1
|
Nguyen T, Gebo C, Lu J, Popoola DO, Thomas SJ, Li Y, Waickman AT. Development and optimization of an mRNA-vectored single-chain IgA1 isotype monoclonal antibody with potential to treat or prevent dengue virus infection. Antiviral Res 2025; 234:106078. [PMID: 39778815 DOI: 10.1016/j.antiviral.2025.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Dengue virus (DENV) is a rapidly expanding infectious disease threat that causes an estimated 100 million symptomatic infections every year. A barrier to preventing DENV infections with traditional vaccines or prophylactic monoclonal antibody (mAb) therapies is the phenomenon of Antibody-Dependent Enhancement (ADE), wherein sub-neutralizing levels of DENV-specific IgG antibodies can enhance infection and pathogenesis rather than providing protection from disease. Fortunately, IgG is not the only antibody isotype capable of binding and neutralizing DENV, as DENV-specific IgA1 isotype mAbs can bind and neutralize DENV while without exhibiting any ADE activity. However, the development of IgA1-based mAb therapies is currently hindered by inefficient in vitro expression systems and the lack of saleable purification platforms. Accordingly, alternative delivery modalities are required to realize the therapeutic potential of IgA-based infectious-disease therapies. In this study we describe the development and optimization of a DENV-specific single-chain IgA construct that retains the desirable biological properties of the parental IgA mAb yet is compatible with efficient in vivo delivery with a novel/liver-tropic lipid nanoparticle. We propose that this platform is uniquely and exceptionally well suited for preventing and/or treating DENV infections and may have broad applicability in the greater infectious disease space in situations where the use of IgG isotype mAbs may be counterindicated.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Chad Gebo
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Joseph Lu
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - David O Popoola
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Yamin Li
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Adam T Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
2
|
Chung YH, Steinmetz NF. Metastatic Melanoma Treatment and Prophylaxis with S100A9-Targeting Cowpea Mosaic Virus Nanoparticles. Methods Mol Biol 2025; 2902:13-36. [PMID: 40029594 DOI: 10.1007/978-1-0716-4402-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metastatic cancer continues to be the main cause of cancer-related death, and new therapies must be continuously researched to eradicate these cancers. Immunotherapy aims to stimulate the patient's own immune system to recognize and eliminate tumors and metastatic sites. A particular powerful approach is the use of immunostimulatory agents to reprogram the tumor microenvironment from "cold" to "hot" to prime systemic antitumor immunity. Plant viruses have been investigated for this purpose because their repetitive coat protein structures with encapsidated nucleic acids render them potent immunostimulatory agents. In particular, the cowpea mosaic virus (CPMV) has been found to be a potent anticancer agent when injected intratumorally. However, metastatic cancers cannot be injected in situ, and therefore a systemically administered CPMV prevention and treatment option that is targeted to S100A9 was developed. S100A9 is an immunostimulatory protein that regulates metastatic cancer seeding and growth, thereby making it an attractive target for both prevention and treatment. Protocols for the production and characterization of S100A9-targeted CPMV nanoparticles are described and in vivo experiments that can be carried out to assess the efficacy of the S100A9-targeted CPMV nanoparticles in the prevention and treatment of metastatic melanoma to the lung are detailed. Finally, instructions for flow cytometry analysis of the innate immune cell composition within the lungs following S100A9-targeted CPMV administration are provided.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Gencsoy Eker S, Inetas Yengin G, Tatar C, Oktem G. A Comprehensive Review of the Mechanisms and Clinical Development of Monoclonal Antibodies in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39666264 DOI: 10.1007/5584_2024_838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cancer is still the disease that ranks first in human mortality in the twenty-first century. In the last 20 years, the concept of molecular targeted therapy has come to the fore with the use of small molecule agents or signal transduction inhibitors that show anticancer effects for certain types of cancer. Monoclonal antibodies, which have a therapeutic effect, especially by providing signal transduction inhibition, are used clinically as first-line treatment in various types of cancer. Molecular targeted therapies are critical for eliminating the adverse effects and drug resistance problems that occur in traditional cancer treatments. This review summarizes current information on various targeted therapeutic agents, including the structure and classification of monoclonal antibodies, their production methods and mechanisms of action, the monoclonal antibodies used in clinical trials, the complement system mechanism and cancer relationship, and the relationship between complement-dependent cytotoxicity and monoclonal antibodies.
Collapse
Affiliation(s)
- Selen Gencsoy Eker
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey
| | - Gizem Inetas Yengin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Cansu Tatar
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Gulperi Oktem
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
5
|
Navanukraw P, Chotimanukul S, Udomthanaisit L, Setthawong P, Saehlee S, Seetaha S, Choowongkomon K, Chatdarong K. Antibody fragments targeting the extracellular domain of follicular stimulating hormone receptor for contraception in male dogs and cats. Theriogenology 2024; 226:110-119. [PMID: 38875921 DOI: 10.1016/j.theriogenology.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The increased LH levels resulting from the absence of negative feedback after castration has been linked to long-term health issues. A need exists for an alternative contraceptive agent that functions without interfering the LH pathways. This study aimed to develop antibody fragments against the follicular-stimulating hormone receptor (anti-FSHr) using phage-display technology and evaluate its effects on Sertoli cell functions. Phage clones against the extracellular domain of dog and cat FSHr selected from an antibody fragment phagemid library were analyzed for binding kinetics by surface plasmon resonance. Sertoli cells were isolated from testes of adult animals (five dogs and five cats). Efficacy test was performed by treating Sertoli cell cultures (SCCs) with anti-FSHr antibody fragments compared with untreated in triplicates. Expressions of androgen binding protein (ABP), inhibin subunit beta B (IHBB) and vascular endothelial growth factor A (VEGFA) mRNA in SCCs were quantified by RT-qPCR. The results demonstrated that the molecular weight of the purified dog and cat anti-FSHr antibody fragment was 25 kDa and 15 kDa, respectively. Based on protein molecular weight, the antibody fragment of dogs and cats was therefore, so-called single-chain variable fragments (scFv) and nanobody (nb), respectively. The binding affinity with dissociation constant (KD) was 2.32 × 10-7 M and 2.83 × 10-9 M for dog and cat anti-FSHr antibody fragments, respectively. The cross-binding kinetic interactions between the dog anti-FSHr scFv and the cat ECD of FSHr could not be fitted to the curves to determine the binding kinetics. However, the cross-binding affinity KD between the cat anti-FSHr nb and the dog ECD FSHr was 1.75 × 10-4 M. The mRNA expression of ABP, IHBB and VEGFA in SCCs was less (P < 0.05) in both dogs (12.26, 4.07 and 5.11 folds, respectively) and cats (39.53, 14.07 and 20.29 folds, respectively) treated with anti-FSHr antibody fragments, indicating the Sertoli cell functions were suppressed. In conclusion, this study demonstrated the establishment of species-specific antibody fragments against FSHr in SCCs for dogs and cats. The fragment proteins illustrate potential to be developed as non-surgical contraceptive agent targeting FSHr in companion animals.
Collapse
Affiliation(s)
- Pakpoom Navanukraw
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sroisuda Chotimanukul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Larindhorn Udomthanaisit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Siriwan Saehlee
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Kaywalee Chatdarong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Zong X, Liu P, Wang Z, Zhu H, Zhong C, Zhong P, Jiang H, Liu J, Ma Z, Liu X, Liu R, Ding Y. Structural insights into the binding of nanobodies to the Staphylococcal enterotoxin B. Int J Biol Macromol 2024; 276:133957. [PMID: 39029852 DOI: 10.1016/j.ijbiomac.2024.133957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Staphylococcal Enterotoxin Type B (SEB), produced by Staphylococcus aureus bacteria, is notorious for inducing severe food poisoning and toxic shock syndrome. While nanobody-based treatments hold promises for combating SEB-induced diseases, the lack of structural information between SEB and nanobodies has hindered the development of nanobody-based therapeutics. Here, we present crystal structures of SEB-Nb3, SEB-Nb6, SEB-Nb8, SEB-Nb11, and SEB-Nb20 at resolutions ranging from 1.59 Å to 2.33 Å. Crystallographic analysis revealed that Nb3, Nb8, Nb11, and Nb20 bind to SEB at the T-cell receptor (TCR) interface, while Nb6 binds at the major histocompatibility complex (MHC) interface, suggesting their potential to inhibit SEB function by disrupting interactions with TCR or MHC molecules. Molecular biological analyses confirmed the thermodynamic and kinetic parameters of Nb3, Nb5, Nb6, Nb8, Nb11, Nb15, Nb18, and Nb20 to SEB. The competitive inhibition was further confirmed by cell-based experiments demonstrating nanobody neutralization. These findings elucidate the structural basis for developing specific nanobodies to neutralize SEB threats, providing crucial insights into the underlying mechanisms and offering significant assistance for further optimization towards future therapeutic strategies.
Collapse
Affiliation(s)
- Xin Zong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Peng Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ziying Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Haoran Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chao Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Peiyu Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jiayuan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhiqiang Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xihuan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Quzhou Fudan Institute, Quzhou, Zhejiang 324002, China.
