1
|
Nguyen THV, Tran TT, Do HN, Quan PM, Pham CB, Dang HH, Lam DT, Minh PTH. A new benzophenanthridine alkaloid from stem bark of Zanthoxylum rhetsa and its biological activities. Nat Prod Res 2023:1-13. [PMID: 38146230 DOI: 10.1080/14786419.2023.2297261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
A new benzophenanthridine alkaloid 6-butanoyldihydrochelerythrine (1) and five known alkaloids 6-acetonyldihydronitidine (2), 6-acetonyldihydrochelerythrine (3), isocorydine (4), (O)-methyltembamide (5), N-(4-methoxyphenethyl)benzamide (6) were isolated from the stem barks of Zanthoxylum rhetsa. These structures were elucidated by 1D, 2D NMR spectroscopy and by mass spectrometry. This is the first time that compounds 2-6 were identified from Zanthoxylum rhetsa and the first time that compounds 4 and 6 were identified from the genus Zanthoxylum. Bioactivity results of isolated compounds showed that 1, 2, 5 and 6 exhibited inhibitory activity against MCF7 and A549 cell lines, while 3 showed the inhibitory activity against A549 cell line; all isolated compounds 1-6 inhibited at least two strain microorganisms; compound 4 showed angiotensin II converting enzyme inhibitory activity in vitro with IC50 value of 65.58 µM and in silico with a docking score of -11.52 kcal/mol.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Institute of Natural Product Chemistry (INPC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Techology, VAST, 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
| | - Thi Tuyen Tran
- Institute of Natural Product Chemistry (INPC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
| | - Huu Nghi Do
- Institute of Natural Product Chemistry (INPC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Techology, VAST, 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
| | - Pham Minh Quan
- Institute of Natural Product Chemistry (INPC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Techology, VAST, 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
| | - Cao Bach Pham
- Institute of Natural Product Chemistry (INPC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
| | - Hoang Hiep Dang
- University of Science and Technology of Hanoi, VAST, 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
| | - Do Tien Lam
- Institute of Natural Product Chemistry (INPC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
| | - Pham Thi Hong Minh
- Institute of Natural Product Chemistry (INPC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Techology, VAST, 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
2
|
Milanetti E, Miotto M, Bo' L, Di Rienzo L, Ruocco G. Investigating the competition between ACE2 natural molecular interactors and SARS-CoV-2 candidate inhibitors. Chem Biol Interact 2023; 374:110380. [PMID: 36822303 PMCID: PMC9942480 DOI: 10.1016/j.cbi.2023.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
The SARS-CoV-2 pandemic still poses a threat to the global health as the virus continues spreading in most countries. Therefore, the identification of molecules capable of inhibiting the binding between the ACE2 receptor and the SARS-CoV-2 spike protein is of paramount importance. Recently, two DNA aptamers were designed with the aim to inhibit the interaction between the ACE2 receptor and the spike protein of SARS-CoV-2. Indeed, the two molecules interact with the ACE2 receptor in the region around the K353 residue, preventing its binding of the spike protein. If on the one hand this inhibition process hinders the entry of the virus into the host cell, it could lead to a series of side effects, both in physiological and pathological conditions, preventing the correct functioning of the ACE2 receptor. Here, we discuss through a computational study the possible effect of these two very promising DNA aptamers, investigating all possible interactions between ACE2 and its experimentally known molecular partners. Our in silico predictions show that some of the 10 known molecular partners of ACE2 could interact, physiologically or pathologically, in a region adjacent to the K353 residue. Thus, the curative action of the proposed DNA aptamers could recruit ACE2 from its biological functions.
Collapse
Affiliation(s)
- Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Mattia Miotto
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Leonardo Bo'
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| |
Collapse
|
3
|
Comparison of truncated human angiotensin-converting enzyme 2 (hACE2) expression in pET28a(+) versus pET-SUMO vector and two Escherichia coli strains. Adv Med Sci 2023; 68:61-70. [PMID: 36746060 DOI: 10.1016/j.advms.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE Truncated human angiotensin-converting enzyme 2 (hACE2) expression rises a great scientific interest, considering its possible therapeutic and diagnostic applications. A promising research direction is the therapeutic use of smaller hACE2 versions with high binding affinity as decoy receptors for S1 glycoprotein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Another possible application is the use of these truncated versions for the functionalization of appropriate nanomaterials for constructing novel biosensors with a rapid and sensitive response for coronavirus disease 2019 (COVID-19) detection. The present study aimed to find a suitable system for high yield expression of different versions of truncated hACE2. MATERIALS AND METHODS The encoding DNA for the hACE2 fragments (7-507 aa, 16-128 aa, and 30-357 aa) was obtained by PCR amplification using as template pcDNA3.1-hACE2 plasmid and further cloned into pET28a(+) and pET-SUMO vectors. The positive clones were selected and the correct DNA insertion was confirmed through gene sequencing. The truncated hACE2 proteins were further expressed in two E. coli strains, Rosetta(DE3) and BL21(DE3). RESULTS For all three truncated hACE2 mini proteins, pET28a(+) does not lead to protein expression, regardless of the bacterial strain. The situation changes with the use of the pET-SUMO expression system when all hACE2 fragments are expressed, but with higher efficiency in E. coli BL21(DE3) than E. coli Rosetta. CONCLUSION In the present study, we showed that different versions of recombinant hACE2 are successfully expressed in E. coli BL21(DE3) by using pET-SUMO expression system.
Collapse
|
4
|
Balasubramanian N, James TD, Selvakumar GP, Reinhardt J, Marcinkiewcz CA. Repeated ethanol exposure and withdrawal alters angiotensin-converting enzyme 2 expression in discrete brain regions: Implications for SARS-CoV-2 neuroinvasion. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:219-239. [PMID: 36529893 PMCID: PMC9878009 DOI: 10.1111/acer.15000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND People with alcohol use disorder (AUD) may be at higher risk for COVID-19. Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are required for cellular entry by SARS-CoV-2, but information on their expression in specific brain regions after alcohol exposure is limited. We sought to clarify how chronic alcohol exposure affects ACE2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. METHODS Brains were examined for ACE2 using immunofluorescence after 4 weeks of chronic intermittent ethanol (CIE) vapor inhalation. We also examined TMPRSS2, Cathepsin L, and ADAM17 by Western blot and RAS pathway mediators and pro-inflammatory markers via RT-qPCR. RESULTS ACE2 was increased in most brain regions following CIE including the olfactory bulb (OB), hypothalamus (HT), raphe magnus (RMG), raphe obscurus (ROB), locus coeruleus (LC), and periaqueductal gray (PAG). We also observed increased colocalization of ACE2 with monoaminergic neurons in brainstem nuclei. Moreover, soluble ACE2 (sACE2) was elevated in OB, HT, and LC. The increase in sACE2 in OB and HT was accompanied by upregulation of ADAM17, an ACE2 sheddase, while TMPRSS2 increased in HT and LC. Cathepsin L, an endosomal receptor involved in viral entry, was also increased in OB. Alcohol can increase Angiotensin II, which triggers a pro-inflammatory response that may upregulate ACE2 via activation of RAS pathway receptors AT1R/AT2R. ACE2 then metabolizes Angiotensin II to Angiotensin (1-7) and provokes an anti-inflammatory response via MAS1. Accordingly, we report that AT1R/AT2R mRNA decreased in OB and increased in the LC, while MAS1 mRNA increased in both OB and LC. Other mRNAs for pro-inflammatory markers were also dysregulated in OB, HT, raphe, and LC. CONCLUSIONS Our results suggest that alcohol triggers a compensatory upregulation of ACE2 in the brain due to disturbed RAS and may increase the risk or severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | | | - Jessica Reinhardt
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
5
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
6
|
Shahabadi N, Zendehcheshm S, Mahdavi M, Khademi F. Repurposing FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, and remdesivir as potential inhibitors against RNA dependent RNA polymerase of SARS-CoV-2: A comparative in silico perspective. INFORMATICS IN MEDICINE UNLOCKED 2023; 36:101147. [PMID: 36510496 PMCID: PMC9729590 DOI: 10.1016/j.imu.2022.101147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Vaccines are undoubtedly the most effective means of combating viral diseases like COVID-19. However, there are risks associated with vaccination, such as incomplete viral deactivation or potential adverse effects in humans. However, designing and developing a panel of new drug molecules is always encouraged. In an emergency, drug repurposing research is one of the most potent and rapid options. RdRp (RNA-dependent RNA polymerase) has been discovered to play a pivotal role in viral replication. In this study, FDA-approved drugs bexarotene, diiodohydroxyquinoline, abiraterone, cetilistat, and remdesivir were repurposed against the RdRp by molecular modeling, docking, and dynamic simulation. Furthermore, to validate the potency of these drugs, we compared them to the antiviral remdesivir, which inhibits RdRp. Our finding indicated that the selected drugs have a high potential to be developed as RdRp inhibitors and, with further validation studies, could serve as potential drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran,Corresponding author. Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Tantiwiwat T, Thaiprayoon A, Siriatcharanon AK, Tachaapaikoon C, Plongthongkum N, Waraho-Zhmayev D. Utilization of Receptor-Binding Domain of SARS-CoV-2 Spike Protein Expressed in Escherichia coli for the Development of Neutralizing Antibody Assay. Mol Biotechnol 2023; 65:598-611. [PMID: 36103078 PMCID: PMC9472194 DOI: 10.1007/s12033-022-00563-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 12/26/2022]
Abstract
The ongoing COVID-19 pandemic has resulted from widespread infection by the SARS-CoV-2 virus. As new variants of concern continue to emerge, understanding the correlation between the level of neutralizing antibodies (NAb) and clinical protection from SAR-CoV-2 infection could be critical in planning the next steps in COVID-19 vaccine programs. This study explored the potential usefulness of E. coli as an alternative expression system that can be used to produce a SARS-CoV-2 receptor-binding domain (RBD) for the development of an affordable and flexible NAb detection assay. We expressed the RBD of Beta, Delta, and Omicron variants in the E. coli BL21(DE3) strain and purified them from whole bacterial cells using His-tag-mediated affinity chromatography and urea-assisted refolding. Next, we conducted a head-to-head comparison of the binding activity of our E. coli-produced RBD (E-RBD) with commercial HEK293-produced RBD (H-RBD). The results of a direct binding assay revealed E-RBD and H-RBD binding with ACE2-hFc in similar signal strengths. Furthermore, in the NAb detection assay, % inhibition obtained from both E-RBD and H-RBD demonstrated comparable results in all the investigated assays, suggesting that non-glycosylated RBD produced from E. coli may offer a cost-effective alternative to the use of more expensive glycosylated RBD produced from human cells in the development of such an assay.
