1
|
Parkin JGH, Dean LSN, Bell JA, Easton NHC, Edgeway LJ, Cooper MJ, Ridley R, Conforti F, Wang S, Yao L, Li J, Raj HV, Downward J, Gerlofs-Nijland M, Cassee FR, Wang Y, Cook RB, Jones MG, Davies DE, Loxham M. Copper-enriched automotive brake wear particles perturb human alveolar cellular homeostasis. Part Fibre Toxicol 2025; 22:4. [PMID: 39940013 PMCID: PMC11823208 DOI: 10.1186/s12989-024-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Airborne fine particulate matter with diameter < 2.5 μm (PM2.5), can reach the alveolar regions of the lungs, and is associated with over 4 million premature deaths per year worldwide. However, the source-specific consequences of PM2.5 exposure remain poorly understood. A major, but unregulated source is car brake wear, which exhaust emission reduction measures have not diminished. METHODS We used an interdisciplinary approach to investigate the consequences of brake-wear PM2.5 exposure upon lung alveolar cellular homeostasis using diesel exhaust PM as a comparator. This involved RNA-Seq to analyse global transcriptomic changes, metabolic analyses to investigate glycolytic reprogramming, mass spectrometry to determine PM composition, and reporter assays to provide mechanistic insight into differential effects. RESULTS We identified brake-wear PM from copper-enriched non-asbestos organic, and ceramic brake pads as inducing the greatest oxidative stress, inflammation, and pseudohypoxic HIF activation (a pathway implicated in diseases associated with air pollution exposure, including cancer, and pulmonary fibrosis), as well as perturbation of metabolism, and metal homeostasis compared with brake wear PM from low- or semi-metallic pads, and also, importantly, diesel exhaust PM. Compositional and metal chelator analyses identified that differential effects were driven by copper. CONCLUSIONS We demonstrate here that brake-wear PM may perturb cellular homeostasis more than diesel exhaust PM. Our findings demonstrate the potential differences in effects, not only for non-exhaust vs exhaust PM, but also amongst different sources of non-exhaust PM. This has implications for our understanding of the potential health effects of road vehicle-associated PM. More broadly, our findings illustrate the importance of PM composition on potential health effects, highlighting the need for targeted legislation to protect public health.
Collapse
Affiliation(s)
- James G H Parkin
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK.
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK
| | - Joseph A Bell
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Natasha H C Easton
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Liam J Edgeway
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Matthew J Cooper
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Robert Ridley
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Helen Vethakan Raj
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Yihua Wang
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Richard B Cook
- National Centre for Advanced Tribology (nCATS), Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Donna E Davies
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
- Southampton Marine and Maritime Institute, University of Southampton, Boldrewood Innovation Campus, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK.
| |
Collapse
|
2
|
Zhou L, Song C, Lei Y, Zhao L, Han Y, Xu Y, Li B, Guo J. Health impacts of PM 2.5 emissions from brake pad wear: A comprehensive study on pulmonary, metabolic, and microbiota alterations. Toxicology 2025; 511:154055. [PMID: 39809340 DOI: 10.1016/j.tox.2025.154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The environmental impact of harmful particles from tire and brake systems is a growing concern. This study investigated the health impacts of PM2.5 emissions from brake pad wear on adult C57BL/6 mice. The mice were exposed to brake pad particles via intratracheal infusion, and various health parameters were assessed. The results showed that brake pad particle exposure significantly reduced lung function parameters such as tidal volume, peak expiratory time ratio, and peak inspiratory flow rate, while increasing the apnea index and airway stenosis index. Histological analysis revealed particle deposition, inflammatory damage, and potential fibrosis in the lungs. Additionally, inflammatory markers and fibrosis indicators were elevated in the lung tissue. Metabolomic analysis indicated changes in metabolites related to purine metabolism, protein digestion, nucleic acid metabolism, and pathways involving Caffeine, Xanthine, Inosine, and others. Gut microbiota analysis showed increased abundance of Odoribacter and Tuzzerella, and decreased abundance of Desulfovibrio and Butyricimonas. Correlation analysis further suggested a significant link between the abundance of Odoribacter and plasma metabolic changes. Overall, this study underscores the health risks associated with brake dust pollution, particularly its adverse effects on lung function and induction of lung damage and fibrosis.
Collapse
Affiliation(s)
- Li Zhou
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Chenchen Song
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Yuhan Lei
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Lianlian Zhao
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Yunlin Han
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Yanfeng Xu
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Baicun Li
- National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Jianguo Guo
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China.
| |
Collapse
|
3
|
Thodhal Yoganandham S, Daeho K, Heewon J, Shen K, Jeon J. Unveiling the environmental impact of tire wear particles and the associated contaminants: A comprehensive review of environmental and health risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136155. [PMID: 39423645 DOI: 10.1016/j.jhazmat.2024.136155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This review offers a novel perspective on the environmental fate and ecotoxicological effects of tire wear particles (TWPs), ubiquitous environmental contaminants ranging in size from micrometers to millimeters (averaging 10-100 micrometers). These particles pose a growing threat due to their complex chemical composition and potential toxicity. Human exposure primarily occurs through inhalation, ingesting contaminated food and water, and dermal contact. Our review delves into the dynamic interplay between TWP composition, transformation products (TPs), and ecological impacts, highlighting the importance of considering both individual chemical effects and potential synergistic interactions. Notably, our investigation reveals that degradation products of certain chemicals, such as diphenylguanidine (DPG) and diphenylamine (DPA), can be more toxic than the parent compounds, underscoring the need to fully understand these contaminants' environmental profile. Furthermore, we explore the potential human health implications of TWPs, emphasizing the need for further research on potential respiratory, cardiovascular, and endocrine disturbances. Addressing the challenges in characterizing TWPs, assessing their environmental fate, and understanding their potential health risks requires a multidisciplinary approach. Future research should prioritize standardized TWP characterization and leachate analysis methods, conduct field studies to enhance ecological realism, and utilize advanced analytical techniques to decipher complex mixture interactions and identify key toxicants. By addressing these challenges, we can better mitigate the environmental and health risks associated with TWPs and ensure a more sustainable future.
Collapse
Affiliation(s)
- Suman Thodhal Yoganandham
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Kang Daeho
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Jang Heewon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
4
|
Li K, Yu K, Zhang Y, Du H, Sioutas C, Wang Q. Unveiling the mechanism secret of abrasion emissions of particulate matter and microplastics. Sci Rep 2024; 14:23710. [PMID: 39390026 PMCID: PMC11467408 DOI: 10.1038/s41598-024-74137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Recent research highlights that non-exhaust emissions from the abrasion of tires and other organic materials have emerged as a substantial source of airborne particulate matter and marine microplastics. Despite their growing impact, the underlying mechanisms driving these abrasion emissions have remained largely unexplored. In this study, we uncover that abrasion emissions from organic materials are fundamentally governed by a fatigue fracture process, wherein particles are progressively detached from the material surface under cyclic abrasion loads. Our findings demonstrate that these emissions increase significantly only when the applied abrasion loads surpass the material's toughness threshold. We establish a scaling relationship between the concentration of emitted particulate matter and the measurable crack propagation rate of the organic material, offering a robust quantitative method to estimate abrasion emissions. This work not only introduces a novel mechanistic framework for understanding particulate matter pollution from organic material abrasion but also provides a scientific basis for developing strategies to mitigate emissions of airborne particulates and marine microplastics.