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Quzhou Fudan Institute, Quzhou, Zhejiang 324002, China.
| |
Collapse
|
7
|
Jacob EM, Huang J, Chen M. Lipid nanoparticle-based mRNA vaccines: a new frontier in precision oncology. PRECISION CLINICAL MEDICINE 2024; 7:pbae017. [PMID: 39171210 PMCID: PMC11336688 DOI: 10.1093/pcmedi/pbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The delivery of lipid nanoparticle (LNP)-based mRNA therapeutics has captured the attention of the vaccine research community as an innovative and versatile tool for treating a variety of human malignancies. mRNA vaccines are now in the limelight as an alternative to conventional vaccines owing to their high precision, low-cost, rapid manufacture, and superior safety profile. Multiple mRNA vaccine platforms have been developed to target several types of cancer, and many have demonstrated encouraging results in animal models and human trials. The effectiveness of these new mRNA vaccines depends on the efficacy and stability of the antigen(s) of interest generated and the reliability of their delivery to antigen-presenting cells (APCs), especially dendritic cells (DCs). In this review, we provide a detailed overview of mRNA vaccines and their delivery strategies and consider future directions and challenges in advancing and expanding this promising vaccine platform to widespread therapeutic use against cancer.
Collapse
Affiliation(s)
- Eden M Jacob
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Ming Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
8
|
Wang M, Ying T, Wu Y. Single-domain antibodies as therapeutics for solid tumor treatment. Acta Pharm Sin B 2024; 14:2854-2868. [PMID: 39027249 PMCID: PMC11252471 DOI: 10.1016/j.apsb.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024] Open
Abstract
Single-domain antibodies (sdAbs), initially identified in camelids or sharks and commonly referred to as nanobodies or VNARs, have emerged as a promising alternative to conventional therapeutic antibodies. These sdAbs have many superior physicochemical and pharmacological properties, including small size, good solubility and thermostability, easier accessible epitopes, and strong tissue penetration. However, the inherent challenges associated with the animal origin of sdAbs limit their clinical use. In recent years, various innovative humanization technologies, including complementarity-determining region (CDR) grafting or complete engineering of fully human sdAbs, have been developed to mitigate potential immunogenicity issues and enhance their compatibility. This review provides a comprehensive exploration of sdAbs, emphasizing their distinctive features and the progress in humanization methodologies. In addition, we provide an overview of the recent progress in developing drugs and therapeutic strategies based on sdAbs and their potential in solid tumor treatment, such as sdAb-drug conjugates, multispecific sdAbs, sdAb-based delivery systems, and sdAb-based cell therapy.
Collapse
Affiliation(s)
- Mingkai Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
9
|
Kothari M, Wanjari A, Acharya S, Karwa V, Chavhan R, Kumar S, Kadu A, Patil R. A Comprehensive Review of Monoclonal Antibodies in Modern Medicine: Tracing the Evolution of a Revolutionary Therapeutic Approach. Cureus 2024; 16:e61983. [PMID: 38983999 PMCID: PMC11231668 DOI: 10.7759/cureus.61983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Monoclonal antibodies (mAbs) have emerged as potent therapeutic agents, revolutionizing the landscape of modern medicine. This comprehensive review traces the evolution of mAbs from their inception to their current prominence, highlighting key milestones in their development and exploring their diverse therapeutic applications. Beginning with an overview of their molecular structure and mechanisms of action, we delve into the production and engineering of mAbs, including hybridoma technology and recombinant DNA techniques. Therapeutic applications across various medical disciplines, including cancer treatment, autoimmune diseases, and infectious diseases, are examined in detail, showcasing the significant clinical successes of mAbs. Furthermore, this review discusses the challenges and opportunities in manufacturing scalability, cost-effectiveness, and access to therapies. Looking ahead, the implications of mAbs in future research and clinical practice are explored, emphasizing the potential for next-generation mAbs, personalized medicine, and integration with emerging modalities such as immunotherapy and gene therapy. In conclusion, the evolution of monoclonal antibodies underscores their transformative impact on healthcare and their continued promise to advance the frontiers of medicine.
Collapse
Affiliation(s)
- Manjeet Kothari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Vineet Karwa
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Roma Chavhan
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Ajinkya Kadu
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Rajvardhan Patil
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
11
|
Ghosh M, Shadangi S, Rana S. Rational design of antibody-like peptides for targeting the human complement fragment protein C5a. Proteins 2024; 92:449-463. [PMID: 37933678 DOI: 10.1002/prot.26637] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Human complement fragment 5a (C5a) is one of the most potent glycoproteins generated downstream of C3a and C4a during late-stage activation of the complement signaling cascade. C5a recruits receptors like C5aR1 and C5aR2 and is established to play a critical role in complement-mediated inflammation. Thus, excessive C5a in the plasma due to aberrant activation of the complement contributes to the pathophysiology of several chronic inflammatory diseases. Therefore, restricting the excessive interaction of C5a with its receptors by neutralizing C5a has been one of the most effective therapeutic strategies for the management of inflammatory diseases. Indeed, antibodies targeting C5 (Eculizumab), the precursor of C5a, and C5a (Vilobelimab) have already been approved by the FDA. Still, small designer peptides that work like antibodies and can target and stop C5a from interacting with its receptors seem to be a possible therapeutic alternative to antibodies because they are smaller, cheaper to make, more specific to their target, and can get through membrane barriers. As a proof-of-principle, the current study describes the computational design and evaluation of a pair of peptides that are able to form stable high-affinity complexes with the epitope regions of C5a that are important for the recruitment of C5aR1 and C5aR2. The computational data further supports the potential of designer peptides for mimicking the function of antibodies targeting C5a. However, further experimental studies will be required to establish the structure-function relationship of the designer peptides and also to establish the hypothesis of antibody-like peptides targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Wojciechowicz K, Spodzieja M, Wardowska A. The BTLA-HVEM complex - The future of cancer immunotherapy. Eur J Med Chem 2024; 268:116231. [PMID: 38387336 DOI: 10.1016/j.ejmech.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
The BTLA-HVEM complex plays a pivotal role in cancer and cancer immunotherapy by regulating immune responses. Dysregulation of BTLA and HVEM expression contributes to immunosuppression and tumor progression across various cancer types. Targeting the interaction between BTLA and HVEM holds promise for enhancing anti-tumor immune responses. Disruption of this complex presents a valuable avenue for advancing cancer immunotherapy strategies. Aberrant expression of BTLA and HVEM adversely affects immune cell function, particularly T cells, exacerbating tumor evasion mechanisms. Understanding and modulating the BTLA-HVEM axis represents a crucial aspect of designing effective immunotherapeutic interventions against cancer. Here, we summarize the current knowledge regarding the structure and function of BTLA and HVEM, along with their interaction with each other and various immune partners. Moreover, the expression of soluble and transmembrane forms of BTLA and HVEM in different types of cancer and their impact on the prognosis of patients is also discussed. Additionally, inhibitors of the proteins binding that might be used to block BTLA-HVEM interaction are reviewed. All the presented data highlight the plausible clinical application of BTLA-HVEM targeted therapies in cancer and autoimmune disease management. However, further studies are required to confirm the practical use of this concept. Despite the increasing number of reports on the BTLA-HVEM complex, many aspects of its biology and function still need to be elucidated. This review can be regarded as an encouragement and a guide to follow the path of BTLA-HVEM research.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| |
Collapse
|
13
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
14
|
Shinde SH, Sandeep, Pande AH. Polyvalency: an emerging trend in the development of clinical antibodies. Drug Discov Today 2024; 29:103846. [PMID: 38029835 DOI: 10.1016/j.drudis.2023.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Medicine has benefited greatly from the development of monoclonal antibody (mAb) technology. First-generation mAbs have seen significant success in the treatment of major diseases, such as autoimmune, inflammation, cancer, infectious, and cardiovascular diseases. Developing next-generation antibodies with improved potency, safety, and non-natural characteristics is a booming field of mAb research. In this review, we discuss the significance of polyvalency and polyvalent antibodies, as well as important findings from preclinical studies and clinical trials involving polyvalent antibodies. We then review the role of tumor necrosis factor-alpha (TNF-α) in inflammatory diseases and the need for polyvalent anti-TNF-α antibodies.
Collapse
Affiliation(s)
- Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
15
|
Deng Z, Zhang S, Sun M, Yang H, Lu Y, Wang M, Fang W, Shi F, He F. Nanobodies against porcine CD163 as PRRSV broad inhibitor. Int J Biol Macromol 2023; 253:127493. [PMID: 37858656 DOI: 10.1016/j.ijbiomac.2023.127493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/01/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
PRRSV (Porcine Reproductive and Respiratory Syndrome Virus) is a major swine pathogen causing economic losses. To the date, effective broad PRRSV inhibitory strategies have not been available in practice yet. Targeting the key viral receptor CD163 to block PRRSV entry has emerged as an alternative approach beside vaccines for PRRSV inhibition. As an effective therapeutic tool, nanoantibodies (Nbs) have been widely used in antiviral research. In this study, a phage display VHH library was constructed for the selection of Nbs against porcine CD163 scavenger receptor cysteine-rich 5-9 domain (SRCR5-9). After five rounds of bio-panning and indirect ELISA, seven CD163-specific Nbs (Nb1-Nb7) were identified. All obtained Nbs displayed strong affinity to CD163 receptor and excellent antiviral activity. In particular, Nb2 exhibited significant broad inhibitory effects on variable PRRSV lineages and downregulated virus-related NF-κB signaling. Further studies suggested that Nbs mainly exerted antiviral functions by interfering with virus attachment stage, and also decreased the transcription of CD163. The conformational epitopes recognized by Nbs were localized in the SRCR5 domain of CD163, a crucial region in PRRSV infection. Overall, our findings provide a novel insight into the biofunction of CD163 in antiviral infection and the development of broad-spectrum strategies against PRRSV.