Collapse
Affiliation(s)
- Termsak Tantiwiwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
| | - Apisitt Thaiprayoon
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
| | - Ake-kavitch Siriatcharanon
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10150 Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10150 Thailand ,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10150 Thailand
| | - Nongluk Plongthongkum
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
8
|
Singh R, Kumar Tyagi Y, Yadav N. Hydroxychloroquine: Chemistry and Medicinal Applications. HETEROCYCLES 2023. [DOI: 10.3987/rev-22-993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Chopra A, Shukri AH, Adhikary H, Lukinović V, Hoekstra M, Cowpland M, Biggar KK. A peptide array pipeline for the development of Spike-ACE2 interaction inhibitors. Peptides 2022; 158:170898. [PMID: 36279985 PMCID: PMC9585897 DOI: 10.1016/j.peptides.2022.170898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
In humans, coronaviruses are the cause of endemic illness and have been the causative agents of more severe epidemics. Most recently, SARS-CoV-2 was the causative agent of the COVID19 pandemic. Thus, there is a high interest in developing therapeutic agents targeting various stages of the coronavirus viral life cycle to disrupt viral propagation. Besides the development of small-molecule therapeutics that target viral proteases, there is also interest molecular tools to inhibit the initial event of viral attachment of the SARS-CoV-2 Spike protein to host ACE2 surface receptor. Here, we leveraged known structural information and peptide arrays to develop an in vitro peptide inhibitor of the Spike-ACE2 interaction. First, from previous co-crystal structures of the Spike-ACE2 complex, we identified an initial 24-residue long region (sequence: STIEEQAKTFLDKFNHEAEDLFYQ) on the ACE2 sequence that encompasses most of the known contact residues. Next, we scanned this 24-mer window along the ACE2 N-terminal helix and found that maximal binding to the SARS-CoV-2 receptor binding domain (CoV2-RBD) was increased when this window was shifted nine residues in the N-terminal direction. Further, by systematic permutation of this shifted ACE2-derived peptide we identified mutations to the wildtype sequence that confer increased binding of the CoV2-RBD. Among these peptides, we identified binding peptide 19 (referred to as BP19; sequence: SLVAVTAAQSTIEEQAKTFLDKFI) as an in vitro inhibitor of the Spike-ACE2 interaction with an IC50 of 2.08 ± 0.38 μM. Overall, BP19 adds to the arsenal of Spike-ACE2 inhibitors, and this study highlights the utility of systematic peptide arrays as a platform for the development of coronavirus protein inhibitors.
Collapse
Affiliation(s)
- Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Ali H Shukri
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Hemanta Adhikary
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Valentina Lukinović
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Matthew Hoekstra
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Michael Cowpland
- NuvoBio Corporation, 150 Isabella Street, Suite 150, Ottawa, ON, K1S 1V7, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Chavda VP, Vuppu S, Mishra T, Kamaraj S, Patel AB, Sharma N, Chen ZS. Recent review of COVID-19 management: diagnosis, treatment and vaccination. Pharmacol Rep 2022; 74:1120-1148. [PMID: 36214969 PMCID: PMC9549062 DOI: 10.1007/s43440-022-00425-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/06/2023]
Abstract
The idiopathic Coronavirus disease 2019 (COVID-19) pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached global proportions; the World Health Organization (WHO) declared it as a public health emergency during the month of January 30, 2020. The major causes of the rise of new variants of SARS-CoV-2 are genetic mutations and recombination. Some of the variants with high infection and transmission rates are termed as variants of concern (VOCs) like currently Omicron variants. Pregnant women, aged people, and immunosuppressed and compromised patients constitute the most susceptible human population to the SARS-CoV-2 infection, especially to the new evolving VOCs. To effectively manage the pathological condition of infection, the focus should be directed towards prevention and prophylactic approach. In this narrative review, we aimed to analyze the current scenario of COVID-19 management and discuss the treatment and prevention strategies. We also focused on the complications prevalent during the COVID-19 and post-COVID period and to discuss the novel approaches developed for mitigation of the global pandemic. We have also emphasized on the COVID-19 management approaches for the special population including children, pregnant women, aged groups, and immunocompromised patients. We conclude that the advancements in therapeutic and pharmacological domains have provided opportunities to develop and design novel diagnosis, treatment, and prevention strategies. New advanced techniques such as RT-LAMP, RT-qPCR, High-Resolution Computed Tomography, etc., efficiently diagnose patients with SARS-CoV-2 infection. In the case of treatment options, new drugs like paxlovid, combinations of β-lactum drugs and molnupiravir are found to be effective against even the new emerging variants. In addition, vaccination is an essential approach to prevent the infection or to reduce its severity. Vaccines for against COVID-19 from Comirnaty by Pfizer-BioNTech, SpikeVax by Moderna, and Vaxzevria by Oxford-AstraZeneca are approved and used widely. Similarly, numerous vaccines have been developed with different percentages of effectiveness against VOCs. New developments like nanotechnology and AI can be beneficial in providing an efficient and reliable solution for the suppression of SARS-CoV-2. Public health concerns can be efficiently treated by a unified scientific approach, public engagement, and better diagnosis.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sathvika Kamaraj
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
11
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Jena NR, Pant S, Srivastava HK. Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2. J Biomol Struct Dyn 2022; 40:6381-6397. [PMID: 33565387 PMCID: PMC7885727 DOI: 10.1080/07391102.2021.1883112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
The recent outbreak of the SARS-CoV-2 infection has affected the lives and economy of more than 200 countries. The unavailability of virus-specific drugs has created an opportunity to identify potential therapeutic agents that can control the rapid transmission of this pandemic. Here, the mechanisms of the inhibition of the RNA-dependent RNA polymerase (RdRp), responsible for the replication of the virus in host cells, are examined by different ligands, such as Remdesivir (RDV), Remdesivir monophosphate (RMP), and several artificially expanded genetic information systems (AEGISs) including their different sequences by employing molecular docking, MD simulations, and MM/GBSA techniques. It is found that the binding of RDV to RdRp may block the RNA binding site. However, RMP would acquire a partially flipped conformation and may allow the viral RNA to enter into the binding site. The internal dynamics of RNA and RdRp may help RMP to regain its original position, where it may inhibit the RNA-chain elongation reaction. Remarkably, AEGISs are found to obstruct the binding site of RNA. It is shown that dPdZ, a two-nucleotide sequence containing P and Z would bind to RdRp very strongly and may occupy the positions of two nucleotides in the RNA strand, thereby denying access of the substrate-binding site to the viral RNA. Thus, it is proposed that the AEGISs may act as novel therapeutic candidates against the SARS-CoV-2. However, in vivo evaluations of their potencies and toxicities are needed before using them against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, Madhya Pradesh, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati, Assam, India
| |
Collapse
|
13
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Pourmand S, Zareei S, Shahlaei M, Moradi S. Inhibition of SARS-CoV-2 pathogenesis by potent peptides designed by the mutation of ACE2 binding region. Comput Biol Med 2022; 146:105625. [PMID: 35688710 PMCID: PMC9110306 DOI: 10.1016/j.compbiomed.2022.105625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
The outbreak of COVID-19 has resulted in millions of deaths. Despite all attempts that have been made to combat the pandemic, the re-emergence of new variants complicated SARS-CoV-2 eradication. The ongoing global spread of COVID-19 demands the incessant development of novel agents in vaccination, diagnosis, and therapeutics. Targeting receptor-binding domain (RBD) of spike protein by which the virus identifies host receptor, angiotensin-converting enzyme (ACE2), is a promising strategy for curbing viral infection. This study aims to discover novel peptide inhibitors against SARS-CoV-2 entry using computational approaches. The RBD binding domain of ACE2 was extracted and docked against the RBD. MMPBSA calculations revealed the binding energies of each residue in the template. The residues with unfavorable binding energies were considered as mutation spots by OSPREY. Binding energies of the residues in RBD-ACE2 interface was determined by molecular docking. Peptide inhibitors were designed by the mutation of RBD residues in the virus-receptors complex which had unfavorable energies. Peptide tendency for RBD binding, safety, and allergenicity were the criteria based on which the final hits were screened among the initial library. Molecular dynamics simulations also provided information on the mechanisms of inhibitory action in peptides. The results were finally validated by molecular docking simulations to make sure the peptides are capable of hindering virus-host interaction. Our results introduce three peptides P7 (RAWTFLDKFNHEAEDLRYQSSLASWN), P13 (RASTFLDKFNHEAEDLRYQSSLASWN), and P19 (RADTFLDKFNHEAEDLRYQSSLASWN) as potential effective inhibitors of SARS-CoV-2 entry which could be considered in drug development for COVID-19 treatment.
