1
|
Straub J, Baertl S, Verheul M, Walter N, Wong RMY, Alt V, Rupp M. Antimicrobial resistance: Biofilms, small colony variants, and intracellular bacteria. Injury 2024; 55 Suppl 6:111638. [PMID: 39482024 DOI: 10.1016/j.injury.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 11/03/2024]
Abstract
Soft tissue and bone infections continue to be a serious complication in orthopedic and trauma surgery. Both can lead to a high burden for the patients and the healthcare system. Musculoskeletal infections can be induced by intraoperative contamination, bacterial contamination of open wounds or hematogenous bacterial spread. During the recent decades, advances were achieved in the understanding of pathogenesis and antibiotic resistance. Despite some progress in the diagnosis and advancing of therapeutic concepts, groundbreaking successful improvement of treatment concepts is still missing. Current therapy concepts are based on the two pillars consisting of surgical debridement with joint or bone reconstruction as well as prolonged antibiotic therapy. An improved understanding of both host and pathogen-related factors leading to treatment failure is essential in musculoskeletal infections. Therefore, this review aims to give an overview of pathogen-related pathophysiology in musculoskeletal infections. It describes defense strategies of pathogens such as (1) biofilm, its development, characteristics, and treatment options. In addition, (2) characteristics of small colony variants and (3) intracellular bacteria are highlighted. Lastly (4) an outlook for potential and promising future therapeutic strategies is provided.
Collapse
Affiliation(s)
- Josina Straub
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Susanne Baertl
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Marielle Verheul
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Vishwakarma A, Narayanan A, Kumar N, Chen Z, Dang F, Menefee J, Dhinojwala A, Joy A. Coacervate Dense Phase Displaces Surface-Established Pseudomonas aeruginosa Biofilms. J Am Chem Soc 2024; 146:26397-26407. [PMID: 39259884 PMCID: PMC11440510 DOI: 10.1021/jacs.4c09311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
For millions of years, barnacles and mussels have successfully adhered to wet rocks near tide-swept seashores. While the chemistry and mechanics of their underwater adhesives are being thoroughly investigated, an overlooked aspect of marine organismal adhesion is their ability to remove underlying biofilms from rocks and prepare clean surfaces before the deposition of adhesive anchors. Herein, we demonstrate that nonionic, coacervating synthetic polymers that mimic the physicochemical features of marine underwater adhesives remove ∼99% of Pseudomonas aeruginosa (P. aeruginosa) biofilm biomass from underwater surfaces. The efficiency of biofilm removal appears to align with the compositional differences between various bacterial biofilms. In addition, the surface energy influences the ability of the polymer to displace the biofilm, with biofilm removal efficiency decreasing for surfaces with lower surface energies. These synthetic polymers weaken the biofilm-surface interactions and exert shear stress to fracture the biofilms grown on surfaces with diverse surface energies. Since bacterial biofilms are 1000-fold more tolerant to common antimicrobial agents and pose immense health and economic risks, we anticipate that our unconventional approach inspired by marine underwater adhesion will open a new paradigm in creating antibiofilm agents that target the interfacial and viscoelastic properties of established bacterial biofilms.
Collapse
Affiliation(s)
- Apoorva Vishwakarma
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Zixi Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Joshua Menefee
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| |
Collapse
|
3
|
Oliveira IM, Gomes IB, Plácido A, Simões LC, Eaton P, Simões M. The impact of potassium peroxymonosulphate and chlorinated cyanurates on biofilms of Stenotrophomonas maltophilia: effects on biofilm control, regrowth, and mechanical properties. BIOFOULING 2023; 39:691-705. [PMID: 37811587 DOI: 10.1080/08927014.2023.2254704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023]
Abstract
The activity of two chlorinated isocyanurates (NaDCC and TCCA) and peroxymonosulphate (OXONE) was evaluated against biofilms of Stenotrophomonas maltophilia, an emerging pathogen isolated from drinking water (DW), and for the prevention of biofilm regrowth. After disinfection of pre-formed 48 h-old biofilms, the culturability was reduced up to 7 log, with OXONE, TCCA, and NaDCC showing more efficiency than free chlorine against biofilms formed on stainless steel. The regrowth of biofilms previously exposed to OXONE was reduced by 5 and 4 log CFU cm-2 in comparison to the unexposed biofilms and biofilms exposed to free chlorine, respectively. Rheometry analysis showed that biofilms presented properties of viscoelastic solid materials, regardless of the treatment. OXONE reduced the cohesiveness of the biofilm, given the significant decrease in the complex shear modulus (G*). AFM analysis revealed that biofilms had a fractured appearance and smaller bacterial aggregates dispersed throughout the surface after OXONE exposure than the control sample. In general, OXONE has been demonstrated to be a promising disinfectant to control DW biofilms, with a higher activity than chlorine. The results also show the impact of the biofilm mechanical properties on the efficacy of the disinfectants in biofilm control.
Collapse
Affiliation(s)
- I M Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - I B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A Plácido
- REQUIMTE/LAQV - Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - L C Simões
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - P Eaton
- REQUIMTE/LAQV - Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- The Bridge, School of Chemistry, University of Lincoln, Lincoln, UK
| | - M Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Abdelkader J, Alelyani M, Alashban Y, Alghamdi SA, Bakkour Y. Modification of Dispersin B with Cyclodextrin-Ciprofloxacin Derivatives for Treating Staphylococcal. Molecules 2023; 28:5311. [PMID: 37513185 PMCID: PMC10386341 DOI: 10.3390/molecules28145311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
To address the high tolerance of biofilms to antibiotics, it is urgent to develop new strategies to fight against these bacterial consortia. An innovative antibiofilm nanovector drug delivery system, consisting of Dispersin B-permethylated-β-cyclodextrin/ciprofloxacin adamantyl (DspB-β-CD/CIP-Ad), is described here. For this purpose, complexation assays between CIP-Ad and (i) unmodified β-CD and (ii) different derivatives of β-CD, which are 2,3-O-dimethyl-β-CD, 2,6-O-dimethyl-β-CD, and 2,3,6-O-trimethyl-β-CD, were tested. A stoichiometry of 1/1 was obtained for the β-CD/CIP-Ad complex by NMR analysis. Isothermal Titration Calorimetry (ITC) experiments were carried out to determine Ka, ΔH, and ΔS thermodynamic parameters of the complex between β-CD and its different derivatives in the presence of CIP-Ad. A stoichiometry of 1/1 for β-CD/CIP-Ad complexes was confirmed with variable affinity according to the type of methylation. A phase solubility study showed increased CIP-Ad solubility with CD concentration, pointing out complex formation. The evaluation of the antibacterial activity of CIP-Ad and the 2,3-O-dimethyl-β-CD/CIP-Ad or 2,3,6-O-trimethyl-β-CD/CIP-Ad complexes was performed on Staphylococcus epidermidis (S. epidermidis) strains. The Minimum Inhibitory Concentration (MIC) studies showed that the complex of CIP-Ad and 2,3-O-dimethyl-β-CD exhibited a similar antimicrobial activity to CIP-Ad alone, while the interaction with 2,3,6-O-trimethyl-β-CD increased MIC values. Antimicrobial assays on S. epidermidis biofilms demonstrated that the synergistic effect observed with the DspB/CIP association was partly maintained with the 2,3-O-dimethyl-β-CDs/CIP-Ad complex. To obtain this "all-in-one" drug delivery system, able to destroy the biofilm matrix and release the antibiotic simultaneously, we covalently grafted DspB on three carboxylic permethylated CD derivatives with different-length spacer arms. The strategy was validated by demonstrating that a DspB-permethylated-β-CD/ciprofloxacin-Ad system exhibited efficient antibiofilm activity.
Collapse
Affiliation(s)
- Jinan Abdelkader
- Laboratory of Applied Chemistry (LAC), Department of Chemistry, Faculty of Sciences III, Lebanese University Mont Michel, El Koura 826, Lebanon
| | - Magbool Alelyani
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Sami A Alghamdi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Youssef Bakkour
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
5
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
6
|
Li M, Nahum Y, Matouš K, Stoodley P, Nerenberg R. Effects of biofilm heterogeneity on the apparent mechanical properties obtained by shear rheometry. Biotechnol Bioeng 2023; 120:553-561. [PMID: 36305479 DOI: 10.1002/bit.28276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 01/13/2023]
Abstract
Rheometry is an experimental technique widely used to determine the mechanical properties of biofilms. However, it characterizes the bulk mechanical behavior of the whole biofilm. The effects of biofilm mechanical heterogeneity on rheometry measurements are not known. We used laboratory experiments and computer modeling to explore the effects of biofilm mechanical heterogeneity on the results obtained by rheometry. A synthetic biofilm with layered mechanical properties was studied, and a viscoelastic biofilm theory was employed using the Kelvin-Voigt model. Agar gels with different concentrations were used to prepare the layered, heterogeneous biofilm, which was characterized for mechanical properties in shear mode with a rheometer. Both experiments and simulations indicated that the biofilm properties from rheometry were strongly biased by the weakest portion of the biofilm. The simulation results using linearly stratified mechanical properties from a previous study also showed that the weaker portions of the biofilm dominated the mechanical properties in creep tests. We note that the model can be used as a predictive tool to explore the mechanical behavior of complex biofilm structures beyond those accessible to experiments. Since most biofilms display some degree of mechanical heterogeneity, our results suggest caution should be used in the interpretation of rheometry data. It does not necessarily provide the "average" mechanical properties of the entire biofilm if the mechanical properties are stratified.