Collapse
Affiliation(s)
- Zhuofan Deng
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Shengkun Zhang
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Meiqi Sun
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Haotian Yang
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Ying Lu
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Maopeng Wang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou 325000, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fang He
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Ming K, Hu Y, Zhu M, Xing B, Mei M, Wei Z. Development of nanobodies against Staphylococcus enterotoxin B through yeast surface display. Int J Biol Macromol 2023; 253:126822. [PMID: 37703983 DOI: 10.1016/j.ijbiomac.2023.126822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Staphylococcus enterotoxin B (SEB) is one of the primary virulence factors of Staphylococcus aureus but there is still a lack of targeted drugs. SEB activates immune cells via interacting with MHC-II on antigen-presenting cells, leading to the production of large amounts of pro-inflammatory cytokines. Blocking the interaction between SEB and MHC-II can avert the overactivation of immune cells. Nanobodies are the smallest functional antibodies that can bind stably to antigens. In this study, an ideal approach to obtain specific nanobodies without immunizing camelids was introduced. We constructed a library containing up to 5 × 108 nanobodies, and then screened those targeting SEB by using yeast surface display (YSD) technique and fluorescence-activated cell sorting (FACS). A total of 8 nanobodies with divergent complementarity-determining regions (CDRs) sequences were identified and one candidate Nb8 with high affinity to SEB was isolated. In vitro study demonstrated that Nb8 significantly inhibited SEB-induced inflammatory response. Molecular docking simulation indicated that the unique CDR3 sequence contributed to the binding of Nb8 to the MHC-II binding domain of SEB and accordingly cut off the connection between SEB and MHC-II. Our efforts contributed to the development of specific nanobodies for eliminating the threats of SEB.
Collapse
Affiliation(s)
- Ke Ming
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Yang Hu
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Meijun Zhu
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Banbin Xing
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Meng Mei
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Zigong Wei
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life sciences, Hubei University, Wuhan, Hubei, PR China.
| |
Collapse
|
17
|
Mastraccio KE, Huaman C, Coggins SA, Clouse C, Rader M, Yan L, Mandal P, Hussain I, Ahmed AE, Ho T, Feasley A, Vu BK, Smith IL, Markotter W, Weir DL, Laing ED, Broder CC, Schaefer BC. mAb therapy controls CNS-resident lyssavirus infection via a CD4 T cell-dependent mechanism. EMBO Mol Med 2023; 15:e16394. [PMID: 37767784 PMCID: PMC10565638 DOI: 10.15252/emmm.202216394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre-symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti-lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11-dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell-dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ-binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization-independent T cell-mediated effects, even against an established CNS infection by a lethal neurotropic virus.
Collapse
Affiliation(s)
- Kate E Mastraccio
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
- Present address:
Wadsworth CenterNew York State Department of HealthAlbanyNYUSA
| | - Celeste Huaman
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Si'Ana A Coggins
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Caitlyn Clouse
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Madeline Rader
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Lianying Yan
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Pratyusha Mandal
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Imran Hussain
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Anwar E Ahmed
- Department of Preventive Medicine and BiostatisticsUniformed Services UniversityBethesdaMDUSA
| | - Trung Ho
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Austin Feasley
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Bang K Vu
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
Lentigen Technology, Inc.GaithersburgMDUSA
| | - Ina L Smith
- Risk Evaluation and Preparedness Program, Health and BiosecurityCSIROBlack MountainACTAustralia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Emerging Zoonotic and Parasitic DiseasesNational Institute for Communicable Diseases, National Health Laboratory ServicePretoriaSouth Africa
| | - Dawn L Weir
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
The Center for Bio/Molecular Science and EngineeringU.S. Naval Research LaboratoryWashingtonDCUSA
| | - Eric D Laing
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Christopher C Broder
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Brian C Schaefer
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| |
Collapse
|
18
|
Monti G, Vincke C, Lunding M, Jensen AMG, Madsen P, Muyldermans S, Kjolby M, Andersen OM. Epitope mapping of nanobodies binding the Alzheimer's disease receptor SORLA. J Biotechnol 2023; 375:17-27. [PMID: 37634829 DOI: 10.1016/j.jbiotec.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Reduced levels of the Sortilin-related receptor with A-type repeats (SORLA) in different brain regions as well as in the cerebrospinal fluid have been associated with Alzheimer's disease. Methods and reagents to develop reliable detection assays to quantify SORLA and its specific isoforms are therefore much needed. Nanobodies (Nbs) are unique biomolecules derived from the blood of camelids that display advantageous physicochemical and antigen affinity properties, making them attractive tools with great relevance to both diagnostic and therapeutic applications. Here, we purified and characterized eight Nbs that were isolated from the blood of an alpaca immunized with the recombinant extracellular domain of SORLA. The selected Nbs showed high affinity to SORLA in the low nanomolar range as observed by surface plasmon resonance. For mapping of the Nbs' epitopes within the antigen, we transiently transfected HEK293 cells with a panel of SORLA deletion constructs, and developed a protocol of immunostaining by applying fluorescent dye conjugated Nbs. With this method, we showed that the selected Nbs specifically recognize a part of SORLA containing Fibronectin-type III domains, representing promising tools not only for disease clarifying research, but also for translational medicine as candidates for clinical diagnostic purposes.
Collapse
Affiliation(s)
- Giulia Monti
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Melanie Lunding
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Mette G Jensen
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Peder Madsen
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark; Department of Clinical Pharmacology and Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark.
| |
Collapse
|
19
|
Kunz S, Durandy M, Seguin L, Feral CC. NANOBODY ® Molecule, a Giga Medical Tool in Nanodimensions. Int J Mol Sci 2023; 24:13229. [PMID: 37686035 PMCID: PMC10487883 DOI: 10.3390/ijms241713229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Although antibodies remain the most widely used tool for biomedical research, antibody technology is not flawless. Innovative alternatives, such as Nanobody® molecules, were developed to address the shortcomings of conventional antibodies. Nanobody® molecules are antigen-binding variable-domain fragments derived from the heavy-chain-only antibodies of camelids (VHH) and combine the advantageous properties of small molecules and monoclonal antibodies. Nanobody® molecules present a small size (~15 kDa, 4 nm long and 2.5 nm wide), high solubility, stability, specificity, and affinity, ease of cloning, and thermal and chemical resistance. Recombinant production in microorganisms is cost-effective, and VHH are also building blocks for multidomain constructs. These unique features led to numerous applications in fundamental research, diagnostics, and therapy. Nanobody® molecules are employed as biomarker probes and, when fused to radioisotopes or fluorophores, represent ideal non-invasive in vivo imaging agents. They can be used as neutralizing agents, receptor-ligand antagonists, or in targeted vehicle-based drug therapy. As early as 2018, the first Nanobody®, Cablivi (caplacizumab), a single-domain antibody (sdAb) drug developed by French pharmaceutical giant Sanofi for the treatment of adult patients with acquired thrombocytopenic purpura (aTTP), was launched. Nanobody® compounds are ideal tools for further development in clinics for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Sarah Kunz
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
- Department of Oncology, Sanofi Research Center, 94400 Vitry-sur-Seine, France
| | - Manon Durandy
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| | - Laetitia Seguin
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| | - Chloe C. Feral
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| |
Collapse
|
20
|
Umarje SC, Banerjee SK. Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 2023; 23:1113-1135. [PMID: 38007617 DOI: 10.1080/14712598.2023.2279644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION The drying up of antibiotic pipeline has necessitated the development of alternative therapeutic strategies to control the problem of antimicrobial resistance (AMR) that is expected to kill 10-million people annually by 2050. Newer therapeutic approaches address the shortcomings of traditional small-molecule antibiotics - the lack of specificity, evolvability, and susceptibility to mutation-based resistance. These 'non-traditional' molecules are biologicals having a complex structure and mode(s) of action that makes them resilient to resistance. AREAS COVERED This review aims to provide information about the non-traditional drug development approaches to tackle the problem of antimicrobial resistance, from the pre-antibiotic era to the latest developments. We have covered the molecules under development in the clinic with literature sourced from reviewed scholarly articles, official company websites involved in innovation of concerned therapeutics, press releases from the regulatory bodies, and clinical trial databases. EXPERT OPINION Formal introduction of non-traditional therapies in general practice can be quick and feasible only if supported with companion diagnostics and used in conjunction with established therapies. Owing to relatively higher development costs, non-traditional therapeutics require more funding as well as well as clarity in regulatory and clinical path. We are hopeful these issues are adequately addressed before AMR develops into a pandemic.