Collapse
Affiliation(s)
- Saeed Pourmand
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
In silico mutational analysis of ACE2 to check the susceptibility of lung cancer patients towards COVID-19. Sci Rep 2022; 12:7798. [PMID: 35552474 PMCID: PMC9098448 DOI: 10.1038/s41598-022-11805-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Being the second major cause of death worldwide, lung cancer poses a significant threat to the health of patients. This worsened during the era of pandemic since lung cancer is found to be more prone to SARS-CoV-2 infection. Many recent studies imply a high frequency of COVID-19 infection associated severe outcome. However, molecular studies are still lacking in this respect. Hence the current study is designed to investigate the binding affinities of ACE2 lung cancer mutants with the viral spike protein to find the susceptibility of respective mutants carrying patients in catching the virus. Quite interestingly, our study found lesser binding affinities of all the selected mutants thus implying that these cancer patients might be less affected by the virus than others. These results are opposed to the recent studies’ propositions and open new avenues for more in-depth studies.
Collapse
|
16
|
Nipun TS, Ema TI, Mia MAR, Hossen MS, Arshe FA, Ahmed SZ, Masud A, Taheya FF, Khan AA, Haque F, Azad SA, Al Hasibuzzaman M, Tanbir M, Anis S, Akter S, Mily SJ, Dey D. Active site-specific quantum tunneling of hACE2 receptor to assess its complexing poses with selective bioactive compounds in co-suppressing SARS-CoV-2 influx and subsequent cardiac injury. J Adv Vet Anim Res 2022; 8:540-556. [PMID: 35106293 PMCID: PMC8757663 DOI: 10.5455/javar.2021.h544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
Objective: This research aims to study the target specificity of selective bioactive compounds in complexing with the human angiotensin-converting enzyme (hACE2) receptor to impede the severe acute respiratory syndrome coronavirus 2 influx mechanism resulting in cardiac injury and depending on the receptor’s active site properties and quantum tunneling. Materials and Methods: A library of 120 phytochemical ligands was prepared, from which 5 were selected considering their absorption, distribution, metabolism, and excretion (ADMET) and quantitative structure–activity relationship (QSAR) profiles. The protein active sites and belonging quantum tunnels were defined to conduct supramolecular docking of the aforementioned ligands. The hydrogen bond formation and hydrophobic interactions between the ligand–receptor complexes were studied following the molecular docking steps. A comprehensive molecular dynamic simulation (MDS) was conducted for each of the ligand–receptor complexes to figure out the values – root mean square deviation (RMSD) (Å), root mean square fluctuation (RMSF) (Å), H-bonds, Cα, solvent accessible surface area (SASA) (Å2), molecular surface area (MolSA) (Å2), Rg (nm), and polar surface area (PSA) (Å). Finally, computational programming and algorithms were used to interpret the dynamic simulation outputs into their graphical quantitative forms. Results: ADMET and QSAR profiles revealed that the most active candidates from the library to be used were apigenin, isovitexin, piperolactam A, and quercetin as test ligands, whereas serpentine as the control. Based on the binding affinities of supramolecular docking and the parameters of molecular dynamic simulation, the strength of the test ligands can be classified as isovitexin > quercetin > piperolactam A > apigenin when complexed with the hACE2 receptor. Surprisingly, serpentine showed lower affinity (−8.6 kcal/mol) than that of isovitexin (−9.9 kcal/mol) and quercetin (−8.9 kcal/mol). The MDS analysis revealed all ligands except isovitexin having a value lower than 2.5 Ǻ. All the test ligands exhibited acceptable fluctuation ranges of RMSD (Å), RMSF (Å), H-bonds, Cα, SASA (Å2), MolSA (Å2), Rg (nm), and PSA (Å) values. Conclusion: Considering each of the parameters of molecular optimization, docking, and dynamic simulation interventions, all of the test ligands can be suggested as potential targeted drugs in blocking the hACE2 receptor.
Collapse
Affiliation(s)
- Tanzina Sharmin Nipun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Md Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Md Saddam Hossen
- Microbiology Major, Faculty of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, PR China
| | - Farzana Alam Arshe
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Afsana Masud
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Fatiha Faheem Taheya
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Arysha Alif Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Fauzia Haque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Salauddin Al Azad
- Fermentation Engineering Major, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | | | - Mohammad Tanbir
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Samin Anis
- Chattogram Maa-O-Shishu Hospital Medical College, University of Chittagong, Chattogram, Bangladesh
| | - Sharmin Akter
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
17
|
Khalid Z, Naveed H. Identification of destabilizing SNPs in SARS-CoV2-ACE2 protein and spike glycoprotein: implications for virus entry mechanisms. J Biomol Struct Dyn 2022; 40:1205-1215. [PMID: 32964802 PMCID: PMC7544926 DOI: 10.1080/07391102.2020.1823885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022]
Abstract
COVID-19 an outbreak of a novel corona virus originating from Wuhan, China in December 2019 has now spread across the entire world and has been declared a pandemic by WHO. Angiotensin converting enzyme 2 (ACE2) is a receptor protein that interacts with the spike glycoprotein of the host to facilitate the entry of coronavirus (SARS-CoV-2) hence causing the disease (COVID-19). Our experimental design is based on bioinformatics approach that combines sequence, structure and consensus based tools to label a protein coding single nucleotide polymorphism (SNP) as damaging/deleterious or neutral. The interaction of wildtype ACE2-spike glycoprotein and their variants were analyzed using docking studies. The mutations W461R, G405E and F588S in ACE2 receptor protein and population specific mutations P391S, C12S and G1223A in the spike glycoprotein were predicted as highly destabilizing to the structure of the bound complex. So far, no extensive in silico study has been reported that identifies the effect of SNPs on Spike glycoprotein-ACE2 interaction exploring both sequence and structural features. To this end, this study conducted an in-depth analysis that facilitates in identifying the mutations that blocks the interaction of two proteins that can result in stopping the virus from entering the host cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zoya Khalid
- Computational Biology Research Lab, Department of Computer Science, National University of Computing and Emerging Sciences, NUCES-FAST, Islamabad, Pakistan
| | - Hammad Naveed
- Computational Biology Research Lab, Department of Computer Science, National University of Computing and Emerging Sciences, NUCES-FAST, Islamabad, Pakistan
| |
Collapse
|
18
|
Kuznetsov A, Arukuusk P, Härk H, Juronen E, Ustav M, Langel Ü, Järv J. ACE2 Peptide Fragment Interaction with Different S1 Protein Sites. Int J Pept Res Ther 2021; 28:7. [PMID: 34867130 PMCID: PMC8634746 DOI: 10.1007/s10989-021-10324-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
We study the effect of the peptide QAKTFLDKFNHEAEDLFYQ on the kinetics of the SARS-CoV-2 spike protein S1 binding to angiotensin-converting enzyme 2 (ACE2), with the aim to characterize the interaction mechanism of the SARS-CoV2 virus with its host cell. This peptide corresponds to the sequence 24–42 of the ACE2 α1 domain, which marks the binding site for the S1 protein. The kinetics of S1-ACE2 complex formation was measured in the presence of various concentrations of the peptide using bio-layer interferometry. Formation of the S1-ACE2 complex was inhibited by the peptide in cases where it was preincubated with S1 protein before the binding experiment. The kinetic analysis of S1-ACE2 complex dissociation revealed that preincubation stabilized this complex, and this effect was dependent on the peptide concentration as well as the preincubation time. The results point to the formation of the ternary complex of S1 with ACE2 and the peptide. This is possible in the presence of another binding site for the S1 protein beside the receptor-binding domain for ACE2, which binds the peptide QAKTFLDKFNHEAEDLFYQ. Therefore, we conducted computational mapping of the S1 protein surface, revealing two additional binding sites located at some distance from the main receptor-binding domain on S1. We suggest the possibility to predict and test the short protein derived peptides for development of novel strategies in inhibiting virus infections.