Collapse
Affiliation(s)
- Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yanina Nahum
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Karel Matouš
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
7
|
Rouillard KR, Markovetz MR, Kissner WJ, Boone WL, Plott LM, Hill DB. Altering the viscoelastic properties of mucus-grown Pseudomonas aeruginosa biofilms affects antibiotic susceptibility. Biofilm 2023; 5:100104. [PMID: 36711323 PMCID: PMC9880403 DOI: 10.1016/j.bioflm.2023.100104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
The viscoelastic properties of biofilms are correlated with their susceptibility to mechanical and chemical stress, and the airway environment in muco-obstructive pulmonary diseases (MOPD) facilitates robust biofilm formation. Hyperconcentrated, viscoelastic mucus promotes chronic inflammation and infection, resulting in increased mucin and DNA concentrations. The viscoelastic properties of biofilms are regulated by biopolymers, including polysaccharides and DNA, and influence responses to antibiotics and phagocytosis. We hypothesize that targeted modulation of biofilm rheology will compromise structural integrity and increase antibiotic susceptibility and mucociliary transport. We evaluate biofilm rheology on the macro, micro, and nano scale as a function of treatment with a reducing agent, a biopolymer, and/or tobramycin to define the relationship between the viscoelastic properties of biofilms and susceptibility. Disruption of the biofilm architecture is associated with altered macroscopic and microscopic moduli, rapid vector permeability, increased antibiotic susceptibility, and improved mucociliary transport, suggesting that biofilm modulating therapeutics will improve the treatment of chronic respiratory infections in MOPD.
Collapse
Affiliation(s)
- Kaitlyn R. Rouillard
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew R. Markovetz
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William J. Kissner
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William L. Boone
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lucas M. Plott
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David B. Hill
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina, Chapel Hill, NC, 27599, USA,Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,Corresponding author. Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
New perspectives for mechanisms, ingredients, and their preparation for promoting the formation of beneficial bacterial biofilm. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Charlton SGV, Kurz DL, Geisel S, Jimenez-Martinez J, Secchi E. The role of biofilm matrix composition in controlling colony expansion and morphology. Interface Focus 2022; 12:20220035. [PMID: 36330326 PMCID: PMC9560791 DOI: 10.1098/rsfs.2022.0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 08/01/2023] Open
Abstract
Biofilms are biological viscoelastic gels composed of bacterial cells embedded in a self-secreted polymeric extracellular matrix (ECM). In environmental settings, such as in the rhizosphere and phyllosphere, biofilm colonization occurs at the solid-air interface. The biofilms' ability to colonize and expand over these surfaces depends on the formation of osmotic gradients and ECM viscoelastic properties. In this work, we study the influence of biofilm ECM components on its viscoelasticity and expansion, using the model organism Bacillus subtilis and deletion mutants of its three major ECM components, TasA, EPS and BslA. Using a multi-scale approach, we quantified macro-scale viscoelasticity and expansion dynamics. Furthermore, we used a microsphere assay to visualize the micro-scale expansion patterns. We find that the viscoelastic phase angle Φ is likely the best viscoelastic parameter correlating to biofilm expansion dynamics. Moreover, we quantify the sensitivity of the biofilm to changes in substrate water potential as a function of ECM composition. Finally, we find that the deletion of ECM components significantly increases the coherence of micro-scale colony expansion patterns. These results demonstrate the influence of ECM viscoelasticity and substrate water potential on the expansion of biofilm colonies on wet surfaces at the air-solid interface, commonly found in natural environments.
Collapse
Affiliation(s)
- Samuel G. V. Charlton
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Dorothee L. Kurz
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
- Department Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Steffen Geisel
- Department of Materials, Soft Materials, ETH Zürich, Zürich, Switzerland
| | - Joaquin Jimenez-Martinez
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
- Department Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Park H, Schwartzman AF, Tang TC, Wang L, Lu TK. Ultra-lightweight living structural material for enhanced stiffness and environmental sensing. Mater Today Bio 2022; 18:100504. [PMID: 36504543 PMCID: PMC9729073 DOI: 10.1016/j.mtbio.2022.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Natural materials such as bone, wood, and bamboo can inspire the fabrication of stiff, lightweight structural materials. Biofilms are one of the most dominant forms of life in nature. However, little is known about their physical properties as a structural material. Here we report an Escherichia coli biofilm having a Young's modulus close to 10 GPa with ultra-low density, indicating a high-performance structural material. The mechanical and structural characterization of the biofilm and its components illuminates its adaptable bottom-up design, consisting of lightweight microscale cells covered by a dense network of amyloid nanofibrils on the surface. We engineered E. coli such that 1) carbon nanotubes assembled on the biofilm, enhancing its stiffness to over 30 GPa, or that 2) the biofilm sensitively detected heavy metal as an example of an environmental toxin. These demonstrations offer new opportunities for developing responsive living structural materials to serve many real-world applications.
Collapse
Affiliation(s)
- Heechul Park
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alan F. Schwartzman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tzu-Chieh Tang
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lei Wang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,Corresponding author. Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Kitamura H, Omori T, Ishikawa T. Impact of rheological properties on bacterial streamer formation. J R Soc Interface 2021; 18:20210546. [PMID: 34665976 PMCID: PMC8526168 DOI: 10.1098/rsif.2021.0546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial biofilms, which can be found wherever there is water and a substrate, can cause chronic infections and clogging of industrial flow systems. Despite intensive investigation of the dynamics and rheological properties of biofilms, the impact of their rheological properties on streamer growth remains unknown. We numerically simulated biofilm growth in a pillar-flow and investigated the effects of rheological properties of a filamentous flow-shaped biofilm, called a 'streamer', on its formation by varying the viscoelasticity. The flow-field is assumed to be a Stokes flow and is solved by a boundary element method. A Maxwell model is used for extracellular matrix-mediated streamer growth to express the fluidity of streamer formations. Both high elastic modulus and viscosity are needed for streamer formation, and high viscosity promotes streamer growth at low cell concentrations. Our findings are consistent with experimental observations and can explain the relationship between the cell concentrations and viscosity at which streamers form.
Collapse
Affiliation(s)
- Hiroki Kitamura
- Department of Finemechanics, Tohoku University, Aoba 6-6-01, Sendai, Miyagi, Japan
| | - Toshihiro Omori
- Department of Finemechanics, Tohoku University, Aoba 6-6-01, Sendai, Miyagi, Japan
| | - Takuji Ishikawa
- Department of Finemechanics, Tohoku University, Aoba 6-6-01, Sendai, Miyagi, Japan.,Department of Biomedical Engineering, Tohoku University, Aoba 6-6-01, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
Rahman MU, Fleming DF, Sinha I, Rumbaugh KP, Gordon VD, Christopher GF. Effect of collagen and EPS components on the viscoelasticity of Pseudomonas aeruginosa biofilms. SOFT MATTER 2021; 17:6225-6237. [PMID: 34109345 PMCID: PMC8283923 DOI: 10.1039/d1sm00463h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes thousands of deaths every year in part due to its ability to form biofilms composed of bacteria embedded in a matrix of self-secreted extracellular polysaccharides (EPS), e-DNA, and proteins. In chronic wounds, biofilms are exposed to the host extracellular matrix, of which collagen is a major component. How bacterial EPS interacts with host collagen and whether this interaction affects biofilm viscoelasticity is not well understood. Since physical disruption of biofilms is often used in their removal, knowledge of collagen's effects on biofilm viscoelasticity may enable new treatment strategies that are better tuned to biofilms growing in host environments. In this work, biofilms are grown in the presence of different concentrations of collagen that mimic in vivo conditions. In order to explore collagen's interaction with EPS, nine strains of P. aeruginosa with different patterns of EPS production were used to grow biofilms. Particle tracking microrheology was used to characterize the mechanical development of biofilms over two days. Collagen is found to decrease biofilm compliance and increase relative elasticity regardless of the EPS present in the system. However, this effect is minimized when biofilms overproduce EPS. Collagen appears to become a de facto component of the EPS, through binding to bacteria or physical entanglement.