Collapse
Affiliation(s)
- Siddharth C Umarje
- Department of Proteomics, AbGenics Life Sciences Pvt. Ltd., Pune, India
- AbGenics Life Sciences Pvt. Ltd., Pune, India
| | | |
Collapse
|
21
|
Kang J, Mateu-Borrás M, Monroe HL, Sen-Kilic E, Miller SJ, Dublin SR, Huckaby AB, Yang E, Pyles GM, Nunley MA, Chapman JA, Amin MS, Damron FH, Barbier M. Monoclonal antibodies against lipopolysaccharide protect against Pseudomonas aeruginosa challenge in mice. Front Cell Infect Microbiol 2023; 13:1191806. [PMID: 37424774 PMCID: PMC10326049 DOI: 10.3389/fcimb.2023.1191806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Pseudomonas aeruginosa is a common cause of hospital-acquired infections, including central line-associated bloodstream infections and ventilator-associated pneumonia. Unfortunately, effective control of these infections can be difficult, in part due to the prevalence of multi-drug resistant strains of P. aeruginosa. There remains a need for novel therapeutic interventions against P. aeruginosa, and the use of monoclonal antibodies (mAb) is a promising alternative strategy to current standard of care treatments such as antibiotics. To develop mAbs against P. aeruginosa, we utilized ammonium metavanadate, which induces cell envelope stress responses and upregulates polysaccharide expression. Mice were immunized with P. aeruginosa grown with ammonium metavanadate and we developed two IgG2b mAbs, WVDC-0357 and WVDC-0496, directed against the O-antigen lipopolysaccharide of P. aeruginosa. Functional assays revealed that WVDC-0357 and WVDC-0496 directly reduced the viability of P. aeruginosa and mediated bacterial agglutination. In a lethal sepsis model of infection, prophylactic treatment of mice with WVDC-0357 and WVDC-0496 at doses as low as 15 mg/kg conferred 100% survival against challenge. In both sepsis and acute pneumonia models of infection, treatment with WVDC-0357 and WVDC-0496 significantly reduced bacterial burden and inflammatory cytokine production post-challenge. Furthermore, histopathological examination of the lungs revealed that WVDC-0357 and WVDC-0496 reduced inflammatory cell infiltration. Overall, our results indicate that mAbs directed against lipopolysaccharide are a promising therapy for the treatment and prevention of P. aeruginosa infections.
Collapse
Affiliation(s)
- Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Margalida Mateu-Borrás
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Hunter L. Monroe
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Sarah Jo Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Spencer R. Dublin
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Evita Yang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mason A. Nunley
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Josh A. Chapman
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Md Shahrier Amin
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
22
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
23
|
Hopkins MM, Antonopoulos IH, Parupudi A, Bee JS, Bain DL. Comparative Thermodynamics of the Reversible Self-Association of Therapeutic mAbs Reveal Opposing Roles for Linked Proton- and Ion-Binding Events. Pharm Res 2023; 40:1383-1397. [PMID: 36869246 DOI: 10.1007/s11095-023-03485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE Reversible self-association (RSA) has long been a concern in therapeutic monoclonal antibody (mAb) development. Because RSA typically occurs at high mAb concentrations, accurate assessment of the underlying interaction parameters requires explicitly addressing hydrodynamic and thermodynamic nonideality. We previously examined the thermodynamics of RSA for two mAbs, C and E, in phosphate buffered saline (PBS). Here we continue to explore the mechanistic aspects of RSA by examining the thermodynamics of both mAbs under reduced pH and salt conditions. METHODS Dynamic light scattering and sedimentation velocity (SV) studies were conducted for both mAbs at multiple protein concentrations and temperatures, with the SV data analyzed via global fitting to determine best-fit models, interaction energetics, and nonideality contributions. RESULTS We find that mAb C self-associates isodesmically irrespective of temperature, and that association is enthalpically driven but entropically penalized. Conversely, mAb E self-associates cooperatively and via a monomer-dimer-tetramer-hexamer reaction pathway. Moreover, all mAb E reactions are entropically driven and enthalpically modest or minimal. CONCLUSIONS The thermodynamics for mAb C self-association are classically seen as originating from van der Waals interactions and hydrogen bonding. However, relative to the energetics we determined in PBS, self-association must also be linked to proton release and/or ion uptake events. For mAb E, the thermodynamics implicate electrostatic interactions. Furthermore, self-association is instead linked to proton uptake and/or ion release, and primarily by tetramers and hexamers. Finally, although the origins of mAb E cooperativity remain unclear, ring formation remains a possibility whereas linear polymerization reactions can be eliminated.
Collapse
Affiliation(s)
- Mandi M Hopkins
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA
- Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Ioanna H Antonopoulos
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA
- Biophysical Characterization, KBI Biopharma, Louisville, CO, 80027, USA
| | - Arun Parupudi
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Drug Product and Formulation Sciences, GSK Vaccines, Rockville, MD, 20850, USA
| | - Jared S Bee
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Formulation and Drug Product Development, REGENXBIO Inc, Rockville, MD, 20850, USA
| | - David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA.
| |
Collapse
|
24
|
Malla R, Marni R, Chakraborty A. Exploring the role of CD151 in the tumor immune microenvironment: Therapeutic and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:188898. [PMID: 37094754 DOI: 10.1016/j.bbcan.2023.188898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
CD151 is a transmembrane protein implicated in tumor progression and has been shown to regulate various cellular and molecular mechanisms contributing to malignancy. More recently, the role of CD151 in the tumor immune microenvironment (TIME) has gained attention as a potential target for cancer therapy. This review aims to explore the role of CD151 in the TIME, focusing on the therapeutic and clinical perspectives. The role of CD151 in regulating the interactions between tumor cells and the immune system will be discussed, along with the current understanding of the molecular mechanisms underlying these interactions. The current state of the development of CD151-targeted therapies and the potential clinical applications of these therapies will also be reviewed. This review provides an overview of the current knowledge on the role of CD151 in the TIME and highlights the potential of CD151 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Rakshmita Marni
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | | |
Collapse
|
25
|
Seah JJ, Thong M, Wang DY. The Diagnostic and Prognostic Role of Biomarkers in Chronic Rhinosinusitis. Diagnostics (Basel) 2023; 13:diagnostics13040715. [PMID: 36832203 PMCID: PMC9955000 DOI: 10.3390/diagnostics13040715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Chronic rhinosinusitis (CRS) refers to an inflammatory disease of the sinonasal mucosa, with a significant economic burden and impact on quality of life. The diagnosis of CRS is conventionally made on careful history and physical examination, including nasoendoscopic assessment which requires technical expertise. There has been increasing interest in using biomarkers in the non-invasive diagnosis and prognostication of CRS, tailored to the disease inflammatory endotype. Potential biomarkers currently being studied can be isolated from peripheral blood, exhaled nasal gases or nasal secretions, as well as sinonasal tissue. In particular, various biomarkers have revolutionized the way in which CRS is managed, revealing new inflammatory pathways where novel therapeutic drugs are employed to curb the inflammatory process, which may be different from one patient to the next. Biomarkers that have been extensively studied in CRS, such as eosinophil count, IgE, and IL-5, have been associated with a TH2 inflammatory endotype which correlates with an eosinophilic CRSwNP phenotype that predicts a poorer prognosis, tends to recur after conventional surgical treatment, but responds to glucocorticoid treatment. Newer biomarkers that demonstrate potential, such as nasal nitric oxide, can support a diagnosis of CRS with or without nasal polyps, especially when invasive tests such as nasoendoscopy are unavailable. Other biomarkers such as periostin can be used to monitor disease course after treatment of CRS. With a personalized treatment plan, the management of CRS can be individualized, optimizing treatment efficiency and reducing adverse outcomes. As such, this review aims to compile and summarize the existing literature regarding the utility of biomarkers in CRS in terms of diagnosis and prognostication, and also makes recommendations for further studies to fill current knowledge gaps.
Collapse
Affiliation(s)
- Jun Jie Seah
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mark Thong
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, National University Health System, Singapore 119228, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
26
|
Tian MY, Hao DX, Liu Y, He J, Zhao ZH, Guo TY, Li X, Zhang Y. Milk exosomes: an oral drug delivery system with great application potential. Food Funct 2023; 14:1320-1337. [PMID: 36722924 DOI: 10.1039/d2fo02013k] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exosomes are extracellular vesicles with the smallest diameter, usually divided into cellular sources and body fluid sources. Due to their special properties different from cell-derived exosomes, the application of milk exosomes as an oral drug delivery system has increased greatly. This article introduces the physical and chemical properties of exosomes, separation technology, dyeing and labeling technology, targeted modification technology, and the application of milk exosomes in drug loading and disease therapies.