Collapse
Affiliation(s)
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Heleri Härk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Mart Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia.,Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu, Estonia.,Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jaak Järv
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Chen Z, Du R, Galvan Achi JM, Rong L, Cui Q. SARS-CoV-2 cell entry and targeted antiviral development. Acta Pharm Sin B 2021; 11:3879-3888. [PMID: 34002130 PMCID: PMC8117542 DOI: 10.1016/j.apsb.2021.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic coronavirus disease 2019 (COVID-19), which threatens human health and public safety. In the urgent campaign to develop anti-SARS-CoV-2 therapies, the initial entry step is one of the most appealing targets. In this review, we summarize the current understanding of SARS-CoV-2 cell entry, and the development of targeted antiviral strategies. Moreover, we speculate upon future directions toward next-generation of SARS-CoV-2 entry inhibitors during the upcoming post-pandemic era.
Collapse
Affiliation(s)
- Zinuo Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jazmin M. Galvan Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
20
|
Pagano MT, Peruzzu D, Busani L, Pierdominici M, Ruggieri A, Antinori A, D'Offizi G, Petrosillo N, Palmieri F, Piselli P, Cicalini S, Notari S, Nicastri E, Agrati C, Ippolito G, Vaia F, Gagliardi MC, Capobianchi MR, Ortona E. Predicting respiratory failure in patients infected by SARS-CoV-2 by admission sex-specific biomarkers. Biol Sex Differ 2021; 12:63. [PMID: 34809704 PMCID: PMC8607227 DOI: 10.1186/s13293-021-00407-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Several biomarkers have been identified to predict the outcome of COVID-19 severity, but few data are available regarding sex differences in their predictive role. Aim of this study was to identify sex-specific biomarkers of severity and progression of acute respiratory distress syndrome (ARDS) in COVID-19. METHODS Plasma levels of sex hormones (testosterone and 17β-estradiol), sex-hormone dependent circulating molecules (ACE2 and Angiotensin1-7) and other known biomarkers for COVID-19 severity were measured in male and female COVID-19 patients at admission to hospital. The association of plasma biomarker levels with ARDS severity at admission and with the occurrence of respiratory deterioration during hospitalization was analysed in aggregated and sex disaggregated form. RESULTS Our data show that some biomarkers could be predictive both for males and female patients and others only for one sex. Angiotensin1-7 plasma levels and neutrophil count predicted the outcome of ARDS only in females, whereas testosterone plasma levels and lymphocytes counts only in males. CONCLUSIONS Sex is a biological variable affecting the choice of the correct biomarker that might predict worsening of COVID-19 to severe respiratory failure. The definition of sex specific biomarkers can be useful to alert patients to be safely discharged versus those who need respiratory monitoring.
Collapse
Affiliation(s)
- Maria Teresa Pagano
- Centro di Riferimento per la Medicina di Genere, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Daniela Peruzzu
- Centro di Riferimento per la Medicina di Genere, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Luca Busani
- Centro di Riferimento per la Medicina di Genere, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Marina Pierdominici
- Centro di Riferimento per la Medicina di Genere, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Anna Ruggieri
- Centro di Riferimento per la Medicina di Genere, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Andrea Antinori
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Gianpiero D'Offizi
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Nicola Petrosillo
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Fabrizio Palmieri
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Pierluca Piselli
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Stefania Cicalini
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Stefania Notari
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Emanuele Nicastri
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Chiara Agrati
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Giuseppe Ippolito
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Francesco Vaia
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Maria Cristina Gagliardi
- Centro di Riferimento per la Medicina di Genere, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Maria Rosaria Capobianchi
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani (IRCCS), Via Portuense 292, Rome, Italy
| | - Elena Ortona
- Centro di Riferimento per la Medicina di Genere, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
21
|
Feng F, Chen J, Zhao J, Li Y, Li M, Sun C. Killing Two Birds with One Stone by Administration of Soluble ACE2: A Promising Strategy to Treat Both Cardiovascular Diseases and SARS-CoV-2 Infection. Viruses 2021; 13:2243. [PMID: 34835049 PMCID: PMC8622942 DOI: 10.3390/v13112243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells mainly by the angiotensin converting enzyme 2 (ACE2) receptor, which can recognize the spike (S) protein by its extracellular domain. Previously, recombinant soluble ACE2 (sACE2) has been clinically used as a therapeutic treatment for cardiovascular diseases. Recent data demonstrated that sACE2 can also be exploited as a decoy to effectively inhibit the cell entry of SARS-CoV-2, through blocking SARS-CoV-2 binding to membrane-anchored ACE2. In this study, we summarized the current findings on the optimized sACE2-based strategies as a therapeutic agent, including Fc fusion to prolong the half-life of sACE2, deep mutagenesis to create high-affinity decoys for SARS-CoV-2, or designing the truncated functional fragments to enhance its safety, among others. Considering that COVID-19 patients are often accompanied by manifestations of cardiovascular complications, we think that administration of sACE2 in COVID-19 patients may be a promising therapeutic strategy to simultaneously treat both cardiovascular diseases and SARS-CoV-2 infection. This review would provide insights for the development of novel therapeutic agents against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
22
|
Khelfaoui H, Harkati D, Saleh BA. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J Biomol Struct Dyn 2021; 39:7246-7262. [PMID: 32752951 PMCID: PMC7484571 DOI: 10.1080/07391102.2020.1803967] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The recent new contagion coronavirus 2019 (COVID-19) disease is a new generation of severe acute respiratory syndrome coronavirus-2 SARS-CoV-2 which infected millions confirmed cases and hundreds of thousands death cases around the world so far. Molecular docking combined with molecular dynamics is one of the most important tools of drug discovery and drug design, which it used to examine the type of binding between the ligand and its protein enzyme. Global reactivity has important properties, which enable chemists to understand the chemical reactivity and kinetic stability of compounds. In this study, molecular docking and reactivity were applied for eighteen drugs, which are similar in structure to chloroquine and hydroxychloroquine, the potential inhibitors to angiotensin-converting enzyme (ACE2). Those drugs were selected from DrugBank. The reactivity, molecular docking and molecular dynamics were performed for two receptors ACE2 and [SARS-CoV-2/ACE2] complex receptor in two active sites to find a ligand, which may inhibit COVID-19. The results obtained from this study showed that Ramipril, Delapril and Lisinopril could bind with ACE2 receptor and [SARS-CoV-2/ACE2] complex better than chloroquine and hydroxychloroquine. This new understanding should help to improve predictions of the impact of such alternatives on COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hadjer Khelfaoui
- Group of Computational Pharmaceutical
Chemistry, LMCE Laboratory, Faculty of Exact and Natural Sciences, Department of Matter
Sciences, University of Biskra, Biskra,
Algeria
| | - Dalal Harkati
- Group of Computational Pharmaceutical
Chemistry, LMCE Laboratory, Faculty of Exact and Natural Sciences, Department of Matter
Sciences, University of Biskra, Biskra,
Algeria
| | - Basil A. Saleh
- Department of Chemistry, College of Science,
University of Basrah, Basrah, Iraq
| |
Collapse
|
23
|
Siddiqui AJ, Jahan S, Ashraf SA, Alreshidi M, Ashraf MS, Patel M, Snoussi M, Singh R, Adnan M. Current status and strategic possibilities on potential use of combinational drug therapy against COVID-19 caused by SARS-CoV-2. J Biomol Struct Dyn 2021; 39:6828-6841. [PMID: 32752944 PMCID: PMC7484586 DOI: 10.1080/07391102.2020.1802345] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023]
Abstract
The spread of new coronavirus infection starting December 2019 as novel SARS-CoV-2, identified as the causing agent of COVID-19, has affected all over the world and been declared as pandemic. Approximately, more than 8,807,398 confirmed cases of COVID-19 infection and 464,483 deaths have been reported globally till the end of 21 June 2020. Until now, there is no specific drug therapy or vaccine available for the treatment of COVID-19. However, some potential antimalarial drugs like hydroxychloroquine and azithromycin, antifilarial drug ivermectin and antiviral drugs have been tested by many research groups worldwide for their possible effect against the COVID-19. Hydroxychloroquine and ivermectin have been identified to act by creating the acidic condition in cells and inhibiting the importin (IMPα/β1) mediated viral import. There is a possibility that some other antimalarial drugs/antibiotics in combination with immunomodulators may help in combatting this pandemic disease. Therefore, this review focuses on the current use of various drugs as single agents (hydroxychloroquine, ivermectin, azithromycin, favipiravir, remdesivir, umifenovir, teicoplanin, nitazoxanide, doxycycline, and dexamethasone) or in combinations with immunomodulators additionally. Furthermore, possible mode of action, efficacy and current stage of clinical trials of various drug combinations against COVID-19 disease has also been discussed in detail.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Saquib Ashraf
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Shaqra University, Al Dawadimi, Saudi Arabia
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Ritu Singh
- Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
24
|