Collapse
Affiliation(s)
- Minhaz Ur Rahman
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| | - Derek F Fleming
- Department of Surgery, Texas Tech Health Sciences, Lubbock, TX, USA
| | - Indranil Sinha
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| | | | - Vernita D Gordon
- Department of Physics, Center for Nonlinear Dynamics, Interdisciplinary Life Sciences Graduate Programs, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| | - Gordon F Christopher
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
13
|
Pfaff NM, Kleijn JM, van Loosdrecht MCM, Kemperman AJB. Formation and ripening of alginate-like exopolymer gel layers during and after membrane filtration. WATER RESEARCH 2021; 195:116959. [PMID: 33676179 DOI: 10.1016/j.watres.2021.116959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The properties of biofilm EPS are determined by the multiple interactions between its constituents and the surrounding environment. Because of the high complexity of biofilm EPS, its constituents' characterisation is still far from thorough, and identification of these interactions cannot be done yet. Therefore, we use gels of bacterial alginate-like exopolysaccharides (ALEs) as a model component for biofilm EPS in this work. These gels have been examined for their cohesive properties as a function of CaCl2 and KCl concentration. Hereto, ALE gel layers were formed on membranes by dead-end filtration of ALE solutions. Accumulation of the cations Ca2+ and K+ in the gels could be well predicted from a Donnan equilibrium model based on the fixed negative charges in the ALE. This suggests that there is no specific binding of Ca2+ to the ALE and that on the time scale of the experiments, the Ca2+ ions can distribute freely over the gel and the surrounding solution. The concentration of fixed negative charges in the ALE was estimated around 1 mmol/g VSS (volatile suspended solids, organic mass) from the Donnan equilibrium. Moreover, an accumulation of H+ was predicted. Gels with more CaCl2 in the supernatant were more compact and bore a higher osmotic pressure than those with less CaCl2, revealing the role of Ca2+ ions in the network crosslinking. It is hypothesised that this mechanism later transitions into a rearrangement of the ALE molecules, which eventually leads to a fibrous network structure with large voids.
Collapse
Affiliation(s)
- N-M Pfaff
- TNW Applied Sciences, TU Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Wetsus, European Center of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands.
| | - J Mieke Kleijn
- Physical Chemistry and Soft Matter, Wageningen University, Helix, 124, Stippenweg 4, 6708 WE Wageningen, The Netherlands
| | | | - Antoine J B Kemperman
- Wetsus, European Center of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Membrane Science and Technology cluster, Faculty of Science and Technology, Mesa+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
14
|
Souza-Egipsy V, Vega JF, González-Toril E, Aguilera Á. Biofilm mechanics in an extremely acidic environment: microbiological significance. SOFT MATTER 2021; 17:3672-3680. [PMID: 33683248 DOI: 10.1039/d0sm01975e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A variety of natural biofilms were collected from an extremely acidic environment at Río Tinto (Spain). In order to provide insights into the structure-function relationship, the microstructure of the biofilms was explored using low temperature scanning electron microscopy (LTSEM) in combination with rheological analysis. The creep-recovery experiment results have demonstrated the typical behaviour of viscoelastic materials that combine both elastic and viscous characters. The LTSEM visualization and rheological characterization of biofilms revealed that the network density increased in bacterial biofilms and was the lowest in protist Euglena biofilms. This means that, in the latter biofilms, a lower density of interactions exist, suggesting that the whole system experiences enhanced mobility under external mechanical stress. The samples with the highest dynamic moduli (Leptospirillum-Acidiphilium, Zygnemopsis, Chlorella and Cyanidium) have shown the typical strain thinning behaviour, whereas the Pinnularia and Euglena biofilms exhibited a viscous thickening reaction. The Zygnemopsis filamentous floating structure has the highest cohesive energy and has shown distinctive enhanced resilience and connectivity. This suggests that biofilms should be viewed as soft viscoelastic systems the properties of which are determined by the main organisms and their extracellular polymeric substances. The fractional Maxwell model has been found to explain the rheological behaviour of the observed complex quite well, particularly the power-law behaviour and the characteristic broad relaxation response of these systems.
Collapse
Affiliation(s)
- Virginia Souza-Egipsy
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia (IEM-CSIC), c/Serrano 113 bis, 28006, Madrid, Spain.
| | | | | | | |
Collapse
|
15
|
Gloag ES, Wozniak DJ, Stoodley P, Hall-Stoodley L. Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections. Sci Rep 2021; 11:5020. [PMID: 33658597 PMCID: PMC7930093 DOI: 10.1038/s41598-021-84525-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium abscessus is emerging as a cause of recalcitrant chronic pulmonary infections, particularly in people with cystic fibrosis (CF). Biofilm formation has been implicated in the pathology of this organism, however the role of biofilm formation in infection is unclear. Two colony-variants of M. abscessus are routinely isolated from CF samples, smooth (MaSm) and rough (MaRg). These two variants display distinct colony morphologies due to the presence (MaSm) or absence (MaRg) of cell wall glycopeptidolipids (GPLs). We hypothesized that MaSm and MaRg variant biofilms might have different mechanical properties. To test this hypothesis, we performed uniaxial mechanical indentation, and shear rheometry on MaSm and MaRg colony-biofilms. We identified that MaRg biofilms were significantly stiffer than MaSm under a normal force, while MaSm biofilms were more pliant compared to MaRg, under both normal and shear forces. Furthermore, using theoretical indices of mucociliary and cough clearance, we identified that M. abscessus biofilms may be more resistant to mechanical forms of clearance from the lung, compared to another common pulmonary pathogen, Pseudomonas aeruginosa. Thus, the mechanical properties of M. abscessus biofilms may contribute to the persistent nature of pulmonary infections caused by this organism.
Collapse
Affiliation(s)
- Erin S Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, SO17 1BJ, UK
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA.
| |
Collapse
|
16
|
Jara J, Alarcón F, Monnappa AK, Santos JI, Bianco V, Nie P, Ciamarra MP, Canales Á, Dinis L, López-Montero I, Valeriani C, Orgaz B. Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress. Front Microbiol 2021; 11:588884. [PMID: 33510716 PMCID: PMC7835673 DOI: 10.3389/fmicb.2020.588884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/14/2020] [Indexed: 11/26/2022] Open
Abstract
In some conditions, bacteria self-organize into biofilms, supracellular structures made of a self-produced embedding matrix, mainly composed of polysaccharides, DNA, proteins, and lipids. It is known that bacteria change their colony/matrix ratio in the presence of external stimuli such as hydrodynamic stress. However, little is still known about the molecular mechanisms driving this self-adaptation. In this work, we monitor structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress. Our measurements show that the hydrodynamic stress concomitantly increases the cell density population and the matrix production. At short growth timescales, the matrix mediates a weak cell-cell attractive interaction due to the depletion forces originated by the polymer constituents. Using a population dynamics model, we conclude that hydrodynamic stress causes a faster diffusion of nutrients and a higher incorporation of planktonic bacteria to the already formed microcolonies. This results in the formation of more mechanically stable biofilms due to an increase of the number of crosslinks, as shown by computer simulations. The mechanical stability also relies on a change in the chemical compositions of the matrix, which becomes enriched in carbohydrates, known to display adhering properties. Overall, we demonstrate that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions.
Collapse
Affiliation(s)
- Josué Jara
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Alarcón
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Ingeniería Física, Universidad de Guanajuato, León, Mexico
| | - Ajay K Monnappa
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Valentino Bianco
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Pin Nie
- Nanyang Technological University, Singapore, Singapore
| | | | - Ángeles Canales
- Departamento de Química Orgánica, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Dinis
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Orgaz
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Pavissich JP, Li M, Nerenberg R. Spatial distribution of mechanical properties in Pseudomonas aeruginosa biofilms, and their potential impacts on biofilm deformation. Biotechnol Bioeng 2021; 118:1564-1575. [PMID: 33415727 DOI: 10.1002/bit.27671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
The mechanical properties of biofilms can be used to predict biofilm deformation under external forces, for example, under fluid flow. We used magnetic tweezers to spatially map the compliance of Pseudomonas aeruginosa biofilms at the microscale, then applied modeling to assess its effects on biofilm deformation. Biofilms were grown in capillary flow cells with Reynolds numbers (Re) ranging from 0.28 to 13.9, bulk dissolved oxygen (DO) concentrations from 1 mg/L to 8 mg/L, and bulk calcium ion (Ca2+ ) concentrations of 0 and 100 mg CaCl2 /L. Higher Re numbers resulted in more uniform biofilm morphologies. The biofilm was stiffer at the center of the flow cell than near the walls. Lower bulk DO led to more stratified biofilms. Higher Ca2+ concentrations led to increased stiffness and more uniform mechanical properties. Using the experimental mechanical properties, fluid-structure interaction models predicted up to 64% greater deformation for heterogeneous biofilms, compared with a homogeneous biofilms with the same average properties. However, the deviation depended on the biofilm morphology and flow regime. Our results show significant spatial mechanical variability exists at the microscale, and that this variability can potentially affect biofilm deformation. The average biofilm mechanical properties, provided in many studies, should be used with caution when predicting biofilm deformation.
