1
|
Narala S, Ali Youssef AA, Munnangi SR, Narala N, Lakkala P, Vemula SK, Repka M. 3D printing in vaginal drug delivery: a revolution in pharmaceutical manufacturing. Expert Opin Drug Deliv 2024; 21:1543-1557. [PMID: 38236621 DOI: 10.1080/17425247.2024.2306139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION The Food and Drug Administration's approval of the first three-dimensional (3D) printed tablet, Spritam®, led to a burgeoning interest in using 3D printing to fabricate numerous drug delivery systems for different routes of administration. The high degree of manufacturing flexibility achieved through 3D printing facilitates the preparation of dosage forms with many actives with complex and tailored release profiles that can address individual patient needs. AREAS COVERED This comprehensive review provides an in-depth look into the several 3D printing technologies currently utilized in pharmaceutical research. Additionally, the review delves into vaginal anatomy and physiology, 3D-printed drug delivery systems for vaginal applications, the latest research studies, and the challenges of 3D printing technology and future possibilities. EXPERT OPINION 3D printing technology can produce drug-delivery devices or implants optimized for vaginal applications, including vaginal rings, intra-vaginal inserts, or biodegradable microdevices loaded with drugs, all custom-tailored to deliver specific medications with controlled release profiles. However, though the potential of 3D printing in vaginal drug delivery is promising, there are still challenges and regulatory hurdles to overcome before these technologies can be widely adopted and approved for clinical use. Extensive research and testing are necessary to ensure safety, effectiveness, and biocompatibility.
Collapse
Affiliation(s)
- Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, USA
| |
Collapse
|
2
|
Przybyła S, Kwiatkowski M, Kwiatkowski M, Hebda M. Optimization of Ceramic Paste Composition for 3D Printing via Robocasting. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4560. [PMID: 39336300 PMCID: PMC11433308 DOI: 10.3390/ma17184560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
This article presents a procedure for selecting optimal ceramic paste formulations dedicated to the 3D printing process using robocasting technology. This study investigated pastes with varying ceramic powder particle sizes and different proportions of additives, such as ceramic microspheres and nutshells. This selection process allowed for the classification of ceramic mixtures into those suitable and unsuitable for this additive manufacturing technique. Subsequently, the viscosity of the pastes was measured, and extrudability tests were performed to determine the force required for extrusion and evaluate the quality of the extruded material. In the final stage, the setting time of the ceramic pastes was assessed to establish the drying time of the printed elements. It was found that the length of the extruded band of ceramic paste was inversely proportional to the Al₂O₃ content. Moreover, the extrusion force for samples with varying ceramic powder particle sizes (MG1-MG5) ranged from 133 to 166 N, compared to 77 N for the base sample (BM1). The obtained results enable further development in robocasting additive technology, including the development of a rapid and effective method for validating ceramic pastes used in this process.
Collapse
Affiliation(s)
- Szymon Przybyła
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Createc Sp. z o.o., E. Kwiatkowskiego 9, 37-450 Stalowa Wola, Poland
| | - Maciej Kwiatkowski
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Createc Sp. z o.o., E. Kwiatkowskiego 9, 37-450 Stalowa Wola, Poland
| | | | - Marek Hebda
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| |
Collapse
|
3
|
Khan AA, Khuroo T, Mohamed EM, Dharani S, Canberk K, Zhang X, Sangaré LO, Kuttolamadom MA, Rice-Ficht AC, Rahman Z. Development, Pharmacokinetics and Antimalarial Evaluation of Dose Flexible 3D Printlets of Dapsone for Pediatric Patients. AAPS PharmSciTech 2024; 25:217. [PMID: 39289236 DOI: 10.1208/s12249-024-02935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
The focus of current studies was to fabricate dose flexible printlets of dapsone (DDS) for pediatric patients by selective laser sintering (SLS) 3D printing method, and evaluate its physicochemical, patient in-use stability, and pharmacokinetic attributes. Eight formulations were fabricated using Kollicoat® IR, Eudragit® L-100-55 and StarCap®as excipients and evaluated for hardness, disintegration, dissolution, amorphous phase by differential scanning calorimetry and X-ray powder diffraction, in-use stability at 30 oC/75% RH for a month, and pharmacokinetic study in Sprague Dawley rats. The hardness, and disintegration of the printlets varied from 2.6±1.0 (F4) to 7.7±0.9 (F3) N and 2.0±0.4 (F2) to 7.6±0.6 (F3) sec, respectively. The drug was partially present as an amorphous form in the printlets. The drug was completely (>85%) dissolved in 20 min. No change in drug form or dissolution extent was observed after storage at in use condition. Pharmacokinetic profiles of both formulations (tablets and printlets) were almost superimposable with no statistical difference in pharmacokinetic parameters (Tmax, Cmax, and AUC0-¥)between formulations (p>0.05). Values of EC50 (half maximal effective concentration) and EC90 (maximal concentration inducing 90% maximal response) were 0.50±0.15 and 1.32±0.26 mM, 0.41±0.06 and 1.11±0.21, and 0.42±0.13 and 1.36±0.19 mM for DDS, printlet and tablet formulations, respectively, and differences were statistically insignificant (p>0.05). In conclusion, tablet and printlet formulations are expected to be clinical similar, thus clinically interchangeable.
Collapse
Affiliation(s)
- Adnan A Khan
- School of Engineering Medicine, Texas A&M University, Houston, Texas, 77030, USA
| | - Tahir Khuroo
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA
| | - Eman M Mohamed
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA
| | - Sathish Dharani
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA
| | - Kayalar Canberk
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA
- School of Engineering Medicine, Texas A&M University, Houston, Texas, 77030, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
- Department of Engineering Technology & Industrial Distribution, College of Engineering, Texas A&M University, College Station, Texas, 77843, USA
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, 77843, USA
| | - Xiaoyu Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Lamba Omar Sangaré
- Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
| | - Mathew A Kuttolamadom
- Department of Engineering Technology & Industrial Distribution, College of Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Allison C Rice-Ficht
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, 77843, USA
| | - Ziyaur Rahman
- Texas A&M Health Science Center, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Reynolds Medical Sciences Building, Suite 308, College Station, Texas, 77843, USA.
| |
Collapse
|
4
|
Paari-Molnar E, Kardos K, Told R, Simon I, Sahai N, Szabo P, Bovari-Biri J, Steinerbrunner-Nagy A, Pongracz JE, Rendeki S, Maroti P. Comprehensive Study of Mechanical, Electrical and Biological Properties of Conductive Polymer Composites for Medical Applications through Additive Manufacturing. Polymers (Basel) 2024; 16:2625. [PMID: 39339089 PMCID: PMC11435950 DOI: 10.3390/polym16182625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Conductive polymer composites are commonly present in flexible electrodes for neural interfaces, implantable sensors, and aerospace applications. Fused filament fabrication (FFF) is a widely used additive manufacturing technology, where conductive filaments frequently contain carbon-based fillers. In this study, the static and dynamic mechanical properties and the electrical properties (resistance, signal transmission, resistance measurements during cyclic tensile, bending and temperature tests) were investigated for polylactic acid (PLA)-based, acrylonitrile butadiene styrene (ABS)-based, thermoplastic polyurethane (TPU)-based, and polyamide (PA)-based conductive filaments with carbon-based additives. Scanning electron microscopy (SEM) was implemented to evaluate the results. Cytotoxicity measurements were performed. The conductive ABS specimens have a high gauge factor between 0.2% and 1.0% strain. All tested materials, except the PA-based conductive composite, are suitable for low-voltage applications such as 3D-printed EEG and EMG sensors. ABS-based and TPU-based conductive composites are promising raw materials suitable for temperature measuring and medical applications.
Collapse
Affiliation(s)
- Emese Paari-Molnar
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Kinga Kardos
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Roland Told
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Imre Simon
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Nitin Sahai
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Peter Szabo
- Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pecs, Ifjusag Str. 6, H-7624 Pecs, Hungary
- Environmental Analytical and Geoanalytical Research Group, Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rokus Str. 2, H-7624 Pecs, Hungary
| | - Alexandra Steinerbrunner-Nagy
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rokus Str. 2, H-7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rokus Str. 2, H-7624 Pecs, Hungary
| | - Szilard Rendeki
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Peter Maroti
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| |
Collapse
|
5
|
Abdalla Y, Ferianc M, Awad A, Kim J, Elbadawi M, Basit AW, Orlu M, Rodrigues M. Smart laser Sintering: Deep Learning-Powered powder bed fusion 3D printing in precision medicine. Int J Pharm 2024; 661:124440. [PMID: 38972521 DOI: 10.1016/j.ijpharm.2024.124440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Medicines remain ineffective for over 50% of patients due to conventional mass production methods with fixed drug dosages. Three-dimensional (3D) printing, specifically selective laser sintering (SLS), offers a potential solution to this challenge, allowing the manufacturing of small, personalized batches of medication. Despite its simplicity and suitability for upscaling to large-scale production, SLS was not designed for pharmaceutical manufacturing and necessitates a time-consuming, trial-and-error adaptation process. In response, this study introduces a deep learning model trained on a variety of features to identify the best feature set to represent drugs and polymeric materials for the prediction of the printability of drug-loaded formulations using SLS. The proposed model demonstrates success by achieving 90% accuracy in predicting printability. Furthermore, explainability analysis unveils materials that facilitate SLS printability, offering invaluable insights for scientists to optimize SLS formulations, which can be expanded to other disciplines. This represents the first study in the field to develop an interpretable, uncertainty-optimized deep learning model for predicting the printability of drug-loaded formulations. This paves the way for accelerating formulation development, propelling us into a future of personalized medicine with unprecedented manufacturing precision.