Khan S, Hussain A, Vahdani Y, Kooshki H, Mahmud Hussen B, Haghighat S, Fatih Rasul M, Jamal Hidayat H, Hasan A, Edis Z, Haj Bloukh S, Kasravi S, Mahdi Nejadi Babadaei M, Sharifi M, Bai Q, Liu J, Hu B, Akhtari K, Falahati M. Exploring the interaction of quercetin-3-O-sophoroside with SARS-CoV-2 main proteins by theoretical studies: A probable prelude to control some variants of coronavirus including Delta. ARAB J CHEM 2021; 14:103353. [PMID: 34909059 PMCID: PMC8317451 DOI: 10.1016/j.arabjc.2021.103353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to investigate the mechanism of interaction between quercetin-3-O-sophoroside and different SARS-CoV-2's proteins which can bring some useful details about the control of different variants of coronavirus including the recent case, Delta. The chemical structure of the quercetin-3-O-sophoroside was first optimized. Docking studies were performed by CoV disease-2019 (COVID-19) Docking Server. Afterwards, the molecular dynamic study was done using High Throughput Molecular Dynamics (HTMD) tool. The results showed a remarkable stability of the quercetin-3-O-sophoroside based on the calculated parameters. Docking outcomes revealed that the highest affinity of quercetin-3-O-sophoroside was related to the RdRp with RNA. Molecular dynamic studies showed that the target E protein tends to be destabilized in the presence of quercetin-3-O-sophoroside. Based on these results, quercetin-3-O-sophoroside can show promising inhibitory effects on the binding site of the different receptors and may be considered as effective inhibitor of the entry and proliferation of the SARS-CoV-2 and its different variants. Finally, it should be noted, although this paper does not directly deal with the exploring the interaction of main proteins of SARS-CoV-2 Delta variant with quercetin-3-O-sophoroside, at the time of writing, no direct theoretical investigation was reported on the interaction of ligands with the main proteins of Delta variant. Therefore, the present data may provide useful information for designing some theoretical studies in the future for studying the control of SARS-CoV-2 variants due to possible structural similarity between proteins of different variants.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Yasaman Vahdani
- Department of Microbiology, Faculty of Pharmaceutical Science, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamideh Kooshki
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, PO Box 346, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Shahab Kasravi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbo Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Mojtaba Falahati
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Shahabadi N, Zendehcheshm S, Mahdavi M, Khademi F. Inhibitory activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine on COVID-19 main protease and human ACE2 receptor: A comparative in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100745. [PMID: 34568544 PMCID: PMC8455240 DOI: 10.1016/j.imu.2021.100745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
By September 1, 2021, SARS-CoV-2, a respiratory virus that prompted Coronavirus Disease in 2019, had infected approximately 218,567,442 patients and claimed 4,534,151 lives. There are currently no specific treatments available for this lethal virus, although several drugs, including remdesivir and hydroxychloroquine, have been tested. The purpose of this study is to assess the activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine as potential SARS-CoV-2 main protease inhibitors. Additionally, this study aims to provide insight into the development of potential inhibitors that may inhibit ACE2, thereby preventing SARS-CoV-2 entry into the host cell and infection. To this end, remdesivir and hydroxychloroquine were used as comparator drugs. The calculations revealed that cetilistat, abiraterone, diiodohydroxyquinoline, and bexarotene inhibit main protease and ACE2 receptors more effectively than the well-known drug hydroxychloroquine when used against COVID-19. Meanwhile, bexarotene and cetilistat bind more tightly to the SARS-CoV-2 main protease and the ACE2 receptor, respectively, than remdesivir, a potential treatment for COVID-19 that is the first FDA-approved drug against this virus. As a result, the molecular dynamic simulations of these two drugs in the presence of proteins were investigated. The MD simulation results demonstrated that these drugs interact to stabilize the systems, allowing them to be used as effective inhibitors of these proteins. Meanwhile, bexarotene, abiraterone, cetilistat, and diiodohydroxyquinoline's systemic effects should be further investigated in suitable ex vivo human organ culture or organoids, animal models, or clinical trials.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Basit A, Karim AM, Asif M, Ali T, Lee JH, Jeon JH, Rehman SU, Lee SH. Designing Short Peptides to Block the Interaction of SARS-CoV-2 and Human ACE2 for COVID-19 Therapeutics. Front Pharmacol 2021; 12:731828. [PMID: 34512357 PMCID: PMC8430035 DOI: 10.3389/fphar.2021.731828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
To date, the current COVID-19 pandemic caused by SARS-CoV-2 has infected 99.2 million while killed 2.2 million people throughout the world and is still spreading widely. The unavailability of potential therapeutics against this virus urges to search and develop new drugs. SARS-CoV-2 enters human cells by interacting with human angiotensin-converting enzyme 2 (ACE2) receptor expressed on human cell surface through utilizing receptor-binding domain (RBD) of its spike glycoprotein. The RBD is highly conserved and is also a potential target for blocking its interaction with human cell surface receptor. We designed short peptides on the basis of our previously reported truncated ACE2 (tACE2) for increasing the binding affinity as well as the binding interaction network with RBD. These peptides can selectively bind to RBD with much higher affinities than the cell surface receptor. Thus, these can block all the binding residues required for binding to cell surface receptor. We used selected amino acid regions (21–40 and 65–75) of ACE2 as scaffold for the de novo peptide design. Our designed peptide Pep1 showed interactions with RBD covering almost all of its binding residues with significantly higher binding affinity (−13.2 kcal mol−1) than the cell surface receptor. The molecular dynamics (MD) simulation results showed that designed peptides form a stabilized complex with RBD. We suggest that blocking the RBD through de novo designed peptides can serve as a potential candidate for COVID-19 treatment after further clinical investigations.
Collapse
Affiliation(s)
- Abdul Basit
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Asad Mustafa Karim
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong, South Korea
| | - Muhammad Asif
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Tanveer Ali
- Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Jung Hun Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Shafiq Ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Sang Hee Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, South Korea
| |
Collapse
|
27
|
Quimque MTJ, Notarte KIR, Fernandez RAT, Mendoza MAO, Liman RAD, Lim JAK, Pilapil LAE, Ong JKH, Pastrana AM, Khan A, Wei DQ, Macabeo APG. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J Biomol Struct Dyn 2021; 39:4316-4333. [PMID: 32476574 PMCID: PMC7309309 DOI: 10.1080/07391102.2020.1776639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 01/01/2023]
Abstract
The novel coronavirus SARS-CoV2, the causative agent of the pandemic disease COVID-19, emerged in December 2019 forcing lockdown of communities in many countries. The absence of specific drugs and vaccines, the rapid transmission of the virus, and the increasing number of deaths worldwide necessitated the discovery of new substances for anti-COVID-19 drug development. With the aid of bioinformatics and computational modelling, ninety seven antiviral secondary metabolites from fungi were docked onto five SARS-CoV2 enzymes involved in viral attachment, replication, post-translational modification, and host immunity evasion infection mechanisms followed by molecular dynamics simulation and in silico ADMET prediction (absorption, distribution, metabolism, excretion and toxicity) of the hit compounds. Thus, three fumiquinazoline alkaloids scedapin C (15), quinadoline B (19) and norquinadoline A (20), the polyketide isochaetochromin D1 (8), and the terpenoid 11a-dehydroxyisoterreulactone A (11) exhibited high binding affinities on the target proteins, papain-like protease (PLpro), chymotrypsin-like protease (3CLpro), RNA-directed RNA polymerase (RdRp), non-structural protein 15 (nsp15), and the spike binding domain to GRP78. Molecular dynamics simulation was performed to optimize the interaction and investigate the stability of the top-scoring ligands in complex with the five target proteins. All tested complexes were found to have dynamic stability. Of the five top-scoring metabolites, quinadoline B (19) was predicted to confer favorable ADMET values, high gastrointestinal absorptive probability and poor blood-brain barrier crossing capacities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mark Tristan J. Quimque
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Chemistry Department, College of Science and Mathematics, Mindanao State University – Iligan Institute of Technology, Tibanga, Iligan City, Philippines
| | | | | | - Mark Andrew O. Mendoza
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Justin Allen K. Lim
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Luis Agustin E. Pilapil
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Jehiel Karsten H. Ong
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Adriel M. Pastrana
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
28
|
Yadav R, Imran M, Dhamija P, Suchal K, Handu S. Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2. J Biomol Struct Dyn 2021; 39:4433-4448. [PMID: 32568013 PMCID: PMC7332875 DOI: 10.1080/07391102.2020.1778536] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022]
Abstract
The emergence of the coronavirus disease-2019 pandemic has led to an outbreak in the world. The SARS-CoV-2 is seventh and latest in coronavirus family with unique exonucleases for repairing any mismatches in newly transcribed genetic material. Therefore, drugs with novel additional mechanisms are required to simultaneously target and eliminate the virus. Thus, a newly deciphered N protein is taken as a target that belongs to SARS-CoV-2. They play a vital role in RNA transcription, viral replication and new virion formation. This study used virtual screening, molecular modeling and docking of the 8987 ligands from Asinex and PubChem databases against this novel target protein. Three hotspot sites having DScore ≥1 (Site 1, Site 2 and Site 3) for ligand binding were selected. Subsequently, high throughput screening, standard precision and extra precision docking process and molecular dynamics concluded three best drugs from two libraries. Two antiviral moieties from Asinex databases (5817 and 6799) have docking scores of -10.29 and -10.156; along with their respective free binding energies (ΔG bind) of -51.96 and -64.36 on Site 3. The third drug, Zidovudine, is from PubChem database with docking scores of -9.75 with its binding free energies (ΔG bind) of -59.43 on Site 3. The RMSD and RMSF were calculated for all the three drugs through molecular dynamics simulation studies for 50 ns. Zidovudine shows a very stable interaction with fluctuation starting at 2.4 Å on 2 ns and remained stable at 3 Å from 13 to 50 ns. Thus, paving the way for further biological validation as a potential treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Mohammed Imran