Collapse
Affiliation(s)
- Juan P Pavissich
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
18
|
Gloag ES, Fabbri S, Wozniak DJ, Stoodley P. Biofilm mechanics: Implications in infection and survival. Biofilm 2020; 2:100017. [PMID: 33447803 PMCID: PMC7798440 DOI: 10.1016/j.bioflm.2019.100017] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
It has long been recognized that biofilms are viscoelastic materials, however the importance of this attribute to the survival and persistence of these microbial communities is yet to be fully realized. Here we review work, which focuses on understanding biofilm mechanics and put this knowledge in the context of biofilm survival, particularly for biofilm-associated infections. We note that biofilm viscoelasticity may be an evolved property of these communities, and that the production of multiple extracellular polymeric slime components may be a way to ensure the development of biofilms with complex viscoelastic properties. We discuss viscoelasticity facilitating biofilm survival in the context of promoting the formation of larger and stronger biofilms when exposed to shear forces, promoting fluid-like behavior of the biofilm and subsequent biofilm expansion by viscous flow, and enabling resistance to both mechanical and chemical methods of clearance. We conclude that biofilm viscoelasticity contributes to the virulence of chronic biofilm infections.
Collapse
Affiliation(s)
- Erin S. Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
19
|
Li M, Matouš K, Nerenberg R. Predicting biofilm deformation with a viscoelastic phase‐field model: Modeling and experimental studies. Biotechnol Bioeng 2020; 117:3486-3498. [DOI: 10.1002/bit.27491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana
| | - Karel Matouš
- Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame Indiana
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana
| |
Collapse
|
20
|
Jana S, Charlton SGV, Eland LE, Burgess JG, Wipat A, Curtis TP, Chen J. Nonlinear rheological characteristics of single species bacterial biofilms. NPJ Biofilms Microbiomes 2020; 6:19. [PMID: 32286319 PMCID: PMC7156450 DOI: 10.1038/s41522-020-0126-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial biofilms in natural and artificial environments perform a wide array of beneficial or detrimental functions and exhibit resistance to physical as well as chemical perturbations. In dynamic environments, where periodic or aperiodic flows over surfaces are involved, biofilms can be subjected to large shear forces. The ability to withstand these forces, which is often attributed to the resilience of the extracellular matrix. This attribute of the extracellular matrix is referred to as viscoelasticity and is a result of self-assembly and cross-linking of multiple polymeric components that are secreted by the microbes. We aim to understand the viscoelastic characteristic of biofilms subjected to large shear forces by performing Large Amplitude Oscillatory Shear (LAOS) experiments on four species of bacterial biofilms: Bacillus subtilis, Comamonas denitrificans, Pseudomonas fluorescens and Pseudomonas aeruginosa. We find that nonlinear viscoelastic measures such as intracycle strain stiffening and intracycle shear thickening for each of the tested species, exhibit subtle or distinct differences in the plot of strain amplitude versus frequency (Pipkin diagram). The biofilms also exhibit variability in the onset of nonlinear behaviour and energy dissipation characteristics, which could be a result of heterogeneity of the extracellular matrix constituents of the different biofilms. The results provide insight into the nonlinear rheological behaviour of biofilms as they are subjected to large strains or strain rates; a situation that is commonly encountered in nature, but rarely investigated.
Collapse
Affiliation(s)
- Saikat Jana
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- School of Engineering, Newcastle University, Newcastle Upon Tyne, UK.
| | | | - Lucy E Eland
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - J Grant Burgess
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anil Wipat
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle Upon Tyne, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
21
|
Kretschmer M, Lieleg O. Chelate chemistry governs ion-specific stiffening of Bacillus subtilis B-1 and Azotobacter vinelandii biofilms. Biomater Sci 2020; 8:1923-1933. [PMID: 32031543 DOI: 10.1039/c9bm01763a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unwanted formation of bacterial biofilms can cause problems in both the medical sector and industrial settings. However, removing them from surfaces remains an ongoing challenge since biofilm bacteria efficiently protect themselves from external influences such as mechanical shear forces by embedding themselves into a matrix of extracellular polymeric substances. Here, we discuss microscopic principles, which are responsible for alterations in the viscoelastic properties of biofilms upon contact with metal ions. We suggest that it is a combination of mainly two parameters, that decides if biofilm stiffening occurs or not: the ion size and the detailed configuration of polyanionic macromolecules from the biofilm matrix. Our results provide new insights in the molecular mechanisms that govern the mechanical properties of biofilms. Also, they indicate that hydrogels comprising purified biopolymers can serve as suitable model systems to reproduce certain aspects of biofilm mechanics - provided that the correct biopolymer is chosen.
Collapse
Affiliation(s)
- Martin Kretschmer
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | | |
Collapse
|
22
|
Hall JR, Rouillard KR, Suchyta DJ, Brown MD, Ahonen MJR, Schoenfisc MH. Mode of nitric oxide delivery affects antibacterial action. ACS Biomater Sci Eng 2020; 6:433-441. [PMID: 32671191 PMCID: PMC7363046 DOI: 10.1021/acsbiomaterials.9b01384] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) is a broad-spectrum antibacterial agent, making it an attractive alternative to traditional antibiotics for treating infections. To date, a direct comparison of the antibacterial activity of gaseous NO (gNO) versus water-soluble NO-releasing biopolymers has not been reported. In this study, the bactericidal action of NO-releasing chitosan oligosaccharides was compared to gNO treatment against cystic fibrosis-relevant Gram-positive and Gram-negative bacteria. A NO exposure chamber was constructed to enable the dosing of bacteria with gNO at concentrations up to 800 ppm under both aerobic and anaerobic conditions. Bacteria viability, solution properties (i.e., pH, NO concentration), and toxicity to mammalian cells were monitored to ensure a thorough understanding of bactericidal action and reproducibility for each delivery method. The NO-releasing chitosan oligosaccharides required significantly lower NO doses relative to gNO therapy to elicit antibacterial action against Pseudomonas aeruginosa and Staphylococcus aureus under both aerobic and anaerobic conditions. Reduced NO doses required for bacteria eradication using water-soluble NO-releasing chitosan were attributed to the release of NO in solution, removing the need to transfer from gas to liquid phase and the associated long diffusion distances of gNO treatment.
Collapse
Affiliation(s)
- Jackson R. Hall
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Kaitlyn R. Rouillard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Dakota J. Suchyta
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Micah D. Brown
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Mona Jasmine R. Ahonen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Mark H. Schoenfisc
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
23
|
Charlton SGV, White MA, Jana S, Eland LE, Jayathilake PG, Burgess JG, Chen J, Wipat A, Curtis TP. Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms. J Bacteriol 2019; 201:e00101-19. [PMID: 31182499 PMCID: PMC6707926 DOI: 10.1128/jb.00101-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover.
Collapse
Affiliation(s)
- Samuel G V Charlton
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael A White
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Saikat Jana
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucy E Eland
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - J Grant Burgess
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anil Wipat
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Seviour T, Derlon N, Dueholm MS, Flemming HC, Girbal-Neuhauser E, Horn H, Kjelleberg S, van Loosdrecht MCM, Lotti T, Malpei MF, Nerenberg R, Neu TR, Paul E, Yu H, Lin Y. Extracellular polymeric substances of biofilms: Suffering from an identity crisis. WATER RESEARCH 2019; 151:1-7. [PMID: 30557778 DOI: 10.1016/j.watres.2018.11.020] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Microbial biofilms can be both cause and cure to a range of emerging societal problems including antimicrobial tolerance, water sanitation, water scarcity and pollution. The identities of extracellular polymeric substances (EPS) responsible for the establishment and function of biofilms are poorly understood. The lack of information on the chemical and physical identities of EPS limits the potential to rationally engineer biofilm processes, and impedes progress within the water and wastewater sector towards a circular economy and resource recovery. Here, a multidisciplinary roadmap for addressing this EPS identity crisis is proposed. This involves improved EPS extraction and characterization methodologies, cross-referencing between model biofilms and full-scale biofilm systems, and functional description of isolated EPS with in situ techniques (e.g. microscopy) coupled with genomics, proteomics and glycomics. The current extraction and spectrophotometric characterization methods, often based on the principle not to compromise the integrity of the microbial cells, should be critically assessed, and more comprehensive methods for recovery and characterization of EPS need to be developed.