Collapse
Affiliation(s)
- Youssef Abdalla
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Martin Ferianc
- Department of Electronic and Electrical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Clinical Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jeesu Kim
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Miguel Rodrigues
- Department of Electronic and Electrical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Elbadawi M, Li H, Ghosh P, Alkahtani ME, Lu B, Basit AW, Gaisford S. Cold Laser Sintering of Medicines: Toward Carbon Neutral Pharmaceutical Printing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:11155-11166. [PMID: 39091925 PMCID: PMC11289754 DOI: 10.1021/acssuschemeng.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Selective laser sintering (SLS) is an emerging three-dimensional (3D) printing technology that uses a laser to fuse powder particles together, which allows the fabrication of personalized solid dosage forms. It possesses great potential for commercial use. However, a major drawback of SLS is the need to heat the powder bed while printing; this leads to high energy consumption (and hence a large carbon footprint), which may hinder its translation to industry. In this study, the concept of cold laser sintering (CLS) is introduced. In CLS, the aim is to sinter particles without heating the powder bed, where the energy from the laser, alone, is sufficient to fuse adjacent particles. The study demonstrated that a laser power above 1.8 W was sufficient to sinter both KollicoatIR and Eudragit L100-55-based formulations at room temperature. The cold sintering printing process was found to reduce carbon emissions by 99% compared to a commercial SLS printer. The CLS printed formulations possessed characteristics comparable to those made with conventional SLS printing, including a porous microstructure, fast disintegration time, and molecular dispersion of the drug. It was also possible to achieve higher drug loadings than was possible with conventional SLS printing. Increasing the laser power from 1.8 to 3.0 W increased the flexural strength of the printed formulations from 0.6 to 1.6 MPa, concomitantly increasing the disintegration time from 5 to over 300 s. CLS appears to offer a new route to laser-sintered pharmaceuticals that minimizes impact on the environment and is fit for purpose in Industry 5.0.
Collapse
Affiliation(s)
- Moe Elbadawi
- School
of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4DQ, United
Kingdom
| | - Hanxiang Li
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Paromita Ghosh
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Manal E. Alkahtani
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Bingyuan Lu
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W. Basit
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Simon Gaisford
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
7
|
Kreft K, Fanous M, Möckel V. The potential of three-dimensional printing for pediatric oral solid dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:229-248. [PMID: 38815205 DOI: 10.2478/acph-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
Pediatric patients often require individualized dosing of medicine due to their unique pharmacokinetic and developmental characteristics. Current methods for tailoring the dose of pediatric medications, such as tablet splitting or compounding liquid formulations, have limitations in terms of dosing accuracy and palatability. This paper explores the potential of 3D printing as a solution to address the challenges and provide tailored doses of medication for each pediatric patient. The technological overview of 3D printing is discussed, highlighting various 3D printing technologies and their suitability for pharmaceutical applications. Several individualization options with the potential to improve adherence are discussed, such as individualized dosage, custom release kinetics, tablet shape, and palatability. To integrate the preparation of 3D printed medication at the point of care, a decentralized manufacturing model is proposed. In this setup, pharmaceutical companies would routinely provide materials and instructions for 3D printing, while specialized compounding centers or hospital pharmacies perform the printing of medication. In addition, clinical opportunities of 3D printing for dose-finding trials are emphasized. On the other hand, current challenges in adequate dosing, regulatory compliance, adherence to quality standards, and maintenance of intellectual property need to be addressed for 3D printing to close the gap in personalized oral medication.
Collapse
Affiliation(s)
- Klemen Kreft
- 1Lek Pharmaceuticals d.d., a Sandoz Company, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
8
|
Khan MA, Khan N, Ullah M, Hamayun S, Makhmudov NI, Mbbs R, Safdar M, Bibi A, Wahab A, Naeem M, Hasan N. 3D printing technology and its revolutionary role in stent implementation in cardiovascular disease. Curr Probl Cardiol 2024; 49:102568. [PMID: 38599562 DOI: 10.1016/j.cpcardiol.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular disease (CVD), exemplified by coronary artery disease (CAD), is a global health concern, escalating in prevalence and burden. The etiology of CAD is intricate, involving different risk factors. CVD remains a significant cause of mortality, driving the need for innovative interventions like percutaneous coronary intervention and vascular stents. These stents aim to minimize restenosis, thrombosis, and neointimal hyperplasia while providing mechanical support. Notably, the challenges of achieving ideal stent characteristics persist. An emerging avenue to address this involves enhancing the mechanical performance of polymeric bioresorbable stents using additive manufacturing techniques And Three-dimensional (3D) printing, encompassing various manufacturing technologies, has transcended its initial concept to become a tangible reality in the medical field. The technology's evolution presents a significant opportunity for pharmaceutical and medical industries, enabling the creation of targeted drugs and swift production of medical implants. It revolutionizes medical procedures, transforming the strategies of doctors and surgeons. Patient-specific 3D-printed anatomical models are now pivotal in precision medicine and personalized treatment approaches. Despite its ongoing development, additive manufacturing in healthcare is already integrated into various medical applications, offering substantial benefits to a sector under pressure for performance and cost reduction. In this review primarily emphasizes stent technology, different types of stents, highlighting its application with some potential complications. Here we also address their benefits, potential issues, effectiveness, indications, and contraindications. In future it can potentially reduce complications and help in improving patients' outcomes. 3DP technology offers the promise to customize solutions for complex CVD conditions and help or fostering a new era of precision medicine in cardiology.
Collapse
Affiliation(s)
- Muhammad Amir Khan
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Niyamat Khan
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 Beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Punjab 04485, Pakistan
| | - Nurullo Ismoilovich Makhmudov
- Department of Hospital Therapy, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Raziya Mbbs
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Ayisha Bibi
- Department of Pharmacy, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat 26000, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat 26000, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
9
|
Adamov I, Stanojević G, Pavlović SM, Medarević D, Ivković B, Kočović D, Ibrić S. Powder bed fusion-laser beam (PBF-LB) three-dimensional (3D) printing: Influence of laser hatching distance on the properties of zolpidem tartrate tablets. Int J Pharm 2024; 657:124161. [PMID: 38677394 DOI: 10.1016/j.ijpharm.2024.124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Laser sintering, known as powder bed fusion-laser beam (PBF-LB), offers promising potential for the fabrication of patient-specific drugs. The aim of this study was to provide an insight into the PBF-LB process with regard to the process parameters, in particular the laser hatching distance, and its influence on the properties of zolpidem tartrate (ZT) tablets. PHARMACOAT® 603 was used as the polymer, while Candurin® Gold Sheen and AEROSIL® 200 were added to facilitate 3D printing. The particle size distribution of the powder blend showed that the layer height should be set to 100 µm, while the laser hatching distance was varied in five different steps (50, 100, 150, 200 and 250 µm), keeping the temperature and laser scanning speed constant. Increasing the laser hatching distance and decreasing the laser energy input led to a decrease in the colour intensity, mass, density and hardness of the ZT tablets, while the disintegration and dissolution rate were faster due to the more fragile bonds between the particles. The laser hatching distance also influenced the ZT dosage, indicating the importance of this process parameter in the production of presonalized drugs. The absence of drug-polymer interactions and the amorphization of the ZT were confirmed.
