1
|
Lu F, Wang Y, Wu S, Huang W, Yao H, Wang S, Shi X, Laborda P, Herrera-Balandrano DD. Germination time and in vitro gastrointestinal digestion impact on the isoflavone bioaccessibility and antioxidant capacities of soybean sprouts. Food Chem 2024; 460:140517. [PMID: 39043074 DOI: 10.1016/j.foodchem.2024.140517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Soybeans' isoflavone content increases with germination; nevertheless, their bioaccessibility in the gastrointestinal system is limited. This study evaluated the influence of germination time (1, 3, 5, and 7 days) and in vitro gastrointestinal conditions on the isoflavone profile of soybean sprouts. The total isoflavones (4.07 mg/g) and the malonyl genistin (1.37 mg/g) had the highest contents on day 5 in the gastric phase. The highest isoflavone bioaccessibility was observed in daidzein, genistein, and glycitin. An increase in antioxidant capacity was found during germination (day 7 > day 5 > day 3); however, the same trend was not observed during in vitro digestion. In summary, the results indicate that soybean sprouts germinated for 5 days may be more beneficial for consumption since they have the highest and most readily absorbed levels of isoflavones. These data suggest that soybean sprouts may be a functional food that provides bioavailable antioxidants.
Collapse
Affiliation(s)
- Fengyi Lu
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Yanxia Wang
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Siqi Wu
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Hongliang Yao
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, PR China
| | - Suyan Wang
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Xinchi Shi
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, 226019, PR China.
| | | |
Collapse
|
2
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
Han JS, Joung JY, Kim HW, Kim JH, Choi HS, Bae HJ, Jang JH, Oh NS. Enhanced Cholesterol-Lowering and Antioxidant Activities of Soymilk by Fermentation with Lactiplantibacillus plantarum KML06. J Microbiol Biotechnol 2023; 33:1475-1483. [PMID: 37482800 DOI: 10.4014/jmb.2306.06036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
This study aimed to evaluate the cholesterol-lowering and antioxidant activities of soymilk fermented with probiotic Lactobacillaceae strains and to investigate the production of related bioactive compounds. Lactiplantibacillus plantarum KML06 (KML06) was selected for the fermentation of soymilk because it has the highest antioxidant, cholesterol-lowering, and β-glucosidase activities among the 10 Lactobacillaceae strains isolated from kimchi. The genomic information of strain KML06 was analyzed. Moreover, soymilk fermented with KML06 was evaluated for growth kinetics, metabolism, and functional characteristics during the fermentation period. The number of viable cells, which was similar to the results of radical scavenging activities and cholesterol assimilation, as well as the amount of soy isoflavone aglycones, daidzein, and genistein, was the highest at 12 h of fermentation. These results indicate that soymilk fermented with KML06 can prevent oxidative stress and cholesterol-related problems through the production of soy isoflavone aglycones.
Collapse
Affiliation(s)
- Ji Seung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yeon Joung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hwan Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Hyo Su Choi
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Jin Bae
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Ji Hun Jang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
4
|
Singla M, Smriti, Gupta S, Behal P, Singh SK, Preetam S, Rustagi S, Bora J, Mittal P, Malik S, Slama P. Unlocking the power of nanomedicine: the future of nutraceuticals in oncology treatment. Front Nutr 2023; 10:1258516. [PMID: 38045808 PMCID: PMC10691498 DOI: 10.3389/fnut.2023.1258516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer, an intricate and multifaceted disease, is characterized by the uncontrolled proliferation of cells that can lead to serious health complications and ultimately death. Conventional therapeutic strategies mainly target rapidly dividing cancer cells, but often indiscriminately harm healthy cells in the process. As a result, there is a growing interest in exploring novel therapies that are both effective and less toxic to normal cells. Herbs have long been used as natural remedies for various diseases and conditions. Some herbal compounds exhibit potent anti-cancer properties, making them potential candidates for nutraceutical-based treatments. However, despite their promising efficacy, there are considerable limitations in utilizing herbal preparations due to their poor solubility, low bioavailability, rapid metabolism and excretion, as well as potential interference with other medications. Nanotechnology offers a unique platform to overcome these challenges by encapsulating herbal compounds within nanoparticles. This approach not only increases solubility and stability but also enhances the cellular uptake of nutraceuticals, allowing for controlled and targeted delivery of therapeutic agents directly at tumor sites. By harnessing the power of nanotechnology-enabled therapy, this new frontier in cancer treatment presents an opportunity to minimize toxicity while maximizing efficacy. In conclusion, this manuscript provides compelling evidence for integrating nanotechnology with nutraceuticals derived from herbal sources to optimize cancer therapy outcomes. We explore the roadblocks associated with traditional herbal treatments and demonstrate how nanotechnology can help circumvent these issues, paving the way for safer and more effective cancer interventions in future oncological practice.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
| | - Prateek Behal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Department of Biotechnology, University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of Agri Sciences, Mendel University in Brno, Zemedelska, Brno, Czechia
| |
Collapse
|
5
|
Liu S, Liu J, Wu Y, Tan L, Luo Y, Ding C, Tang Z, Shi X, Fan W, Song S. Genistein upregulates AHR to protect against environmental toxin-induced NASH by inhibiting NLRP3 inflammasome activation and reconstructing antioxidant defense mechanisms. J Nutr Biochem 2023; 121:109436. [PMID: 37666477 DOI: 10.1016/j.jnutbio.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1β, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
6
|
Salvio G, Ciarloni A, Gianfelice C, Lacchè F, Sabatelli S, Giacchetti G, Balercia G. The Effects of Polyphenols on Bone Metabolism in Postmenopausal Women: Systematic Review and Meta-Analysis of Randomized Control Trials. Antioxidants (Basel) 2023; 12:1830. [PMID: 37891909 PMCID: PMC10604028 DOI: 10.3390/antiox12101830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is a condition favored by the postmenopausal decline in estrogen levels and worsened by oxidative stress (OS). Polyphenols are natural compounds abundantly found in fruits and vegetables, and they exert antioxidant and hormonal effects that could be useful in osteoporosis prevention, as suggested by epidemiological studies showing a lower incidence of fractures in individuals consuming polyphenol-rich diets. The aim of our meta-analysis is to evaluate the effects of polyphenols on bone mineral density (BMD, primary endpoint) and bone turnover markers (BTMs, secondary endpoint) in postmenopausal women. Twenty-one randomized control trials (RCTs) were included in our analysis after in-depth search on PubMed, EMBASE, and Scopus databases. We found that supplementation with polyphenols for 3-36 months exerted no statically significant effects on BMD measured at lumbar spine (sMD: 0.21, 95% CI [-0.08 to 0.51], p = 0.16), femoral neck (sMD: 0.16, 95% CI [-0.23 to 0.55], p = 0.42), total hip (sMD: 0.05, 95% CI [-0.14 to 0.24], p = 0.61), and whole body (sMD: -0.12, 95% CI [-0.42 to 0.17], p = 0.41). Subgroup analysis based on treatment duration showed no statistical significance, but a significant effect on lumbar BMD emerged when studies with duration of 24 months or greater were analyzed separately. On the other hand, we found a significantly slight increase in bone-specific alkaline phosphatase (BALP) levels (sMD: 1.27, 95% CI [1.13 to 1.42], p < 0.0001) and a decrease in pyridinoline (PD) levels (sMD: -0.58, 95% CI [-0.77 to -0.39], p < 0.0001). High heterogeneity among studies and unclear risk of bias in one third of the included studies emerged. A subgroup analysis showed similar effects for different duration of treatment and models of dual-energy X-ray absorptiometry (DXA) scanner. More robust evidence is needed before recommending the prescription of polyphenols in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giancarlo Balercia
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (G.S.); (A.C.); (C.G.); (F.L.); (S.S.); (G.G.)
| |
Collapse
|
7
|
Burkhart JG, Wu G, Song X, Raimondi F, McWeeney S, Wong MH, Deng Y. Biology-inspired graph neural network encodes reactome and reveals biochemical reactions of disease. PATTERNS (NEW YORK, N.Y.) 2023; 4:100758. [PMID: 37521042 PMCID: PMC10382942 DOI: 10.1016/j.patter.2023.100758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2022] [Accepted: 05/01/2023] [Indexed: 08/01/2023]
Abstract
Functional heterogeneity of healthy human tissues complicates interpretation of molecular studies, impeding precision therapeutic target identification and treatment. Considering this, we generated a graph neural network with Reactome-based architecture and trained it using 9,115 samples from Genotype-Tissue Expression (GTEx). Our graph neural network (GNN) achieves adjusted Rand index (ARI) = 0.7909, while a Resnet18 control model achieves ARI = 0.7781, on 370 held-out healthy human tissue samples from The Cancer Genome Atlas (TCGA), despite the Resnet18 using over 600 times the parameters. Our GNN also succeeds in separating 83 healthy skin samples from 95 lesional psoriasis samples, revealing that upregulation of 26S- and NUB1-mediated degradation of NEDD8, UBD, and their conjugates is central to the largest perturbed reaction network component in psoriasis. We show that our results are not discoverable using traditional differential expression and hypergeometric pathway enrichment analyses yet are supported by separate human multi-omics and small-molecule mouse studies, suggesting future molecular disease studies may benefit from similar GNN analytical approaches.