Collapse
Affiliation(s)
- Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| | - Nicolas Derlon
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Department of Process Engineering, CH-8600, Dübendorf, Switzerland
| | - Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Essen, Germany
| | - Elisabeth Girbal-Neuhauser
- Laboratoire de Biotechnologies Agroalimentaire et Environmentale (LBAE), Universite Paul Sabatier, Toulouse, France
| | - Harald Horn
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Water Chemistry and Water Technology and DVGW Research Laboratories, Karlsruhe, Germany
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | | | - Tommaso Lotti
- Department of Civil and Environmental Engineering - DICEA, University of Florence, Florence, Italy
| | - M Francesca Malpei
- Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milan, Italy
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, USA
| | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Etienne Paul
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Toulouse, France
| | - Hanqing Yu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yuemei Lin
- Department of Biotechcnology, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
25
|
Klotz M, Kretschmer M, Goetz A, Ezendam S, Lieleg O, Opitz M. Importance of the biofilm matrix for the erosion stability of Bacillus subtilis NCIB 3610 biofilms. RSC Adv 2019; 9:11521-11529. [PMID: 35520264 PMCID: PMC9063333 DOI: 10.1039/c9ra01955c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Erosion of bacterial biofilms is dependent on the composition of the biofilm matrix and the surrounding chemical environment.
Collapse
Affiliation(s)
- M. Klotz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - M. Kretschmer
- Munich School of BioEngineering and Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - A. Goetz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - S. Ezendam
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - O. Lieleg
- Munich School of BioEngineering and Department of Mechanical Engineering
- Technische Universität München
- Garching
- Germany
| | - M. Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| |
Collapse
|
26
|
Jafari M, Desmond P, van Loosdrecht MCM, Derlon N, Morgenroth E, Picioreanu C. Effect of biofilm structural deformation on hydraulic resistance during ultrafiltration: A numerical and experimental study. WATER RESEARCH 2018; 145:375-387. [PMID: 30173098 DOI: 10.1016/j.watres.2018.08.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Biofilm formation in membrane systems negatively impacts the filtration system performances. This study evaluated how biofilm compression driven by permeate flow increases the hydraulic resistance and leads to reduction in permeate flux. We analysed the effect of biofilm compression on hydraulic resistance and permeate flux through computational models supported by experimental data. Biofilms with homogeneous surface structure were subjected to step-wise changes in flux and transmembrane pressure during compression and relaxation tests. Biofilm thickness under applied forces was measured non-invasively in-situ using optical coherence tomography (OCT). A numerical model of poroelasticity, which couples water flow through the biofilm with biofilm mechanics, was developed to correlate the structural deformation with biofilm hydraulics (permeability and resistance). The computational model enabled extracting mechanical and hydrological parameters corresponding to the experimental data. Homogeneous biofilms under elevated compression forces experienced a significant reduction in thickness while only a slight increase in resistance was observed. This shows that hydraulic resistance of homogeneous biofilms was affected more by permeability decrease due to pore closure than by a decrease in thickness. Both viscoelastic and elastoplastic models could describe well the permanent biofilm deformation. However, for biofilms under study, a simpler elastic model could also be used due to the small irreversible deformations. The elastic moduli fitting the measured data were in agreement with other reported values for biofilm under compression. Biofilm stiffening under larger flow-driven compression forces was observed and described numerically by correlating inversely the elastic modulus with biofilm porosity. The importance of this newly developed method lies in estimation of accurate biofilm mechanical parameters to be used in numerical models for both membrane filtration system and biofouling cleaning strategies. Such model can ultimately be used to identify optimal operating conditions for membrane system subjected to biofouling.
Collapse
Affiliation(s)
- Morez Jafari
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Cristian Picioreanu
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
27
|
Nakao R, Myint SL, Wai SN, Uhlin BE. Enhanced Biofilm Formation and Membrane Vesicle Release by Escherichia coli Expressing a Commonly Occurring Plasmid Gene, kil. Front Microbiol 2018; 9:2605. [PMID: 30464758 PMCID: PMC6234761 DOI: 10.3389/fmicb.2018.02605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli is one of the most prevalent microorganisms forming biofilms on indwelling medical devices, as well as a representative model to study the biology and ecology of biofilms. Here, we report that a small plasmid gene, kil, enhances biofilm formation of E. coli. The kil gene is widely conserved among naturally occurring colicinogenic plasmids such as ColE1 plasmid, and is also present in some plasmid derivatives used as cloning vectors. First, we found that overexpression of the kil gene product dramatically increased biofilm mass enriched with extracellular DNA in the outer membrane-compromised strain RN102, a deep rough LPS mutant E. coli K-12 derivative. We also found that the kil-enhanced biofilm formation was further promoted by addition of physiologically relevant concentrations of Mg2+, not only in the case of RN102, but also with the parental strain BW25113, which retains intact core-oligosaccharide LPS. Biofilm formation by kil-expressing BW25113 strain (BW25113 kil+ ) was significantly inhibited by protease but not DNase I. In addition, a large amount of proteinous materials were released from the BW25113 kil+ cells. These materials contained soluble cytoplasmic and periplasmic proteins, and insoluble membrane vesicles (MVs). The kil-induced MVs were composed of not only outer membrane/periplasmic proteins, but also inner membrane/cytoplasmic proteins, indicating that MVs from both of the outer and inner membranes could be released into the extracellular milieu. Subcellular fractionation analysis revealed that the Kil proteins translocated to both the outer and inner membranes in whole cells of BW25113 kil+ . Furthermore, the BW25113 kil+ showed not only reduced viability in the stationary growth phase, but also increased susceptibility to killing by predator bacteria, Vibrio cholerae expressing the type VI secretion system, despite no obvious change in morphology and physiology of the bacterial membrane under regular culture conditions. Taken together, our findings suggest that there is risk of increasing biofilm formation and spreading of numerous MVs releasing various cellular components due to kil gene expression. From another point of view, our findings could also offer efficient MV production strategies using a conditional kil vector in biotechnological applications.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Si Lhyam Myint
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
28
|
Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms Microbiomes 2018; 4:17. [PMID: 30131867 PMCID: PMC6102240 DOI: 10.1038/s41522-018-0062-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Developing reliable anti-biofilm strategies or efficient biofilm-based bioprocesses strongly depends on having a clear understanding of the mechanisms underlying biofilm development, and knowledge of the relevant mechanical parameters describing microbial biofilm behavior. Many varied mechanical testing methods are available to assess these parameters. The mechanical properties thus identified can then be used to compare protocols such as antibiotic screening. However, the lack of standardization in both mechanical testing and the associated identification methods for a given microbiological goal remains a blind spot in the biofilm community. The pursuit of standardization is problematic, as biofilms are living structures, i.e., both complex and dynamic. Here, we review the main available methods for characterizing the mechanical properties of biofilms through the lens of the relationship linking experimental testing to the identification of mechanical parameters. We propose guidelines for characterizing biofilms according to microbiological objectives that will help the reader choose an appropriate test and a relevant identification method for measuring any given mechanical parameter. The use of a common methodology for the mechanical characterization of biofilms will enable reliable analysis and comparison of microbiological protocols needed for improvement of engineering process and screening.
Collapse
|
29
|
Gloag ES, German GK, Stoodley P, Wozniak DJ. Viscoelastic properties of Pseudomonas aeruginosa variant biofilms. Sci Rep 2018; 8:9691. [PMID: 29946126 PMCID: PMC6018706 DOI: 10.1038/s41598-018-28009-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 01/11/2023] Open
Abstract
Pseudomonas aeruginosa evolves during chronic pulmonary infections of cystic fibrosis (CF) patients, forming pathoadapted variants that are persistent. Mucoid and rugose small-colony variants (RSCVs) are typically isolated from sputum of CF patients. These variants overproduce exopolysaccharides in the biofilm extracellular polymeric substance (EPS). Currently, changes to the biophysical properties of RSCV and mucoid biofilms due to variations in EPS are not well understood. This knowledge may reveal how lung infections resist host clearance mechanisms. Here, we used mechanical indentation and shear rheometry to analyse the viscoelasticity of RSCV and mucoid colony-biofilms compared to their isogenic parent at 2-, 4-, and 6-d. While the viscoelasticity of parental colony-biofilms underwent fluctuating temporal changes, in contrast, RSCV and mucoid colony-biofilms showed a gradual progression to more elastic-solid behaviour. Theoretical indices of mucociliary and cough clearance predict that mature 6-d parental and RSCV biofilms may show reduced cough clearance from the lung, while early mucoid biofilms may show reduced clearance by both mechanisms. We propose that viscoelasticity be considered a virulence property of biofilms.