Collapse
Affiliation(s)
- Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Dong-Xia Hao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Yang Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Jin He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Zhuo-Hua Zhao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Ting-Yu Guo
- The International Department of the High School Affiliated to Shaanxi Normal University, Xi'an, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
27
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
28
|
Namai F, Sumiya S, Nomura N, Sato T, Shimosato T. Development of fluorescence-labeled antibody for immune checkpoint inhibitor using engineered probiotics. AMB Express 2023; 13:4. [PMID: 36635518 PMCID: PMC9837357 DOI: 10.1186/s13568-023-01509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/08/2023] [Indexed: 01/14/2023] Open
Abstract
Here, we developed a genetically modified lactic acid bacteria (gmLAB) that produces green fluorescent protein (GFP)-conjugating, anti-programmed death-ligand 1 (PD-L1) single-chain variable fragments (scFv) for use as an anti-cancer device that targets immune checkpoint molecules. Since PD-L1 plays a key role as an immune checkpoint molecule in the tumor microenvironment, inhibition and detection of PD-L1 are important in cancer research. The anti-PD-L1 scFv was designed based on atezolizumab, a humanized IgG1 monoclonal antibody, and integrated into a lactococcal GFP gene expression vector. Gene expression from the constructed gmLAB was confirmed by western blotting and GFP fluorescence. The ability of GFP-conjugating anti-PD-L1 scFv against the target antigen, PD-L1 protein, was shown using an enzyme-linked immunosorbent assay. Finally, the ability to recognize PD-L1-expressing tumor-cell lines was confirmed using flow cytometry and fluorescence microscopy. Our results suggest that the gmLAB could be applied to in vivo imaging in cancer as an affordable diagnostic/treatment tool.
Collapse
Affiliation(s)
- Fu Namai
- grid.263518.b0000 0001 1507 4692Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598 Japan
| | - Shunsuke Sumiya
- grid.263518.b0000 0001 1507 4692Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598 Japan
| | - Natsumi Nomura
- grid.263518.b0000 0001 1507 4692Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598 Japan
| | - Takashi Sato
- grid.263518.b0000 0001 1507 4692Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598 Japan
| | - Takeshi Shimosato
- grid.263518.b0000 0001 1507 4692Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598 Japan
| |
Collapse
|
29
|
Doe E, Hayth HL, Khisamutdinov EF. Bioconjugation of Functionalized Oligodeoxynucleotides with Fluorescence Reporters for Nanoparticle Assembly. Methods Mol Biol 2023; 2709:105-115. [PMID: 37572275 DOI: 10.1007/978-1-0716-3417-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
In the field of nucleic acid nanotechnology and therapeutics, there is an imperative need to improve the oligodeoxynucleotides' (ODNs) properties by either chemical modification of the oligonucleotides' structure or to covalently link them to a reporter or therapeutic moieties that possess biologically relevant properties. The chemical conjugation can thus significantly improve the intrinsic properties not only of ODNs but also reporter/therapeutic molecules. Bioconjugation of nucleic acids to small molecules also serves as a nano-delivery facility to transport various functionalities to specific targets. Herein, we describe a generalized methodology that deploys azide-alkyne cycloaddition, a click reaction to conjugate a cyanine-3 alkyne moiety to an azide-functionalized ODN 12-mer, as well as 3-azido 7-hydroxycoumarin to an alkyne functionalized ODN 12-mer.
Collapse
Affiliation(s)
- Erwin Doe
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Hannah L Hayth
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | | |
Collapse
|
30
|
Huang C, Duan X, Wang J, Tian Q, Ren Y, Chen K, Zhang Z, Li Y, Feng Y, Zhong K, Wang Y, Zhou L, Guo G, Song X, Tong A. Lipid Nanoparticle Delivery System for mRNA Encoding B7H3-redirected Bispecific Antibody Displays Potent Antitumor Effects on Malignant Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205532. [PMID: 36403209 PMCID: PMC9875623 DOI: 10.1002/advs.202205532] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The therapeutic use of bispecific T-cell engaging (BiTE) antibodies has shown great potential for treating malignancies. BiTE can simultaneously engage CD3ε on T cells and tumor antigen on cancer cells, thus exerting an effective antitumor effect. Nevertheless, challenges in production, manufacturing, and short serum half-life of BiTE have dampened some of the promise and impeded the pace of BiTE-based therapeutics to combat diseases. Nowadays, in vitro-transcribed mRNA has achieved programmed production, which is more flexible and cost-effective than the traditional method of producing recombinant antibody. Here, the authors have developed a BiTE-based mRNA treatment by encapsulating mRNA encoding B7H3×CD3 BiTE into a novel ionizable lipid nanoparticles (LNPs). The authors have found that LNPs have high transfection efficiency, and the hepatosplenic targeting capability of produce high concentrations of BiTE. Above all, a single intravenous injection of BiTE mRNA-LNPs could achieve high levels of protein expression in vivo and significantly prolonged the half-life of the BiTE, which can elicit robust and durable antitumor efficacy against hematologic malignancies and melanoma. Therefore, their results suggested that the therapeutic strategy based on mRNA expression of B7H3×CD3 BiTE is of potential research value and has promising clinical application prospects.
Collapse
Affiliation(s)
- Cheng Huang
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Xing Duan
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Jichao Wang
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Qingqing Tian
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Yangmei Ren
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Kepan Chen
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Yuanyou Li
- Department of NeurosurgeryWest China HospitalWest China Medical SchoolSichuan UniversityChengduSichuan Province610041China
| | - Yunyu Feng
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Yuelong Wang
- Department of NeurosurgeryWest China HospitalWest China Medical SchoolSichuan UniversityChengduSichuan Province610041China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalWest China Medical SchoolSichuan UniversityChengduSichuan Province610041China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| | - Xiangrong Song
- Department of Critical Care Medicineand Department of Pancreatic SurgeryFrontiers Science Center for Disease‐related Molecular NetworkState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan Province610213China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer CenterResearch Unit of Gene and ImmunotherapyChinese Academy of Medical SciencesCollaborative Innovation Center of BiotherapyWest China HospitalSichuan UniversityChengduSichuan Province610041China
| |
Collapse
|
31
|
Liu L, Chen J. Therapeutic antibodies for precise cancer immunotherapy: current and future perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:555-569. [PMID: 37724258 PMCID: PMC10471122 DOI: 10.1515/mr-2022-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/25/2022] [Indexed: 09/20/2023]
Abstract
Antibodies, as one of the most important components of host adaptive immune system, play an important role in defense of infectious disease, immune surveillance, and autoimmune disease. Due to the development of recombinant antibody technology, antibody therapeutics become the largest and rapidly expanding drug to provide major health benefits to patients, especially for the treatment of cancer patients. Many antibody-based therapeutic strategies have been developed including monoclonal antibodies, antibody-drug conjugates, bispecific and trispecific antibodies and pro-antibodies with promising results from both clinical and pre-clinical trials. However, the response rate and side-effect still vary between patients with undefined mechanisms. Here, we summarized the current and future perspectives of antibody-based cancer immunotherapeutic strategies for designing next-generation drugs.
Collapse
Affiliation(s)
- Longchao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahui Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
32
|
Abstract
The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes. As a class of hybrid biomacromolecules gaining rapidly increasing attention, protein conjugates have exhibited great potential as versatile tools to manipulate cell function for therapeutic applications, including cancer treatment, tissue engineering, and regenerative medicine. Therefore, recent progress in the design and assembly of protein conjugates used to regulate cell function is discussed in this review. The protein conjugates covered here are classified into three different categories based on their mechanisms of action and relevant applications: (1) regulation of intercellular interactions; (2) intervention in intracellular biological pathways; (3) termination of cell proliferation. Within each genre, a variety of protein conjugate scaffolds are discussed, which contain a diverse array of grafted molecules, such as lipids, oligonucleotides, synthetic polymers, and small molecules, with an emphasis on their conjugation methodologies and potential biomedical applications. While the current generation of protein conjugates is focused largely on delivery, the next generation is expected to address issues of site-specific conjugation, in vivo stability, controllability, target selectivity, and biocompatibility.
Collapse
Affiliation(s)
- Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Qin Q, Liu H, He W, Guo Y, Zhang J, She J, Zheng F, Zhang S, Muyldermans S, Wen Y. Single Domain Antibody application in bacterial infection diagnosis and neutralization. Front Immunol 2022; 13:1014377. [PMID: 36248787 PMCID: PMC9558170 DOI: 10.3389/fimmu.2022.1014377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Increasing antibiotic resistance to bacterial infections causes a serious threat to human health. Efficient detection and treatment strategies are the keys to preventing and reducing bacterial infections. Due to the high affinity and antigen specificity, antibodies have become an important tool for diagnosis and treatment of various human diseases. In addition to conventional antibodies, a unique class of “heavy-chain-only” antibodies (HCAbs) were found in the serum of camelids and sharks. HCAbs binds to the antigen through only one variable domain Referred to as VHH (variable domain of the heavy chain of HCAbs). The recombinant format of the VHH is also called single domain antibody (sdAb) or nanobody (Nb). Sharks might also have an ancestor HCAb from where SdAbs or V-NAR might be engineered. Compared with traditional Abs, Nbs have several outstanding properties such as small size, high stability, strong antigen-binding affinity, high solubility and low immunogenicity. Furthermore, they are expressed at low cost in microorganisms and amenable to engineering. These superior properties make Nbs a highly desired alternative to conventional antibodies, which are extensively employed in structural biology, unravelling biochemical mechanisms, molecular imaging, diagnosis and treatment of diseases. In this review, we summarized recent progress of nanobody-based approaches in diagnosis and neutralization of bacterial infection and further discussed the challenges of Nbs in these fields.