Collapse
Affiliation(s)
- Joshua G. Burkhart
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xubo Song
- Department of Computer Science and Electrical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Shannon McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Estrogen receptor targeting with genistein radiolabeled Technetium-99 m as radiotracer of breast cancer: Its optimization, characterization, and predicting stability constants by DFT calculation. Heliyon 2023; 9:e13169. [PMID: 36747562 PMCID: PMC9898673 DOI: 10.1016/j.heliyon.2023.e13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Objective Genistein is an isoflavone molecule with a high affinity for estrogen receptors (ER), which could lead to the mechanism of selective estrogen receptor modulators (SERMs) in breast cancer. Genistein labeling with technetium-99m can be a new promising strategy for diagnostic breast cancer. In this research, we evaluate the physicochemical characteristics of the [99mTc]Tc-genistein complex and describe the optimal labeling method parameters. We also calculated density functional theory to study the stability constants to support complex formation analysis (DFT). Methods The genistein was directly labeled with 99mTc, and its stability as well as its potential for usage as a radiotracer were all investigated. DFT calculations with thermodynamic cycles to determine chemical coordination models and calculate thermodynamic constants of complex more accurately. Results The radiochemical purity of [99mTc]Tc-genistein showed a high yield of 93.25% ± 0.30% and had good physicochemical properties. The stability of the Tc(IV)-genistein complex was confirmed by DFT calculations at a value of 99.0822. Conclusions As a result, [99mTc]Tc-genistein could be a potential radiotracer kit for SPECT imaging of breast cancer.
Collapse
|
9
|
Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers (Basel) 2022; 15:cancers15010249. [PMID: 36612248 PMCID: PMC9818426 DOI: 10.3390/cancers15010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Collapse
|
10
|
Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 24:ijms24010534. [PMID: 36613977 PMCID: PMC9820816 DOI: 10.3390/ijms24010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions.
Collapse
|
11
|
Chiba T, Tousen Y, Nishijima C, Umegaki K. The Prevalence of Dietary Supplements That Claim Estrogen-like Effects in Japanese Women. Nutrients 2022; 14:4509. [PMID: 36364772 PMCID: PMC9653890 DOI: 10.3390/nu14214509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Recently, adverse events, such as irregular vaginal bleeding and menstrual disorders, associated with the use of dietary supplements containing Pueraria mirifica, have been reported in Japan. P. mirifica contains phytoestrogens, such as deoxymiroestrol and miroestrol. Therefore, we investigated the use of supplements that claim to have estrogen-like effects (i.e., estrogen-like supplements) in Japanese women aged from 15 to 69 years old in an online survey. The prevalence of estrogen-like supplement use was 5%, accounting for approximately 15% of the sample, including ex-users. The majority of the users were in their 40s and 50s, mainly using these supplements for the treatment of menopausal symptoms. In contrast, the younger generation mainly used them for beauty purposes, such as weight loss, mastogenic effects, and skin care. Many of them visited a clinic or took medicines for menstrual-related troubles. In all age groups, soybeans/isoflavones were the most commonly used, followed by equol and placenta. Participants in their teens and 20s also used P. mirifica. Among them, 16.2% had experienced adverse events, including irregular vaginal bleeding, breast swelling and pain, and heavy menstruation. In conclusion, estrogen-like supplement use is associated with adverse events; thus, it is necessary to pay attention to the use of these supplement. Furthermore, because the purpose of use differs depending on generation, caution according to each generation is necessary.
Collapse
Affiliation(s)
- Tsuyoshi Chiba
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8363, Japan
| | - Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8363, Japan
| | - Chiharu Nishijima
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8363, Japan
| | - Keizo Umegaki
- Department of Food Safety and Management, Showa Women’s University, Tokyo 154-8533, Japan
| |
Collapse
|
12
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
13
|
Zeng W, Hu M, Lee HK, Wat E, Lau CBS, Ho CS, Wong CK, Tomlinson B. Effects of Soy Isoflavones and Green Tea Extract on Simvastatin Pharmacokinetics and Influence of the SLCO1B1 521T > C Polymorphism. Front Nutr 2022; 9:868126. [PMID: 35685887 PMCID: PMC9171976 DOI: 10.3389/fnut.2022.868126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Green tea and soy products are extensively consumed by many people and they may influence the activity of drug metabolizing enzymes and drug transporters to result in drug interactions. This study was performed to evaluate the effect of green tea and soy isoflavone extracts on the pharmacokinetics of simvastatin in healthy subjects and to clarify the role of polymorphisms in the SLCO1B1 drug transporter in this effect. Methods This was an open-label, three-phase randomized crossover pharmacokinetic study. A single dose of simvastatin 20 mg was taken on three occasions (without herbs, with green tea, and with soy isoflavones) by healthy male Chinese subjects. The green tea and soy isoflavone extracts were given at a dose containing EGCG 800 mg once daily or soy isoflavones about 80 mg once daily for 14 days before simvastatin dosing with at least 4-weeks washout period between phases. Results All the 18 subjects completed the study. Intake of soy isoflavones was associated with reduced systemic exposure to simvastatin acid [geometric mean (% coefficient of variation) AUC0-24h from 16.1 (44.2) h⋅μg/L to 12.1 (54.6) h⋅μg/L, P < 0.05) but not the lactone. Further analysis showed that the interaction between simvastatin and the soy isoflavones only resulted in a significant reduction of AUC in subjects with the SLCO1B1 521TT genotype and not in those with the 521C variant allele. There was no overall effect of the green tea extract on simvastatin pharmacokinetics but the group with the SLCO1B1 521TT genotype showed reduced AUC values for simvastatin acid. Conclusion This study showed repeated administration of soy isoflavones reduced the systemic bioavailability of simvastatin in healthy volunteers that was dependent on the SLCO1B1 genotype which suggested that soy isoflavones-simvastatin interaction is impacted by genotype-related function of this liver uptake transporter.
Collapse
Affiliation(s)
- Weiwei Zeng
- The Second People's Hospital of Longgang District, Shenzhen, China.,Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Miao Hu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hon Kit Lee
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
14
|
Zeng W, Hu M, Lee HK, Wat E, Lau CBS, Ho CS, Wong CK, Tomlinson B. Effect of Green Tea Extract and Soy Isoflavones on the Pharmacokinetics of Rosuvastatin in Healthy Volunteers. Front Nutr 2022; 9:850318. [PMID: 35399656 PMCID: PMC8987933 DOI: 10.3389/fnut.2022.850318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Aim Green tea and soy products are extensively consumed in daily life. Research has shown that green tea catechins and soy isoflavones may influence the activity of drug metabolizing enzymes and drug transporters. We examined whether regular consumption of green tea extract or soy isoflavones affected the pharmacokinetics of a single dose of rosuvastatin in healthy subjects and whether any interactions were influenced by the polymorphism in the drug transporter ABCG2. Study Design This was an open-label, three-phase randomized crossover study with single doses of rosuvastatin. Methods Healthy Chinese male subjects were given a single dose of rosuvastatin 10 mg on 3 occasions: 1. without herbs; 2. with green tea extract; 3. with soy isoflavone extract. The green tea and soy isoflavone extract were given at a dose containing EGCG 800 mg once daily or soy isoflavones−80 mg once daily for 14 days before statin dosing and at the same time as the statin dosing with at least 4-weeks washout period between phases. Results Twenty healthy male subjects completed the study and the intake of green tea extract significantly reduced the systemic exposure to rosuvastatin by about 20% reducing AUC0−24h from [geometric mean (% coefficient of variation)] 108.7 (28.9) h·μg/L to 74.1 (35.3) h·μg/L and Cmax from 13.1 (32.2) μg/L to 7.9 (38.3) μg/L (P < 0.001 for both), without affecting the elimination half-life. The ABCG2 421C>A polymorphism had a significant effect on rosuvastatin exposure but no impact on the interaction with green tea. Soy isoflavones had no significant effect on rosuvastatin pharmacokinetics. Conclusion This study showed that repeated administration of green tea extract significantly reduced the systemic exposure of rosuvastatin in healthy volunteers. These effects might be predicted to either reduce or increase the lipid-lowering effect of rosuvastatin depending on the mechanism of the effect.