Collapse
Affiliation(s)
- Erin S Gloag
- Department of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Guy K German
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA. .,National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
30
|
Romero CM, Martorell PV, López AG, Peñalver CGN, Chaves S, Mechetti M. Architecture and physicochemical characterization of Bacillus biofilm as a potential enzyme immobilization factory. Colloids Surf B Biointerfaces 2017; 162:246-255. [PMID: 29216511 DOI: 10.1016/j.colsurfb.2017.11.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022]
Abstract
Biocatalysis for industrial application is based on the use of enzymes to perform complex transformations. However, these systems have some disadvantage related to the costs of the biocatalyst. In this work, an alternative strategy for producing green immobilized biocatalysts based on biofilm was developed.A study of the rheological behavior of the biofilm from Bacillus sp. Mcn4, as well as the determination of its composition, was carried out. The dynamic rheological measurements, viscosity (G") and elasticity (G') module, showed that the biofilm presents appreciable elastic components, which is a recognized property for enzymes immobilization. After the partial purification, the exopolysaccharidewas identified as a levan with a non-Newtonian behavior. Extracellular DNA with fragments between 10,000 and 1000bp was detected also in the biofilm, and amyloid protein in the extracellular matrix using a fluorescence technique was identified. Bacillus sp. Mcn4 biofilms were developed on different surfaces, being the most stable those developed on hydrophilic supports. The biofilm showed lipase activity suggesting the presence of constitutive lipases entrapped into the biofilm. Indeed, two enzymes with lipase activity were identified in native PAGE. These were used as biocatalysts, whose reuse showed a residual lipase activity after more than one cycle of catalysis. The components identified in the biofilm could be the main contributors of the rheological characteristic of this material, giving an exceptional environment to the lipase enzyme. Based on these findings, the current study proposes green and natural biopolymers matrix as support for the enzyme immobilization for industrial applications.
Collapse
Affiliation(s)
- C M Romero
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina.
| | - P V Martorell
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - A Gómez López
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - C G Nieto Peñalver
- PROIMI, PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - S Chaves
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - M Mechetti
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| |
Collapse
|
31
|
Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I. Architects of nature: growing buildings with bacterial biofilms. Microb Biotechnol 2017; 10:1157-1163. [PMID: 28815998 PMCID: PMC5609236 DOI: 10.1111/1751-7915.12833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
In his text 'On Architecture', Vitruvius suggested that architecture is an imitation of nature. Here we discuss what happens when we begin using nature in architecture. We describe recent developments in the study of biofilm structure, and propose combining modern architecture and synthetic microbiology to develop sustainable construction approaches. Recently, Kolodkin-Gal laboratory and others revealed a role for precipitation of calcium carbonate in the maturation and assembly of bacterial communities with complex structures. Importantly, they demonstrated that different secreted organic materials shape the calcium carbonate crystals formed by the bacterial cells. This provides a proof-of-concept for a potential use of bacteria in designing rigid construction materials and altering crystal morphology and function. In this study, we discuss how these recent discoveries may change the current strategies of architecture and construction. We believe that biofilm communities enhanced by synthetic circuits may be used to construct buildings and to sequester carbon dioxide in the process.
Collapse
Affiliation(s)
- Martyn Dade-Robertson
- Faculty of Humanities and Social Sciences, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, UK
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Meng Zhang
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Kundukad B, Schussman M, Yang K, Seviour T, Yang L, Rice SA, Kjelleberg S, Doyle PS. Mechanistic action of weak acid drugs on biofilms. Sci Rep 2017; 7:4783. [PMID: 28684849 PMCID: PMC5500524 DOI: 10.1038/s41598-017-05178-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 01/18/2023] Open
Abstract
Selective permeability of a biofilm matrix to some drugs has resulted in the development of drug tolerant bacteria. Here we studied the efficacy of a weak organic acid drug, N-acetyl-L-cysteine (NAC), on the eradication of biofilms formed by the mucoid strain of Pseudomonas aeruginosa and investigated the commonality of this drug with that of acetic acid. We showed that NAC and acetic acid at pH < pKa can penetrate the matrix and eventually kill 100% of the bacteria embedded in the biofilm. Once the bacteria are killed, the microcolonies swell in size and passively shed bacteria, suggesting that the bacteria act as crosslinkers within the extracellular matrix. Despite shedding of the bacteria, the remnant matrix remains intact and behaves as a pH-responsive hydrogel. These studies not only have implications for drug design but also offer a route to generate robust soft matter materials.
Collapse
Affiliation(s)
- Binu Kundukad
- BioSystems and Micromechanics (BioSyM) IRG, Singapore MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Megan Schussman
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Kaiyuan Yang
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore MIT Alliance for Research and Technology (SMART), Singapore, Singapore.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
33
|
Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. NPJ Biofilms Microbiomes 2017. [PMID: 28649402 PMCID: PMC5445605 DOI: 10.1038/s41522-016-0007-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biofilms are communities of microbes embedded in a matrix of extracellular polymeric substances, largely polysaccharides. Multiple types of extracellular polymeric substances can be produced by a single bacterial strain. The distinct polymer components of biofilms are known to provide chemical protection, but little is known about how distinct extracellular polysaccharides may also protect biofilms against mechanical stresses such as shear or phagocytic engulfment. Decades-long infections of Pseudomonas. aeruginosa biofilms in the lungs of cystic fibrosis patients are natural models for studies of biofilm fitness under pressure from antibiotics and the immune system. In cystic fibrosis infections, production of the extracellular polysaccharide alginate has long been known to increase with time and to chemically protect biofilms. More recently, it is being recognized that chronic cystic fibrosis infections also evolve to increase production of another extracellular polysaccharide, Psl; much less is known about Psl’s protective benefits to biofilms. We use oscillatory bulk rheology, on biofilms grown from longitudinal clinical isolates and from genetically-manipulated lab strains, to show that increased Psl stiffens biofilms and increases biofilm toughness, which is the energy cost to cause the biofilm to yield mechanically. Further, atomic force microscopy measurements reveal greater intercellular cohesion for higher Psl expression. Of the three types of extracellular polysaccharides produced by P. aeruginosa, only Psl increases the stiffness. Stiffening by Psl requires CdrA, a protein that binds to mannose groups on Psl and is a likely cross-linker for the Psl components of the biofilm matrix. We compare the elastic moduli of biofilms to the estimated stresses exerted by neutrophils during phagocytosis, and infer that increased Psl could confer a mechanical protection against phagocytic clearance. Bacteria in lungs of people with cystic fibrosis can evolve through decades to build a tough biofilm that resists the body’s defences. Vernita Gordon and colleagues at the University of Texas, with co-workers in Europe, examined biofilms cultured from lung samples taken from patients at intervals over many years. The infecting bacterial populations had steadily evolved to increase production of specific carbohydrate components of the biofilms. The researchers found that increasing production of one carbohydrate component strengthens the biofilms, most likely due to the carbohydrate being crosslinked by protein molecules. The investigation suggests that the mechanics of the carbohydrate-protein network protects the biofilms from being broken into smaller pieces that can be engulfed by defensive cells called phagocytes. This new insight into the evolution of mechanical toughness complements the previously observed evolution of increasing chemical protection. Understanding these processes will assist efforts to combat them.
Collapse
|
34
|
Tallawi M, Opitz M, Lieleg O. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater Sci 2017; 5:887-900. [DOI: 10.1039/c6bm00832a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we highlight recent research on the relationship between biofilm matrix composition, biofilm mechanics and environmental stimuli.
Collapse
Affiliation(s)
- Marwa Tallawi
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technische Universität München
- Garching
- Germany
| | - Madeleine Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technische Universität München
- Garching
- Germany
| |
Collapse
|
35
|
Revealing region-specific biofilm viscoelastic properties by means of a micro-rheological approach. NPJ Biofilms Microbiomes 2016. [PMID: 28649399 PMCID: PMC5460257 DOI: 10.1038/s41522-016-0005-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Particle-tracking microrheology is an in situ technique that allows quantification of biofilm material properties. It overcomes the limitations of alternative techniques such as bulk rheology or force spectroscopy by providing data on region specific material properties at any required biofilm location and can be combined with confocal microscopy and associated structural analysis. This article describes single particle tracking microrheology combined with confocal laser scanning microscopy to resolve the biofilm structure in 3 dimensions and calculate the creep compliances locally. Samples were analysed from Pseudomonas fluorescens biofilms that were cultivated over two timescales (24 h and 48 h) and alternate ionic conditions (with and without calcium chloride supplementation). The region-based creep compliance analysis showed that the creep compliance of biofilm void zones is the primary contributor to biofilm mechanical properties, contributing to the overall viscoelastic character.