Collapse
Affiliation(s)
- Ketian Li
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kunhao Yu
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yanchu Zhang
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Haixu Du
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Constantinos Sioutas
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Qiming Wang
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Sanches TR, Parra AC, Sun P, Graner MP, Itto LYU, Butter LM, Claessen N, Roelofs JJ, Florquin S, Veras MM, Andrade MDF, Saldiva PHN, Kers J, Andrade L, Tammaro A. Air pollution aggravates renal ischaemia-reperfusion-induced acute kidney injury. J Pathol 2024; 263:496-507. [PMID: 38934262 DOI: 10.1002/path.6302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/03/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) has emerged as a significant global public health concern. Recent epidemiological studies have highlighted the link between exposure to fine particulate matter (PM2.5) and a decline in renal function. PM2.5 exerts harmful effects on various organs through oxidative stress and inflammation. Acute kidney injury (AKI) resulting from ischaemia-reperfusion injury (IRI) involves biological processes similar to those involved in PM2.5 toxicity and is a known risk factor for CKD. The objective of this study was to investigate the impact of PM2.5 exposure on IRI-induced AKI. Through a unique environmentally controlled setup, mice were exposed to urban PM2.5 or filtered air for 12 weeks before IRI followed by euthanasia 48 h after surgery. Animals exposed to PM2.5 and IRI exhibited reduced glomerular filtration, impaired urine concentration ability, and significant tubular damage. Further, PM2.5 aggravated local innate immune responses and mitochondrial dysfunction, as well as enhancing cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation. This increased renal senescence and suppressed the anti-ageing protein klotho, leading to early fibrotic changes. In vitro studies using proximal tubular epithelial cells exposed to PM2.5 and hypoxia/reoxygenation revealed heightened activation of the STING pathway triggered by cytoplasmic mitochondrial DNA, resulting in increased tubular damage and a pro-inflammatory phenotype. In summary, our findings imply a role for PM2.5 in sensitising proximal tubular epithelial cells to IRI-induced damage, suggesting a plausible association between PM2.5 exposure and heightened susceptibility to CKD in individuals experiencing AKI. Strategies aimed at reducing PM2.5 concentrations and implementing preventive measures may improve outcomes for AKI patients and mitigate the progression from AKI to CKD. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Talita Rojas Sanches
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio Carlos Parra
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Peiqi Sun
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariana Pereira Graner
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lucas Yuji Umesaki Itto
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Loes Maria Butter
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris Jth Roelofs
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology (LIM-5), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria de Fatima Andrade
- Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of São Paulo, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
- Biomolecular Systems Analytics, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
- Biomolecular Systems Analytics, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Lucia Andrade
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam Cardiovascular Science and Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Elmarakby E, Elkadi H. Comprehending particulate matter dynamics in transit-oriented developments: Traffic as a generator and design as a captivator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172528. [PMID: 38663620 DOI: 10.1016/j.scitotenv.2024.172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
In Transit-Oriented Development (TOD), the close integration of residential structures with community activities and traffic heightens residents' exposure to traffic-related pollutants. Despite traffic being a primary source of particulate matter (PM), the compact design of TODs, together with the impact of urban heat island (UHI), increases the likelihood of trapping emitted PM from traffic, leading to heightened exposure of TOD residents to PM. Although PM originates from two distinct sources in road traffic, exhaust and non-exhaust emissions (NEE), current legislation addressing traffic-related PM from non-exhaust emissions sources remains limited. This paper focuses on two TOD typologies in Manchester City-Manchester Piccadilly and East Didsbury-to understand the roles of TOD traffic as a PM generator and TOD place design as a PM container and trapper. The investigation aims to establish correlations between street design canyon ratios, vehicular Speed, and PM10/PM2.5, providing design guidance and effective traffic management strategies to control PM emissions within TODs. Through mapping the canyon ratio and utilising the Breezometer API for PM monitoring, the paper revealed elevated PM levels in both TOD areas, exceeding World Health Organization (WHO) recommendations, particularly for PM2.5. Correlation analysis between canyon configuration and PM2.5/PM10 highlighted the importance of considering building heights and avoiding the creation of deep canyons in TOD design to minimise the limited dispersion of PM. Leveraging UK road statistics and the PTV Group API for vehicle speed calculations, the paper studied the average speeds on the TOD roads concerning PM. Contrary to conventional assumption, the correlation analyses have revealed a noteworthy association shift between vehicular speed and PM concentrations. A positive correlation existed between speed increase and PM increases on arterial roads. However, a negative correlation emerged on main, collector, and local streets, indicating that PM levels rise for both PM10 and PM2.5 as Speed decreases. These findings challenge the traditional assumption that higher Speed leads to increased emissions, highlighting the potential impact of NEE on PM concentrations. This paper calls for thorough design considerations and traffic management strategies in TOD, especially in dense areas, considering building height, optimising traffic flow, and enhancing compromised air quality associated with vehicular emissions.
Collapse
Affiliation(s)
- Esraa Elmarakby
- The University of Salford, School of Science, Engineering, and Environment, United Kingdom of Great Britain and Northern Ireland; Ain Shams University, Faculty of Engineering, Egypt.
| | - Hisham Elkadi
- The University of Salford, School of Science, Engineering, and Environment, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
7
|
Thomas AE, Bauer PS, Dam M, Perraud V, Wingen LM, Smith JN. Automotive braking is a source of highly charged aerosol particles. Proc Natl Acad Sci U S A 2024; 121:e2313897121. [PMID: 38466875 PMCID: PMC10990126 DOI: 10.1073/pnas.2313897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Although the last several decades have seen a dramatic reduction in emissions from vehicular exhaust, nonexhaust emissions (e.g., brake and tire wear) represent an increasingly significant class of traffic-related particulate pollution. Aerosol particles emitted from the wear of automotive brake pads contribute roughly half of the particle mass attributed to nonexhaust sources, while their relative contribution to urban air pollution overall will almost certainly grow coinciding with vehicle fleet electrification and the transition to alternative fuels. To better understand the implications of this growing prominence, a more thorough understanding of the physicochemical properties of brake wear particles (BWPs) is needed. Here, we investigate the electrical properties of BWPs as emitted from ceramic and semi-metallic brake pads. We show that up to 80% of BWPs emitted are electrically charged and that this fraction is strongly dependent on the specific brake pad material used. A dependence of the number of charges per particle on charge polarity and particle size is also demonstrated. We find that brake wear produces both positive and negative charged particles that can hold in excess of 30 elementary charges and show evidence that more negative charges are produced than positive. Our results will provide insights into the currently limited understanding of BWPs and their charging mechanisms, which potentially have significant implications on their atmospheric lifetimes and thus their relevance to climate and air quality. In addition, our study will inform future efforts to remove BWP emissions before entering the atmosphere by taking advantage of their electric charge.