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | - Puneet Dhamija
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Kapil Suchal
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shailendra Handu
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
29
|
de Campos L, Palermo NY, Conda-Sheridan M. Targeting SARS-CoV-2 Receptor Binding Domain with Stapled Peptides: An In Silico Study. J Phys Chem B 2021; 125:6572-6586. [PMID: 34114829 PMCID: PMC8230963 DOI: 10.1021/acs.jpcb.1c02398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a pandemic of unprecedented scale. This coronavirus enters cells by the interaction of the receptor binding domain (RBD) with the human angiotensin-converting enzyme 2 receptor (hACE2). In this study, we employed a rational structure-based design to propose 22-mer stapled peptides using the structure of the hACE2 α1 helix as a template. These peptides were designed to retain the α-helical character of the natural structure, to enhance binding affinity, and to display a better solubility profile compared to other designed peptides available in the literature. We employed different docking strategies (PATCHDOCK and ZDOCK) followed by a double-step refinement process (FIBERDOCK) to rank our peptides, followed by stability analysis/evaluation of the interaction profile of the best docking predictions using a 500 ns molecular dynamics (MD) simulation, and a further binding affinity analysis by molecular mechanics with generalized Born and surface area (MM/GBSA) method. Our most promising stapled peptides presented a stable profile and could retain important interactions with the RBD in the presence of the E484K RBD mutation. We predict that these peptides can bind to the viral RBD with similar potency to the control NYBSP-4 (a 30-mer experimentally proven peptide inhibitor). Furthermore, our study provides valuable information for the rational design of double-stapled peptide as inhibitors of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Luana
Janaína de Campos
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Nicholas Y. Palermo
- Computational
Chemistry Core Facility, Vice Chancellor for Research Cores, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Martin Conda-Sheridan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
30
|
Schuurs ZP, Hammond E, Elli S, Rudd TR, Mycroft-West CJ, Lima MA, Skidmore MA, Karlsson R, Chen YH, Bagdonaite I, Yang Z, Ahmed YA, Richard DJ, Turnbull J, Ferro V, Coombe DR, Gandhi NS. Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Comput Struct Biotechnol J 2021; 19:2806-2818. [PMID: 33968333 PMCID: PMC8093007 DOI: 10.1016/j.csbj.2021.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/01/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 has rapidly spread throughout the world's population since its initial discovery in 2019. The virus infects cells via a glycosylated spike protein located on its surface. The protein primarily binds to the angiotensin-converting enzyme-2 (ACE2) receptor, using glycosaminoglycans (GAGs) as co-receptors. Here, we performed bioinformatics and molecular dynamics simulations of the spike protein to investigate the existence of additional GAG binding sites on the receptor-binding domain (RBD), separate from previously reported heparin-binding sites. A putative GAG binding site in the N-terminal domain (NTD) of the protein was identified, encompassing residues 245-246. We hypothesized that GAGs of a sufficient length might bridge the gap between this site and the PRRARS furin cleavage site, including the mutation S247R. Docking studies using GlycoTorch Vina and subsequent MD simulations of the spike trimer in the presence of dodecasaccharides of the GAGs heparin and heparan sulfate supported this possibility. The heparan sulfate chain bridged the gap, binding the furin cleavage site and S247R. In contrast, the heparin chain bound the furin cleavage site and surrounding glycosylation structures, but not S247R. These findings identify a site in the spike protein that favors heparan sulfate binding that may be particularly pertinent for a better understanding of the recent UK and South African strains. This will also assist in future targeted therapy programs that could include repurposing clinical heparan sulfate mimetics.
Collapse
Affiliation(s)
- Zachariah P. Schuurs
- QUT, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program, School of Chemistry and Physics, Faculty of Science and Engineering, Institute of Health and Biomedical Innovation, 2 George Street, Brisbane, QLD 4000, Australia
| | - Edward Hammond
- Zucero Therapeutics Ltd, 1 Westlink Court, Brisbane, Queensland, Australia
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche “G.Ronzoni”, via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Timothy R. Rudd
- National Institute for Biological Standards and Control, Analytical and Biological Sciences Division, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Courtney J. Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire ST5 5BG, UK
| | - Marcelo A. Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire ST5 5BG, UK
| | - Mark A. Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire ST5 5BG, UK
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Yassir A. Ahmed
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Derek J. Richard
- QUT, Centre for Genomics and Personalised Health, Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Jeremy Turnbull
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Deirdre R. Coombe
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Neha S. Gandhi
- QUT, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program, School of Chemistry and Physics, Faculty of Science and Engineering, Institute of Health and Biomedical Innovation, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
31
|
Plaper T, Aupič J, Dekleva P, Lapenta F, Keber MM, Jerala R, Benčina M. Coiled-coil heterodimers with increased stability for cellular regulation and sensing SARS-CoV-2 spike protein-mediated cell fusion. Sci Rep 2021; 11:9136. [PMID: 33911109 PMCID: PMC8080620 DOI: 10.1038/s41598-021-88315-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Coiled-coil (CC) dimer-forming peptides are attractive designable modules for mediating protein association. Highly stable CCs are desired for biological activity regulation and assay. Here, we report the design and versatile applications of orthogonal CC dimer-forming peptides with a dissociation constant in the low nanomolar range. In vitro stability and specificity was confirmed in mammalian cells by enzyme reconstitution, transcriptional activation using a combination of DNA-binding and a transcriptional activation domain, and cellular-enzyme-activity regulation based on externally-added peptides. In addition to cellular regulation, coiled-coil-mediated reporter reconstitution was used for the detection of cell fusion mediated by the interaction between the spike protein of pandemic SARS-CoV2 and the ACE2 receptor. This assay can be used to investigate the mechanism of viral spike protein-mediated fusion or screening for viral inhibitors under biosafety level 1 conditions.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.,Interfaculty Doctoral Study of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Petra Dekleva
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Mateja Manček Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia. .,EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia.
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia. .,EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Yokoyama K, Ichiki A. Nano-size dependence in the adsorption by the SARS-CoV-2 spike protein over gold colloid. Colloids Surf A Physicochem Eng Asp 2021; 615:126275. [PMID: 33564211 PMCID: PMC7860964 DOI: 10.1016/j.colsurfa.2021.126275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/29/2021] [Indexed: 12/28/2022]
Abstract
Gold nano-particles were coated with the spike protein (S protein) of SARS-CoV-2 and exposed to increasingly acidic conditions. Their responses were investigated by monitoring the surface plasmon resonance (SPR) band shift. As the external pH was gradually changed from neutral pH to pH ∼2 the peak of the SPR band showed a significant red-shift, with a sigmoidal feature implying the formation of the gold-protein aggregates. The coating of S protein changed the surface property of the gold enough to extract the coverage fraction of protein over nano particles, Θ, which did not exhibit clear nano-size dependence. The geometrical simulation to explain Θ showed the average axial length to be a = 7. 25 nm and b =8.00 nm when the S-protein was hypothesized as a prolate shape with spiking-out orientation. As the pH value externally hopped between pH∼3 and pH∼10, a behavior of reversible protein folding was observed for particles with diameters >30 nm. It was concluded that S protein adsorption conformation was impacted by the size (diameter, d) of a core nano-gold, where head-to-head dimerized S protein was estimated for d ≤ 80 nm and a parallel in opposite directions formation for d = 100 nm.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, United States
| | - Akane Ichiki
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, United States
| |
Collapse
|
33
|
Jia H, Neptune E, Cui H. Targeting ACE2 for COVID-19 Therapy: Opportunities and Challenges. Am J Respir Cell Mol Biol 2021; 64:416-425. [PMID: 33296619 PMCID: PMC8008810 DOI: 10.1165/rcmb.2020-0322ps] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is sweeping the globe. Even with a number of effective vaccines being approved and available to the public, new cases and escalating mortality are climbing every day. ACE2 (angiotensin-converting enzyme 2) is the primary receptor for the COVID-19 causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its complexation with spike proteins plays a crucial role in viral entry into host cells and the subsequent infection. Blocking this binding event or reducing the accessibility of the virus to the ACE2 receptor, represents an alternative strategy to prevent COVID-19. In addition, the biological significance of ACE2 in modulating the innate immune system and tissue repair cascades and anchors its therapeutic potential for treating the infected patients. In this viewpoint article, we review the current efforts of exploiting ACE2 as a therapeutic target to address this dire medical need. We also provide a holistic view of the pros and cons of each treatment strategy. We highlight the fundamental and translational challenges in moving these research endeavors to clinical applications.