Collapse
Affiliation(s)
- Qian Qin
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Wenbo He
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junjun She
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sicai Zhang
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yurong Wen
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Wu G, Liu C, Cao B, Cao Z, Zhai H, Liu B, Jin S, Yang X, Lv C, Wang J. Connective tissue growth factor-targeting DNA aptamer suppresses pannus formation as diagnostics and therapeutics for rheumatoid arthritis. Front Immunol 2022; 13:934061. [PMID: 35990694 PMCID: PMC9389230 DOI: 10.3389/fimmu.2022.934061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Connective tissue growth factor (CTGF) has been recently acknowledged as an ideal biomarker in the early disease course, participating in the pathogenesis of pannus formation in rheumatoid arthritis (RA). However, existing approaches for the detection of or antagonist targeting CTGF are either lacking or unsatisfactory in the diagnosis and treatment of RA. To address this, we synthesized and screened high-affinity single-stranded DNA aptamers targeting CTGF through a protein-based SELEX procedure. The structurally optimized variant AptW2-1-39-PEG was characterized thoroughly for its high-affinity (KD 7.86 nM), sensitivity (minimum protein binding concentration, 2 ng), specificity (negative binding to other biomarkers of RA), and stability (viability-maintaining duration in human serum, 48 h) properties using various biochemical and biophysical assays. Importantly, we showed the antiproliferative and antiangiogenic activities of the aptamers obtained using functional experiments and further verified the therapeutic effect of the aptamers on joint injury and inflammatory response in collagen-induced arthritis (CIA) mice, thus advancing this study into actual therapeutic application. Furthermore, we revealed that the binding within AptW2-1-39-PEG/CTGF was mediated by the thrombospondin 1 (TSP1) domain of CTGF using robust bioinformatics tools together with immunofluorescence. In conclusion, our results revealed a novel aptamer that holds promise as an additive or alternative approach for CTGF-targeting diagnostics and therapeutics for RA.
Collapse
Affiliation(s)
- Gan Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Can Liu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ben Cao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zelin Cao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haige Zhai
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Liu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| | - Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| |
Collapse
|
35
|
Ordóñez-Reyes C, Garcia-Robledo JE, Chamorro DF, Mosquera A, Sussmann L, Ruiz-Patiño A, Arrieta O, Zatarain-Barrón L, Rojas L, Russo A, de Miguel-Perez D, Rolfo C, Cardona AF. Bispecific Antibodies in Cancer Immunotherapy: A Novel Response to an Old Question. Pharmaceutics 2022; 14:pharmaceutics14061243. [PMID: 35745815 PMCID: PMC9229626 DOI: 10.3390/pharmaceutics14061243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/14/2023] Open
Abstract
Immunotherapy has redefined the treatment of cancer patients and it is constantly generating new advances and approaches. Among the multiple options of immunotherapy, bispecific antibodies (bsAbs) represent a novel thoughtful approach. These drugs integrate the action of the immune system in a strategy to redirect the activation of innate and adaptive immunity toward specific antigens and specific tumor locations. Here we discussed some basic aspects of the design and function of bsAbs, their main challenges and the state-of-the-art of these molecules in the treatment of hematological and solid malignancies and future perspectives.
Collapse
Affiliation(s)
- Camila Ordóñez-Reyes
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Juan Esteban Garcia-Robledo
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Diego F. Chamorro
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Andrés Mosquera
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
| | - Liliana Sussmann
- Department of Neurology, Fundación Universitaria de Ciencias de la Salud, Bogotá 111221, Colombia;
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), Mexico City 14080, Mexico; (O.A.); (L.Z.-B.)
| | - Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), Mexico City 14080, Mexico; (O.A.); (L.Z.-B.)
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
| | | | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.d.M.-P.); (C.R.)
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.d.M.-P.); (C.R.)
| | - Andrés F. Cardona
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
- Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá 110131, Colombia
- Correspondence: ; Tel.: +57-(1)-6190052; Fax: +57-(1)-6190053
| |
Collapse
|
36
|
Huang K, Ying T, Wu Y. Single-Domain Antibodies as Therapeutics for Respiratory RNA Virus Infections. Viruses 2022; 14:1162. [PMID: 35746634 PMCID: PMC9230756 DOI: 10.3390/v14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the years, infectious diseases with high morbidity and mortality disrupted human healthcare systems and devastated economies globally. Respiratory viruses, especially emerging or re-emerging RNA viruses, including influenza and human coronavirus, are the main pathogens of acute respiratory diseases that cause epidemics or even global pandemics. Importantly, due to the rapid mutation of viruses, there are few effective drugs and vaccines for the treatment and prevention of these RNA virus infections. Of note, a class of antibodies derived from camelid and shark, named nanobody or single-domain antibody (sdAb), was characterized by smaller size, lower production costs, more accessible binding epitopes, and inhalable properties, which have advantages in the treatment of respiratory diseases compared to conventional antibodies. Currently, a number of sdAbs have been developed against various respiratory RNA viruses and demonstrated potent therapeutic efficacy in mouse models. Here, we review the current status of the development of antiviral sdAb and discuss their potential as therapeutics for respiratory RNA viral diseases.
Collapse
Affiliation(s)
- Keke Huang
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
37
|
Nunez-Nescolarde AB, Nikolic-Paterson DJ, Combes AN. Human Kidney Organoids and Tubuloids as Models of Complex Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:738-749. [PMID: 35181335 DOI: 10.1016/j.ajpath.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Kidney organoids derived from pluripotent stem cells and epithelial organoids derived from adult tissue (tubuloids) have been used to study various kidney disorders with a strong genetic component, such as polycystic kidney disease, Wilms tumor, and congenital nephrotic syndrome. However, complex disorders without clear genetic associations, such as acute kidney injury and many forms of chronic kidney disease, are only just beginning to be investigated using these in vitro approaches. Although organoids are a reductionist model, they contain clinically relevant cell populations that may help to elucidate human-specific pathogenic mechanisms. Thus, organoids may complement animal disease models to accelerate the translation of laboratory proof-of-concept research into clinical practice. This review discusses whether kidney organoids and tubuloids are suitable models for the study of complex human kidney disease and highlights their advantages and limitations compared with monolayer cell culture and animal models.
Collapse
Affiliation(s)
- Ana B Nunez-Nescolarde
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria, Australia.
| | - Alexander N Combes
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
38
|
Thomas-Moore BA, Del Valle CA, Field RA, Marín MJ. Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy. Photochem Photobiol Sci 2022; 21:1111-1131. [PMID: 35384638 PMCID: PMC9287206 DOI: 10.1007/s43630-022-00194-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
Abstract
Abstract The rise of antibacterial drug resistance means treatment options are becoming increasingly limited. We must find ways to tackle these hard-to-treat drug-resistant and biofilm infections. With the lack of new antibacterial drugs (such as antibiotics) reaching the clinics, research has switched focus to exploring alternative strategies. One such strategy is antibacterial photodynamic therapy (aPDT), a system that relies on light, oxygen, and a non-toxic dye (photosensitiser) to generate cytotoxic reactive oxygen species. This technique has already been shown capable of handling both drug-resistant and biofilm infections but has limited clinical approval to date, which is in part due to the low bioavailability and selectivity of hydrophobic photosensitisers. Nanotechnology-based techniques have the potential to address the limitations of current aPDT, as already well-documented in anti-cancer PDT. Here, we review recent advances in nanoparticle-based targeting tactics for aPDT. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Brydie A Thomas-Moore
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- Norwich Research Park Innovation Centre, Iceni Glycoscience Ltd, Colney Lane, Norwich, NR4 7GJ, UK.
| | - Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Robert A Field
- Norwich Research Park Innovation Centre, Iceni Glycoscience Ltd, Colney Lane, Norwich, NR4 7GJ, UK
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
39
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
40
|
Vishwakarma P, Vattekatte AM, Shinada N, Diharce J, Martins C, Cadet F, Gardebien F, Etchebest C, Nadaradjane AA, de Brevern AG. V HH Structural Modelling Approaches: A Critical Review. Int J Mol Sci 2022; 23:3721. [PMID: 35409081 PMCID: PMC8998791 DOI: 10.3390/ijms23073721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.
Collapse
Affiliation(s)
- Poonam Vishwakarma
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Akhila Melarkode Vattekatte
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | | | - Julien Diharce
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
| | - Carla Martins
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Frédéric Cadet
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
- PEACCEL, Artificial Intelligence Department, Square Albin Cachot, F-75013 Paris, France
| | - Fabrice Gardebien
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Catherine Etchebest
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
| | - Aravindan Arun Nadaradjane
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| | - Alexandre G. de Brevern
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-75015 Paris, France; (P.V.); (A.M.V.); (J.D.); (C.M.); (C.E.); (A.A.N.)