Collapse
Affiliation(s)
- Adam E. Thomas
- Department of Chemistry, University of California, Irvine, CA92697
| | - Paulus S. Bauer
- Department of Chemistry, University of California, Irvine, CA92697
| | - Michelia Dam
- Department of Chemistry, University of California, Irvine, CA92697
| | | | - Lisa M. Wingen
- Department of Chemistry, University of California, Irvine, CA92697
| | - James N. Smith
- Department of Chemistry, University of California, Irvine, CA92697
| |
Collapse
|
8
|
Forest V, Pourchez J. Biological effects of brake wear particles in mammalian models: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167266. [PMID: 37741409 DOI: 10.1016/j.scitotenv.2023.167266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Road traffic is a major contributor to air pollution through aerosols both from exhaust emissions (EE) and non-exhaust emissions (NEE). NEE result from mechanical abrasion of brakes and tires, erosion of road surfaces and resuspension of road dust into the atmosphere by passing traffic. EE have been thoroughly studied and have decreased over time due to a stricter control. On the other hand, NEE have not received such attention and there is currently no legislation to specifically reduce NEE particles. Consequently, NEE relative part has become prevalent, potentially making of these emissions a major human health concern. The aim of this systematic review was to provide an overview of the current state of knowledge on the biological effects of brake wear particles, a type of NEE. To this end, we conducted a bibliographic search of two databases (PubMed and Web of Science) on June 1, 2023, focusing on the toxicological effects of brake wear particles induced in vitro and in vivo. We excluded reviews (no original experimental data), papers not written in English, studies performed in non-mammalian models and papers where no toxicity data were reported. Of the 291 papers, 19 were found to be relevant and included in our analysis, confirming that the assessment of the brake wear particles toxicity in mammalian models is still limited. This review also reports that brake wear particles can induce oxidative stress, proinflammatory response and DNA damage. Finally, some perspectives for further research and measures to mitigate the risk of brake wear emissions are discussed.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France.
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
9
|
Nosratabadi AR, Gustafsson M, Lovén K, Ljunggren SA, Olofsson U, Abbasi S, Blomqvist G, Karlsson H, Ljungman AG, Cassee FR, Gerlofs-Nijland ME, Gudmundsson A. Airway contraction and cytokine release in isolated rat lungs induced by wear particles from the road and tire interface and road vehicle brakes. Inhal Toxicol 2023; 35:309-323. [PMID: 38054445 DOI: 10.1080/08958378.2023.2289018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
The dominant road traffic particle sources are wear particles from the road and tire interface, and from vehicle brake pads. The aim of this work was to investigate the effect of road and brake wear particles on pulmonary function and biomarkers in isolated perfused rat lungs. Particles were sampled from the studded tire wear of three road pavements containing different rock materials in a road simulator; and from the wear of two brake pad materials using a pin-on-disk machine. Isolated rat lungs inhaled the coarse and fine fractions of the sampled particles resulting in an estimated total particle lung dose of 50 μg. The tidal volume (TV) was measured during the particle exposure and the following 50 min. Perfusate and BALF were analyzed for the cytokines TNF, CXCL1 and CCL3. The TV of lungs exposed to rock materials was significantly reduced after 25 min of exposure compared to the controls, for quartzite already after 4 min. The particles of the heavy-duty brake pads had no effect on the TV. Brake particles resulted in a significant elevation of CXCL1 in the perfusate. Brake particles showed significant elevations of all three measured cytokines, and quartzite showed a significant elevation of TNF in BALF. The study shows that the toxic effect on lungs exposed to airborne particles can be investigated using measurements of tidal volume. Furthermore, the study shows that the choice of rock material in road pavements has the potential to affect the toxicity of road wear PM10.
Collapse
Affiliation(s)
- Ali Reza Nosratabadi
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Mats Gustafsson
- Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden
| | - Karin Lovén
- Ergonomics and Aerosol Technology, Design Sciences, Lund University, Lund, Sweden
| | - Stefan A Ljunggren
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ulf Olofsson
- School of Industrial Engineering and Management, Department of Machine Design, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Saeed Abbasi
- School of Industrial Engineering and Management, Department of Machine Design, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Göran Blomqvist
- Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anders G Ljungman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Design Sciences, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
11
|
Refsnes M, Skuland T, Jørgensen R, Sæter-Grytting V, Snilsberg B, Øvrevik J, Holme JA, Låg M. Role of different mechanisms in pro-inflammatory responses triggered by traffic-derived particulate matter in human bronchiolar epithelial cells. Part Fibre Toxicol 2023; 20:31. [PMID: 37537647 PMCID: PMC10399033 DOI: 10.1186/s12989-023-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Traffic-derived particles are important contributors to the adverse health effects of ambient particulate matter (PM). In Nordic countries, mineral particles from road pavement and diesel exhaust particles (DEP) are important constituents of traffic-derived PM. In the present study we compared the pro-inflammatory responses of mineral particles and DEP to PM from two road tunnels, and examined the mechanisms involved. METHODS The pro-inflammatory potential of 100 µg/mL coarse (PM10-2.5), fine (PM2.5-0.18) and ultrafine PM (PM0.18) sampled in two road tunnels paved with different stone materials was assessed in human bronchial epithelial cells (HBEC3-KT), and compared to DEP and particles derived from the respective stone materials. Release of pro-inflammatory cytokines (CXCL8, IL-1α, IL-1β) was measured by ELISA, while the expression of genes related to inflammation (COX2, CXCL8, IL-1α, IL-1β, TNF-α), redox responses (HO-1) and metabolism (CYP1A1, CYP1B1, PAI-2) was determined by qPCR. The roles of the aryl hydrocarbon receptor (AhR) and reactive oxygen species (ROS) were examined by treatment with the AhR-inhibitor CH223191 and the anti-oxidant N-acetyl cysteine (NAC). RESULTS Road tunnel PM caused time-dependent increases in expression of CXCL8, COX2, IL-1α, IL-1β, TNF-α, COX2, PAI-2, CYP1A1, CYP1B1 and HO-1, with fine PM as more potent than coarse PM at early time-points. The stone particle samples and DEP induced lower cytokine release than all size-fractionated PM samples for one tunnel, and versus fine PM for the other tunnel. CH223191 partially reduced release and expression of IL-1α and CXCL8, and expression of COX2, for fine and coarse PM, depending on tunnel, response and time-point. Whereas expression of CYP1A1 was markedly reduced by CH223191, HO-1 expression was not affected. NAC reduced the release and expression of IL-1α and CXCL8, and COX2 expression, but augmented expression of CYP1A1 and HO-1. CONCLUSIONS The results indicate that the pro-inflammatory responses of road tunnel PM in HBEC3-KT cells are not attributed to the mineral particles or DEP alone. The pro-inflammatory responses seem to involve AhR-dependent mechanisms, suggesting a role for organic constituents. ROS-mediated mechanisms were also involved, probably through AhR-independent pathways. DEP may be a contributor to the AhR-dependent responses, although other sources may be of importance.