Collapse
Affiliation(s)
- Weiwei Zeng
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Hon Kit Lee
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
- *Correspondence: Brian Tomlinson ; orcid.org/0000-0001-6717-5444
| |
Collapse
|
15
|
Factors Determining Plasticity of Responses to Drugs. Int J Mol Sci 2022; 23:ijms23042068. [PMID: 35216184 PMCID: PMC8877660 DOI: 10.3390/ijms23042068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The plasticity of responses to drugs is an ever-present confounding factor for all aspects of pharmacology, influencing drug discovery and development, clinical use and the expectations of the patient. As an introduction to this Special Issue of the journal IJMS on pharmacological plasticity, we address the various levels at which plasticity appears and how such variability can be controlled, describing the ways in which drug responses can be affected with examples. The various levels include the molecular structures of drugs and their receptors, expression of genes for drug receptors and enzymes involved in metabolism, plasticity of cells targeted by drugs, tissues and clinical variables affected by whole body processes, changes in geography and the environment, and the influence of time and duration of changes. The article provides a rarely considered bird’s eye view of the problem and is intended to emphasize the need for increased awareness of pharmacological plasticity and to encourage further debate.
Collapse
|
16
|
D’Alessandro C, Benedetti A, Di Paolo A, Giannese D, Cupisti A. Interactions between Food and Drugs, and Nutritional Status in Renal Patients: A Narrative Review. Nutrients 2022; 14:nu14010212. [PMID: 35011087 PMCID: PMC8747252 DOI: 10.3390/nu14010212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Drugs and food interact mutually: drugs may affect the nutritional status of the body, acting on senses, appetite, resting energy expenditure, and food intake; conversely, food or one of its components may affect bioavailability and half-life, circulating plasma concentrations of drugs resulting in an increased risk of toxicity and its adverse effects, or therapeutic failure. Therefore, the knowledge of these possible interactions is fundamental for the implementation of a nutritional treatment in the presence of a pharmacological therapy. This is the case of chronic kidney disease (CKD), for which the medication burden could be a problem, and nutritional therapy plays an important role in the patient’s treatment. The aim of this paper was to review the interactions that take place between drugs and foods that can potentially be used in renal patients, and the changes in nutritional status induced by drugs. A proper definition of the amount of food/nutrient intake, an adequate definition of the timing of meal consumption, and a proper adjustment of the drug dosing schedule may avoid these interactions, safeguarding the quality of life of the patients and guaranteeing the effectiveness of drug therapy. Hence, a close collaboration between the nephrologist, the renal dietitian, and the patient is crucial. Dietitians should consider that food may interact with drugs and that drugs may affect nutritional status, in order to provide the patient with proper dietary suggestions, and to allow the maximum effectiveness and safety of drug therapy, while preserving/correcting the nutritional status.
Collapse
|
17
|
Mehrotra T, Maulik SK. Hepatic drug metabolism and gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:207-228. [DOI: 10.1016/bs.pmbts.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Cornelian Cherry ( Cornus mas L.) Iridoid and Anthocyanin Extract Enhances PPAR-α, PPAR-γ Expression and Reduces I/M Ratio in Aorta, Increases LXR-α Expression and Alters Adipokines and Triglycerides Levels in Cholesterol-Rich Diet Rabbit Model. Nutrients 2021; 13:nu13103621. [PMID: 34684622 PMCID: PMC8537201 DOI: 10.3390/nu13103621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits possess potential cardiovascular, lipid-lowering and hypoglycemic bioactivities. The aim of this study is to evaluate the influence of resin-purified cornelian cherry extract rich in iridoids and anthocyanins on several transcription factors, intima/media ratio in aorta and serum parameters, which determine or are valuable indicators of the adverse changes observed in the course of atherosclerosis, cardiovascular disease, and metabolic syndrome. For this purpose, male New Zealand rabbits were fed a diet enriched in 1% cholesterol for 60 days. Additionally, one group received 10 mg/kg b.w. of cornelian cherry extract and the second group 50 mg/kg b.w. of cornelian cherry extract. PPAR-α and PPAR-γ expression in the aorta, LXR-α expression in the liver; cholesterol, triglycerides, adipokines, apolipoproteins, glucose and insulin levels in serum; the intima and media diameter in the thoracic and abdominal aorta were determined. Administration of cornelian cherry extract resulted in an enhancement in the expression of all tested transcription factors, a decrease in triglycerides, leptin and resistin, and an increase in adiponectin levels. In addition, a significant reduction in the I/M ratio was observed for both the thoracic and abdominal aorta. The results we have obtained confirm the potential contribution of cornelian cherry extract to mitigation of the risk of developing and the intensity of symptoms of obesity-related cardiovascular diseases and metabolic disorders such as atherosclerosis or metabolic syndrome.
Collapse
|
19
|
The Impact of Diet and Exercise on Drug Responses. Int J Mol Sci 2021; 22:ijms22147692. [PMID: 34299312 PMCID: PMC8304791 DOI: 10.3390/ijms22147692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
It is well known that lifestyle changes can alter several physiological functions in the human body. For exercise and diet, these effects are used sensibly in basic therapies, as in cardiovascular diseases. However, the physiological changes induced by exercise and a modified diet also have the capacity to influence the efficacy and toxicity of several drugs, mainly by affecting different pharmacokinetic mechanisms. This pharmacological plasticity is not clinically relevant in all cases but might play an important role in altering the effects of very common drugs, particularly drugs with a narrow therapeutic window. Therefore, with this review, we provide insights into possible food–drug and exercise–drug interactions to sharpen awareness of the potential occurrence of such effects.
Collapse
|
20
|
Wang X, Liang QF, Zeng X, Huang GX, Xin GZ, Xu YH, Wang SM, Tang D. Effects of soy isoflavone supplementation on patients with diabetic nephropathy: a systematic review and meta-analysis of randomized controlled trials. Food Funct 2021; 12:7607-7618. [PMID: 34236368 DOI: 10.1039/d1fo01175h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a microvascular complication that is becoming a worldwide public health concern. The aim of this study was to assess the effects of dietary soy isoflavone intervention on renal function and metabolic syndrome markers in DN patients. Seven databases including Medline, the Cochrane Central Register of Controlled Trials, Science Direct, Web of Science, Embase, China National Knowledge Infrastructure, and WanFang were searched for controlled trials that assessed the effects of soy isoflavone treatment in DN patients. Finally, a total of 141 patients from 7 randomized controlled trials were included. The meta-analysis showed that dietary soy isoflavones significantly decreased 24-hour urine protein, C-reactive protein (CRP), blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and fasting blood glucose (FBG) in DN patients. The standard mean difference was -2.58 (95% CI: -3.94, -1.22; P = 0.0002) for 24-hour urine protein, -0.67 (95% CI: -0.94, -0.41; P < 0.00001) for BUN, -6.16 (95% CI: -9.02, -3.31; P < 0.0001) for CRP, -0.58 (95% CI: -0.83, -0.33; P < 0.00001) for TC, -0.41 (95% CI: -0.66, -0.16; P < 0.00001) for TG, -0.68 (95% CI: -0.94, -0.42; P < 0.00001) for LDL-C, and -0.39 (95% CI: -0.68, -0.10; P = 0.008) for FBG. Therefore, soy isoflavones may ameliorate DN by significantly decreasing 24-hour urine protein, BUN, CRP, TC, TG, LDL-C, and FBG.
Collapse
Affiliation(s)
- Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021; 8:699620. [PMID: 34262928 PMCID: PMC8273275 DOI: 10.3389/fnut.2021.699620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, United States
| |
Collapse
|
22
|
Esteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. J Xenobiot 2021; 11:94-114. [PMID: 34206277 PMCID: PMC8293344 DOI: 10.3390/jox11030007] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human Cytochrome P450 (CYP) enzymes constitute a superfamily of membrane-bound hemoproteins that are responsible for the metabolism of a wide variety of clinically, physiologically, and toxicologically important compounds. These heme-thiolate monooxygenases play a pivotal role in the detoxification of xenobiotics, participating in the metabolism of many structurally diverge compounds. This short-review is intended to provide a summary on the major roles of CYPs in Phase I xenobiotic metabolism. The manuscript is focused on eight main topics that include the most relevant aspects of past and current CYP research. Initially, (I) a general overview of the main aspects of absorption, distribution, metabolism, and excretion (ADME) of xenobiotics are presented. This is followed by (II) a background overview on major achievements in the past of the CYP research field. (III) Classification and nomenclature of CYPs is briefly reviewed, followed by (IV) a summary description on CYP's location and function in mammals. Subsequently, (V) the physiological relevance of CYP as the cornerstone of Phase I xenobiotic metabolism is highlighted, followed by (VI) reviewing both genetic determinants and (VI) nongenetic factors in CYP function and activity. The last topic of the review (VIII) is focused on the current challenges of the CYP research field.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.R.); (M.K.)