Collapse
|
36
|
Kundukad B, Seviour T, Liang Y, Rice SA, Kjelleberg S, Doyle PS. Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. SOFT MATTER 2016; 12:5718-26. [PMID: 27273453 DOI: 10.1039/c6sm00687f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cells in biofilms sense and interact with their environment through the extracellular matrix. The physicochemical properties of the matrix, particularly at the biofilm-environment interface, determine how cells respond to changing conditions. In this study we describe the application of atomic force microscopy and confocal imaging to probe in situ the mechanical properties of these interfacial regions and to elucidate how key matrix components can contribute to the physical sensing by the cells. We describe how the Young's modulus of microcolonies differs according to the size and morphology of microcolonies, as well as the flow rate. The Young's modulus increased as a function of microcolony diameter, which was correlated with the production of the polysaccharide Psl at later stages of maturation for hemispherical or mushroom shaped microcolonies. The Young's modulus of the periphery of the biofilm colony was however independent of the hydrodynamic shear. The morphology of the microcolonies also influenced interfacial or peripheral stiffness. Microcolonies with a diffuse morphology had a lower Young's modulus than isolated, circular ones and this phenomenon was due to a deficiency of Psl. In this way, changes in the specific polysaccharide components imbue the biofilm with distinct physical properties that may modulate the way in which bacteria perceive or respond to their environment. Further, the physical properties of the polysaccharides are closely linked to the specific architectures formed by the developing biofilm.
Collapse
Affiliation(s)
- Binu Kundukad
- BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), Singapore
| | - Thomas Seviour
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Yang Liang
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Scott A Rice
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore and School of Biological Sciences, Nanyang Technological University, Singapore and Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Staffan Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore and School of Biological Sciences, Nanyang Technological University, Singapore and Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
37
|
Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms. Appl Environ Microbiol 2016; 82:2424-2432. [PMID: 26873313 DOI: 10.1128/aem.03957-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain,B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms.
Collapse
|
38
|
Demeter MA, Lemire JA, Yue G, Ceri H, Turner RJ. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation. Front Microbiol 2015; 6:936. [PMID: 26388865 PMCID: PMC4559649 DOI: 10.3389/fmicb.2015.00936] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L(-1) resulted in a more numerous population than 0.001 g L(-1) supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures. Overall, these observations lend support to the notion that harnessing a community of microorganisms as opposed to targeted isolates can enhance NA degradation ex situ. Moreover, the variable success caused by NA structure related persistence emphasized the difficulties associated with employing bioremediation to treat complex, undefined mixtures of toxicants such as OSPW NAs.
Collapse
Affiliation(s)
| | | | | | | | - Raymond J. Turner
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| |
Collapse
|
39
|
A novel method for rheological characterization of biofouling layers developing in Membrane Bioreactors (MBR). J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Grumbein S, Opitz M, Lieleg O. Selected metal ions protect Bacillus subtilis biofilms from erosion. Metallomics 2015; 6:1441-50. [PMID: 24770836 DOI: 10.1039/c4mt00049h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many problems caused by bacterial biofilms can be traced back to their high resilience towards chemical perturbations and their extraordinary sturdiness towards mechanical forces. However, the molecular mechanisms that link the mechanical properties of a biofilm with the ability of bacteria to survive in different chemical environments remain enigmatic. Here, we study the erosion stability of Bacillus subtilis (B. subtilis) biofilms in the presence of different chemical environments. We find that these biofilms can utilize the absorption of certain metal ions such as Cu(2+), Zn(2+), Fe(2+), Fe(3+) and Al(3+) into the biofilm matrix to avoid erosion by shear forces. Interestingly, many of these metal ions are toxic for planktonic B. subtilis bacteria. However, their toxic activity is suppressed when the ions are absorbed into the biofilm matrix. Our experiments clearly demonstrate that the biofilm matrix has to fulfill a dual function, i.e. regulating both the mechanical properties of the biofilm and providing a selective barrier towards toxic chemicals.
Collapse
Affiliation(s)
- S Grumbein
- Zentralinstitut für Medizintechnik, Technische Universität München, 85748 Garching, Germany.
| | | | | |
Collapse
|
41
|
Pavlovsky L, Sturtevant RA, Younger JG, Solomon MJ. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2036-42. [PMID: 25602470 PMCID: PMC5563478 DOI: 10.1021/la5044156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Changes in temperature were found to affect the morphology, cell viability, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. S. epidermidis biofilms are commonly associated with hospital-acquired medical device infections. We observed the effect of heat treatment on three physical properties of the biofilms: the bacterial cell morphology and viability, the polymeric properties of the extracellular polymeric substance (EPS), and the rheological properties of the bulk biofilm. After application of a 1 h heat treatment at 45 °C, cell reproduction had ceased, and at 60 °C, cell viability was significantly reduced. Size exclusion chromatography was used to fractionate the extracellular polymeric substance (EPS) based on size. Chemical analysis of each fraction showed that the relative concentrations of the polysaccharide, protein, and DNA components of the EPS were unchanged by the heat treatment at 45 and 60 °C. The results suggest that the EPS molecular constituents are not significantly degraded by the temperature treatment. However, some aggregation on the scale of 100 nm was found by dynamic light scattering at 60 °C. Finally, relative to control biofilms maintained at 37 °C, we observed an order of magnitude reduction in the biofilm yield stress after 60 °C temperature treatment. No such difference was found for treatment at 45 °C. From these results, we conclude that the yield stress of bacterial biofilms is temperature-sensitive and that this sensitivity is correlated with cell viability. The observed significant decrease in yield stress with temperature suggests a means to weaken the mechanical integrity of S. epidermidis biofilms with applications in areas such as the treatment of biofilm-infected medical devices.
Collapse
Affiliation(s)
- Leonid Pavlovsky
- Department of Chemical Engineering and ‡Department of Emergency Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
42
|
Peterson BW, He Y, Ren Y, Zerdoum A, Libera MR, Sharma PK, van Winkelhoff AJ, Neut D, Stoodley P, van der Mei HC, Busscher HJ. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol Rev 2015; 39:234-45. [PMID: 25725015 PMCID: PMC4398279 DOI: 10.1093/femsre/fuu008] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition. Recalcitrance of biofilms against mechanical and chemical challenges has been looked at for ages from a microbiological perspective, but an approach based on viscoelastic properties of biofilms yields new insights in this recalcitrance.
Collapse
Affiliation(s)
- Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Yan He
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Aidan Zerdoum
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, Hoboken, New Jersey, USA
| | - Matthew R Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, Hoboken, New Jersey, USA
| | - Prashant K Sharma
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Arie-Jan van Winkelhoff
- University of Groningen and University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Anatonius Deusinglaan 1, 9713 AV Groningen, The Netherlands University of Groningen and University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Danielle Neut
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity and Orthopedics, Center for Microbial Interface Biology, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, SO17 1BJ, UK
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
43
|
Billings N, Birjiniuk A, Samad TS, Doyle PS, Ribbeck K. Material properties of biofilms-a review of methods for understanding permeability and mechanics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:036601. [PMID: 25719969 PMCID: PMC4504244 DOI: 10.1088/0034-4885/78/3/036601] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.
Collapse
Affiliation(s)
- Nicole Billings
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
44
|
Karimi A, Karig D, Kumar A, Ardekani AM. Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. LAB ON A CHIP 2015; 15:23-42. [PMID: 25385289 PMCID: PMC4261921 DOI: 10.1039/c4lc01095g] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacteria in natural and artificial environments often reside in self-organized, integrated communities known as biofilms. Biofilms are highly structured entities consisting of bacterial cells embedded in a matrix of self-produced extracellular polymeric substances (EPS). The EPS matrix acts like a biological 'glue' enabling microbes to adhere to and colonize a wide range of surfaces. Once integrated into biofilms, bacterial cells can withstand various forms of stress such as antibiotics, hydrodynamic shear and other environmental challenges. Because of this, biofilms of pathogenic bacteria can be a significant health hazard often leading to recurrent infections. Biofilms can also lead to clogging and material degradation; on the other hand they are an integral part of various environmental processes such as carbon sequestration and nitrogen cycles. There are several determinants of biofilm morphology and dynamics, including the genotypic and phenotypic states of constituent cells and various environmental conditions. Here, we present an overview of the role of relevant physical processes in biofilm formation, including propulsion mechanisms, hydrodynamic effects, and transport of quorum sensing signals. We also provide a survey of microfluidic techniques utilized to unravel the associated physical mechanisms. Further, we discuss the future research areas for exploring new ways to extend the scope of the microfluidic approach in biofilm studies.