Collapse
Affiliation(s)
- Magne Refsnes
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Tonje Skuland
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Rikke Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Vegard Sæter-Grytting
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | | | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Marit Låg
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway.
| |
Collapse
|
12
|
Puisney-Dakhli C, Oikonomou EK, Tharaud M, Sivry Y, Berret JF, Baeza-Squiban A. Effects of brake wear nanoparticles on the protection and repair functions of the airway epithelium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121554. [PMID: 37044251 DOI: 10.1016/j.envpol.2023.121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Long term exposure to particulate air pollution is known to increase respiratory morbidity and mortality. In urban areas with dense traffic most of these particles are generated by vehicles, via engine exhaust or wear processes. Non-exhaust particles come from wear processes such as those concerning brakes and their toxicity is little studied. To improve our understanding of the lung toxicity mechanisms of the nanometric fraction of brake wear nanoparticles (BWNPs), we studied whether these particles affect the barrier properties of the respiratory epithelium considering particle translocation, mucus production and repair efficiency. The Calu-3 cell line grown in two-compartment chambers was used to mimic the bronchial epithelial barrier. BWNPs detected by single-particle ICP-MS were shown to cross the epithelial tissue in small amounts without affecting the barrier integrity properties, because the permeability to Lucifer yellow was not increased and there was no cytotoxicity as assessed by the release of lactate-dehydrogenase. The interaction of BWNPs with the barrier did not induce a pro-inflammatory response, but increased the expression and production of MU5AC, a mucin, by a mechanism involving the epidermal growth factor receptor pathway. During a wound healing assay, BWNP-loaded cells exhibited the same ability to migrate, but those at the edge of the wound showed higher 5-ethynyl-2'-deoxyuridine incorporation, suggesting a higher proliferation rate. Altogether these results showed that BW. NPs do not exert overt cytotoxicity and inflammation but can translocate through the epithelial barrier in small amounts and increase mucus production, a key feature of acute inflammatory and chronic obstructive pulmonary diseases. Their loading in epithelial cells may impair the repair process through increased proliferation.
Collapse
Affiliation(s)
- Chloé Puisney-Dakhli
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, F-75205, Paris, France
| | - Evdokia K Oikonomou
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Paris, France
| | - Mickaël Tharaud
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Yann Sivry
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Jean-François Berret
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Paris, France
| | - Armelle Baeza-Squiban
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, F-75205, Paris, France.
| |
Collapse
|
13
|
Mettakoonpitak J, Sawatdichai N, Thepnuan D, Siripinyanond A, Henry CS, Chantara S. Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples. Mikrochim Acta 2023; 190:241. [PMID: 37243836 DOI: 10.1007/s00604-023-05819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
The potential reach of point-of-care (POC) diagnostics into daily routines for exposure to reactive oxygen species (ROS) and Cu in aerosolized particulate matter (PM) demands that microfluidic paper-based analytical devices (μPADs) take into consideration the simple detection of these toxic PM components. Here, we propose μPADs with a dual-detection system for simultaneous ROS and Cu(II) detection. For colorimetric ROS detection, the glutathione (GSH) assay with a folding design to delay the reaction yielded complete ROS and GSH oxidation, and improved homogeneity of color development relative to using the lateral flow pattern. For electrochemical Cu(II) determination, 1,10-phenanthroline/Nafion modified graphene screen-printed electrodes showed ability to detect Cu(II) down to pg level being low enough to be applied to PM analysis. No intra- and inter-interference affecting both systems were found. The proposed μPADs obtained LODs for 1,4-naphthoquinone (1,4-NQ), used as the ROS representative, and Cu(II) of 8.3 ng and 3.6 pg, respectively and linear working ranges of 20 to 500 ng for ROS and 1 × 10-2 to 2 × 102 ng for Cu(II). Recovery of the method was between 81.4 and 108.3% for ROS and 80.5-105.3% for Cu(II). Finally, the sensors were utilized for simultaneous ROS and Cu(II) determination in PM samples and the results statistically agreed with those using the conventional methods at 95% confidence.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand.
| | - Nalatthaporn Sawatdichai
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand
| | - Duangduean Thepnuan
- Department of Chemistry, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
14
|
Rahman MM, Carter SA, Lin JC, Chow T, Yu X, Martinez MP, Levitt P, Chen Z, Chen JC, Rud D, Lewinger JP, Eckel SP, Schwartz J, Lurmann FW, Kleeman MJ, McConnell R, Xiang AH. Prenatal exposure to tailpipe and non-tailpipe tracers of particulate matter pollution and autism spectrum disorders. ENVIRONMENT INTERNATIONAL 2023; 171:107736. [PMID: 36623380 PMCID: PMC9943058 DOI: 10.1016/j.envint.2023.107736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Traffic-related air pollution exposure is associated with increased risk of autism spectrum disorder (ASD). It is unknown whether carbonaceous material from vehicular tailpipe emissions or redox-active non-tailpipe metals, eg. from tire and brake wear, are responsible. We assessed ASD associations with fine particulate matter (PM2.5) tracers of tailpipe (elemental carbon [EC] and organic carbon [OC]) and non-tailpipe (copper [Cu]; iron [Fe] and manganese [Mn]) sources during pregnancy in a large cohort. METHODS This retrospective cohort study included 318,750 children born in Kaiser Permanente Southern California (KPSC) hospitals during 2001-2014, followed until age 5. ASD cases were identified by ICD codes. Monthly estimates of PM2.5 and PM2.5 constituents EC, OC, Cu, Fe, and Mn with 4 km spatial resolution were obtained from a source-oriented chemical transport model. These exposures and NO2 were assigned to each maternal address during pregnancy, and associations with ASD were assessed using Cox regression models adjusted for covariates. PM constituent effect estimates were adjusted for PM2.5 and NO2 to assess independent effects. To distinguish ASD risk associated with non-tailpipe from tailpipe sources, the associations with Cu, Fe, and Mn were adjusted for EC and OC, and vice versa. RESULTS There were 4559 children diagnosed with ASD. In single-pollutant models, increased ASD risk was associated with gestational exposures to tracers of both tailpipe and non-tailpipe emissions. The ASD hazard ratios (HRs) per inter-quartile increment of exposure) for EC, OC, Cu, Fe, and Mn were 1.11 (95% CI: 1.06-1.16), 1.09 (95% CI: 1.04-1.15), 1.09 (95% CI: 1.04-1.13), 1.14 (95% CI: 1.09-1.20), and 1.17 (95% CI: 1.12-1.22), respectively. Estimated effects of Cu, Fe, and Mn (reflecting non-tailpipe sources) were largely unchanged in two-pollutant models adjusting for PM2.5, NO2, EC or OC. In contrast, ASD associations with EC and OC were markedly attenuated by adjustment for non-tailpipe sources. CONCLUSION Results suggest that non-tailpipe emissions may contribute to ASD. Implications are that reducing tailpipe emissions, especially from vehicles with internal combustion engines, may not eliminate ASD associations with traffic-related air pollution.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Pat Levitt
- Department of Pediatrics, Keck School of Medicine, Program in Developmental Neuroscience and Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Rud
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| |
Collapse
|
15
|
Lee JJ, Kim JH, Song DS, Lee K. Effect of Short- to Long-Term Exposure to Ambient Particulate Matter on Cognitive Function in a Cohort of Middle-Aged and Older Adults: KoGES. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9913. [PMID: 36011565 PMCID: PMC9408640 DOI: 10.3390/ijerph19169913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Exposure to ambient air pollution and its threat to human health is a global concern, especially in the elderly population. Therefore, more in-depth studies are required to understand the extent of the harmful effects of particulate matter (PM) based on duration and levels of exposure. An investigation was conducted to determine the association between short- (1-14 days), medium- (1, 3, and 6 months), and long-term (1, 2, and 3 years) exposure to air pollutants (PM2.5 and PM10) and cognitive function among Koreans (4175 participants, mean age 67.8 years, 55.2% women) aged over 50 years. Higher levels of PM2.5 exposure for short to long term and PM10 exposure for medium to long term were found to be associated with decreased cognitive function, as indicated by lower scores of the Mini-Mental State Examination adopted in Korean (K-MMSE). There were significant effect modifications by sex, age group, alcohol consumption, physical activity, and smoking status in the association between long-term PM2.5 and PM10 exposure and cognitive function. These findings, which underscore the importance of the efforts to reduce the exposure levels and durations of air pollutants, especially in the vulnerable elderly population, provide evidence for establishing more stringent policies for air pollution regulations.