| | | | | |
Collapse
|
23
|
Danielewski M, Matuszewska A, Szeląg A, Sozański T. The Impact of Anthocyanins and Iridoids on Transcription Factors Crucial for Lipid and Cholesterol Homeostasis. Int J Mol Sci 2021; 22:6074. [PMID: 34199904 PMCID: PMC8200123 DOI: 10.3390/ijms22116074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Nutrition determines our health, both directly and indirectly. Consumed foods affect the functioning of individual organs as well as entire systems, e.g., the cardiovascular system. There are many different diets, but universal guidelines for proper nutrition are provided in the WHO healthy eating pyramid. According to the latest version, plant products should form the basis of our diet. Many groups of plant compounds with a beneficial effect on human health have been described. Such groups include anthocyanins and iridoids, for which it has been proven that their consumption may lead to, inter alia, antioxidant, cholesterol and lipid-lowering, anti-obesity and anti-diabetic effects. Transcription factors directly affect a number of parameters of cell functions and cellular metabolism. In the context of lipid and cholesterol metabolism, five particularly important transcription factors can be distinguished: liver X receptor (LXR), peroxisome proliferator-activated receptor-α (PPAR-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα) and sterol regulatory element-binding protein 1c (SREBP-1c). Both anthocyanins and iridoids may alter the expression of these transcription factors. The aim of this review is to collect and systematize knowledge about the impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (A.M.); (A.S.); (T.S.)
| | | | | | | |
Collapse
|
24
|
Apios Americana Medicus: A potential staple food candidate with versatile bioactivities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Atia MM, Mahmoud FAR. Soya milk alleviates toxicity caused by citric acid in male mice: Histopathological and hematological studies. J Food Biochem 2021; 45:e13773. [PMID: 34018211 DOI: 10.1111/jfbc.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
This study evaluated the toxicity of citric acid and the benefits of soya milk (SM) for preventing damage in mice. Thirty-five mice were divided into groups: control, mice administered citric acid (CA group) for 30 days, mice administered SM before the administration of citric acid for 30 days (SM + CA group), mice administered citric acid for 15 days and left for recovery (R group), and mice in recovery receiving SM for 15 days (R + SM). Mice in CA and R groups displayed downregulated p53, increased cleavage of caspase 3, and upregulation of Nrf2, CYP1A1, ALT, and AST activity in the liver. In contrast, SM + CA and R + SM treated mice were protected against CA toxicity and showed reversal of p53 downregulation, reduced cleavage of caspase 3, downregulation of Nrf2, and an increase in liver function enzymes. SM administration also restored blood cell and hemoglobin content and general histology of hepatocytes. PRACTICAL APPLICATIONS: CA causes liver damage, increases inflammation, decreases blood cell numbers, and induces apoptosis. Some natural products, such as SM, have been used to scavenge free radicals that can cause liver damage and hemolysis. This study focuses on the effectiveness of SM in ameliorating CA toxicity and may be helpful in the food industry for managing oxidative stress that may be induced by common dietary constituents. SM may help suppress liver damage and inflammation.
Collapse
Affiliation(s)
- Mona M Atia
- Laboratory of Molecular Cell Biology and Laboratory Comparative Anatomy, Zoology Department, Faculty of Science, Assiut University, Asyut, Egypt
| | - Fatma Abdel-Regal Mahmoud
- Laboratory of Molecular Cell Biology and Laboratory Comparative Anatomy, Zoology Department, Faculty of Science, Assiut University, Asyut, Egypt
| |
Collapse
|
26
|
Sirotkin AV, Alwasel SH, Harrath AH. The Influence of Plant Isoflavones Daidzein and Equol on Female Reproductive Processes. Pharmaceuticals (Basel) 2021; 14:ph14040373. [PMID: 33920641 PMCID: PMC8073550 DOI: 10.3390/ph14040373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we explore the current literature on the influence of the plant isoflavone daidzein and its metabolite equol on animal and human physiological processes, with an emphasis on female reproduction including ovarian functions (the ovarian cycle; follicullo- and oogenesis), fundamental ovarian-cell functions (viability, proliferation, and apoptosis), the pituitary and ovarian endocrine regulators of these functions, and the possible intracellular mechanisms of daidzein action. Furthermore, we discuss the applicability of daidzein for the control of animal and human female reproductive processes, and how to make this application more efficient. The existing literature demonstrates the influence of daidzein and its metabolite equol on various nonreproductive and reproductive processes and their disorders. Daidzein and equol can both up- and downregulate the ovarian reception of gonadotropins, healthy and cancerous ovarian-cell proliferation, apoptosis, viability, ovarian growth, follicullo- and oogenesis, and follicular atresia. These effects could be mediated by daidzein and equol on hormone production and reception, reactive oxygen species, and intracellular regulators of proliferation and apoptosis. Both the stimulatory and the inhibitory effects of daidzein and equol could be useful for reproductive stimulation, the prevention and mitigation of cancer development, and the adverse effects of environmental stressors in reproductive biology and medicine.
Collapse
Affiliation(s)
- Alexander V. Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
- Correspondence: ; Tel.: +421-903561120
| | - Saleh Hamad Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 12372, Saudi Arabia; (S.H.A.); (A.H.H.)
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 12372, Saudi Arabia; (S.H.A.); (A.H.H.)
| |
Collapse
|
27
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
28
|
Hsiao YH, Ho CT, Pan MH. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Polyphenols in Urine and Cardiovascular Risk Factors: A Cross-Sectional Analysis Reveals Gender Differences in Spanish Adolescents from the SI! Program. Antioxidants (Basel) 2020; 9:antiox9100910. [PMID: 32987732 PMCID: PMC7598601 DOI: 10.3390/antiox9100910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
(1) Background: Epidemiological studies have shown an inverse association between polyphenol intake and cardiovascular risk factors (CVRFs) in adults, but few have provided information about adolescents. The aim of this study was to evaluate the relationship between urinary total polyphenol excretion (TPE) and CVRFs in adolescents. (2) Methods: A cross-sectional study was performed in 1194 Spanish adolescents from the SI! (Salud Integral) program. TPE in urine samples was determined by the Folin-Ciocalteu method, after solid-phase extraction, and categorized into quartiles. The association between TPE and CVRFs was estimated using mixed-effect linear regression and a structural equation model (SEM). (3) Results: Linear regression showed negative associations among the highest quartile of TPE and body fat percentage (B = -1.75, p-value = <0.001), triglycerides (TG) (B = -17.68, p-value = <0.001), total cholesterol (TC) (B = -8.66, p-value = 0.002), and low-density lipoprotein (LDL)-cholesterol (LDL-C) (B = -4.09, p-value = 0.008) in boys, after adjusting for all confounder variables. Negative associations between TPE quartiles and systolic blood pressure (SBP), diastolic blood pressure (DBP), and TC were also found in girls. Moreover, a structural equation model revealed that TPE was directly associated with body composition and blood glucose and indirectly associated with blood pressure, TG, LDL-C, and high-density lipoprotein-cholesterol (HDL-C) in boys. (4) Conclusions: Higher concentrations of TPE were associated with a better profile of cardiovascular health, especially in boys, while in girls, the association was not as strong.
Collapse
|
30
|
Shah RD, Tang ZZ, Chen G, Huang S, Ferguson JF. Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner. Nutr Metab Cardiovasc Dis 2020; 30:1500-1511. [PMID: 32620337 PMCID: PMC7483644 DOI: 10.1016/j.numecd.2020.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Consumption of soy foods has been associated with protection against cardiometabolic disease, but the mechanisms are incompletely understood. We hypothesized that habitual soy food consumption associates with gut microbiome composition, metabolite production, and the interaction between diet, microbiota and metabolites. METHODS AND RESULTS We analyzed dietary soy intake, plasma and stool metabolites, and gut microbiome data from two independent cross-sectional samples of healthy US individuals (N = 75 lean or overweight, and N = 29 obese). Habitual soy intake associated with several circulating metabolites. There was a significant interaction between soy intake and gut microbiome composition, as defined by gut enterotype, on metabolites in plasma and stool. Soy consumption associated with reduced systolic blood pressure, but only in a subset of individuals defined by their gut microbiome enterotype, suggesting that responsiveness to soy may be dependent on microbiome composition. Soy intake was associated with differences in specific microbial taxa, including two taxa mapping to genus Dialister and Prevotella which appeared to be suppressed by high soy intake We identified context-dependent effects of these taxa, where presence of Prevotella was associated with higher blood pressure and a worse cardiometabolic profile, but only in the absence of Dialister. CONCLUSIONS The gut microbiome is an important intermediate in the interplay between dietary soy intake and systemic metabolism. Consumption of soy foods may shape the microbiome by suppressing specific taxa, and may protect against hypertension only in individuals with soy-responsive microbiota. CLINICAL TRIALS REGISTRY NCT02010359 at clinicaltrials.gov.