Collapse
Affiliation(s)
- Ivana Adamov
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450 11221, Belgrade, Serbia.
| | - Gordana Stanojević
- Institute for Medicines and Medical Devices of Montenegro, Ivana Crnojevića 64a 81000, Podgorica, Montenegro.
| | - Stefan M Pavlović
- Institute of Chemistry, National Institute of Republic of Serbia, Technology and Metallurgy, University of Belgrade, Njegoševa 12 11000, Belgrade, Serbia.
| | - Djordje Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450 11221, Belgrade, Serbia
| | - Branka Ivković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450 11221, Belgrade, Serbia.
| | - David Kočović
- Institute for Medicines and Medical Devices of Montenegro, Ivana Crnojevića 64a 81000, Podgorica, Montenegro
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450 11221, Belgrade, Serbia.
| |
Collapse
|
10
|
Sommer D, Stockfleet H, Hellmann R. Optimization of Mechanical Properties and Evaluation of Fatigue Behavior of Selective Laser Sintered Polyamide-12 Components. Polymers (Basel) 2024; 16:1366. [PMID: 38794558 PMCID: PMC11125166 DOI: 10.3390/polym16101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In this paper, a comprehensive study of the mechanical properties of selective laser sintered polyamide components is presented, for various different process parameters as well as environmental testing conditions. For the optimization of the static and dynamic mechanical load behavior, different process parameters, e.g., laser power, scan speed, and build temperature, were varied, defining an optimal parameter combination. First, the influence of the different process parameters was tested, leading to a constant energy density for different combinations. Due to similarities in mechanical load behavior, the energy density was identified as a decisive factor, mostly independent of the input parameters. Thus, secondly, the energy density was varied by the different parameters, exhibiting large differences for all levels of fatigue behavior. An optimal parameter combination of 18 W for the laser power and a scan speed of 2666 mm/s was determined, as a higher energy density led to the best results in static and dynamic testing. According to this, the variation in build temperature was investigated, leading to improvements in tensile strength and fatigue strength at higher build temperatures. Furthermore, different ambient temperatures during testing were evaluated, as the temperature-dependent behavior of polymers is of high importance for industrial applications. An increased ambient temperature as well as active cooling during testing was examined, having a significant impact on the high cycle fatigue regime and on the endurance limit.
Collapse
Affiliation(s)
- David Sommer
- Applied Laser and Photonics Group, University of Applied Sciences, Würzburger Straße 45, 63743 Aschaffenburg, Germany
| | | | | |
Collapse
|
11
|
Acquah C, Pabis Z, Seth SK, Levi L, Crespo-Hernández CE. Low-cost, 3D printed irradiation system for in vitro photodynamic therapy experiments. Photochem Photobiol 2024; 100:530-540. [PMID: 37929322 DOI: 10.1111/php.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
The development of a suitable irradiation setup is essential for in vitro experiments in photodynamic therapy (PDT). While various irradiation systems have been developed for PDT, only a few offer practical and high-quality setups for precise and reproducible results in cell culture experiments. This report introduces a cost-effective illumination setup designed for in vitro photodynamic treatments. The setup consists of a commercially available light-emitting diode (LED) lamp, a cooling unit, and a specially designed 3D-printed enclosure to accommodate a multiwell plate insert. The LED lamp is versatile, supporting various irradiation wavelengths and adjustable illumination fields, ensuring consistent and reliable performance. The study evaluates the setup through various parameters, including photon flux density, illumination uniformity, photon distribution across the multiwell plate, and temperature changes during irradiation. In addition, the effectiveness of the LED-based illumination system is tested by treating mouse mammary breast carcinoma cells (4T1) with Rose Bengal and LED irradiation at around 525 nm. The resulting IC50 of 5.2 ± 0.9 μM and a minimum media temperature change of ca. 1.2°C indicate a highly promising LED-based setup that offers a cost-effective and technically feasible solution for achieving consistent, reproducible, and uniform irradiation, enhancing research capabilities and potential applications.
Collapse
Affiliation(s)
- Chris Acquah
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zachary Pabis
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sourav Kanti Seth
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Liraz Levi
- Celloram Inc., Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
12
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
13
|
Tong H, Zhang J, Ma J, Zhang J. Perspectives on 3D printed personalized medicines for pediatrics. Int J Pharm 2024; 653:123867. [PMID: 38310991 DOI: 10.1016/j.ijpharm.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
In recent years, the rapid advancement of three-dimensional (3D) printing technology has yielded distinct benefits across various sectors, including pharmaceuticals. The pharmaceutical industry has particularly experienced advantages from the utilization of 3D-printed medications, which have invigorated the development of tailored drug formulations. The approval of 3D-printed drugs by the U.S. Food and Drug Administration (FDA) has significantly propelled personalized drug delivery. Additionally, 3D printing technology can accommodate the precise requirements of pediatric drug dosages and the complexities of multiple drug combinations. This review specifically concentrates on the application of 3D printing technology in pediatric preparations, encompassing a broad spectrum of uses and refined pediatric formulations. It compiles and evaluates the fundamental principles associated with the application of 3D printing technology in pediatric preparations, including its merits and demerits, and anticipates its future progression. The objective is to furnish theoretical underpinning for 3D printing technology to facilitate personalized drug delivery in pediatrics and to advocate for its implementation in clinical settings.
Collapse
Affiliation(s)
- Haixu Tong
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jing Ma
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China.
| |
Collapse
|
14
|
Elbadawi M, Li H, Basit AW, Gaisford S. The role of artificial intelligence in generating original scientific research. Int J Pharm 2024; 652:123741. [PMID: 38181989 DOI: 10.1016/j.ijpharm.2023.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Artificial intelligence (AI) is a revolutionary technology that is finding wide application across numerous sectors. Large language models (LLMs) are an emerging subset technology of AI and have been developed to communicate using human languages. At their core, LLMs are trained with vast amounts of information extracted from the internet, including text and images. Their ability to create human-like, expert text in almost any subject means they are increasingly being used as an aid to presentation, particularly in scientific writing. However, we wondered whether LLMs could go further, generating original scientific research and preparing the results for publication. We taskedGPT-4, an LLM, to write an original pharmaceutics manuscript, on a topic that is itself novel. It was able to conceive a research hypothesis, define an experimental protocol, produce photo-realistic images of 3D printed tablets, generate believable analytical data from a range of instruments and write a convincing publication-ready manuscript with evidence of critical interpretation. The model achieved all this is less than 1 h. Moreover, the generated data were multi-modal in nature, including thermal analyses, vibrational spectroscopy and dissolution testing, demonstrating multi-disciplinary expertise in the LLM. One area in which the model failed, however, was in referencing to the literature. Since the generated experimental results appeared believable though, we suggest that LLMs could certainly play a role in scientific research but with human input, interpretation and data validation. We discuss the potential benefits and current bottlenecks for realising this ambition here.
Collapse
Affiliation(s)
- Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Hanxiang Li
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
15
|
Pandav G, Karanwad T, Banerjee S. Sketching feasibility of additively manufactured different size gradient conventional hollow capsular shells (HCSs) by selective laser sintering (SLS): From design to applications. J Mech Behav Biomed Mater 2024; 151:106393. [PMID: 38224646 DOI: 10.1016/j.jmbbm.2024.106393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
Additive manufacturing (AM) is widely used to fabricate 3D printed objects from Computer-aided Design (CAD) prepared using the SolidWorks CAD modelling software. Different printing techniques are used to fabricate desired 3D objects; among all these techniques, it is widely accepted that SLS is one of the most effective methods of 3D printing for fabricating drug-loaded solid oral dosage forms (SODFs) in bulk quantities using the single-step process. Different SODFs, such as pills, miniprintlets, dual miniprintlets, and tablets, were fabricated with different sizes and shapes. In this study, for the first time, we introduce SLS-mediated hollow capsular shells (HCSs) with the help of the SLS 3D printing technique. This work aimed to explore the sinterability and feasibility of sketching HCSs using the SLS-mediated sintering technique with different marketed sizes of capsules ranging from 000 to 5. Here, we have utilized Kolliphor P 188 (KP 188) and Kollidon SR (KSR) in a 1:1 ratio as a matrix-forming agent and 1% charcoal as a laser absorption-enhancing material. In accordance with the CAD models, we have fabricated the gradient conventional different sizes of HCSs ranging from 000 to 5 using the constant printing parameters and composition. Fabricated all biobased HCSs were subjected to the assessment of mechanistic and physicochemical parameters using varied analytical tools. In the current study, tartrazine dye is used to assess the release pattern from HCSs, which resulted in the modified release pattern. The adapted approach will be the futuristic approach to replace animal-based gelatin capsules with pharmaceutical-grade polymer-based HCSs with a modified release with optimum mechanical strength.