Collapse
|
16
|
Skuland T, Grytting VS, Låg M, Jørgensen RB, Snilsberg B, Leseman DLAC, Kubátová A, Emond J, Cassee FR, Holme JA, Øvrevik J, Refsnes M. Road tunnel-derived coarse, fine and ultrafine particulate matter: physical and chemical characterization and pro-inflammatory responses in human bronchial epithelial cells. Part Fibre Toxicol 2022; 19:45. [PMID: 35787286 PMCID: PMC9251916 DOI: 10.1186/s12989-022-00488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traffic particulate matter (PM) comprises a mixture of particles from fuel combustion and wear of road pavement, tires and brakes. In countries with low winter temperatures the relative contribution of mineral-rich PM from road abrasion may be especially high due to use of studded tires during winter season. The aim of the present study was to sample and characterize size-fractioned PM from two road tunnels paved with different stone materials in the asphalt, and to compare the pro-inflammatory potential of these fractions in human bronchial epithelial cells (HBEC3-KT) in relation to physicochemical characteristics. METHODS The road tunnel PM was collected with a vacuum pump and a high-volume cascade impactor sampler. PM was sampled during winter, both during humid and dry road surface conditions, and before and after cleaning the tunnels. Samples were analysed for hydrodynamic size distribution, content of elemental carbon (EC), organic carbon (OC) and endotoxin, and the capacity for acellular generation of reactive oxygen species. Cytotoxicity and pro-inflammatory responses were assessed in HBEC3-KT cells after exposure to coarse (2.5-10 μm), fine (0.18-2.5 μm) and ultrafine PM (≤ 0.18 μm), as well as particles from the respective stone materials used in the pavement. RESULTS The pro-inflammatory potency of the PM samples varied between road tunnels and size fractions, but showed more marked responses than for the stone materials used in asphalt of the respective tunnels. In particular, fine samples showed significant increases as low as 25 µg/mL (2.6 µg/cm2) and were more potent than coarse samples, while ultrafine samples showed more variable responses between tunnels, sampling conditions and endpoints. The most marked responses were observed for fine PM sampled during humid road surface conditions. Linear correlation analysis showed that particle-induced cytokine responses were correlated to OC levels, while no correlations were observed for other PM characteristics. CONCLUSIONS The pro-inflammatory potential of fine road tunnel PM sampled during winter season was high compared to coarse PM. The differences between the PM-induced cytokine responses were not related to stone materials in the asphalt. However, the ratio of OC to total PM mass was associated with the pro-inflammatory potential.
Collapse
Affiliation(s)
- Tonje Skuland
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway.
| | - Vegard Sæter Grytting
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Marit Låg
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Rikke Bræmming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | | - Daan L A C Leseman
- National Institute for Public Health and the Environment - RIVM, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Jessica Emond
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Flemming R Cassee
- National Institute for Public Health and the Environment - RIVM, PO Box 1, 3720 BA, Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jørn A Holme
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Johan Øvrevik
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066, 0316, Blindern, Oslo, Norway
| | - Magne Refsnes
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| |
Collapse
|
17
|
Fussell JC, Franklin M, Green DC, Gustafsson M, Harrison RM, Hicks W, Kelly FJ, Kishta F, Miller MR, Mudway IS, Oroumiyeh F, Selley L, Wang M, Zhu Y. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6813-6835. [PMID: 35612468 PMCID: PMC9178796 DOI: 10.1021/acs.est.2c01072] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 05/22/2023]
Abstract
Implementation of regulatory standards has reduced exhaust emissions of particulate matter from road traffic substantially in the developed world. However, nonexhaust particle emissions arising from the wear of brakes, tires, and the road surface, together with the resuspension of road dust, are unregulated and exceed exhaust emissions in many jurisdictions. While knowledge of the sources of nonexhaust particles is fairly good, source-specific measurements of airborne concentrations are few, and studies of the toxicology and epidemiology do not give a clear picture of the health risk posed. This paper reviews the current state of knowledge, with a strong focus on health-related research, highlighting areas where further research is an essential prerequisite for developing focused policy responses to nonexhaust particles.
Collapse
Affiliation(s)
- Julia C. Fussell
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Meredith Franklin
- Department
of Statistical Sciences, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - David C. Green
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Mats Gustafsson
- Swedish
National Road and Transport Research Institute (VTI), SE-581 95, Linköping, Sweden
| | - Roy M. Harrison
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, U.K.
- Department
of Environmental Sciences / Centre of Excellence in Environmental
Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - William Hicks
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Frank J. Kelly
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Franceska Kishta
- Centre
for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Mark R. Miller
- Centre
for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Ian S. Mudway
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Farzan Oroumiyeh
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Liza Selley
- MRC
Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge,CB2 1QR, U.K.
| | - Meng Wang
- University
at Buffalo, School of Public
Health and Health Professions, Buffalo, New York 14214, United States
| | - Yifang Zhu
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
18
|
Jalali Farahani V, Altuwayjiri A, Taghvaee S, Sioutas C. Tailpipe and Nontailpipe Emission Factors and Source Contributions of PM 10 on Major Freeways in the Los Angeles Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7029-7039. [PMID: 35230811 DOI: 10.1021/acs.est.1c06954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the emission factors of PM10 and its chemical constituents from various contributing sources including nontailpipe and tailpipe emissions were estimated on two interstate freeways in the Los Angeles basin. PM10 samples were collected on the I-110 and I-710 freeways as well as at the University of Southern California (USC) campus as the urban background site, while freeway and urban background CO2 levels were measured simultaneously. PM10 samples were analyzed for their content of chemical species which were used to estimate the emission factors of PM10 and its constituents on both I-110 and I-710 freeways. The estimated values were employed to determine the emission factors for light (LDV) and heavy-duty vehicles (HDV). The quantified species were also processed by the positive matrix factorization (PMF) model to produce PM10 freeway source profiles and their contribution to PM10 mass concentrations. Using the PMF factor profiles and emission factors on the two freeways, we characterized the emission factors for light-duty and heavy-duty vehicles by each nontailpipe source. Our findings indicated higher nontailpipe emission factors of PM10 and metal elements on the I-710 freeway compared to the I-110 freeway, due to the higher fraction of heavy-duty vehicles (HDVs) on that freeway. Furthermore, the generation of nontailpipe PM10 from resuspension of road dust was twice of tire and brake wear. The results of this study provide significant insights into PM10 freeway emissions and particularly the overall contribution of nontailpipe and tailpipe sources in Los Angeles, which can be helpful to modelers and air quality officials in assessing the importance of individual traffic-related emissions on the overall population exposure.