Collapse
Affiliation(s)
- Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and
- Institute for Nano Biotechnology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
34
|
Abstract
The recent outbreak of the highly contagious coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2 has created a global health crisis with socioeconomic impacts. Although, recently, vaccines have been approved for the prevention of COVID-19, there is still an urgent need for the discovery of more efficacious and safer drugs especially from natural sources. In this study, a number of quinoline and quinazoline alkaloids with antiviral and/or antimalarial activity were virtually screened against three potential targets for the development of drugs against COVID-19. Among seventy-one tested compounds, twenty-three were selected for molecular docking based on their pharmacokinetic and toxicity profiles. The results identified a number of potential inhibitors. Three of them, namely, norquinadoline A, deoxytryptoquivaline, and deoxynortryptoquivaline, showed strong binding to the three targets, SARS-CoV-2 main protease, spike glycoprotein, and human angiotensin-converting enzyme 2. These alkaloids therefore have promise for being further investigated as possible multitarget drugs against COVID-19.
Collapse
|
35
|
Senapati S, Banerjee P, Bhagavatula S, Kushwaha PP, Kumar S. Contributions of human ACE2 and TMPRSS2 in determining host–pathogen interaction of COVID-19. J Genet 2021. [PMID: 33707363 PMCID: PMC7904510 DOI: 10.1007/s12041-021-01262-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is at present an emerging global public health crisis. Angiotensin converting enzyme 2 (ACE2) and trans-membrane protease serine 2 (TMPRSS2) are the two major host factors that contribute to the virulence of SARS-CoV-2 and pathogenesis of coronavirus disease-19 (COVID-19). Transmission of SARS-CoV-2 from animal to human is considered a rare event that necessarily requires strong evolutionary adaptations. Till date no other human cellular receptors are identified beside ACE2 for SARS-CoV-2 entry inside the human cell. Proteolytic cleavage of viral spike (S)-protein and ACE2 by TMPRSS2 began the entire host–pathogen interaction initiated with the physical binding of ACE2 to S-protein. SARS-CoV-2 S-protein binds to ACE2 with much higher affinity and stability than that of SARS-CoVs. Molecular interactions between ACE2-S and TMPRSS2-S are crucial and preciously mediated by specific residues. Structural stability, binding affinity and level of expression of these three interacting proteins are key susceptibility factors for COVID-19. Specific protein–protein interactions (PPI) are being identified that explains uniqueness of SARS-CoV-2 infection. Amino acid substitutions due to naturally occurring genetic polymorphisms potentially alter these PPIs and poses further clinical heterogeneity of COVID-19. Repurposing of several phytochemicals and approved drugs against ACE2, TMPRSS2 and S-protein have been proposed that could inhibit PPI between them. We have also identified some novel lead phytochemicals present in Azadirachta indica and Aloe barbadensis which could be utilized for further in vitro and in vivo anti-COVID-19 drug discovery. Uncovering details of ACE2-S and TMPRSS2-S interactions would further contribute to future research on COVID-19.
Collapse
Affiliation(s)
- Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India.
| | | | | | | | | |
Collapse
|
36
|
Prasad SK, Pradeep S, Shimavallu C, Kollur SP, Syed A, Marraiki N, Egbuna C, Gaman MA, Kosakowska O, Cho WC, Patrick-Iwuanyanwu KC, Ortega Castro J, Frau J, Flores-Holguín N, Glossman-Mitnik D. Evaluation of Annona muricata Acetogenins as Potential Anti-SARS-CoV-2 Agents Through Computational Approaches. Front Chem 2021; 8:624716. [PMID: 33732682 PMCID: PMC7958878 DOI: 10.3389/fchem.2020.624716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Annona muricata, a tropical plant which has been extensively used in ethnomedicine to treat a wide range of diseases, from malaria to cancer. Interestingly, this plant has been reported to demonstrate significant antiviral properties against the human immunodeficiency virus, herpes simplex virus, human papilloma virus, hepatitis C virus and dengue virus. Additionally, the bioactive compounds responsible for antiviral efficacy have also shown to be selectively cytotoxic while inhibiting tumorigenic cell growth without affecting the normal cell growth. Annonaceous Acetogenins are a class of bioactive compounds exclusive to the Annonaceae family at which the plant A. muricata belongs. In the current study, we have created a library of Acetogenins unique to the plant, comprising of Annomuricin A, Annomuricin B, Annomuricin C, Muricatocin C, Muricatacin, cis-Annonacin, Annonacin-10-one, cis-Goniothalamicin, Arianacin and Javoricin, for in silico and theoretical evaluations against the SARS-CoV-2 spike protein in an attempt toward promotion of plant based drug development for the current pandemic of coronavirus disease 2019 (COVID-19). We found that all the Acetogenins showing in silico spike protein significantly docking with good binding affinities. Moreover, we envision A. muricata Acetogenins can be further studied by in vitro and in vivo models to identify potential anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Shimavallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chukwuebuka Egbuna
- Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Anambra State, Nigeria
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
- World Bank Africa Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Nigeria
| | - Mihnea-Alexandru Gaman
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Olga Kosakowska
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Kingsley Chukwuemeka Patrick-Iwuanyanwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
- World Bank Africa Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Nigeria
| | | | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, Palma de Malllorca, Spain
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| |
Collapse
|
37
|
Rahman MM, Hasan M, Ahmed A. Potential detrimental role of soluble ACE2 in severe COVID-19 comorbid patients. Rev Med Virol 2021; 31:1-12. [PMID: 33426683 PMCID: PMC8014495 DOI: 10.1002/rmv.2213] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2) receptor. Other important proteins involved in this process include disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) also known as tumour necrosis factor-α-converting enzyme and transmembrane serine protease 2. ACE2 converts angiotensin II (Ang II) to angiotensin (1-7), to balance the renin angiotensin system. Membrane-bound ACE2 ectodomain shedding is mediated by ADAM17 upon viral spike binding, Ang II overproduction and in several diseases. The shed soluble ACE2 (sACE2) retains its catalytic activity, but its precise role in viral entry is still unclear. Therapeutic sACE2 is claimed to exert dual effects; reduction of excess Ang II and blocking viral entry by masking the spike protein. Nevertheless, the paradox is why SARS-CoV-2 comorbid patients struggle to attain such benefit in viral infection despite having a high amount of sACE2. In this review, we discuss the possible detrimental role of sACE2 and speculate on a series of events where protease primed or non-primed virus-sACE2 complex might enter the host cell. As extracellular virus can bind many sACE2 molecules, sACE2 level could be reduced drastically upon endocytosis by the host cell. A consequential rapid rise in Ang II level could potentially aggravate disease severity through Ang II-angiotensin II receptor type 1 (AT1R) axis in comorbid patients. Hence, monitoring sACE2 and Ang II level in coronavirus disease 2019 comorbid patients are crucial to ensure safe and efficient intervention using therapeutic sACE2 and vaccines.