Collapse
Affiliation(s)
- Ganesh Pandav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Tukaram Karanwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER), Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
16
|
Matta R, Moreau D, O’Connor R. Printable devices for neurotechnology. Front Neurosci 2024; 18:1332827. [PMID: 38440397 PMCID: PMC10909977 DOI: 10.3389/fnins.2024.1332827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Printable electronics for neurotechnology is a rapidly emerging field that leverages various printing techniques to fabricate electronic devices, offering advantages in rapid prototyping, scalability, and cost-effectiveness. These devices have promising applications in neurobiology, enabling the recording of neuronal signals and controlled drug delivery. This review provides an overview of printing techniques, materials used in neural device fabrication, and their applications. The printing techniques discussed include inkjet, screen printing, flexographic printing, 3D printing, and more. Each method has its unique advantages and challenges, ranging from precise printing and high resolution to material compatibility and scalability. Selecting the right materials for printable devices is crucial, considering factors like biocompatibility, flexibility, electrical properties, and durability. Conductive materials such as metallic nanoparticles and conducting polymers are commonly used in neurotechnology. Dielectric materials, like polyimide and polycaprolactone, play a vital role in device fabrication. Applications of printable devices in neurotechnology encompass various neuroprobes, electrocorticography arrays, and microelectrode arrays. These devices offer flexibility, biocompatibility, and scalability, making them cost-effective and suitable for preclinical research. However, several challenges need to be addressed, including biocompatibility, precision, electrical performance, long-term stability, and regulatory hurdles. This review highlights the potential of printable electronics in advancing our understanding of the brain and treating neurological disorders while emphasizing the importance of overcoming these challenges.
Collapse
Affiliation(s)
- Rita Matta
- Mines Saint-Etienne, Centre CMP, Departement BEL, Gardanne, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Departement BEL, Gardanne, France
| | - Rodney O’Connor
- Mines Saint-Etienne, Centre CMP, Departement BEL, Gardanne, France
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| |
Collapse
|
17
|
Kyser AJ, Fotouh B, Mahmoud MY, Frieboes HB. Rising role of 3D-printing in delivery of therapeutics for infectious disease. J Control Release 2024; 366:349-365. [PMID: 38182058 PMCID: PMC10923108 DOI: 10.1016/j.jconrel.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
18
|
Deka M, Sinha N, Das R, Hazarika NK, Das H, Daurai B, Gogoi M. A review on the surface modification of materials for 3D-printed diagnostic devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:485-495. [PMID: 38167879 DOI: 10.1039/d3ay01742g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Three-dimensional (3D) printing in tissue engineering and biosensing of analytes by using biocompatible materials or modifying surface structures is an upcoming area of study. This review discusses three common surface modification techniques, viz. alkaline hydrolysis, UV light photografting, and plasma treatment. Alkaline hydrolysis involves the reaction of an alkaline solution with the surface of a material, causing the surface to develop carboxyl and hydroxyl groups. This technique can enhance the biocompatibility, surface wettability, adhesion, printability, and dyeability of materials, such as acrylonitrile butadiene styrene (ABS), polycarbonate, and polylactic acid (PLA). This review also mentions details about some of the surface-modified 3D-printed diagnostic devices. Although most of the devices are modified using chemical processes, there are always multiple techniques involved while designing a diagnostic device. We have, therefore, mentioned some of the devices based on the materials used instead of categorising them as per modification techniques. 3D printing helps in the design of sophisticated shapes and structures using multiple materials. They can, therefore be used even in the design of microfluidic devices that are very useful for biosensing. We have also mentioned a few materials for printing microfluidic devices.
Collapse
Affiliation(s)
- Mridupaban Deka
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Nibedita Sinha
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Rajkamal Das
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Nihal Kumar Hazarika
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Hrishikesh Das
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Bethuel Daurai
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| |
Collapse
|
19
|
Khan J, Yadav S. Nanotechnology-based Nose-to-brain Delivery in Epilepsy: A NovelApproach to Diagnosis and Treatment. Pharm Nanotechnol 2024; 12:314-328. [PMID: 37818558 DOI: 10.2174/0122117385265554230919070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 10/12/2023]
Abstract
Epilepsy is a serious neurological disease, and scientists have a significant challenge in developing a noninvasive treatment for the treatment of epilepsy. The goal is to provide novel ideas for improving existing and future anti-epileptic medications. The injection of nano treatment via the nose to the brain is being considered as a possible seizure control method. Various nasal medicine nanoformulations have the potential to cure epilepsy. Investigations with a variety of nose-to-brain dosing methods for epilepsy treatment have yielded promising results. After examining global literature on nanotechnology and studies, the authors propose nasal administration with nanoformulations as a means to successfully treat epilepsy. The goal of this review is to look at the innovative application of nanomedicine for epilepsy treatment via nose-to-brain transfer, with a focus on the use of nanoparticles for load medicines. When nanotechnology is combined with the nose to brain approach, treatment efficacy can be improved through site specific delivery. Furthermore, this technique of administration decreases adverse effects and patient noncompliance encountered with more traditional procedures.
Collapse
Affiliation(s)
- Javed Khan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Schob D, Richter L, Kotecki K, Kurpisz D, Roszak R, Maasch P, Ziegenhorn M. Characterization and Simulation of Shear-Induced Damage in Selective-Laser-Sintered Polyamide 12. MATERIALS (BASEL, SWITZERLAND) 2023; 17:38. [PMID: 38203892 PMCID: PMC10780187 DOI: 10.3390/ma17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
This paper presents the characterisation of selective-laser-sintered (SLS) samples of polyamide 12 (PA12) under shear loading. PA12 is a semi-crystalline thermoplastic and is used in various industries. Its behaviour under shear stress, which is particularly important for product reliability, has not yet been sufficiently investigated. This research focuses on understanding the material and damage behaviour of PA12 under shear-induced stress conditions. The study included quasi-static experiments and numerical simulations. Samples were prepared via SLS and tested according to ASTM standards. Digital image correlation (DIC) was used for precise deformation measurements. The Chaboche material model was used for the viscoplastic behaviour in the numerical simulations. Due to existing material discontinuities in the form of voids, the material model was coupled with the Gurson-Tvergaard-Needleman (GTN) damage model. A modified approach of the GTN model was used to account for low stress triaxiality under shear loading. These models were implemented in MATLAB and integrated into Abaqus via a User Material (UMAT) subroutine. The results of the experiments and simulations showed a high degree of accuracy. An important finding was the significant influence of the shear factor kw on the damage behaviour, especially during failure. This factor proved to be essential for the accurate prediction of material behaviour under shear-induced stress conditions. The integration of the modified GTN model with the Chaboche material model in UMAT enables an accurate prediction of the material and damage behaviour and thus makes an important contribution to the understanding of the mechanical material behaviour of SLS PA12 specimens.
Collapse
Affiliation(s)
- Daniela Schob
- Chair of Engineering Mechanics and Machine Dynamics, Faculty of Mechanical Engineering, Electrical and Energy Systems, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (M.Z.)
| | - Lukas Richter
- Chair of Engineering Mechanics and Machine Dynamics, Faculty of Mechanical Engineering, Electrical and Energy Systems, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (M.Z.)
| | - Krzysztof Kotecki
- Institute of Applied Mechanics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Dariusz Kurpisz
- Institute of Applied Mechanics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Robert Roszak
- Chair of Engineering Mechanics and Machine Dynamics, Faculty of Mechanical Engineering, Electrical and Energy Systems, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (M.Z.)
- Institute of Applied Mechanics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Philipp Maasch
- Chair of Engineering Mechanics and Machine Dynamics, Faculty of Mechanical Engineering, Electrical and Energy Systems, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (M.Z.)
| | - Matthias Ziegenhorn
- Chair of Engineering Mechanics and Machine Dynamics, Faculty of Mechanical Engineering, Electrical and Energy Systems, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (M.Z.)
| |
Collapse
|
21
|
Xue A, Li W, Tian W, Zheng M, Shen L, Hong Y. A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022. Pharmaceuticals (Basel) 2023; 16:1521. [PMID: 38004387 PMCID: PMC10675621 DOI: 10.3390/ph16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are "drug release" and "drug dosage forms". In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation.