Collapse
Affiliation(s)
- Vahid Jalali Farahani
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90007, United States
| | - Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90007, United States
- Department of Civil and Environmental Engineering, Majmaah University, Majmaah, Riyadh 15341, Saudi Arabia
| | - Sina Taghvaee
- Department of Atmospheric & Oceanic Sciences, University of California─Los Angeles, Los Angeles, California 90095, United States
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90007, United States
| |
Collapse
|
19
|
Sørensen M, Poulsen AH, Hvidtfeldt UA, Frohn LM, Ketzel M, Christensen JH, Brandt J, Geels C, Raaschou-Nielsen O. Exposure to source-specific air pollution and risk for type 2 diabetes: a nationwide study covering Denmark. Int J Epidemiol 2022; 51:1219-1229. [PMID: 35285908 DOI: 10.1093/ije/dyac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Only few epidemiological studies have investigated whether chronic exposure to air pollution from different sources have different impacts on risk of diabetes. We aimed to investigate associations between air pollution from traffic versus non-traffic sources and risk of type 2 diabetes in the Danish population. METHODS We estimated long-term exposure to traffic and non-traffic contributions of particulate matter with a diameter <2.5 µg (PM2.5), elemental carbon (EC), ultrafine particles (UFP) and nitrogen dioxide (NO2) for all persons living in Denmark for the period 2005-17. In total, 2.6 million persons aged >35 years were included, of whom 148 020 developed type 2 diabetes during follow-up. We applied Cox proportional hazards models for analyses, using 5-year time-weighted running means of air pollution and adjustment for individual- and area-level demographic and socioeconomic covariates. RESULTS We found that 5-year exposure to all particle measures (PM2.5, UFP and EC) and NO2 were associated with higher type 2 diabetes risk. We observed that for UFP, EC and potentially PM2.5, the pollution originating from traffic was associated with higher risks than the non-traffic contributions, whereas for NO2 similar hazard ratios (HR) were observed. For example, in two-source models, hazard ratios (HRs) per interquartile change in traffic UFP, EC and PM2.5 were 1.025, 1.045 and 1.036, respectively, whereas for non-traffic UFP, EC and PM2.5, the HRs were 1.013, 1.018 and 1.001, respectively. CONCLUSIONS Our finding of stronger associations with particulate matter from traffic compared with non-traffic sources implies that prevention strategies should focus on limiting traffic-related particulate matter air pollution.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Aslak H Poulsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ulla A Hvidtfeldt
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lise M Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,iClimate-Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
20
|
Viana M, Salmatonidis A, Bezantakos S, Ribalta C, Moreno N, Córdoba P, Cassee FR, Boere J, Fraga S, Teixeira JP, Bessa MJ, Monfort E. Characterizing the Chemical Profile of Incidental Ultrafine Particles for Toxicity Assessment Using an Aerosol Concentrator. Ann Work Expo Health 2021; 65:966-978. [PMID: 34314505 PMCID: PMC8501988 DOI: 10.1093/annweh/wxab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 01/28/2021] [Indexed: 01/04/2023] Open
Abstract
Incidental ultrafine particles (UFPs) constitute a key pollutant in industrial workplaces. However, characterizing their chemical properties for exposure and toxicity assessments still remains a challenge. In this work, the performance of an aerosol concentrator (Versatile Aerosol Concentration Enrichment System, VACES) was assessed to simultaneously sample UFPs on filter substrates (for chemical analysis) and as liquid suspensions (for toxicity assessment), in a high UFP concentration scenario. An industrial case study was selected where metal-containing UFPs were emitted during thermal spraying of ceramic coatings. Results evidenced the comparability of the VACES system with online monitors in terms of UFP particle mass (for concentrations up to 95 µg UFP/m3) and between filters and liquid suspensions, in terms of particle composition (for concentrations up to 1000 µg/m3). This supports the applicability of this tool for UFP collection in view of chemical and toxicological characterization for incidental UFPs. In the industrial setting evaluated, results showed that the spraying temperature was a driver of fractionation of metals between UF (<0.2 µm) and fine (0.2-2.5 µm) particles. Potentially health hazardous metals (Ni, Cr) were enriched in UFPs and depleted in the fine particle fraction. Metals vaporized at high temperatures and concentrated in the UF fraction through nucleation processes. Results evidenced the need to understand incidental particle formation mechanisms due to their direct implications on particle composition and, thus, exposure. It is advisable that personal exposure and subsequent risk assessments in occupational settings should include dedicated metrics to monitor UFPs (especially, incidental).
Collapse
Affiliation(s)
- M Viana
- IDAEA-CSIC, Barcelona, Spain
| | | | - S Bezantakos
- Université du Littoral Côte d’ ‘Opale, Dunkerque, France
| | | | | | | | | | - J Boere
- RIVM, Bilthoven, The Netherlands
| | - S Fraga
- Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - J P Teixeira
- Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - M J Bessa
- Department of Environmental Health, National Institute of Health Dr Ricardo Jorge, Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
21
|
Manchanda C, Kumar M, Singh V, Faisal M, Hazarika N, Shukla A, Lalchandani V, Goel V, Thamban N, Ganguly D, Tripathi SN. Variation in chemical composition and sources of PM 2.5 during the COVID-19 lockdown in Delhi. ENVIRONMENT INTERNATIONAL 2021; 153:106541. [PMID: 33845290 DOI: 10.1016/j.envint.2021.106541] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 03/22/2021] [Indexed: 05/07/2023]
Abstract
The Government of India (GOI) announced a nationwide lockdown starting 25th March 2020 to contain the spread of COVID-19, leading to an unprecedented decline in anthropogenic activities and, in turn, improvements in ambient air quality. This is the first study to focus on highly time-resolved chemical speciation and source apportionment of PM2.5 to assess the impact of the lockdown and subsequent relaxations on the sources of ambient PM2.5 in Delhi, India. The elemental, organic, and black carbon fractions of PM2.5 were measured at the IIT Delhi campus from February 2020 to May 2020. We report source apportionment results using positive matrix factorization (PMF) of organic and elemental fractions of PM2.5 during the different phases of the lockdown. The resolved sources such as vehicular emissions, domestic coal combustion, and semi-volatile oxygenated organic aerosol (SVOOA) were found to decrease by 96%, 95%, and 86%, respectively, during lockdown phase-1 as compared to pre-lockdown. An unforeseen rise in O3 concentrations with declining NOx levels was observed, similar to other parts of the globe, leading to the low-volatility oxygenated organic aerosols (LVOOA) increasing to almost double the pre-lockdown concentrations during the last phase of the lockdown. The effect of the lockdown was found to be less pronounced on other resolved sources like secondary chloride, power plants, dust-related, hydrocarbon-like organic aerosols (HOA), and biomass burning related emissions, which were also swayed by the changing meteorological conditions during the four lockdown phases. The results presented in this study provide a basis for future emission control strategies, quantifying the extent to which constraining certain anthropogenic activities can ameliorate the ambient air. These results have direct relevance to not only Delhi but the entire Indo-Gangetic plain (IGP), citing similar geographical and meteorological conditions common to the region along with overlapping regional emission sources. SUMMARY OF MAIN FINDINGS: We identify sources like vehicular emissions, domestic coal combustion, and semi-volatile oxygenated organic aerosol (SVOOA) to be severely impacted by the lockdown, whereas ozone levels and, in turn, low-volatility oxygenated organic aerosols (LVOOA) rise by more than 95% compared to the pre-lockdown concentrations during the last phase of the lockdown. However, other sources resolved in this study, like secondary chloride, power plants, dust-related, hydrocarbon-like organic aerosols (HOA), and biomass burning related emissions, were mainly driven by the changes in the meteorological conditions rather than the lockdown.