Collapse
Affiliation(s)
- Mohammad Mahmudur Rahman
- Department of Medical Biotechnology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
38
|
Schütz D, Ruiz-Blanco YB, Münch J, Kirchhoff F, Sanchez-Garcia E, Müller JA. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv Drug Deliv Rev 2020; 167:47-65. [PMID: 33189768 PMCID: PMC7665879 DOI: 10.1016/j.addr.2020.11.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
To date, no effective vaccines or therapies are available against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pandemic agent of the coronavirus disease 2019 (COVID-19). Due to their safety, efficacy and specificity, peptide inhibitors hold great promise for the treatment of newly emerging viral pathogens. Based on the known structures of viral proteins and their cellular targets, antiviral peptides can be rationally designed and optimized. The resulting peptides may be highly specific for their respective targets and particular viral pathogens or exert broad antiviral activity. Here, we summarize the current status of peptides inhibiting SARS-CoV-2 entry and outline the strategies used to design peptides targeting the ACE2 receptor or the viral spike protein and its activating proteases furin, transmembrane serine protease 2 (TMPRSS2), or cathepsin L. In addition, we present approaches used against related viruses such as SARS-CoV-1 that might be implemented for inhibition of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
39
|
Gollapalli P, B S S, Rimac H, Patil P, Nalilu SK, Kandagalla S, Shetty P. Pathway enrichment analysis of virus-host interactome and prioritization of novel compounds targeting the spike glycoprotein receptor binding domain-human angiotensin-converting enzyme 2 interface to combat SARS-CoV-2. J Biomol Struct Dyn 2020; 40:2701-2714. [PMID: 33146070 PMCID: PMC7651197 DOI: 10.1080/07391102.2020.1841681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 has become a pandemic causing a serious global health concern. The absence of effective drugs for treatment of the disease has caused its rapid spread on a global scale. Similarly to the SARS-CoV, the SARS-CoV-2 is also involved in a complex interplay with the host cells. This infection is characterized by a diffused alveolar damage consistent with the Acute Respiratory Disease Syndrome (ARDS). To explore the complex mechanisms of the disease at the system level, we used a network medicine tools approach. The protein-protein interactions (PPIs) between the SARS-CoV and the associated human cell proteins are crucial for the viral pathogenesis. Since the cellular entry of SARS-CoV-2 is accomplished by binding of the spike glycoprotein binding domain (RBD) to the human angiotensin-converting enzyme 2 (hACE2), a molecule that can bind to the spike RDB-hACE2 interface could block the virus entry. Here, we performed a virtual screening of 55 compounds to identify potential molecules that can bind to the spike glycoprotein and spike-ACE2 complex interface. It was found that the compound ethyl 1-{3-[(2,4-dichlorobenzyl) carbamoyl]-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-7-quinolinyl}-4-piperidine carboxylate (the S54 ligand) and ethyl 1-{3-[(2,4-dichlorobenzyl) carbamoyl]-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-7-quinolinyl}-4 piperazine carboxylate (the S55 ligand) forms hydrophobic interactions with Tyr41A, Tyr505B and Tyr553B, Leu29A, Phe495B, respectively of the spike glycoprotein, the hotspot residues in the spike glycoprotein RBD-hACE2 binding interface. Furthermore, molecular dynamics simulations and free energy calculations using the MM-GBSA method showed that the S54 ligand is a stronger binder than a known SARS-CoV spike inhibitor SSAA09E3 (N-(9,10-dioxo-9, 10-dihydroanthracen-2-yl) benzamide). Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Pavan Gollapalli
- Central Research Lab, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, India
| | - Sharath B S
- Department of Biotechnology and Bioinformatics, Kuvempu University, Shankaraghatta, Shivamogga, India
| | - Hrvoje Rimac
- Department of Medicinal Chemistry, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.,Laboratory of Computational Modelling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Prakash Patil
- Central Research Lab, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, India
| | - Suchetha Kumari Nalilu
- Central Research Lab, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, India
| | - Shivanandha Kandagalla
- Laboratory of Computational Modelling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Praveenkumar Shetty
- Central Research Lab, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, India
| |
Collapse
|
40
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. Am J Hum Genet 2020; 107:381-402. [PMID: 32814065 PMCID: PMC7420067 DOI: 10.1016/j.ajhg.2020.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2 pandemic raises many scientific and clinical questions. These include how host genetic factors affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. We reviewed the literature on host genetic factors related to coronaviruses, systematically focusing on human studies. We identified 1,832 articles of potential relevance. Seventy-five involved human host genetic factors, 36 of which involved analysis of specific genes or loci; aside from one meta-analysis, all were candidate-driven studies, typically investigating small numbers of research subjects and loci. Three additional case reports were described. Multiple significant loci were identified, including 16 related to susceptibility (seven of which identified protective alleles) and 16 related to outcomes (three of which identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Among other studies, 30 involved both human and non-human host genetic factors related to coronavirus, 178 involved study of non-human (animal) host genetic factors related to coronavirus, and 984 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis. Previous human studies have been limited by issues that may be less impactful now, including low numbers of eligible participants and limited availability of advanced genomic methods; however, these may raise additional considerations. We outline key genes and loci from animal and human host genetic studies that may bear investigation in the study of COVID-19. We also discuss how previous studies may direct current lines of inquiry.
Collapse
Affiliation(s)
- Marissa LoPresti
- University of Florida College of Veterinary Medicine, Gainesville, FL 32611, USA
| | - David B Beck
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin D Solomon
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Satarker S, Ahuja T, Banerjee M, E VB, Dogra S, Agarwal T, Nampoothiri M. Hydroxychloroquine in COVID-19: Potential Mechanism of Action Against SARS-CoV-2. CURRENT PHARMACOLOGY REPORTS 2020; 6:203-211. [PMID: 32864299 PMCID: PMC7443392 DOI: 10.1007/s40495-020-00231-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The rapid spread of virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned out to be a global emergency. Symptoms of this viral infection, coronavirus disease 2019 (COVID-19), include mild infections of the upper respiratory tract, viral pneumonia, respiratory failure, multiple organ failure and death. Till date, no drugs have been discovered to treat COVID-19 patients, and therefore, a considerable amount of interest has been shown in repurposing the existing drugs. RECENT FINDINGS Out of these drugs, chloroquine (CQ) and hydroxychloroquine (HCQ) have demonstrated positive results indicating a potential antiviral role against SARS-CoV-2. Its mechanism of action (MOA) includes the interference in the endocytic pathway, blockade of sialic acid receptors, restriction of pH mediated spike (S) protein cleavage at the angiotensin-converting enzyme 2 (ACE2) binding site and prevention of cytokine storm. Unfortunately, its adverse effects like gastrointestinal complications, retinopathy and QT interval prolongation are evident in treated COVID-19 patients. Yet, multiple clinical trials have been employed in several countries to evaluate its ability in turning into a needed drug in this pandemic. SUMMARY This review attempts to summarize the MOA of CQ/HCQ and its side effects. The existing literature hints that till date, the role of CQ/HCQ in COVID-19 may be sceptical, and further studies are warranted for obtaining a therapeutic option that could be effectively used across the world to rise out from this pandemic.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Tejas Ahuja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Madhuparna Banerjee
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Shagun Dogra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Tushar Agarwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 India
| |
Collapse
|
42
|
Mukherjee S, Dasgupta S, Adhikary T, Adhikari U, Panja SS. Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: inhibitor modelling study through molecular docking and MD-simulation study. J Biomol Struct Dyn 2020; 39:7322-7334. [PMID: 32772895 PMCID: PMC7484585 DOI: 10.1080/07391102.2020.1804458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The spread of novel coronavirus strain, Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) causes Coronavirus disease (COVID-19) has now spread worldwide and effecting the entire human race. The viral genetic material is transcripted and replicated by 3 C-like protease, as a result, it is an important drug target for COVID-19. Hydroxychloroquine (HCQ) report promising results against this drug target so, we perform molecular docking followed by MD-simulation studies of HCQ and modelled some ligand (Mod-I and Mod-II) molecules with SARS-CoV-2-main protease which reveals the structural organization of the active site residues and presence of a conserve water-mediated catalytic triad that helps in the recognition of Mod-I/II ligand molecules. The study may be helpful to gain a detailed structural insight on the presence of water-mediated catalytic triad which could be useful for inhibitor modelling. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, India
| | - Subrata Dasgupta
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, India
| | - Tapasendra Adhikary
- Department of Metallurgical & Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, India
| | - Sujit Sankar Panja
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, India
| |
Collapse
|
43
|
Abstract
The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insurmountable damage both to the human lives and global economy. There is an immediate need for identification of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing to identify the best drug combination to address the disease. In this review, an attempt has been made to understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts from the scientific community to effectively address the issue and prevent further loss of human lives and health.
Collapse
Affiliation(s)
- Ambrish Saxena
- Indian Institute of Technology Tirupati, Tirupati, India
| |
Collapse
|
44
|
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn 2020; 39:4362-4374. [PMID: 32568613 PMCID: PMC7332865 DOI: 10.1080/07391102.2020.1779818] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral respiratory disease which caused global health emergency and announced as pandemic disease by World Health Organization. Lack of specific drug molecules or treatment strategy against this disease makes it more devastating. Thus, there is an urgent need of effective drug molecules to fight against COVID-19. The main protease (Mpro) of SARS CoV-2, a key component of this viral replication, is considered as a prime target for anti-COVID-19 drug development. In order to find potent Mpro inhibitors, we have selected eight polyphenols from green tea, as these are already known to exert antiviral activity against many RNA viruses. We have elucidated the binding affinities and binding modes between these polyphenols including a well-known Mpro inhibitor N3 (having binding affinity -7.0 kcal/mol) and Mpro using molecular docking studies. All eight polyphenols exhibit good binding affinity toward Mpro (-7.1 to -9.0 kcal/mol). However, only three polyphenols (epigallocatechin gallate, epicatechingallate and gallocatechin-3-gallate) interact strongly with one or both catalytic residues (His41 and Cys145) of Mpro. Molecular dynamics simulations (100 ns) on these three Mpro-polyphenol systems further reveal that these complexes are highly stable, experience less conformational fluctuations and share similar degree of compactness. Estimation of total number of intermolecular H-bond and MM-GBSA analysis affirm the stability of these three Mpro-polyphenol complexes. Pharmacokinetic analysis additionally suggested that these polyphenols possess favorable drug-likeness characteristics. Altogether, our study shows that these three polyphenols can be used as potential inhibitors against SARS CoV-2 Mpro and are promising drug candidates for COVID-19 treatment.
Collapse
Affiliation(s)
- Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| |
Collapse
|