Collapse
Affiliation(s)
- Aile Xue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenjie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenxiu Tian
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Minyue Zheng
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| |
Collapse
|
22
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
23
|
Agarwal P, Arora G, Panwar A, Mathur V, Srinivasan V, Pandita D, Vasanthan KS. Diverse Applications of Three-Dimensional Printing in Biomedical Engineering: A Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1140-1163. [PMID: 37886418 PMCID: PMC10599440 DOI: 10.1089/3dp.2022.0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A three-dimensional (3D) printing is a robotically controlled state-of-the-art technology that is promising for all branches of engineering with a meritorious emphasis to biomedical engineering. The purpose of 3D printing (3DP) is to create exact superstructures without any framework in a brief period with high reproducibility to create intricate and complex patient-tailored structures for organ regeneration, drug delivery, imaging processes, designing personalized dose-specific tablets, developing 3D models of organs to plan surgery and to understand the pathology of disease, manufacturing cost-effective surgical tools, and fabricating implants and organ substitute devices for prolonging the lives of patients, etc. The formulation of bioinks and programmed G codes help to obtain precise 3D structures, which determines the stability and functioning of the 3D-printed structures. Three-dimensional printing for medical applications is ambitious and challenging but made possible with the culmination of research expertise from various fields. Exploring and expanding 3DP for biomedical and clinical applications can be life-saving solutions. The 3D printers are cost-effective and eco-friendly, as they do not release any toxic pollutants or waste materials that pollute the environment. The sampling requirements and processing parameters are amenable, which further eases the production. This review highlights the role of 3D printers in the health care sector, focusing on their roles in tablet development, imaging techniques, disease model development, and tissue regeneration.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gargi Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
| | - Amit Panwar
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, Hong Kong
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Government of NCT of Delhi, New Delhi, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
24
|
Kantaros A, Soulis E, Petrescu FIT, Ganetsos T. Advanced Composite Materials Utilized in FDM/FFF 3D Printing Manufacturing Processes: The Case of Filled Filaments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6210. [PMID: 37763488 PMCID: PMC10532629 DOI: 10.3390/ma16186210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The emergence of additive manufacturing technologies has brought about a significant transformation in several industries. Among these technologies, Fused Deposition Modeling/Fused Filament Fabrication (FDM/FFF) 3D printing has gained prominence as a rapid prototyping and small-scale production technique. The potential of FDM/FFF for applications that require improved mechanical, thermal, and electrical properties has been restricted due to the limited range of materials that are suitable for this process. This study explores the integration of various reinforcements, including carbon fibers, glass fibers, and nanoparticles, into the polymer matrix of FDM/FFF filaments. The utilization of advanced materials for reinforcing the filaments has led to the enhancement in mechanical strength, stiffness, and toughness of the 3D-printed parts in comparison to their pure polymer counterparts. Furthermore, the incorporation of fillers facilitates improved thermal conductivity, electrical conductivity, and flame retardancy, thereby broadening the scope of potential applications for FDM/FFF 3D-printed components. Additionally, the article underscores the difficulties linked with the utilization of filled filaments in FDM/FFF 3D printing, including but not limited to filament extrusion stability, nozzle clogging, and interfacial adhesion between the reinforcement and matrix. Ultimately, a variety of pragmatic implementations are showcased, wherein filled filaments have exhibited noteworthy benefits in comparison to standard FDM/FFF raw materials. The aforementioned applications encompass a wide range of industries, such as aerospace, automotive, medical, electronics, and tooling. The article explores the possibility of future progress and the incorporation of innovative reinforcement materials. It presents a plan for the ongoing growth and application of advanced composite materials in FDM/FFF 3D printing.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Evangelos Soulis
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Florian Ion Tiberiu Petrescu
- Theory of Mechanisms and Robots Department, Faculty of Industrial Engineering and Robotics, Bucharest Polytechnic University, 060042 Bucharest, Romania
| | - Theodore Ganetsos
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| |
Collapse
|
25
|
Kayalar C, Rahman Z, Mohamed EM, Dharani S, Khuroo T, Helal N, Kuttolamadom MA, Khan MA. Preparation and Characterization of 3D-Printed Dose-Flexible Printlets of Tenofovir Disoproxil Fumarate. AAPS PharmSciTech 2023; 24:171. [PMID: 37566167 DOI: 10.1208/s12249-023-02623-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
The aim of this work was to design pediatric-friendly, dose-flexible orally disintegrating drug delivery systems (printlets) of the antiviral drug tenofovir disoproxil fumarate (TDF) by selective laser sintering (SLS) for potential use in hospitals along with other antiviral drugs. In order to obtain a consistent quality of printlets with desired properties, it is important to understand certain critical quality attributes for their main and interactions effect. The printlets were optimized by Box-Behnken's design of the experiment by varying process variables while keeping the composition constant. The composition contained 16.3% TDF, 72.7% polyvinyl pyrrolidone K16-18, 8% magnesium aluminum silicate, 3% Candurin® NXT Ruby Red, and 0.3% colloidal silicon dioxide. The process variables studied were surface (X1), chamber temperatures (X2), and laser scanning speed (X3). The range of variable levels was 75-85°C for X1, 50-70°C for X2, and 200-240 mm/s for X3, respectively. The responses studied were hardness, disintegration time, dissolution, physiochemical, and pharmacokinetic characterization. X-ray powder diffraction indicated partial or complete conversion of the crystalline drug into amorphous form in the printlets. Comparative pharmacokinetics between Viread® (generic) and printlets in rats were superimposable. Pharmacokinetic parameters showed statistically insignificant differences between the two formulations in terms of Tmax, Cmax, and AUC of (p > 0.05). Printlets were bioequivalent to Viread® as per FDA bioequivalence criteria. Thus, the SLS printing method showed the fabrication of dose-flexible printlets with quality, and in vivo performance equivalent to commercial tablets.
Collapse
Affiliation(s)
- Canberk Kayalar
- Reynolds Medical Sciences Building, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Suite 159, College Station, Texas, 77843-1114, USA
| | - Ziyaur Rahman
- Reynolds Medical Sciences Building, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Suite 159, College Station, Texas, 77843-1114, USA
| | - Eman M Mohamed
- Reynolds Medical Sciences Building, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Suite 159, College Station, Texas, 77843-1114, USA
| | - Sathish Dharani
- Reynolds Medical Sciences Building, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Suite 159, College Station, Texas, 77843-1114, USA
| | - Tahir Khuroo
- Reynolds Medical Sciences Building, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Suite 159, College Station, Texas, 77843-1114, USA
| | - Nada Helal
- Reynolds Medical Sciences Building, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Suite 159, College Station, Texas, 77843-1114, USA
| | - Mathew A Kuttolamadom
- Department of Engineering Technology & Industrial Distribution, College of Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Mansoor A Khan
- Reynolds Medical Sciences Building, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Suite 159, College Station, Texas, 77843-1114, USA.
| |
Collapse
|
26
|
Raj R, Dixit AR. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:828-854. [PMID: 37609584 PMCID: PMC10440670 DOI: 10.1089/3dp.2021.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.
Collapse
Affiliation(s)
- Ratnesh Raj
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Amit Rai Dixit
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
27
|
Rani P, Yadav V, Pandey P, Yadav K. Recent patent-based review on the role of three-dimensional printing technology in pharmaceutical and biomedical applications. Pharm Pat Anal 2023; 12:159-175. [PMID: 37882734 DOI: 10.4155/ppa-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Three-dimensional printing (3DP) is emerging as an innovative manufacturing technology for biomedical and pharmaceutical applications, since the US FDA approval of Spritam as a 3D-printed drug. In the present review, we have highlighted the potential benefits of 3DP technology in healthcare, such as the ability to create patient-specific medical devices and implants, as well as the possibility of on-demand production of drugs and personalized dosage forms. We have further discussed future research to optimize 3DP processes and materials for pharmaceutical and biomedical applications. Cohesively, we have put forward the current state of active patents and applications related to 3DP technology in the healthcare and pharmaceutical industries including hearing aids, prostheses, medical devices and drug-delivery systems.