Collapse
Affiliation(s)
- Rachana D Shah
- Division of Pediatric Endocrinology, Children's Hospital of Philadelphia, PA, USA
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, Madison, WI, USA
| | - Guanhua Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, Madison, WI, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jane F Ferguson
- Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, TN, USA; Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
31
|
Ronis MJ, Mercer KE, Shankar K, Pulliam C, Pedersen K, Ingelman-Sundberg M, Friso S, Samuelson D, Del Valle L, Taylor C, Welsh DA. Potential role of gut microbiota, the proto-oncogene PIKE (Agap2) and cytochrome P450 CYP2W1 in promotion of liver cancer by alcoholic and nonalcoholic fatty liver disease and protection by dietary soy protein. Chem Biol Interact 2020; 325:109131. [PMID: 32417163 DOI: 10.1016/j.cbi.2020.109131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
We have previously demonstrated promotion of diethylnitrosamine (DEN) initiated liver tumorigenesis after feeding diets high in fat or ethanol (EtOH) to male mice. This was accompanied by hepatic induction of the proto-oncogene PIKE (Agap2). Switch of dietary protein from casein to soy protein isolate (SPI) significantly reduced tumor formation in these models. We have linked EtOH consumption in mice to microbial dysbiosis. Adoptive transfer studies demonstrate that microbiota from mice fed ethanol can induce hepatic steatosis in the absence of ethanol suggesting that microbiota or the microbial metabolome play key roles in development of fatty liver disease. Feeding SPI significantly changed gut bacteria in mice increasing alpha diversity (P < 0.05) and levels of Clostidiales spp. Feeding soy formula to piglets also resulted in significant changes in microbiota, the pattern of bile acid metabolites and in inhibition of the intestinal-hepatic FXR/FGF19-SHP pathway which has been linked to both steatosis and hepatocyte proliferation. Moreover, feeding SPI also resulted in induction of hepatic PPARα signaling and inhibition of PIKE mRNA expression coincident with inhibition of steatosis and cancer prevention. Feeding studies in the DEN model with differing dietary fats demonstrated tumor promotion specific to the saturated fat, cocoa butter relative to diets containing olive oil or corn oil associated with microbial dysbiosis including dramatic increases in Lachnospiraceae particularly from the genus Coprococcus. Immunohistochemical analysis demonstrated that tumors from EtOH-fed mice and patients with alcohol-associated HCC also expressed high levels of a novel cytochrome P450 enzyme CYP2W1. Additional adoptive transfer experiments and studies in knockout mice are required to determine the exact relationship between soy effects on the microbiota, expression of PIKE, CYP2W1, PPARα activation and prevention of tumorigenesis.
Collapse
Affiliation(s)
- Martin J Ronis
- Louisiana State University Health Sciences Center, New Orleans, USA.
| | | | | | - Casey Pulliam
- Louisiana State University Health Sciences Center, New Orleans, USA
| | - Kim Pedersen
- Louisiana State University Health Sciences Center, New Orleans, USA
| | | | | | | | - Luis Del Valle
- Louisiana State University Health Sciences Center, New Orleans, USA
| | - Chris Taylor
- Louisiana State University Health Sciences Center, New Orleans, USA
| | - David A Welsh
- Louisiana State University Health Sciences Center, New Orleans, USA
| |
Collapse
|
32
|
Mercer KE, Bhattacharyya S, Sharma N, Chaudhury M, Lin H, Yeruva L, Ronis MJ. Infant Formula Feeding Changes the Proliferative Status in Piglet Neonatal Mammary Glands Independently of Estrogen Signaling. J Nutr 2020; 150:730-738. [PMID: 31687754 PMCID: PMC7138673 DOI: 10.1093/jn/nxz273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Soy infant formula contains isoflavones, which are able to bind to and activate estrogen receptor (ER) pathways. The mammary gland is sensitive to estrogens, raising concern that the use of soy formulas may promote premature development. OBJECTIVE We aimed to determine if soy formula feeding increases mammary gland proliferation and differentiation in comparison to other infant postnatal diets. METHODS White-Dutch Landrace piglets aged 2 d received either sow milk (Sow), or were provided milk formula (Milk), soy formula (Soy), milk formula supplemented with 17-beta-estradiol (2 mg/(kg·d); M + E2), or milk formula supplemented with genistein (84 mg/L of diet; M + G) until day 21. Mammary gland proliferation and differentiation was assessed by histology, and real-time RT-PCR confirmation of differentially expressed genes identified by microarray analysis. RESULTS Mammary terminal end bud numbers were 19-31% greater in the Milk, Soy, and M + G groups relative to the Sow and M + E2, P <0.05. Microarray analysis identified differentially expressed genes between each formula-fed group relative to the Sow (±1.7-fold, P <0.05). Real-time RT-PCR confirmed 2- to 4-fold increases in mRNA transcripts of genes involved in cell proliferation, insulin-like growth factor 1 (IGF1), fibroblast growth factor 10 (FGF10), and fibroblast growth factor 18 (FGF18), in all groups relative to the Sow, P <0.05. In contrast, genes involved in cell differentiation and ductal morphogenesis, angiotensin II receptor type 2 (AGTR2), microtubule associated protein 1b (MAP1B), and kinesin family member 26b (KIF26B), were significantly upregulated by 2-, 4-, and 13-fold, respectively, in the M + E2 group. Additionally, mRNA expression of ER-specific gene targets, progesterone receptor (PGR), was increased by 12-fold, and amphiregulin (AREG) and Ras-like estrogen regulated growth inhibitor (RERG) expression by 1.5-fold in the M + E2 group, P <0.05. In the soy and M + G groups, mRNA expressions of fatty acid synthesis genes were increased 2- to 4-fold. CONCLUSIONS Our data indicate soy formula feeding does not promote ER-signaling in the piglet mammary gland. Infant formula feeding (milk- or soy-based) may initiate proliferative pathways independently of estrogenic signaling.
Collapse
Affiliation(s)
- Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | | | - Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Martin J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
33
|
Wu ML, Lin YP, Wei YL, Du HJ, Ying XQ, Tan WZ, Tang BE. Calycosin Influences the Metabolism of Five Probe Drugs in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:429-434. [PMID: 32099327 PMCID: PMC6996205 DOI: 10.2147/dddt.s236221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023]
Abstract
Background Calycosin (CAL), a type of O-methylated isoflavone extracted from the herb Astralagusmembranaceus (AM), is a bioactive chemical with antioxidative, antiphlogistic and antineoplastic activities commonly used in traditional alternative Chinese medicine. AM has been shown to confer health benefits as an adjuvant in the treatment of a variety of diseases. Aim The main objective of this study was to determine whether CAL influences the cytochrome P450 (CYP450) system involved in drug metabolism. Methods Midazolam, tolbutamide, omeprazole, metoprolol and phenacetin were selected as probe drugs. Rats were randomly divided into three groups, specifically, 5% Carboxymethyl cellulose (CMC) for 8 days (Control), 5% CMC for 7 days + CAL for 1 day (single CAL) and CAL for 8 days (conc CAL), and metabolism of the five probe drugs evaluated using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Results No significant differences were observed for omeprazole and midazolam, compared to the control group. Tmax and t1/2 values of only one probe drug, phenacetin, in the conc CAL group were significantly different from those of the control group (Tmax h: 0.50±0.00 vs 0.23±0.15; control vs conc CAL). Cmax of tolbutamide was decreased about two-fold in the conc CAL treatment group (conc vs control: 219.48 vs 429.56, P<0.001). Conclusion Calycosin inhibits the catalytic activities of CYP1A2, CYP2D6 and CYP2C9. Accordingly, we recommend caution, particularly when combining CAL as a modality therapy with drugs metabolized by CYP1A2, CYP2D6 and CYP2C9, to reduce the potential risks of drug accumulation or ineffective treatment.
Collapse
Affiliation(s)
- Mei-Ling Wu
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Yi-Ping Lin
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Yan-Li Wei
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Hong-Jian Du
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Xiao-Qian Ying
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Wen-Zhuang Tan
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Bi-E Tang
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
Alahmadi AA, Alzahrani AA, Ali SS, Alahmadi BA, Arab RA, El-Shitany NAEA. Both Matricaria chamomilla and Metformin Extract Improved the Function and Histological Structure of Thyroid Gland in Polycystic Ovary Syndrome Rats through Antioxidant Mechanism. Biomolecules 2020; 10:E88. [PMID: 31948119 PMCID: PMC7022237 DOI: 10.3390/biom10010088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing proof that polycystic ovary syndrome (PCOS) is associated with the increased frequency of thyroid disturbances. Chamomile (Matricaria chamomilla L.) herb and metformin showed therapeutic efficacy against polycystic ovary syndrome (PCOS). This study aimed to investigate the possible therapeutic effect of both chamomile flower extract and metformin against thyroid damage associated with PCOS in rats. The PCOS model was developed in rats by injecting estradiol valerate, and it was confirmed to be associated with thyroid hypofunction biochemically and pathologically. Treatment of PCOS rats with both chamomile extract and metformin resulted in an improvement in serum level of thyroid hormones (TSH, p < 0.01; T3 and T4, p < 0.05) and the disappearance of most thyroid gland pathological changes demonstrated by light and electron microscopes. They also reduced the level of serum estrogen (p < 0.01). Both chamomile extract and metformin decreased MDA (p < 0.05) and increased GPx and CAT (p < 0.01). Only chamomile extract increased GSH (p < 0.01). Both treatments reduced the apoptotic death of thyroid cells as noted by the reduction of caspase-3 immunoexpression (p < 0.01). In conclusion, both Matricariachamomilla extract and metformin ameliorated hypothyroidism associated with PCOS through an antioxidant and antiapoptotic mechanism.
