant which consists of the footstone as immunosuppressive regimens in kidney transplantation. However, the drug toxicity and the significant differences of pharmacokinetics (PK) and pharmacodynam-ics (PD) among individuals are hidden troubles for clinical application. Recently, emerging evidences of Tac pharmacogenetics (PG) regarding drug absorption, metabolism, disposition, excretion and response are discovered for better understanding of this drug. Method: We reviewed the published articles regarding the Tac PG and its effects on PK and PD in kidney transplantation. In addition, we summarized information on polygenic algorithms. Results: The polymorphism of genes encoding metabolic enzymes and transporters related to Tac were largely investigated, but the results were inconsistent. In addition to CYP3A4, CYP3A5 and P-gp (also known as ABCB1), single nucleotide polymorphisms (SNPs) might also affect the PK and PD parameters of Tac. Conclusion: The correlation between Tac PK, PD and PG is very complex. Although many factors need to be verified, it is envisaged that thorough understanding of PG may assist clinicians to predict the optimal starting dosage, help adjust the maintenance regimen, as well as identify high risk patients for adverse ef-fects or drug inefficacy
Collapse
Affiliation(s)
- Meng Yu
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mouze Liu
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Yingzi Ming
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
45
|
Okumura H, Nakanishi A, Hashita T, Iwao T, Matsunaga T. Effect of Celecoxib on Differentiation of Human Induced Pluripotent Stem Cells into Hepatocytes Involves STAT5 Activation. Drug Metab Dispos 2018; 46:1519-1527. [PMID: 30158250 DOI: 10.1124/dmd.118.082982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
The liver abundantly expresses various drug-metabolizing enzymes and, thus, plays a central role in drug metabolism. In this regard, cytochrome P450 (CYP) is responsible for drug metabolism in the liver. Therefore, since CYP3A4 accounts for approximately 30% of the CYPs, the prediction of hepatic CYP3A4-mediated pharmacokinetics is essential for drug development. Human induced pluripotent stem cell-derived hepatocytes (hiHep) have become a major model of drug metabolism in drug development studies. However, drug metabolizing activities, such as those involving CYP3A4, are lower in hiHep than in human primary hepatocytes (HPHs). Recently, it was revealed that celecoxib upregulates the expression of CYPs to normal levels through the activation of signal transducer and transcriptional activation factor 5 (STAT5). Therefore, we investigated whether celecoxib treatment could normalize the low drug metabolism activities in hiHep. The mRNA expression levels of hepatic markers [asialoglycoprotein receptor 1 (ASGR1) and tyrosine aminotransferase (TAT)] and metabolic enzymes (UDP-glucuronosyltransferase 1A1 and CYP3A4) in hiHep significantly increased after celecoxib treatment. These mRNA expression levels were 7-, 1/3-, 1/2-, and 1/10-fold of the HPHs cultured for 48 hours, respectively. Furthermore, CYP3A4 activity significantly increased. To investigate the mechanism of CYP3A4 mRNA upregulation, we analyzed the phosphorylation of STAT5 after celecoxib treatment and found it to be significantly increased. Moreover, the increase in CYP3A4 mRNA expression was attenuated by cotreatment with STAT5 inhibitor. These results suggest that celecoxib promotes hepatocyte differentiation of hiHep by activating STAT5 and is useful for the generation of functional hiHep.
Collapse
Affiliation(s)
- Hiroki Okumura
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Anna Nakanishi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
46
|
Kim KA, Park IB, Park JY. Effects of CYP2D6 and CYP3A5 genetic polymorphisms on steady-state pharmacokinetics and hemodynamic effects of tamsulosin in humans. Eur J Clin Pharmacol 2018; 74:1281-1289. [PMID: 29947950 DOI: 10.1007/s00228-018-2501-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Tamsulosin is one of the most potent drugs currently available to treat benign prostatic hyperplasia. Cytochrome P450 (CYP) 2D6 and CYP3A are the two major enzymes responsible for tamsulosin metabolism. The purpose of this study was to evaluate the effects of CYP2D6 and CYP3A5 genetic polymorphisms on the pharmacokinetics and hemodynamic effects of tamsulosin in humans. METHODS Twenty-nine male subjects were enrolled and their CYP2D6 (*2,*4,*5,*10,*14,*21,*41, and *xN) and CYP3A5 (*5) genotypes were screened. Tamsulosin was administered daily for 6 days to assess its steady-state pharmacokinetics and hemodynamic effects according to CYP2D6 and CYP3A5 genotypes. RESULTS CYP2D6 group 3 (with genotype *10/*10 or *5/*10) exhibited higher plasma levels than CYP2D6 group 1 (with genotype *1/*1,*1/*2,*1/*2xN, or *2/*10xN) or CYP2D6 group 2 (with genotype *1/*10,*1/*41, or *2/*5) (trough concentrations for groups 1, 2, and 3: 1.3, 1.8, and 3.8 ng/mL, respectively [P < 0.001]; peak concentrations for groups 1, 2, 3: 8.3, 10.0, and 13.8 ng/mL, respectively [P < 0.005]). Similarly, CYP2D6 genotypes influenced the hemodynamic effects of tamsulosin based on systolic and diastolic blood pressures. However, the CYP3A5*3 polymorphism did not affect tamsulosin plasma levels and its hemodynamic effects. CONCLUSION The CYP2D6 but not the CYP3A5 genetic polymorphisms affected the pharmacokinetics and the hemodynamic effects of tamsulosin.