Collapse
Affiliation(s)
- Palak Rani
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, 140307, Punjab, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Lund University, Malmö SE-20213, Sweden
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, Haryana, India
| | - Kiran Yadav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, 140307, Punjab, India
| |
Collapse
|
28
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
29
|
Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope. Pharmaceutics 2023; 15:1448. [PMID: 37242690 PMCID: PMC10220923 DOI: 10.3390/pharmaceutics15051448] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
3D printing technology in medicine is gaining great attention from researchers since the FDA approved the first 3D-printed tablet (Spritam®) on the market. This technique permits the fabrication of various types of dosage forms with different geometries and designs. Its feasibility in the design of different types of pharmaceutical dosage forms is very promising for making quick prototypes because it is flexible and does not require expensive equipment or molds. However, the development of multi-functional drug delivery systems, specifically as solid dosage forms loaded with nanopharmaceuticals, has received attention in recent years, although it is challenging for formulators to convert them into a successful solid dosage form. The combination of nanotechnology with the 3D printing technique in the field of medicine has provided a platform to overcome the challenges associated with the fabrication of nanomedicine-based solid dosage forms. Therefore, the major focus of the present manuscript is to review the recent research developments that involved the formulation design of nanomedicine-based solid dosage forms utilizing 3D printing technology. Utilization of 3D printing techniques in the field of nanopharmaceuticals achieved the successful transformation of liquid polymeric nanocapsules and liquid self-nanoemulsifying drug delivery systems (SNEDDS) to solid dosage forms such as tablets and suppositories easily with customized doses as per the needs of the individual patient (personalized medicine). Furthermore, the present review also highlights the utility of extrusion-based 3D printing techniques (Pressure-Assisted Microsyringe-PAM; Fused Deposition Modeling-FDM) to produce tablets and suppositories containing polymeric nanocapsule systems and SNEDDS for oral and rectal administration. The manuscript critically analyzes contemporary research related to the impact of various process parameters on the performance of 3D-printed solid dosage forms.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
30
|
Alqahtani AA, Ahmed MM, Mohammed AA, Ahmad J. 3D Printed Pharmaceutical Systems for Personalized Treatment in Metabolic Syndrome. Pharmaceutics 2023; 15:pharmaceutics15041152. [PMID: 37111638 PMCID: PMC10144629 DOI: 10.3390/pharmaceutics15041152] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The current healthcare system is widely based on the concept of “one size fit for all”, which emphasizes treating a disease by prescribing the same drug to all patients with equivalent doses and dosing frequency. This medical treatment scenario has shown varied responses with either no or weak pharmacological effects and exaggerated adverse reactions preceded by more patient complications. The hitches to the concept of “one size fits all” have devoted the attention of many researchers to unlocking the concept of personalized medicine (PM). PM delivers customized therapy with the highest safety margin for an individual patient’s needs. PM has the potential to revolutionize the current healthcare system and pave the way to alter drug choices and doses according to a patient’s clinical responses, providing physicians with the best treatment outcomes. The 3D printing techniques is a solid-form fabrication method whereby successive layers of materials based on computer-aided designs were deposited to form 3D structures. The 3D printed formulation achieves PM goals by delivering the desired dose according to patient needs and drug release profile to achieve a patient’s personal therapeutic and nutritional needs. This pre-designed drug release profile attains optimum absorption and distribution, exhibiting maximum efficacy and safety profiles. This review aims to focus on the role of the 3D printing technique as a promising tool to design PM in metabolic syndrome (MS).
Collapse
Affiliation(s)
- Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
31
|
Englezos K, Wang L, Tan ECK, Kang L. 3D printing for personalised medicines: implications for policy and practice. Int J Pharm 2023; 635:122785. [PMID: 36849040 DOI: 10.1016/j.ijpharm.2023.122785] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
The current healthcare dynamic has shifted from one-size-fits-all to patient-centred care, with our increased understanding of pharmacokinetics and pharmacogenomics demanding a switch to more individualised therapies. As the pharmaceutical industry remains yet to succumb to the push of a technological paradigm shift, pharmacists lack the means to provide completely personalised medicine (PM) to their patients in a safe, affordable, and widely accessible manner. As additive manufacturing technology has already established its strength in producing pharmaceutical formulations, it is necessary to next consider methods by which this technology can create PM accessible from pharmacies. In this article, we reviewed the limitations of current pharmaceutical manufacturing methods for PMs, three-dimensional (3D) printing techniques that are most beneficial for PMs, implications of bringing this technology into pharmacy practice, and implications for policy surrounding 3D printing techniques in the manufacturing of PMs.
Collapse
Affiliation(s)
- Klaudia Englezos
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lingxin Wang
- Pharmacy Department, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Edwin C K Tan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
32
|
Tikhomirov E, Åhlén M, Di Gallo N, Strømme M, Kipping T, Quodbach J, Lindh J. Selective laser sintering additive manufacturing of dosage forms: Effect of powder formulation and process parameters on the physical properties of printed tablets. Int J Pharm 2023; 635:122780. [PMID: 36849041 DOI: 10.1016/j.ijpharm.2023.122780] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.
Collapse
Affiliation(s)
- Evgenii Tikhomirov
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Nicole Di Gallo
- Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Thomas Kipping
- Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany
| | - Julian Quodbach
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands.
| | - Jonas Lindh
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden.
| |
Collapse
|
33
|
Application of 3D Printing in Bone Grafts. Cells 2023; 12:cells12060859. [PMID: 36980200 PMCID: PMC10047278 DOI: 10.3390/cells12060859] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The application of 3D printing in bone grafts is gaining in importance and is becoming more and more popular. The choice of the method has a direct impact on the preparation of the patient for surgery, the probability of rejection of the transplant, and many other complications. The aim of the article is to discuss methods of bone grafting and to compare these methods. This review of literature is based on a selective literature search of the PubMed and Web of Science databases from 2001 to 2022 using the search terms “bone graft”, “bone transplant”, and “3D printing”. In addition, we also reviewed non-medical literature related to materials used for 3D printing. There are several methods of bone grafting, such as a demineralized bone matrix, cancellous allograft, nonvascular cortical allograft, osteoarticular allograft, osteochondral allograft, vascularized allograft, and an autogenic transplant using a bone substitute. Currently, autogenous grafting, which involves removing the patient’s bone from an area of low aesthetic importance, is referred to as the gold standard. 3D printing enables using a variety of materials. 3D technology is being applied to bone tissue engineering much more often. It allows for the treatment of bone defects thanks to the creation of a porous scaffold with adequate mechanical strength and favorable macro- and microstructures. Bone tissue engineering is an innovative approach that can be used to repair multiple bone defects in the process of transplantation. In this process, biomaterials are a very important factor in supporting regenerative cells and the regeneration of tissue. We have years of research ahead of us; however, it is certain that 3D printing is the future of transplant medicine.
Collapse
|
34
|
Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA. Recent Advances in the Applications of Additive Manufacturing (3D Printing) in Drug Delivery: A Comprehensive Review. AAPS PharmSciTech 2023; 24:57. [PMID: 36759435 DOI: 10.1208/s12249-023-02524-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
There has been a tremendous increase in the investigations of three-dimensional (3D) printing for biomedical and pharmaceutical applications, and drug delivery in particular, ever since the US FDA approved the first 3D printed medicine, SPRITAM® (levetiracetam) in 2015. Three-dimensional printing, also known as additive manufacturing, involves various manufacturing techniques like fused-deposition modeling, 3D inkjet, stereolithography, direct powder extrusion, and selective laser sintering, among other 3D printing techniques, which are based on the digitally controlled layer-by-layer deposition of materials to form various geometries of printlets. In contrast to conventional manufacturing methods, 3D printing technologies provide the unique and important opportunity for the fabrication of personalized dosage forms, which is an important aspect in addressing diverse patient medical needs. There is however the need to speed up the use of 3D printing in the biopharmaceutical industry and clinical settings, and this can be made possible through the integration of modern technologies like artificial intelligence, machine learning, and Internet of Things, into additive manufacturing. This will lead to less human involvement and expertise, independent, streamlined, and intelligent production of personalized medicines. Four-dimensional (4D) printing is another important additive manufacturing technique similar to 3D printing, but adds a 4th dimension defined as time, to the printing. This paper aims to give a detailed review of the applications and principles of operation of various 3D printing technologies in drug delivery, and the materials used in 3D printing, and highlight the challenges and opportunities of additive manufacturing, while introducing the concept of 4D printing and its pharmaceutical applications.
Collapse
Affiliation(s)
- Derick Muhindo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Rasha Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Priyanka Srinivasan
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.,Pii Center for Pharmaceutical Technology, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
35
|
Zhang Y, Thakkar R, Zhang J, Lu A, Duggal I, Pillai A, Wang J, Aghda NH, Maniruzzaman M. Investigating the Use of Magnetic Nanoparticles As Alternative Sintering Agents in Selective Laser Sintering (SLS) 3D Printing of Oral Tablets. ACS Biomater Sci Eng 2023. [PMID: 36744796 DOI: 10.1021/acsbiomaterials.2c00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selective laser sintering (SLS) is a single-step, three-dimensional printing (3DP) process that is gaining momentum in the manufacturing of pharmaceutical dosage forms. It also offers opportunities for manufacturing various pharmaceutical dosage forms with a wide array of drug delivery systems. This research aimed to introduce carbonyl iron as a multifunctional magnetic and heat conductive ingredient for the fabrication of oral tablets containing isoniazid, a model antitubercular drug, via SLS 3DP process. Furthermore, the effects of magnetic iron particles on the drug release from the SLS printed tablets under a specially designed magnetic field was studied. Optimization of tablet quality was performed by adjusting SLS printing parameters. The independent factors studied were laser scanning speed, hatching space, and surface/chamber temperature. The responses measured were printed tablets' weight, hardness, disintegration time, and dissolution performance. It has been observed that, for the drug formulation with carbonyl iron, due to its inherent thermal conductivity, sintering tablets required relatively lower laser energy input to form the tablets of the same quality attributes as the other batches that contained no magnetic particles. Also, printed tablets with carbonyl iron released 25% more drugs under a magnetic field than those without it. It can be claimed that magnetic nanoparticles appear as an alternative conductive material to facilitate the sintering process during SLS 3DP of dosage forms.