Collapse
Affiliation(s)
- Ahlam Abdulaziz Alahmadi
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.A.A.)
| | - Areej Ali Alzahrani
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.A.A.)
| | - Soad Shaker Ali
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Histology, College of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Rana Ali Arab
- Medicine Program, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
| | - Nagla Abd El-Aziz El-Shitany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
35
|
Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, Sharma U, Jain A, Aggarwal V, Bishayee A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Front Pharmacol 2019; 10:1336. [PMID: 31866857 PMCID: PMC6910185 DOI: 10.3389/fphar.2019.01336] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Genistein is one among the several other known isoflavones that is found in different soybeans and soy products. The chemical name of genistein is 4′,5,7-trihydroxyisoflavone. Genistein has drawn attention of scientific community because of its potential beneficial effects on human grave diseases, such as cancer. Mechanistic insight of genistein reveals its potential for apoptotic induction, cell cycle arrest, as well as antiangiogenic, antimetastatic, and anti-inflammatory effects. Objective: The purpose of this review is to unravel and analyze various molecular mechanisms of genistein in diverse cancer models. Data sources: English language literature was searched using various databases, such as PubMed, ScienceDirect, EBOSCOhost, Scopus, Web of Science, and Cochrane Library. Key words used in various combinations included genistein, cancer, anticancer, molecular mechanisms prevention, treatment, in vivo, in vitro, and clinical studies. Study selection: Study selection was carried out strictly in accordance with the statement of Preferred Reporting Items for Systematic Reviews and Meta-analyses. Data extraction: Four authors independently carried out the extraction of articles. Data synthesis: One hundred one papers were found suitable for use in this review. Conclusion: This review covers various molecular interactions of genistein with various cellular targets in cancer models. It will help the scientific community understand genistein and cancer biology and will provoke them to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Muobarak Jaber Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Uttam Sharma
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
36
|
Pinto PIS, Andrade AR, Moreira C, Zapater C, Thorne MAS, Santos S, Estêvão MD, Gomez A, Canario AVM, Power DM. Genistein and estradiol have common and specific impacts on the sea bass (Dicentrarchus labrax) skin-scale barrier. J Steroid Biochem Mol Biol 2019; 195:105448. [PMID: 31421232 DOI: 10.1016/j.jsbmb.2019.105448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Teleost fish scales play important roles in animal protection and homeostasis. They can be targeted by endogenous estrogens and by environmental estrogenic endocrine disruptors. The phytoestrogen genistein is ubiquitous in the environment and in aquaculture feeds and is a disruptor of estrogenic processes in vertebrates. To test genistein disrupting actions in teleost fish we used a minimally invasive approach by analysing scales plucked from the skin of sea bass (Dicentrarchus labrax). Genistein transactivated all three fish nuclear estrogen receptors and was most potent with the Esr2, had the highest efficacy with Esr1, but reached, in all cases, transactivation levels lower than those of estradiol. RNA-seq revealed 254 responsive genes in the sea bass scales transcriptome with an FDR < 0.05 and more than 2-fold change in expression, 1 or 5 days after acute exposure to estradiol or to genistein. 65 genes were specifically responsive to estradiol and 106 by genistein while 83 genes were responsive to both compounds. Estradiol specifically regulated genes of protein/matrix turnover and genistein affected sterol biosynthesis and regeneration, while innate immune responses were affected by both compounds. This comprehensive study revealed the impact on the fish scale transcriptome of estradiol and genistein, providing a solid background to further develop fish scales as a practical screening tool for endocrine disrupting chemicals in teleosts.
Collapse
Affiliation(s)
- Patricia I S Pinto
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - André R Andrade
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600 Le Havre, France.
| | - Cinta Zapater
- IATS - Instituto de Acuicultura Torre la Sal, Ribera de Cabanes, 12595 Castellón, Spain.
| | - Michael A S Thorne
- British Antarctic Survey (BAS), High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Soraia Santos
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - M Dulce Estêvão
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, Edifício 1, 8005-139 Faro, Portugal.
| | - Ana Gomez
- IATS - Instituto de Acuicultura Torre la Sal, Ribera de Cabanes, 12595 Castellón, Spain.
| | - Adelino V M Canario
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - Deborah M Power
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| |
Collapse
|
37
|
Hu C, Wong WT, Wu R, Lai WF. Biochemistry and use of soybean isoflavones in functional food development. Crit Rev Food Sci Nutr 2019; 60:2098-2112. [PMID: 31272191 DOI: 10.1080/10408398.2019.1630598] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Soybeans and their food products exist in the market in various forms, ranging from crude oils and bean meals to nutritious products (e.g. soy milk powers). With the availability of technologies for mass production of soy products and for enrichment of soy components (e.g. phospholipids, saponins, isoflavones, oligosaccharides and edible fiber), the nutritional values of soy products have been enhanced remarkably, offering the potential for functional food development. Among different bioactive components in soybeans, one important component is isoflavones, which have been widely exploited for health implications. While there are studies supporting the health benefits of isoflavones, concerns on adverse effects have been raised in the literature. The objective of this article is to review the recent understanding of the biological activities, adverse effects, and use of isoflavones in functional food development.
Collapse
Affiliation(s)
- Chengshen Hu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Center for Human Tissue and Organs Degeneration, Institute of Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Runyu Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
38
|
Kohlmann K, Callaghan-Gillespie M, Gauglitz JM, Steiner-Asiedu M, Saalia K, Edwards C, Manary MJ. Alternative Ready-To-Use Therapeutic Food Yields Less Recovery Than the Standard for Treating Acute Malnutrition in Children From Ghana. GLOBAL HEALTH: SCIENCE AND PRACTICE 2019; 7:203-214. [PMID: 31189698 PMCID: PMC6641811 DOI: 10.9745/ghsp-d-19-00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/02/2019] [Indexed: 11/23/2022]
Abstract
In Ghana, an alternative ready-to-use food (RUTF) formulation that met all specifications was not as good as standard RUTF in affecting recovery from acute malnutrition among children aged 6 to 59 months. Background: Only 20% of children with severe acute malnutrition (SAM) have access to ready-to-use therapeutic food (RUTF), and RUTF cost limits its accessibility. Methods: This randomized, double-blind controlled study involved a clinical equivalence trial comparing the effectiveness of an alternative RUTF with standard RUTF in the home-based treatment of uncomplicated SAM and moderate malnutrition in Ghanaian children aged 6 to 59 months. The primary outcome was recovery, equivalence was defined as being within 5 percentage points of the control group, and an intention-to-treat analysis was used. Alternative RUTF was composed of whey protein, soybeans, peanuts, sorghum, milk, sugar, and vegetable oil. Standard RUTF included peanuts, milk, sugar, and vegetable oil. The cost of alternative RUTF ingredients was 14% less than standard RUTF. Untargeted metabolomics was used to characterize the bioactive metabolites in the RUTFs. Results: Of the 1,270 children treated for SAM or moderate malnutrition, 554 of 628 (88%) receiving alternative RUTF recovered (95% confidence interval [CI]=85% to 90%) and 516 of 642 (80%) receiving standard RUTF recovered (95% CI=77% to 83%). The difference in recovery was 7.7% (95% CI=3.7% to 11.7%). Among the 401 children with SAM, the recovery rate was 130 of 199 (65%) with alternative RUTF and 156 of 202 (77%) with standard RUTF (P=.01). The default rate in SAM was 60 of 199 (30%) for alternative RUTF and 41 of 202 (20%) for standard RUTF (P=.04). Children enrolled with SAM who received alternative RUTF had less daily weight gain than those fed standard RUTF (2.4 ± 2.4 g/kg vs. 2.9 ± 2.6 g/kg, respectively; P<.05). Among children with moderate wasting, recovery rates were lower for alternative RUTF, 386 of 443 (87%), than standard RUTF, 397 of 426 (93%) (P=.003). More isoflavone metabolites were found in alternative RUTF than in the standard. Conclusion: The lower-cost alternative RUTF was less effective than standard RUTF in the treatment of severe and moderate malnutrition in Ghana.