- INSERM UMR_S 1134, BIGR, DSIMB Team, Université de Paris and Université de la Réunion, F-97715 Saint Denis Messag, France; (F.C.); (F.G.)
| |
Collapse
|
41
|
O'Connell P, Blake MK, Pepelyayeva Y, Hyslop S, Godbehere S, Angarita AM, Pereira-Hicks C, Amalfitano A, Aldhamen YA. Adenoviral delivery of an immunomodulatory protein to the tumor microenvironment controls tumor growth. Mol Ther Oncolytics 2022; 24:180-193. [PMID: 35036523 PMCID: PMC8741417 DOI: 10.1016/j.omto.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/04/2021] [Indexed: 11/15/2022] Open
Abstract
Targeted modulation of the immune system against tumors can achieve responses in otherwise refractory cancers, which has spurred efforts aimed at optimizing such strategies. To this end, we have previously investigated cancer immunotherapy approaches using recombinant adenovirus vectors, as well as via modulation of the self-ligand receptor SLAMF7. Here, we present a gene transfer-based immunotherapy approach using targeted expression of a SLAMF7-Fc fusion construct directly into tumors at high concentrations via a recombinant adenoviral vector (Ad-SF7-Fc). Using multiple murine cancer models, we show that Ad-SF7-Fc can induce tumor control via augmentation of innate immunity; specifically, induction of type I interferons and activation of dendritic cells (DCs) and macrophages. Analogously, we find that modulating SLAMF7 signaling via an adenoviral vector expressing its intracellular adaptor, EAT-2, is also capable of inducing tumor control. Finally, we employ a novel in vivo prediction approach and dataset integration with machine learning to dissect how Ad-SF7-Fc modulates cell-type-specific responses in the tumor microenvironment to achieve tumor control. Thus, our novel combinatorial cancer immunotherapy highlights the benefit of multimodal immune modulation and lays a framework for combination with complementary approaches capable of inducing adaptive immune responses.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Maja K. Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Sean Hyslop
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Ariana M. Angarita
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Cristiane Pereira-Hicks
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
- Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| |
Collapse
|
42
|
Zambrano N, Froechlich G, Lazarevic D, Passariello M, Nicosia A, De Lorenzo C, Morelli MJ, Sasso E. High-Throughput Monoclonal Antibody Discovery from Phage Libraries: Challenging the Current Preclinical Pipeline to Keep the Pace with the Increasing mAb Demand. Cancers (Basel) 2022; 14:cancers14051325. [PMID: 35267633 PMCID: PMC8909429 DOI: 10.3390/cancers14051325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Monoclonal antibodies are increasingly used for a broad range of diseases. Rising demand must face with time time-consuming and laborious processes to isolate novel monoclonal antibodies. Next-generation sequencing coupled to phage display provides timely and sustainable high throughput selection strategy to rapidly access novel target. Here, we describe the current NGS-guided strategies to identify potential binders from enriched sub-libraires by applying a user-friendly informatic pipeline to identify and discard false positive clones. Rescue step and strategies to boost mAb yield are also discussed to improve the limiting selection and screening steps. Abstract Monoclonal antibodies are among the most powerful therapeutics in modern medicine. Since the approval of the first therapeutic antibody in 1986, monoclonal antibodies keep holding great expectations for application in a range of clinical indications, highlighting the need to provide timely and sustainable access to powerful screening options. However, their application in the past has been limited by time-consuming and expensive steps of discovery and production. The screening of antibody repertoires is a laborious step; however, the implementation of next-generation sequencing-guided screening of single-chain antibody fragments has now largely overcome this issue. This review provides a detailed overview of the current strategies for the identification of monoclonal antibodies from phage display-based libraries. We also discuss the challenges and the possible solutions to improve the limiting selection and screening steps, in order to keep pace with the increasing demand for monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| | - Guendalina Froechlich
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Margherita Passariello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alfredo Nicosia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Claudia De Lorenzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Marco J. Morelli
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| |
Collapse
|
43
|
Mahajan R, Suriyanarayanan S, Olsson GD, Wiklander JG, Aastrup T, Sellergren B, Nicholls IA. Oxytocin-Selective Nanogel Antibody Mimics. Int J Mol Sci 2022; 23:2534. [PMID: 35269677 PMCID: PMC8909970 DOI: 10.3390/ijms23052534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Oxytocin imprinted polymer nanoparticles were synthesized by glass bead supported solid phase synthesis, with NMR and molecular dynamics studies used to investigate monomer-template interactions. The nanoparticles were characterized by dynamic light scattering, scanning- and transmission electron microscopy and X-ray photoelectron spectroscopy. Investigation of nanoparticle-template recognition using quartz crystal microbalance-based studies revealed sub-nanomolar affinity, kd ≈ 0.3 ± 0.02 nM (standard error of the mean), comparable to that of commercial polyclonal antibodies, kd ≈ 0.02-0.2 nM.
Collapse
Affiliation(s)
- Rashmi Mahajan
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| | - Subramanian Suriyanarayanan
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| | - Gustaf D. Olsson
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| | - Jesper G. Wiklander
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| | - Teodor Aastrup
- Attana AB, Greta Arwidssons Väg 21, 11419 Stockholm, Sweden;
| | - Börje Sellergren
- Biofilms Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden;
| | - Ian A. Nicholls
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| |
Collapse
|
44
|
de Liyis BG, Tandy SG, Endira JF, Putri KA, Utami DKI. Anti-high mobility group box protein 1 monoclonal antibody downregulating P-glycoprotein as novel epilepsy therapeutics. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022; 58:121. [PMID: 36310854 PMCID: PMC9589779 DOI: 10.1186/s41983-022-00557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy, a neurological illness, is characterized by recurrent uncontrolled seizures. There are many treatments of options that can be used as the therapy of epilepsy. However, anti-seizure medications as the primary treatment choice for epilepsy show many possible adverse effects and even pharmacoresistance to the therapy. High Mobility Group Box 1 (HMGB1) as an initiator and amplifier of the neuroinflammation is responsible for the onset and progression of epilepsy by overexpressing P-glycoprotein on the blood brain barrier. HMGB1 proteins then activate TLR4 in neurons and astrocytes, in which proinflammatory cytokines are produced. Anti-HMGB1 mAb works by blocking the HMGB1, reducing inflammatory activity in the brain that may affect epileptogenesis. Through the process, anti-HMGB1 mAb reduces the TLR4 activity and other receptors that may involve in promote signal of epilepsy such as RAGE. Several studies have shown that anti-HMGB1 has the potential to inhibit the increase in serum HMGB1 in plasma and brain tissue. Further research is needed to identify the mechanism of the inhibiting of overexpression of P-glycoprotein through anti-HMGB1 mAb.
Collapse
Affiliation(s)
- Bryan Gervais de Liyis
- grid.412828.50000 0001 0692 6937Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Sevinna Geshie Tandy
- grid.412828.50000 0001 0692 6937Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Joana Fourta Endira
- grid.412828.50000 0001 0692 6937Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Komang Andjani Putri
- grid.412828.50000 0001 0692 6937Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Desak Ketut Indrasari Utami
- grid.412828.50000 0001 0692 6937Department of Neurology, Faculty of Medicine, Udayana University, Bali, Indonesia
| |
Collapse
|
45
|
Arunmanee W, Duangkaew M, Taweecheep P, Aphicho K, Lerdvorasap P, Pitchayakorn J, Intasuk C, Jiraratmetacon R, Syamsidi A, Chanvorachote P, Chaotham C, Pornputtapong N. Resurfacing receptor binding domain of Colicin N to enhance its cytotoxic effect on human lung cancer cells. Comput Struct Biotechnol J 2021; 19:5225-5234. [PMID: 34630940 PMCID: PMC8479544 DOI: 10.1016/j.csbj.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Colicin N (ColN) is a bacteriocin secreted by Escherichia coli (E. coli) to kill other Gram-negative bacteria by forcefully generating ion channels in the inner membrane. In addition to its bactericidal activity, ColN have been reported to selectively induce apoptosis in human lung cancer cells via the suppression of integrin modulated survival pathway. However, ColN showed mild toxicity against human lung cancer cells which could be improved for further applications. The protein resurfacing strategy was chosen to engineer ColN by extensive mutagenesis at solvent-exposed residues on ColN. The highly accessible Asp and Glu on wildtype ColN (ColNWT) were replaced by Lys to create polycationic ColN (ColN+12). Previous studies have shown that increase of positive charges on proteins leads to the enhancement of mammalian cell penetration as well as increased interaction with negatively charged surface of cancer cells. Those solvent-exposed residues of ColN were identified by Rosetta and AvNAPSA (Average number of Neighboring Atoms Per Sidechain Atom) approaches. The findings revealed that the structural features and stability of ColN+12 determined by circular dichroism were similar to ColNWT. Furthermore, the toxicity of ColN+12 was cancer selective. Human lung cancer cells, H460 and H23, were sensitive to ColN but human dermal papilla cells were not. ColN+12 also showed more potent toxicity than ColNWT in cancer cells. This confirmed that polycationic resurfacing method has enabled us to improve the anticancer activity of ColN towards human lung cancer cells.