Collapse
Affiliation(s)
- Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Rishi Thakkar
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - JiaXiang Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - AnQi Lu
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Ishaan Duggal
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Amit Pillai
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - JiaWei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Niloofar Heshmati Aghda
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
36
|
Rahman Z, Khuroo T, Mohamed EM, Dharani S, Kayalar C, Kuttolamadom MA, Sangaré LO, Khan MA. Pyrimethamine 3D printlets for pediatric toxoplasmosis: design, pharmacokinetics, and anti-toxoplasma activity. Expert Opin Drug Deliv 2023; 20:301-311. [PMID: 36639201 DOI: 10.1080/17425247.2023.2169272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The focus of the present research is to develop printlet formulations of pyrimethamine (PMT). METHODS Printlets formulation of PMT were developed by screening design by varying laser scanning speed, Kollidon® VA 64, polyvinylpyrrolidone, and disintegrant. RESULTS Laser scanning speed, Kollidon® VA, and disintegrant had statistically significant effect on hardness, disintegration time, and/or dissolution (p < 0.05). Dissolution was almost 100% in 30 min. X-ray powder diffraction indicated partial amorphous transformation of the crystalline drug. Pharmacokinetic and anti-toxoplasma activity profiles of the printlets and compressed tablets were superimposable with no statistical difference (p > 0.05). CONCLUSION Clinical performance of the printlets would be similar to the compressed tablets.
Collapse
Affiliation(s)
- Ziyaur Rahman
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Tahir Khuroo
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Eman M Mohamed
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Sathish Dharani
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Canberk Kayalar
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Mathew A Kuttolamadom
- Department of Engineering Technology & Industrial Distribution, College of Engineering, Texas A&M University, College Station, TX, USA
| | | | - Mansoor A Khan
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
37
|
Kim YH, Priyadarshi R, Kim JW, Kim J, Alekseev DG, Rhim JW. 3D-Printed Pectin/Carboxymethyl Cellulose/ZnO Bio-Inks: Comparative Analysis with the Solution Casting Method. Polymers (Basel) 2022; 14:4711. [PMID: 36365704 PMCID: PMC9657909 DOI: 10.3390/polym14214711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 07/22/2023] Open
Abstract
Bio-inks consisting of pectin (Pec), carboxymethyl cellulose (CMC), and ZnO nanoparticles (ZnO) were used to prepare films by solution casting and 3D-printing methods. Field emission scanning electron microscopy (FE-SEM) was conducted to observe that the surface of samples made by 3D bioprinter was denser and more compact than the solution cast samples. In addition, Pec/CMC/ZnO made by 3D-bioprinter (Pec/CMC/ZnO-3D) revealed enhanced water vapor barrier, hydrophobicity, and mechanical properties. Pec/CMC/ZnO-3D also showed strong antimicrobial activity within 12 h against S. aureus and E. coli O157: H7 bacterial strains compared to the solution cast films. Further, the nanocomposite bio-inks used for 3D printing did not show cytotoxicity towards normal human dermal fibroblast (NDFB) cells but enhanced the fibroblast proliferation with increasing exposure concentration of the sample. The study provided two important inferences. Firstly, the 3D bioprinting method can be an alternative, better, and more practical method for fabricating biopolymer film instead of solution casting, which is the main finding of this work defining its novelty. Secondly, the Pec/CMC/ZnO can potentially be used as 3D bio-inks to fabricate functional films or scaffolds and biomedical applications.
Collapse
Affiliation(s)
- Yeon Ho Kim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- RokitHealth Care Ltd., 9, Digital-ro 10-gil, Geumcheon-gu, Seoul 08514, Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Jin-Wook Kim
- RokitHealth Care Ltd., 9, Digital-ro 10-gil, Geumcheon-gu, Seoul 08514, Korea
| | - Jangwhan Kim
- RokitHealth Care Ltd., 9, Digital-ro 10-gil, Geumcheon-gu, Seoul 08514, Korea
| | - Denis G. Alekseev
- Samara State Medical University, Ulitsa Artsybushevskaya, 171, Samara 443001, Russia
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
38
|
Recent Advances in Amorphous Solid Dispersions: Preformulation, Formulation Strategies, Technological Advancements and Characterization. Pharmaceutics 2022; 14:pharmaceutics14102203. [PMID: 36297638 PMCID: PMC9609913 DOI: 10.3390/pharmaceutics14102203] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are among the most popular and widely studied solubility enhancement techniques. Since their inception in the early 1960s, the formulation development of ASDs has undergone tremendous progress. For instance, the method of preparing ASDs evolved from solvent-based approaches to solvent-free methods such as hot melt extrusion and Kinetisol®. The formulation approaches have advanced from employing a single polymeric carrier to multiple carriers with plasticizers to improve the stability and performance of ASDs. Major excipient manufacturers recognized the potential of ASDs and began introducing specialty excipients ideal for formulating ASDs. In addition to traditional techniques such as differential scanning calorimeter (DSC) and X-ray crystallography, recent innovations such as nano-tomography, transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray microscopy support a better understanding of the microstructure of ASDs. The purpose of this review is to highlight the recent advancements in the field of ASDs with respect to formulation approaches, methods of preparation, and advanced characterization techniques.
Collapse
|
39
|
Recent advancements in additive manufacturing techniques employed in the pharmaceutical industry: A bird's eye view. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Wang N, Shi H, Yang S. 3D printed oral solid dosage form: Modified release and improved solubility. J Control Release 2022; 351:407-431. [PMID: 36122897 DOI: 10.1016/j.jconrel.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Oral solid dosage form is currently the most common used form of drug. 3D Printing, also known as additive manufacturing (AM), can quickly print customized and individualized oral solid dosage form on demand. Compared with the traditional tablet manufacturing process, 3D Printing has many advantages. By rationally selecting the formulation composition and cleverly designing the printing structure, 3D printing can improve the solubility of the drug and achieve precise modify of the drug release. 3D printed oral solid dosage form, however, still has problems such as limitations in formulation selection. And the selection process of the formulation lacks scientificity and standardization. Structural design of some 3D printing approaches is relatively scarce. This article reviews the formulation selection and structure design of 3D printed oral solid dosage form, providing more ideas for achieving modified drug release and solubility improvement of 3D printed oral solid dosage form through more scientific and extensive formulation selection and more sophisticated structural design.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China; Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
41
|
Sufaru IG, Macovei G, Stoleriu S, Martu MA, Luchian I, Kappenberg-Nitescu DC, Solomon SM. 3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review. MEMBRANES 2022; 12:membranes12090902. [PMID: 36135920 PMCID: PMC9505571 DOI: 10.3390/membranes12090902] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 05/31/2023]
Abstract
Numerous technologies and materials were developed with the aim of repairing and reconstructing the tissue loss in patients with periodontitis. Periodontal guided bone regeneration (GBR) and guided tissue regeneration (GTR) involves the use of a membrane which prevents epithelial cell migration, and helps to maintain the space, creating a protected area in which tissue regeneration is favored. Over the time, manufacturing procedures of such barrier membranes followed important improvements. Three-dimensional (3D) printing technology has led to major innovations in periodontal regeneration methods, using technologies such as inkjet printing, light-assisted 3D printing or micro-extrusion. Besides the 3D printing of monophasic and multi-phasic scaffolds, bioprinting and tissue engineering have emerged as innovative technologies which can change the way we see GTR and GBR.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Georgiana Macovei
- Department of Oral and Dental Diagnostics, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Maria-Alexandra Martu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | | | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
42
|
Czyżewski W, Jachimczyk J, Hoffman Z, Szymoniuk M, Litak J, Maciejewski M, Kura K, Rola R, Torres K. Low-Cost Cranioplasty-A Systematic Review of 3D Printing in Medicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4731. [PMID: 35888198 PMCID: PMC9315853 DOI: 10.3390/ma15144731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 11/22/2022]
Abstract
The high cost of biofabricated titanium mesh plates can make them out of reach for hospitals in low-income countries. To increase the availability of cranioplasty, the authors of this work investigated the production of polymer-based endoprostheses. Recently, cheap, popular desktop 3D printers have generated sufficient opportunities to provide patients with on-demand and on-site help. This study also examines the technologies of 3D printing, including SLM, SLS, FFF, DLP, and SLA. The authors focused their interest on the materials in fabrication, which include PLA, ABS, PET-G, PEEK, and PMMA. Three-dimensional printed prostheses are modeled using widely available CAD software with the help of patient-specific DICOM files. Even though the topic is insufficiently researched, it can be perceived as a relatively safe procedure with a minimal complication rate. There have also been some initial studies on the costs and legal regulations. Early case studies provide information on dozens of patients living with self-made prostheses and who are experiencing significant improvements in their quality of life. Budget 3D-printed endoprostheses are reliable and are reported to be significantly cheaper than the popular counterparts manufactured from polypropylene polyester.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland; (W.C.); (K.T.)