Collapse
Affiliation(s)
- Kristin Kohlmann
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | | | - Julia M Gauglitz
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
| | | | - Kwesi Saalia
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | | | - Mark J Manary
- Department of Pediatrics, Washington University, St. Louis, MO, USA. .,Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Šošić-Jurjević B, Lütjohann D, Renko K, Filipović B, Radulović N, Ajdžanović V, Trifunović S, Nestorović N, Živanović J, Manojlović Stojanoski M, Kӧhrle J, Milošević V. The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats. J Steroid Biochem Mol Biol 2019; 190:1-10. [PMID: 30885834 DOI: 10.1016/j.jsbmb.2019.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Abstract
We examined whether isoflavones interfere with thyroid homeostasis, increase hepatic thyroid hormone concentrations and affect cholesterol metabolism in middle-aged (MA) male rats. Thirteen-month-old Wistar rats were injected subcutaneously with 35 mg/kg b.w./day of genistein, daidzein or vehicle (controls) for four weeks. Hepatic Dio1 gene expression was up-regulated by 70% (p < 0.001 for both) and Dio1 enzyme activity increased by 64% after genistein (p < 0.001) and 73% after daidzein treatment (p < 0.0001). Hepatic T3 was 75% higher (p < 0.05 for both), while T4 increased only after genistein treatment. Serum T4 concentrations were 31% lower in genistein- and 49% lower in dadzein-treated rats (p < 0.001 for both) compared with controls. Hepatic Cyp7a1 gene expression was up-regulated by 40% after genistein and 32% after daidzein treatment (p < 0.05 for both), in agreement with a 7α-hydroxycholesterol increase of 50% (p < 0.01) and 88% (p < 0.001), respectively. Serum 24- and 27-hydroxycholesterol were 30% lower (p < 0.05 for both), while only 24-hydroxycholesterol was decreased in the liver by 45% after genistein (p < 0.05) and 39% (p < 0.01) after dadzein treatment. Serum concentration of the cholesterol precursor desmosterol was 32% (p < 0.05) lower only after dadzein treatment alone, while both isoflavones elevated this parameter in the liver by 45% (p < 0.01). In conclusion, isoflavones increased T3 availability in the liver of MA males, despite decreasing serum T4. Hepatic increase of T3 possibly contributes to activation of the neutral pathway of cholesterol degradation into bile acids in the liver. While isoflavones obviously have the potential to trigger multiple mechanisms involved in cholesterol metabolism and oxysterol production, they failed to induce any hypocholesterolemic effect.
Collapse
Affiliation(s)
- B Šošić-Jurjević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - D Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - K Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - B Filipović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - N Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - V Ajdžanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - S Trifunović
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - N Nestorović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Živanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - M Manojlović Stojanoski
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - V Milošević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
40
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
41
|
Rowles JL, Han A, Miller RJ, Kelly JR, Applegate CC, Wallig MA, O'Brien WD, Erdman JW. Low fat but not soy protein isolate was an effective intervention to reduce nonalcoholic fatty liver disease progression in C57BL/6J mice: monitored by a novel quantitative ultrasound (QUS) method. Nutr Res 2019; 63:95-105. [PMID: 30824402 DOI: 10.1016/j.nutres.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Untreated nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) lead to irreversible liver damage. We hypothesized that a low-fat diet (LFD) or a high-fat diet (HFD) with soy protein isolate (SPI) would be an effective intervention to halt or reverse NAFLD progression. To test these hypotheses, we conducted 2 studies. In the first study, we fed an HFD to 7-week-old C57BL/6J mice to induce NAFLD compared to an LFD (control). Hepatic steatosis was monitored by quantitative ultrasound (QUS) scans (in vivo and ex vivo). Animals were euthanized after 0, 2, 4, and 6 weeks of feeding. In the second study, 7-week-old mice were randomized onto an LFD or HFD with SPI intervention after 4 weeks of feeding HFD. Animals from each group were scanned with QUS and euthanized after 4, 9, and 12 weeks of feeding. Animals fed the HFD developed NAFLD (100%) and NASH (80%) characterized by increased liver weight, lipid accumulation, and histological scores for inflammation by 4 weeks in the first study. In the second study, the LFD ameliorated this NAFLD phenotype after 5 weeks of feeding; however, the SPI intervention failed to significantly attenuate NAFLD. QUS parameters were significantly increased with the HFDs (P < .05) and steatosis grade (P < .05) and were positively correlated with hepatic lipid concentrations. In conclusion, dietary modification may be effective at reversing NAFLD and NASH at early stages. Furthermore, QUS may become a valuable tool to track hepatic steatosis. Additional studies are needed to further evaluate the effectiveness of these interventions.
Collapse
Affiliation(s)
- Joe L Rowles
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign
| | - Aiguo Han
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - Rita J Miller
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - Jamie R Kelly
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | | | - Matthew A Wallig
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign; Department of Pathobiology, University of Illinois at Urbana-Champaign
| | - William D O'Brien
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign.
| |
Collapse
|
42
|
Kozaczek M, Bottje W, Greene E, Lassiter K, Kong B, Dridi S, Korourian S, Hakkak R. Comparison of liver gene expression by RNAseq and PCR analysis after 8 weeks of feeding soy protein isolate- or casein-based diets in an obese liver steatosis rat model. Food Funct 2019; 10:8218-8229. [DOI: 10.1039/c9fo01387c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Differential expression of genes provides insight into fundamental mechanisms associated with the ability of soy protein isolate to attenuate liver steatosis in genetically obese rats.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Walter Bottje
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Elizabeth Greene
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Kentu Lassiter
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Byungwhi Kong
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Sami Dridi
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Soheila Korourian
- Department of Pathology
- University of Arkansas for Medical Sciences
- Little Rock
- USA
| | - Reza Hakkak
- Department of Dietetics and Nutrition
- University of Arkansas for Medical Sciences
- Little Rock
- USA
- Department of Pediatrics
| |
Collapse
|
43
|
Sarasquete C, Úbeda-Manzanaro M, Ortiz-Delgado JB. Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2018; 211:57-67. [PMID: 29870789 DOI: 10.1016/j.cbpc.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023]
Abstract
Based on the assumed oestrogenic and apoptotic properties of soya isoflavones (genistein, daidzein), and following the current OECD test-guidelines and principle of 3Rs, we have studied the potential toxicity of phytochemicals on the zebrafish embryos test (ZFET). For this purpose, zebrafish embryos at 2-3 h post-fertilisation (hpf) were exposed to both soya isoflavones (from 1.25 mg/L to 20 mg/L) and assayed until 96 hpf. Lethal and sub-lethal endpoints (mortality, hatching rates and malformations) were estimated in the ZFET, which was expanded to potential gene expression markers, determining the lowest observed effect (and transcriptional) concentrations (LOEC, LOTEC), and the no-observable effect (and transcriptional) concentrations (NOEC, NOTEC). The results revealed that genistein is more toxic (LC50-96 hpf: 4.41 mg/L) than daidzein (over 65.15 mg/L). Both isoflavones up-regulated the oestrogen (esrrb) and death receptors (fas) and cyp1a transcript levels. Most thyroid transcript signals were up-regulated by genistein (except for thyroid peroxidase/tpo), and the hatching enzyme (he1a1) was exclusively up-regulated by daidzein (from 1.25 mg/L onwards). The ZFET proved suitable for assessing toxicant effects of both isoflavones and potential disruptions (i.e. oestrogenic, apoptotic, thyroid, enzymatic) during the embryogenesis and the endotrophic larval period.
Collapse
Affiliation(s)
- Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain.
| | - María Úbeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
44
|
Abstract
This review summarizes the 2016 NAMS/Pfizer-Wulf H. Utian Endowed Lecture that focused on the history and basic science of soy isoflavones. Described is a personal perspective of the background and history that led to the current interest in soy and isoflavones with a specific focus on the role that soy isoflavones play in the health of postmenopausal women. This overview covers the metabolism and physiological behavior of isoflavones, their biological properties that are of potential relevance to aging, issues related to the safety of soy isoflavones, and the role of the important intestinally derived metabolite S-(-)equol.