Collapse
Affiliation(s)
- Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Methawee Duangkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchanok Taweecheep
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanokpol Aphicho
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panuwat Lerdvorasap
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jesada Pitchayakorn
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayada Intasuk
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Runglada Jiraratmetacon
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Armini Syamsidi
- Department of Pharmacy, Faculty of Science, Tadulako University, Central Sulawesi 94118, Indonesia
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author.
| |
Collapse
|
46
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Contribution of the Commensal Microflora to the Immunological Homeostasis and the Importance of Immune-Related Drug Development for Clinical Applications. Int J Mol Sci 2021; 22:8896. [PMID: 34445599 PMCID: PMC8396286 DOI: 10.3390/ijms22168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Not long ago, self-reactive immune activity was considered as pathological trait. A paradigm shift has now led to the recognition of autoimmune processes as part of natural maintenance of molecular homeostasis. The immune system is assigned further roles beneath the defense against pathogenic organisms. Regarding the humoral immune system, the investigation of natural autoantibodies that are frequently found in healthy individuals has led to further hypotheses involving natural autoimmunity in other processes as the clearing of cellular debris or decrease in inflammatory processes. However, their role and origin have not been entirely clarified, but accumulating evidence links their formation to immune reactions against the gut microbiome. Antibodies targeting highly conserved proteins of the commensal microflora are suggested to show self-reactive properties, following the paradigm of the molecular mimicry. Here, we discuss recent findings, which demonstrate potential links of the commensal microflora to the immunological homeostasis and highlight the possible implications for various diseases. Furthermore, specific components of the immune system, especially antibodies, have become a focus of attention for the medical management of various diseases and provide attractive treatment options in the future. Nevertheless, the development and optimization of such macromolecules still represents a very time-consuming task, shifting the need to more medical agents with simple structural properties and low manufacturing costs. Synthesizing only the biologically active sites of antibodies has become of great interest for the pharmaceutical industry and offers a wide range of therapeutic application areas as it will be discussed in the present review article.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center, 55131 Mainz, Germany; (V.M.B.); (C.S.); (N.P.)
| |
Collapse
|
47
|
Ouranidis A, Choli-Papadopoulou T, Papachristou ET, Papi R, Kostomitsopoulos N. Biopharmaceutics 4.0, Advanced Pre-Clinical Development of mRNA-Encoded Monoclonal Antibodies to Immunosuppressed Murine Models. Vaccines (Basel) 2021; 9:890. [PMID: 34452015 PMCID: PMC8402437 DOI: 10.3390/vaccines9080890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Administration of mRNA against SARS-CoV-2 has demonstrated sufficient efficacy, tolerability and clinical potential to disrupt the vaccination field. A multiple-arm, cohort randomized, mixed blind, placebo-controlled study was designed to investigate the in vivo expression of mRNA antibodies to immunosuppressed murine models to conduct efficacy, safety and bioavailability evaluation. Enabling 4.0 tools we reduced animal sacrifice, while interventions were designed compliant to HARRP and SPIRIT engagement: (a) Randomization, blinding; (b) pharmaceutical grade formulation, monitoring; (c) biochemical and histological analysis; and (d) theoretic, statistical analysis. Risk assessment molded the study orientations, according to the ARRIVE guidelines. The primary target of this protocol is the validation of the research hypothesis that autologous translation of Trastuzumab by in vitro transcribed mRNA-encoded antibodies to immunosuppressed animal models, is non-inferior to classical treatments. The secondary target is the comparative pharmacokinetic assessment of the novel scheme, between immunodeficient and healthy subjects. Herein, the debut clinical protocol, investigating the pharmacokinetic/pharmacodynamic impact of mRNA vaccination to immunodeficient organisms. Our design, contributes novel methodology to guide the preclinical development of RNA antibody modalities by resolving efficacy, tolerability and dose regime adjustment for special populations that are incapable of humoral defense.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Polytechnic School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Eleni T. Papachristou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Rigini Papi
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Nikolaos Kostomitsopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
48
|
Soltanmohammadi B, Piri‐Gavgani S, Basardeh E, Ghanei M, Azizi M, Khaksar Z, Sharifzadeh Z, Badmasti F, Soezi M, Fateh A, Azimi P, Siadat SD, Shooraj F, Bouzari S, Omrani MD, Rahimi‐Jamnani F. Bactericidal fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteraemia. Clin Transl Immunology 2021; 10:e1302. [PMID: 34221401 PMCID: PMC8240403 DOI: 10.1002/cti2.1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The increasing prevalence of antibiotic-resistant Staphylococcus aureus, besides the inadequate numbers of effective antibiotics, emphasises the need to find new therapeutic agents against this lethal pathogen. METHODS In this study, to obtain antibody fragments against S. aureus, a human single-chain fragment variable (scFv) library was enriched against living methicillin-resistant S. aureus (MRSA) cells, grown in three different conditions, that is human peripheral blood mononuclear cells with plasma, whole blood and biofilm. The antibacterial activity of scFvs was evaluated by the growth inhibition assay in vitro. Furthermore, the therapeutic efficacy of anti-S. aureus scFvs was appraised in a mouse model of bacteraemia. RESULTS Three scFv antibodies, that is MEH63, MEH158 and MEH183, with unique sequences, were found, which exhibited significant binding to S. aureus and reduced the viability of S. aureus in in vitro inhibition assays. Based on the results, MEH63, MEH158 and MEH183, in addition to their combination, could prolong the survival rate, reduce the bacterial burden in the blood and prevent inflammation and tissue destruction in the kidneys and spleen of mice with MRSA bacteraemia compared with the vehicle group (treated with normal saline). CONCLUSION The combination therapy with anti-S. aureus scFvs and conventional antibiotics might shed light on the treatment of patients with S. aureus infections.
Collapse
Affiliation(s)
- Behnoush Soltanmohammadi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Somayeh Piri‐Gavgani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Mostafa Ghanei
- Chemical Injuries Research CenterSystems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Zabihollah Khaksar
- Department of Basic SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | | | - Farzad Badmasti
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mahdieh Soezi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Parisa Azimi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Fahimeh Shooraj
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Saeid Bouzari
- Molecular Biology DepartmentPasteur Institute of IranTehranIran
| | - Mir Davood Omrani
- Department of Medical GeneticsSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Rahimi‐Jamnani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| |
Collapse
|
49
|
Koide H, Suzuki H, Ochiai H, Egami H, Hamashima Y, Oku N, Asai T. Enhancement of target toxin neutralization effect in vivo by PEGylation of multifunctionalized lipid nanoparticles. Biochem Biophys Res Commun 2021; 555:32-39. [PMID: 33812056 DOI: 10.1016/j.bbrc.2021.03.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
Protein-protein (e.g., antibody-antigen) interactions comprise multiple weak interactions. We have previously reported that lipid nanoparticles (LNPs) bind to and neutralize target toxic peptides after multifunctionalization of the LNP surface (MF-LNPs) with amino acid derivatives that induce weak interactions; however, the MF-LNPs aggregated after target capture and showed short blood circulation times. Here we optimized polyethylene glycol (PEG)-modified MF-LNPs (PEG-MF-LNPs) to inhibit the aggregation and increase the blood circulation time. Melittin was used as a target toxin, and MF-LNPs were prepared with negatively charged, hydrophobic, and neutral amino-acid-derivative-conjugated functional lipids. In this study, MF-LNPs modified with only PEG5k (PEG5k-MF-LNPs) and with both PEG5k and PEG2k (PEGmix-MF-LNPs) were prepared, where PEG5k and PEG2k represent PEG with a molecular weight of 5000 and 2000, respectively. PEGylation of the MF-LNPs did not decrease the melittin neutralization ability of nonPEGylated MF-LNPs, as tested by hemolysis assay. The PEGmix-MF-LNPs showed better blood circulation characteristics than the PEG5k-MF-LNPs. Although the nonPEGylated MF-LNPs immediately aggregated when mixed with melittin, the PEGmix-MF-LNPs did not aggregate. The PEGmix-MF-LNPs dramatically increased the survival rate of melittin-treated mice, whereas the nonPEGylated MF-LNPs increased slightly. These results provide a fundamental strategy to improve the in vivo toxin neutralization ability of MF-LNPs.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Hikaru Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Ochiai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiromichi Egami
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Yoshitaka Hamashima
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Naoto Oku
- Faculty of Pharma-Science, Teikyo University, 2-11-1 kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
50
|
Zhu X, Yu F, Wu Y, Ying T. Potent germline-like monoclonal antibodies: rapid identification of promising candidates for antibody-based antiviral therapy. Antib Ther 2021; 4:89-98. [PMID: 34104872 PMCID: PMC8178282 DOI: 10.1093/abt/tbab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
In recent years, fully human monoclonal antibodies (mAbs) are making up an increasing share of the pharmaceutical market. However, to improve affinity and efficacy of antibodies, many somatic hypermutations could be introduced during affinity maturation, which cause several issues including safety and efficacy and limit their application in clinic. Here, we propose a special class of human mAbs with limited level of somatic mutations, referred to as germline-like mAbs. Remarkably, germline-like mAbs could have high affinity and potent neutralizing activity in vitro and in various animal models, despite lacking of extensive affinity maturation. Furthermore, the germline nature of these mAbs implies that they exhibit lower immunogenicity and can be elicited relatively fast in vivo compared with highly somatically mutated antibodies. In this review, we summarize germline-like mAbs with strong therapeutic and protection activity against various viruses that caused large-scale outbreaks in the last decade, including influenza virus H7N9, Zika virus, Dengue virus, Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus 2. We also illustrate underlying molecular mechanisms of these germline-like antibodies against viral infections from the structural and genetic perspective, thus providing insight into further development as therapeutic agents for the treatment of infectious diseases and implication for rational design of effective vaccines.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|