Collapse
Affiliation(s)
- Chirag Manchanda
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Mayank Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Vikram Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Mohd Faisal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Naba Hazarika
- Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashutosh Shukla
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India
| | - Vipul Lalchandani
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India
| | - Vikas Goel
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Navaneeth Thamban
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India
| | - Dilip Ganguly
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Sachchida Nand Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India.
| |
Collapse
|
22
|
Selley L, Lammers A, Le Guennec A, Pirhadi M, Sioutas C, Janssen N, Maitland-van der Zee AH, Mudway I, Cassee F. Alterations to the urinary metabolome following semi-controlled short exposures to ultrafine particles at a major airport. Int J Hyg Environ Health 2021; 237:113803. [PMID: 34517159 PMCID: PMC8504201 DOI: 10.1016/j.ijheh.2021.113803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Inflammation, oxidative stress and reduced cardiopulmonary function following exposure to ultrafine particles (UFP) from airports has been reported but the biological pathways underlying these toxicological endpoints remain to be explored. Urinary metabolomics offers a robust method by which changes in cellular pathway activity can be characterised following environmental exposures. OBJECTIVE We assessed the impact of short-term exposures to UFP from different sources at a major airport on the human urinary metabolome. METHODS 21 healthy, non-smoking volunteers (aged 19-27 years) were repeatedly (2-5 visits) exposed for 5h to ambient air at Amsterdam Airport Schiphol, while performing intermittent, moderate exercise. Pre- to-post exposure changes in urinary metabolite concentrations were assessed via 1H NMR spectroscopy and related to total and source-specific particle number concentrations (PNC) using linear mixed effects models. RESULTS Total PNC at the exposure site was on average, 53,500 particles/cm3 (range 10,500-173,200) and associated with significant reductions in urinary taurine (-0.262 AU, 95% CI: -0.507 to -0.020) and dimethylamine concentrations (-0.021 AU, 95% CI: -0.040 to -0.067). Aviation UFP exposure accounted for these changes, with the reductions in taurine and dimethylamine associating with UFP produced during both aircraft landing and take-off. Significant reductions in pyroglutamate concentration were also associated with aviation UFP specifically, (-0.005 AU, 95% CI: -0.010 - <0.000) again, with contributions from both landing and take-off UFP exposure. While non-aviation UFPs induced small changes to the urinary metabolome, their effects did not significantly impact the overall response to airport UFP exposure. DISCUSSION Following short-term exposures at a major airport, aviation-related UFP caused the greatest changes to the urinary metabolome. These were consistent with a heightened antioxidant response and altered nitric oxide synthesis. Although some of these responses could be adaptive, they appeared after short-term exposures in healthy adults. Further study is required to determine whether long-term exposures induce injurious effects.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom.
| | - Ariana Lammers
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Adrien Le Guennec
- Randall Centre of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Anke H Maitland-van der Zee
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ian Mudway
- Environmental Research Group, Faculty of Medicine, School of Publuc Health, Imperial College London, London, United Kingdom; National Institute of Health Research, Health Protection Research Unit in Environmental and Health, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Koutrakis P, Greenbaum D. Enhancing near-road exposure assessment. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:115-117. [PMID: 33538656 DOI: 10.1080/10962247.2020.1861893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
| | - Dan Greenbaum
- Health Effects Institute , Boston, Massachusetts, USA
| |
Collapse
|
24
|
Selley L, Schuster L, Marbach H, Forsthuber T, Forbes B, Gant TW, Sandström T, Camiña N, Athersuch TJ, Mudway I, Kumar A. Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. Metallomics 2021; 12:371-386. [PMID: 31915771 DOI: 10.1039/c9mt00253g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Studies have emphasised the importance of combustion-derived particles in eliciting adverse health effects, especially those produced by diesel vehicles. In contrast, few investigations have explored the potential toxicity of particles derived from tyre and brake wear, despite their significant contributions to total roadside particulate mass. The objective of this study was to compare the relative toxicity of compositionally distinct brake abrasion dust (BAD) and diesel exhaust particles (DEP) in a cellular model that is relevant to human airways. Although BAD contained considerably more metals/metalloids than DEP (as determined by inductively coupled plasma mass spectrometry) similar toxicological profiles were observed in U937 monocyte-derived macrophages following 24 h exposures to 4-25 μg ml-1 doses of either particle type. Responses to the particles were characterised by dose-dependent decreases in mitochondrial depolarisation (p ≤ 0.001), increased secretion of IL-8, IL-10 and TNF-α (p ≤ 0.05 to p ≤ 0.001) and decreased phagocytosis of S. aureus (p ≤ 0.001). This phagocytic deficit recovered, and the inflammatory response resolved when challenged cells were incubated for a further 24 h in particle-free media. These responses were abrogated by metal chelation using desferroxamine. At minimally cytotoxic doses both DEP and BAD perturbed bacterial clearance and promoted inflammatory responses in U937 cells with similar potency. These data emphasise the requirement to consider contributions of abrasion particles to traffic-related clinical health effects.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Linda Schuster
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK. and German Cancer Research Center (DKFZ) & Bioquant Center, Division of Chromatin Networks, 69120, Heidelberg, Germany.
| | - Helene Marbach
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Theresa Forsthuber
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Timothy W Gant
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, OX11 0RQ, UK. and MRC-PHE Centre for Environment and Health, Imperial College, London, W2 1PG, UK.