Collapse
Affiliation(s)
- Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
45
|
Poschner S, Maier-Salamon A, Zehl M, Wackerlig J, Dobusch D, Pachmann B, Sterlini KL, Jäger W. The Impacts of Genistein and Daidzein on Estrogen Conjugations in Human Breast Cancer Cells: A Targeted Metabolomics Approach. Front Pharmacol 2017; 8:699. [PMID: 29051735 PMCID: PMC5633874 DOI: 10.3389/fphar.2017.00699] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
The beneficial effect of dietary soy food intake, especially for women diagnosed with breast cancer, is controversial, as in vitro data has shown that the soy isoflavones genistein and daidzein may even stimulate the proliferation of estrogen-receptor alpha positive (ERα+) breast cancer cells at low concentrations. As genistein and daidzein are known to inhibit key enzymes in the steroid metabolism pathway, and thus may influence levels of active estrogens, we investigated the impacts of genistein and daidzein on the formation of estrogen metabolites, namely 17β-estradiol (E2), 17β-estradiol-3-(β-D-glucuronide) (E2-G), 17β-estradiol-3-sulfate (E2-S) and estrone-3-sulfate (E1-S) in estrogen-dependent ERα+ MCF-7 cells. We found that both isoflavones were potent inhibitors of E1 and E2 sulfation (85–95% inhibition at 10 μM), but impeded E2 glucuronidation to a lesser extent (55–60% inhibition at 10 μM). The stronger inhibition of E1 and E2 sulfation compared with E2 glucuronidation was more evident for genistein, as indicated by significantly lower inhibition constants for genistein [Kis: E2-S (0.32 μM) < E1-S (0.76 μM) < E2-G (6.01 μM)] when compared with those for daidzein [Kis: E2-S (0.48 μM) < E1-S (1.64 μM) < E2-G (7.31 μM)]. Concomitant with the suppression of E1 and E2 conjugation, we observed a minor but statistically significant increase in E2 concentration of approximately 20%. As the content of genistein and daidzein in soy food is relatively low, an increased risk of breast cancer development and progression in women may only be observed following consumption of high-dose isoflavone supplements. Further long-term human studies monitoring free estrogens and their conjugates are therefore highly warranted to evaluate the potential side effects of high-dose genistein and daidzein, especially in patients diagnosed with ERα+ breast cancer.
Collapse
Affiliation(s)
- Stefan Poschner
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Alexandra Maier-Salamon
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Judith Wackerlig
- Division of Drug Design and Medicinal Chemistry, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Daniel Dobusch
- Division of Drug Design and Medicinal Chemistry, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Bettina Pachmann
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Konstantin L Sterlini
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Lambert MNT, Thybo CB, Lykkeboe S, Rasmussen LM, Frette X, Christensen LP, Jeppesen PB. Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial. Am J Clin Nutr 2017; 106:909-920. [PMID: 28768651 DOI: 10.3945/ajcn.117.153353] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/28/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Female age-related estrogen deficiency increases the risk of osteoporosis, which can be effectively treated with the use of hormone replacement therapy. However, hormone replacement therapy is demonstrated to increase cancer risk. Bioavailable isoflavones with selective estrogen receptor affinity show potential to prevent and treat osteoporosis while minimizing or eliminating carcinogenic side effects.Objective: In this study, we sought to determine the beneficial effects of a bioavailable isoflavone and probiotic treatment against postmenopausal osteopenia.Design: We used a novel red clover extract (RCE) rich in isoflavone aglycones and probiotics to concomitantly promote uptake and a favorable intestinal bacterial profile to enhance isoflavone bioavailability. This was a 12-mo, double-blind, parallel design, placebo-controlled, randomized controlled trial of 78 postmenopausal osteopenic women supplemented with calcium (1200 mg/d), magnesium (550 mg/d), and calcitriol (25 μg/d) given either RCE (60 mg isoflavone aglycones/d and probiotics) or a masked placebo [control (CON)].Results: RCE significantly attenuated bone mineral density (BMD) loss at the L2-L4 lumbar spine vertebra (P < 0.05), femoral neck (P < 0.01), and trochanter (P < 0.01) compared with CON (-0.99% and -2.2%; -1.04% and -3.05%; and -0.67% and -2.79, respectively). Plasma concentrations of collagen type 1 cross-linked C-telopeptide was significantly decreased in the RCE group (P < 0.05) compared with CON (-9.40% and -6.76%, respectively). RCE significantly elevated the plasma isoflavone concentration (P < 0.05), the urinary 2-hydroxyestrone (2-OH) to 16α-hydroxyestrone (16α-OH) ratio (P < 0.05), and equol-producer status (P < 0.05) compared with CON. RCE had no significant effect on other bone turnover biomarkers. Self-reported diet and physical activity were consistent and differences were nonsignificant between groups throughout the study. RCE was well tolerated with no adverse events.Conclusions: Twice daily RCE intake over 1 y potently attenuated BMD loss caused by estrogen deficiency, improved bone turnover, promoted a favorable estrogen metabolite profile (2-OH:16α-OH), and stimulated equol production in postmenopausal women with osteopenia. RCE intake combined with supplementation (calcium, magnesium, and calcitriol) was more effective than supplementation alone. This trial was registered at clinicaltrials.gov as NCT02174666.
Collapse
Affiliation(s)
| | | | - Simon Lykkeboe
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; and
| | - Xavier Frette
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Lars Porskjær Christensen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
47
|
Šošić-Jurjević B, Lütjohann D, Jarić I, Miler M, Vojnović Milutinović D, Filipović B, Ajdžanović V, Renko K, Wirth EK, Janković S, Kӧhrle J, Milošević V. Effects of age and soybean isoflavones on hepatic cholesterol metabolism and thyroid hormone availability in acyclic female rats. Exp Gerontol 2017; 92:74-81. [PMID: 28336316 DOI: 10.1016/j.exger.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 11/23/2022]
Abstract
Soy-food and its isoflavones, genistein (G) and daidzein (D), were reported to exert mild cholesterol-lowering effect, but the underlying mechanism is still unclear. In this research, first we studied age-related alterations in hepatic cholesterol metabolism of acyclic middle-aged (MA) female rats. Then we tested if purified isoflavones may prevent or reverse these changes, and whether putative changes in hepatic thyroid hormone availability may be associated with this effect. Serum and hepatic total cholesterol (TChol), bile acid and cholesterol precursors, as well as serum TSH and T4 concentrations, hepatic deiodinase (Dio) 1 enzyme activity and MCT8 protein expression were determined by comparing data obtained for MA with young adult (YA) intact (IC) females. Effects of subcutaneously administered G or D (35mg/kg) to MA rats were evaluated versus vehicle-treated MA females. MA IC females were characterized by: higher (p<0.05) serum TChol, lower (p<0.05) hepatic TChol and its biosynthetic precursors, lower (p<0.05) hepatic 7α-hydroxycholesterol but elevated (p<0.05) 27- and 24-hydroxycholesterol in comparison to YA IC. Both isoflavone treatments decreased (p<0.05) hepatic 27-hydroxycholesterol, G being more effective than D, without affecting any other parameter of Chol metabolism. Only G elevated hepatic Dio1 activity (p<0.05). In conclusion, age-related hypercholesteremia was associated with lower hepatic Chol synthesis and shift from main neutral (lower 7α-hydroxycholesterol) to alternative acidic pathway (higher 27-hydroxycholesterol) of Chol degradation to bile acid. Both isoflavones lowered hepatic 27-hydroxycholesterol, which may be considered beneficial. Only G treatment increased hepatic Dio1 activity, thus indicating local increase in thyroid hormones, obviously insufficient to induce prominent cholesterol-lowering effect.
Collapse
Affiliation(s)
- Branka Šošić-Jurjević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Ivana Jarić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Marko Miler
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Branko Filipović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Vladimir Ajdžanović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Eva Katrin Wirth
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Snežana Janković
- Institute for Science Application in Agriculture, University of Belgrade, Despot Stefan Blvd. 68b, 11000 Belgrade, Serbia
| | - Josef Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Verica Milošević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
48
|
Wu JC, Lai CS, Tsai ML, Ho CT, Wang YJ, Pan MH. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity. J Food Drug Anal 2016; 25:176-186. [PMID: 28911535 PMCID: PMC9333419 DOI: 10.1016/j.jfda.2016.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
Contaminants (or pollutants) that affect human health have become an important issue, spawning a myriad of studies on how to prevent harmful contaminant-induced effects. Recently, a variety of biological functions of natural dietary compounds derived from consumed foods and plants have been demonstrated in a number of studies. Natural dietary compounds exhibited several beneficial effects for the prevention of disease and the inhibition of chemically-induced carcinogenesis. Contaminant-induced toxicity and carcinogenesis are mostly attributed to the mutagenic activity of reactive metabolites and the disruption of normal biological functions. Therefore, the metabolic regulation of hazardous chemicals is key to reducing contaminant-induced adverse health effects. Moreover, promoting contaminant excretion from the body through Phase I and II metabolizing enzymes is also a useful strategy for reducing contaminant-induced toxicity. This review focuses on summarizing the natural dietary compounds derived from common dietary foods and plants and their possible mechanisms of action in the prevention/suppression of contaminant-induced toxicity.
Collapse
Affiliation(s)
- Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Min-Hsiung Pan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|