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Jakub Jachimczyk
- Student Scientific Society, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Zofia Hoffman
- Student Scientific Society, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Michał Szymoniuk
- Student Scientific Association of Neurosurgery, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marcin Maciejewski
- Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Krzysztof Kura
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland; (W.C.); (K.T.)
| |
Collapse
|
43
|
Weaver E, O'Hagan C, Lamprou DA. The sustainability of emerging technologies for use in pharmaceutical manufacturing. Expert Opin Drug Deliv 2022; 19:861-872. [PMID: 35732275 DOI: 10.1080/17425247.2022.2093857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Sustainability within the pharmaceutical industry is becoming a focal point for many companies, to improve the longevity and social perception of the industry. Both additive manufacturing (AM) and microfluidics (MFs) are continuously progressing, so are far from their optimization in terms of sustainability; hence, it is the aim of this review to highlight potential gaps alongside their beneficial features. Discussed throughout this review also will be an in-depth discussion on the environmental, legal, economic, and social particulars relating to these emerging technologies. AREAS COVERED Additive manufacturing (AM) and microfluidics (MFs) are discussed in depth within this review, drawing from up-to-date literature relating to sustainability and circular economies. This applies to both technologies being utilized for therapeutic and analytical purposes within the pharmaceutical industry. EXPERT OPINION It is the role of emerging technologies to be at the forefront of promoting a sustainable message by delivering plausible environmental standards whilst maintaining efficacy and economic viability. AM processes are highly customizable, allowing for their optimization in terms of sustainability, from reducing printing time to reducing material usage by removing supports. MFs too are supporting sustainability via reduced material wastage and providing a sustainable means for point of care analysis.
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
44
|
Khuroo T, Mohamed EM, Dharani S, Kayalar C, Ozkan T, Kuttolamadom MA, Rahman Z, Khan MA. Very-Rapidly Dissolving Printlets of Isoniazid Manufactured by SLS 3D Printing: In Vitro and In Vivo Characterization. Mol Pharm 2022; 19:2937-2949. [PMID: 35648147 PMCID: PMC9413616 DOI: 10.1021/acs.molpharmaceut.2c00306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The focus of this research was to understand the effects of formulation and processing variables on the very-rapidly dissolving printlets of isoniazid (INH) manufactured by the selective laser sintering (SLS) three-dimensional (3D) printing method, and to characterize their physicochemical properties, stability, and pharmacokinetics. Fifteen printlet formulations were manufactured by varying the laser scanning speed (400-500 mm/s, X1), surface temperature (100-110 °C, X2), and croscarmellose sodium (CCS, %, X3), and the responses measured were weight (Y1), hardness (Y2), disintegration time (DT, Y3), and dissolution (Y4). Laser scanning was the most important processing factor affecting the responses. DT was very rapid (≥3 s), and dissolution (>99%) was completed within 3 min. The root-mean-square error in the studied responses was low and analysis of variance (ANOVA) was statistically significant (p < 0.05). X-ray micro-computed tomography (micro-CT) images showed very porous structures with 24.6-34.4% porosity. X-ray powder diffraction and differential scanning calorimetry data indicated partial conversion of the crystalline drug into an amorphous form. The printlets were stable at 40 °C/75% RH with no significant changes in assay and dissolution. Pharmacokinetic profiles of the printlets and compressed tablets were superimposable. In conclusion, the rapidly dissolving printlets of the INH were stable, and oral bioavailability was similar to that of compositionally identical compressed tablets.
Collapse
Affiliation(s)
- Tahir Khuroo
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Reynolds Medical Sciences Building, Suite 159, College Station, Texas 77843-1114, United States
| | - Eman M Mohamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Reynolds Medical Sciences Building, Suite 159, College Station, Texas 77843-1114, United States.,Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sathish Dharani
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Reynolds Medical Sciences Building, Suite 159, College Station, Texas 77843-1114, United States
| | - Canberk Kayalar
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Reynolds Medical Sciences Building, Suite 159, College Station, Texas 77843-1114, United States
| | - Tanil Ozkan
- Dover Precision Components, Woodlands, Texas 77380, United States
| | - Mathew A Kuttolamadom
- Department of Engineering Technology & Industrial Distribution, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Reynolds Medical Sciences Building, Suite 159, College Station, Texas 77843-1114, United States
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Reynolds Medical Sciences Building, Suite 159, College Station, Texas 77843-1114, United States
| |
Collapse
|
45
|
Application of 3D printing in cervical cancer brachytherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
47
|
Kulinowski P, Malczewski P, Łaszcz M, Baran E, Milanowski B, Kuprianowicz M, Dorożyński P. Development of Composite, Reinforced, Highly Drug-Loaded Pharmaceutical Printlets Manufactured by Selective Laser Sintering-In Search of Relevant Excipients for Pharmaceutical 3D Printing. MATERIALS 2022; 15:ma15062142. [PMID: 35329594 PMCID: PMC8950795 DOI: 10.3390/ma15062142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
3D printing by selective laser sintering (SLS) of high-dose drug delivery systems using pure brittle crystalline active pharmaceutical ingredients (API) is possible but impractical. Currently used pharmaceutical grade excipients, including polymers, are primarily designed for powder compression, ensuring good mechanical properties. Using these excipients for SLS usually leads to poor mechanical properties of printed tablets (printlets). Composite printlets consisting of sintered carbon-stained polyamide (PA12) and metronidazole (Met) were manufactured by SLS to overcome the issue. The printlets were characterized using DSC and IR spectroscopy together with an assessment of mechanical properties. Functional properties of the printlets, i.e., drug release in USP3 and USP4 apparatus together with flotation assessment, were evaluated. The printlets contained 80 to 90% of Met (therapeutic dose ca. 600 mg), had hardness above 40 N (comparable with compressed tablets) and were of good quality with internal porous structure, which assured flotation. The thermal stability of the composite material and the identity of its constituents were confirmed. Elastic PA12 mesh maintained the shape and structure of the printlets during drug dissolution and flotation. Laser speed and the addition of an osmotic agent in low content influenced drug release virtually not changing composition of the printlet; time to release 80% of Met varied from 0.5 to 5 h. Composite printlets consisting of elastic insoluble PA12 mesh filled with high content of crystalline Met were manufactured by 3D SLS printing. Dissolution modification by the addition of an osmotic agent was demonstrated. The study shows the need to define the requirements for excipients dedicated to 3D printing and to search for appropriate materials for this purpose.
Collapse
Affiliation(s)
- Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Piotr Malczewski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Marta Łaszcz
- Department of Falsified Medicines and Medical Devices, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland;
| | - Ewelina Baran
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznan, Poland;
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland;
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland;
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Department of Spectroscopic Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
- Correspondence:
| |
Collapse
|
48
|
Lekurwale S, Karanwad T, Banerjee S. Selective Laser Sintering (SLS) of 3D Printlets using a 3D Printer comprised of IR/red-diode Laser. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
49
|
Three-dimensional printing personalized acetaminophen sustained-release tablets using hot melt extrusion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Dobrzyńska E, Kondej D, Kowalska J, Szewczyńska M. State of the art in additive manufacturing and its possible chemical and particle hazards-review. INDOOR AIR 2021; 31:1733-1758. [PMID: 34081372 PMCID: PMC8596642 DOI: 10.1111/ina.12853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Additive manufacturing, enabling rapid prototyping and so-called on-demand production, has become a common method of creating parts or whole devices. On a 3D printer, real objects are produced layer by layer, thus creating extraordinary possibilities as to the number of applications for this type of devices. The opportunities offered by this technique seem to be pushing new boundaries when it comes to both the use of 3D printing in practice and new materials from which the 3D objects can be printed. However, the question arises whether, at the same time, this solution is safe enough to be used without limitations, wherever and by everyone. According to the scientific reports, three-dimensional printing can pose a threat to the user, not only in terms of physical or mechanical hazards, but also through the potential emissions of chemical substances and fine particles. Thus, the presented publication collects information on the additive manufacturing, different techniques, and ways of printing with application of diverse raw materials. It presents an overview of the last 5 years' publications focusing on 3D printing, especially regarding the potential chemical and particle emission resulting from the use of such printers in both the working environment and private spaces.
Collapse
Affiliation(s)
- Elżbieta Dobrzyńska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Dorota Kondej
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Joanna Kowalska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | | |
Collapse
|