Collapse
Affiliation(s)
- Kyoung-Ah Kim
- Department of Clinical Pharmacology & Toxicology, Anam Hospital, Korea University College of Medicine, 126-1, 5-Ga, Anam-dong, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - In-Bae Park
- Department of Clinical Pharmacology & Toxicology, Anam Hospital, Korea University College of Medicine, 126-1, 5-Ga, Anam-dong, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology & Toxicology, Anam Hospital, Korea University College of Medicine, 126-1, 5-Ga, Anam-dong, Seongbuk-Gu, Seoul, 136-705, South Korea.
| |
Collapse
|
47
|
Shin DS, Seo H, Yang JY, Joo J, Im SH, Kim SS, Kim SK, Bae MA. Quantitative Evaluation of Cytochrome P450 3A4 Inhibition and Hepatotoxicity in HepaRG 3-D Spheroids. Int J Toxicol 2018; 37:393-403. [DOI: 10.1177/1091581818780149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Predicting drug–drug interactions (DDIs) is an important step during drug development to avoid unexpected side effects. Cytochrome P450 (CYP) 3A4 is the most abundant human hepatic phase I enzyme, which metabolizes >50% of therapeutic drugs. Therefore, it is essential to test the potential of a drug candidate to induce CYP3A4 expression or inhibit its activity. Recently, 3-dimensional (3-D) mammalian cell culture models have been adopted in drug discovery research to assess toxicity, DDIs, and pharmacokinetics. In this study, we applied a human 3-D spheroid culture protocol using HepaRG cells combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess its ability to predict CYP3A4 inhibition. Levels of midazolam, a specific substrate of CYP3A4, were used to determine the long-term metabolic capacity of CYP3A4. Midazolam was decreased in the 3-D HepaRG culture system by ∼80% over 7 days, whereas its primary metabolite, 1-hydroxymidazolam, increased by ∼40%. Next, we assessed hepatotoxicity by determining the cytotoxicity of known hepatotoxicants in HepaRG spheroids, HepG2 cells, and primary human hepatocytes. Significant differences in cytotoxicity were detected in the system using 3-D HepaRG spheroids. These results suggest that 3-D HepaRG spheroids are a good model for prediction of CYP inhibition and hepatotoxicity in screening of early drug candidates.
Collapse
Affiliation(s)
- Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Hyewon Seo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Jeongmin Joo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - So Hee Im
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
48
|
Choi YJ, Lee JY, Ryu CS, Chi YH, Paik SH, Kim SK. Role of cytochrome P450 enzymes in fimasartan metabolism in vitro. Food Chem Toxicol 2018; 115:375-384. [PMID: 29596975 DOI: 10.1016/j.fct.2018.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 02/05/2023]
Abstract
Fimasartan (FMS), an angiotensin II receptor antagonist, is metabolized to FMS S-oxide, FMS N-glucuronide, oxidative desulfurized FMS (BR-A-557), and hydroxy-n-butyl FMSs. The purpose of this study was to characterize enzymes involved in NADPH-dependent FMS metabolism using recombinant enzymes such as cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO), as well as selective chemical inhibitors. The results showed that CYP, but not FMO, plays a major role in FMS metabolism. CYP2C9, CYP3A4, and CYP3A5 were involved in the formation of FMS S-oxide, which was further metabolized to BR-A-557 by CYP3A4/5. CYP2C9 played an exclusive role in n-butyl hydroxylation. The specificity constant (kcat/Km) values for S-oxidation by CYP2C9, CYP3A4, and CYP3A5 were 0.21, 0.34, and 0.19 μM-1∙min-1, respectively. The kcat/Km values of hydroxylation at the 1-, 2-/3-, and 4-n-butyl group in CYP2C9 were 0.0076, 0.041, and 0.035 μM-1∙min-1, respectively. The kcat and Km values provide information for the prediction of FMS metabolism in vivo. In addition, simultaneous determination of the FMS metabolites may be used to evaluate CYP2C9 and CYP3A4/5 activity.
Collapse
Affiliation(s)
- Young Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Chang Seon Ryu
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Ha Chi
- Central Research Institute, Boryung Pharm. co., Ltd. Ansan, Gyeonggi 425-839, Republic of Korea
| | - Soo Heui Paik
- College of Pharmacy, Sunchon National University, Suncheon-si, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
49
|
Microdosing Cocktail Assay Development for Drug-Drug Interaction Studies. J Pharm Sci 2018; 107:1973-1986. [PMID: 29548977 DOI: 10.1016/j.xphs.2018.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022]
Abstract
Methodology for analysis of a microdosing drug cocktail designed to evaluate the contribution of drug transporters and drug metabolizing enzymes to disposition was developed using liquid chromatography-mass spectrometry-based detection. Fast and sensitive methods were developed and qualified for the quantification of statins (pitavastatin, pitavastain lactone, rosuvastatin, atorvastatin, 2-hydroxy, and 4-hydroxy atorvastatin), midazolam, and dabigatran in human plasma. Chromatographic separation was accomplished using reversed-phase liquid chromatography or hydrophilic interaction liquid chromatography with gradient elution and detection by tandem mass spectrometry in the positive ionization mode using electrospray ionization. The lower limit of quantitation (LLOQ) for the statins assay was 1 pg/mL for the 6 analytes with a linear range from 1 to 1000 pg/mL processing 250 μL plasma sample. The midazolam assay LLOQ was 0.5 pg/mL with a linear range of 0.5 to 1000 pg/mL. For the dabigatran assay, the LLOQ was 10 pg/mL with a linear range of 10 to 5000 pg/mL processing 100 μL plasma sample. The intraday and interday precision and accuracy of the assays were within acceptable ranges, and the assays were successfully applied to support a study where a microdose cocktail was dosed to healthy human subjects for simultaneous assessment of clinical drug-drug interactions mediated by major drug transporters and CYP3A.
Collapse
|
50
|
Pregnancy- Associated Changes in Pharmacokinetics and their Clinical Implications. Pharm Res 2018; 35:61. [DOI: 10.1007/s11095-018-2352-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
|