Collapse
Affiliation(s)
- A. Karimi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - D. Karig
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723
| | - A. Kumar
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada AB T6G 2G8
| | - A. M. Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
45
|
Reighard KP, Hill DB, Dixon GA, Worley B, Schoenfisch MH. Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides. BIOFOULING 2015; 31:775-87. [PMID: 26610146 PMCID: PMC4695972 DOI: 10.1080/08927014.2015.1107548] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biofilm disruption and eradication were investigated as a function of nitric oxide- (NO) releasing chitosan oligosaccharide dose and the results compared with control (i.e., non-NO-releasing) chitosan oligosaccharides and tobramycin. Quantification of biofilm expansion/contraction and multiple-particle tracking microrheology were used to assess the structural integrity of the biofilm before and after antibacterial treatment. While tobramycin had no effect on the physical properties of the biofilm, NO-releasing chitosan oligosaccharides exhibited dose-dependent behavior with biofilm degradation. Control chitosan oligosaccharides increased biofilm elasticity, indicating that the scaffold may mitigate the biofilm disrupting power of nitric oxide somewhat. The results from this study indicate that nitric oxide-releasing chitosan oligosaccharides act as dual-action therapeutics capable of eradicating and physically disrupting P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Katelyn P. Reighard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David B. Hill
- The Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Graham A. Dixon
- The Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brittany Worley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Corresponding author.
| |
Collapse
|
46
|
Nguyen PTM, Falsetta ML, Hwang G, Gonzalez-Begne M, Koo H. α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal. PLoS One 2014; 9:e111312. [PMID: 25350668 PMCID: PMC4211880 DOI: 10.1371/journal.pone.0111312] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Abstract
α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30-45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part via inhibition of key enzymatic systems associated with exopolysaccharide synthesis and acidogenicity. αMG could be an effective anti-virulence additive for the control and/or removal of cariogenic biofilms.
Collapse
Affiliation(s)
- Phuong Thi Mai Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Megan L. Falsetta
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mireya Gonzalez-Begne
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
47
|
Birjiniuk A, Billings N, Nance E, Hanes J, Ribbeck K, Doyle PS. Single particle tracking reveals spatial and dynamic organization of the E. coli biofilm matrix. NEW JOURNAL OF PHYSICS 2014; 16:085014. [PMID: 25414591 PMCID: PMC4234077 DOI: 10.1088/1367-2630/16/8/085014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance (EPS). Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time.
Collapse
Affiliation(s)
- Alona Birjiniuk
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nicole Billings
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elizabeth Nance
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21231
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21231
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
48
|
Mathieu L, Bertrand I, Abe Y, Angel E, Block JC, Skali-Lami S, Francius G. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress. WATER RESEARCH 2014; 55:175-184. [PMID: 24607313 DOI: 10.1016/j.watres.2014.01.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/28/2013] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., <50 μm(3)) and larger (i.e., >600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive strength of drinking water biofilms subsequent to cleaning/disinfection operations call into question the effectiveness of cleaning-in-place procedures. The combined alternating use of oxidation and shear stress sequences needs to be investigated as it could be an important adjunct to improving biofilm removal/reduction procedures.
Collapse
Affiliation(s)
- L Mathieu
- Ecole Pratique des Hautes Etudes (EPHE), LCPME, UMR 7564 CNRS - Université de Lorraine, Nancy, France.
| | - I Bertrand
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Nancy, France
| | - Y Abe
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Nancy, France
| | - E Angel
- Ecole Pratique des Hautes Etudes (EPHE), LCPME, UMR 7564 CNRS - Université de Lorraine, Nancy, France
| | - J C Block
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Nancy, France
| | - S Skali-Lami
- CNRS and Université de Lorraine, Laboratoire d'Energétique et de Mécanique Théorique et Appliquée (LEMTA), UMR 7563, Nancy, France
| | - G Francius
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Nancy, France
| |
Collapse
|
49
|
Galy O, Zrelli K, Latour-Lambert P, Kirwan L, Henry N. Remote magnetic actuation of micrometric probes for in situ 3D mapping of bacterial biofilm physical properties. J Vis Exp 2014. [PMID: 24837001 DOI: 10.3791/50857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bacterial adhesion and growth on interfaces lead to the formation of three-dimensional heterogeneous structures so-called biofilms. The cells dwelling in these structures are held together by physical interactions mediated by a network of extracellular polymeric substances. Bacterial biofilms impact many human activities and the understanding of their properties is crucial for a better control of their development - maintenance or eradication - depending on their adverse or beneficial outcome. This paper describes a novel methodology aiming to measure in situ the local physical properties of the biofilm that had been, until now, examined only from a macroscopic and homogeneous material perspective. The experiment described here involves introducing magnetic particles into a growing biofilm to seed local probes that can be remotely actuated without disturbing the structural properties of the biofilm. Dedicated magnetic tweezers were developed to exert a defined force on each particle embedded in the biofilm. The setup is mounted on the stage of a microscope to enable the recording of time-lapse images of the particle-pulling period. The particle trajectories are then extracted from the pulling sequence and the local viscoelastic parameters are derived from each particle displacement curve, thereby providing the 3D-spatial distribution of the parameters. Gaining insights into the biofilm mechanical profile is essential from an engineer's point of view for biofilm control purposes but also from a fundamental perspective to clarify the relationship between the architectural properties and the specific biology of these structures.
Collapse
Affiliation(s)
- Olivier Galy
- Physicochime Curie, CNRS UMR 168, Institut Curie, Sorbonne Universités, UPMC
| | - Kais Zrelli
- Physicochime Curie, CNRS UMR 168, Institut Curie, Sorbonne Universités, UPMC
| | | | - Lyndsey Kirwan
- Laboratoire Jean Perrin, CNRS UMR 8237, Sorbonne Universités, UPMC
| | - Nelly Henry
- Physicochime Curie, CNRS UMR 168, Institut Curie, Sorbonne Universités, UPMC; Laboratoire Jean Perrin, CNRS UMR 8237, Sorbonne Universités, UPMC;
| |
Collapse
|
50
|
Dong J, Zhang S, Ma J, Liu H, Du Y, Liu Y. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant. PLoS One 2014; 9:e94937. [PMID: 24740373 PMCID: PMC3989261 DOI: 10.1371/journal.pone.0094937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/21/2014] [Indexed: 11/17/2022] Open
Abstract
Background Reconstruction materials currently used in clinical for osteoarticular tuberculosis (TB) are unsatisfactory due to a variety of reasons. Rifampicin (RFP) is a well-known and highly effective first-line anti-tuberculosis (anti-TB) drug. Poly-DL-lactide (PDLLA) and nano-hydroxyapatite (nHA) are two promising materials that have been used both for orthopedic reconstruction and as carriers for drug release. In this study we report the development of a novel anti-TB implant for osteoarticular TB reconstruction using a combination of RFP, PDLLA and nHA. Methods RFP, PDLLA and nHA were used as starting materials to produce a novel anti-TB activity implant by the solvent evaporation method. After manufacture, the implant was characterized and its biodegradation and drug release profile were tested. The in vitro cytotoxicity of the implant was also evaluated in pre-osteoblast MC3T3-E1 cells using multiple methodologies. Results A RFP/PDLLA/nHA composite was successfully synthesized using the solvent evaporation method. The composite has a loose and porous structure with evenly distributed pores. The production process was steady and no chemical reaction occurred as proved by Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Meanwhile, the composite blocks degraded and released drug for at least 12 weeks. Evaluation of in vitro cytotoxicity in MC3T3-E1 cells verified that the synthesized composite blocks did not affect cell growth and proliferation. Conclusion It is feasible to manufacture a novel bioactive anti-TB RFP/PDLLA/nHA composite by the solvent evaporation method. The composite blocks showed appropriate properties such as degradation, drug release and biosafety to MC3T3-E1 cells. In conclusion, the novel composite blocks may have great potential for clinical applications in repairing bone defects caused by osteoarticular TB.
Collapse
Affiliation(s)
- JunFeng Dong
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - ShengMin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail:
| | - Jun Ma
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - HaoMing Liu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - YingYing Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - YongHui Liu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|