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden.
| | - Nuria Camiña
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK.
| | - Toby J Athersuch
- MRC-PHE Centre for Environment and Health, Imperial College, London, W2 1PG, UK. and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Ian Mudway
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK. and Department of Analytical and Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
| | - Abhinav Kumar
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| |
Collapse
|
25
|
Kim J, Choi H, Choi DH, Park K, Kim HJ, Park M. Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia. Sci Rep 2021; 11:2232. [PMID: 33500561 PMCID: PMC7838266 DOI: 10.1038/s41598-021-81989-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 02/05/2023] Open
Abstract
Airborne fine dust particles (FDPs) have been identified as major toxins in air pollution that threaten human respiratory health. While searching for an anti-FDP reagent, we found that green tea extract (GTE) and fractions rich in flavonol glycosides (FLGs) and crude tea polysaccharides (CTPs) had protective effects against FDP-stimulated cellular damage in the BEAS-2B airway epithelial cell line. The GTE, FLGs, and CTPs significantly increased viability and lowered oxidative stress levels in FDP-treated cells. Combined treatment with GTE, FLGs, and CTPs also exerted synergistic protective effects on cells and attenuated FDP-induced elevations in inflammatory gene expression. Moreover, the green tea components increased the proportion of ciliated cells and upregulated ciliogenesis in the airway in FDP-stimulated BEAS-2B cells. Our findings provide insights into how natural phytochemicals protect the airway and suggest that green tea could be used to reduce FDP-induced airway damage as an ingredient in pharmaceutical, nutraceutical, and also cosmeceutical products.
Collapse
Affiliation(s)
- Juewon Kim
- R&D Unit, Amorepacific Corporation, Yongin, 17074, Republic of Korea.
| | - Hyunjung Choi
- R&D Unit, Amorepacific Corporation, Yongin, 17074, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggido Business & Science Accelerator, Suwon, 16229, Republic of Korea
| | - Kyuhee Park
- Gyeonggido Business & Science Accelerator, Suwon, 16229, Republic of Korea
| | - Hyung-June Kim
- R&D Unit, Amorepacific Corporation, Yongin, 17074, Republic of Korea
| | - Miyoung Park
- R&D Unit, Amorepacific Corporation, Yongin, 17074, Republic of Korea.
| |
Collapse
|
26
|
Environmentally Relevant Iron Oxide Nanoparticles Produce Limited Acute Pulmonary Effects in Rats at Realistic Exposure Levels. Int J Mol Sci 2021; 22:ijms22020556. [PMID: 33429876 PMCID: PMC7827273 DOI: 10.3390/ijms22020556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Iron is typically the dominant metal in the ultrafine fraction of airborne particulate matter. Various studies have investigated the toxicity of inhaled nano-sized iron oxide particles (FeOxNPs) but their results have been contradictory, with some indicating no or minor effects and others finding effects including oxidative stress and inflammation. Most studies, however, did not use materials reflecting the characteristics of FeOxNPs present in the environment. We, therefore, analysed the potential toxicity of FeOxNPs of different forms (Fe3O4, α-Fe2O3 and γ-Fe2O3) reflecting the characteristics of high iron content nano-sized particles sampled from the environment, both individually and in a mixture (FeOx-mix). A preliminary in vitro study indicated Fe3O4 and FeOx-mix were more cytotoxic than either form of Fe2O3 in human bronchial epithelial cells (BEAS-2B). Follow-up in vitro (0.003, 0.03, 0.3 µg/mL, 24 h) and in vivo (Sprague–Dawley rats, nose-only exposure, 50 µg/m3 and 500 µg/m3, 3 h/d × 3 d) studies therefore focused on these materials. Experiments in vitro explored responses at the molecular level via multi-omics analyses at concentrations below those at which significant cytotoxicity was evident to avoid detection of responses secondary to toxicity. Inhalation experiments used aerosol concentrations chosen to produce similar levels of particle deposition on the airway surface as were delivered in vitro. These were markedly higher than environmental concentrations. No clinical signs of toxicity were seen nor effects on BALF cell counts or LDH levels. There were also no significant changes in transcriptomic or metabolomic responses in lung or BEAS-2B cells to suggest adverse effects.
Collapse
|
27
|
Statistical Assessment and Temperature Study from the Interlaboratory Application of the WLTP–Brake Cycle. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relative contribution of brake emissions to traffic-induced ambient Particulate Matter (PM) concentrations has increased over the last decade. Nowadays, vehicles’ brakes are recognised as an important source of non-exhaust emissions. Up to now, no standardised method for measuring brake particle emissions exists. For that reason, the Particle Measurement Programme (PMP) group has been working on the development of a commonly accepted method for sampling and measuring brake particle emissions. The applied braking cycle is an integral part of the overall methodology. In this article, we present the results of an interlaboratory study exploring the capacity of existing dynamometer setups to accurately execute the novel Worldwide Harmonised Light-Duty Vehicles Test Procedure (WLTP)–brake cycle. The measurements took place at eight locations in Europe and the United States. Having several dynamometers available enabled the coordination and execution of the intended exercise, to determine the sources of variability and provide recommendations for the correct application of the WLTP–brake cycle on the dyno. A systematic testing schedule was applied, followed by a thorough statistical analysis of the essential parameters according to the ISO 5725 standards series. The application of different control programmes influenced the correct replication of the cycle. Speed control turned out to be more accurate and precise than deceleration control. A crucial output of this interlaboratory study was the quantification of standard deviations for repeatability (between repeats), sample effect (between tests), laboratory effect (between facilities), and total reproducibility. Three critical aspects of the statistical analysis were: (i) The use of methods for heterogeneous materials; (ii) robust algorithms to reduce the artificial increase in variability from values with significant deviation from the normal distribution; and (iii) the reliance on the graphical representation of results for ease of understanding. Even if the study of brake emissions remained out of the scope of the current exercise, useful conclusions are drawn from the analysis of the temperature profile of the WLTP–brake cycle. Urban braking events are generally correlated to lower disc temperature. Other parameters affecting the brake temperature profile include the correct application of soak times, the temperature measurement method, the proper conditioning of incoming cooling air and the adjustment of the cooling airspeed.
Collapse
|
28
|
Ihantola T, Di Bucchianico S, Happo M, Ihalainen M, Uski O, Bauer S, Kuuspalo K, Sippula O, Tissari J, Oeder S, Hartikainen A, Rönkkö TJ, Martikainen MV, Huttunen K, Vartiainen P, Suhonen H, Kortelainen M, Lamberg H, Leskinen A, Sklorz M, Michalke B, Dilger M, Weiss C, Dittmar G, Beckers J, Irmler M, Buters J, Candeias J, Czech H, Yli-Pirilä P, Abbaszade G, Jakobi G, Orasche J, Schnelle-Kreis J, Kanashova T, Karg E, Streibel T, Passig J, Hakkarainen H, Jokiniemi J, Zimmermann R, Hirvonen MR, Jalava PI. Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke. Part Fibre Toxicol 2020; 17:27. [PMID: 32539833 PMCID: PMC7296712 DOI: 10.1186/s12989-020-00355-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJ− 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.
Collapse
Affiliation(s)
- Tuukka Ihantola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Mikko Happo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Ramboll Finland, P.O.Box 25 Itsehallintokuja 3, FI-02601, Espoo, Finland
| | - Mika Ihalainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Oskari Uski
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Kari Kuuspalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Present address: Savonia University of applied sciences, Microkatu 1, FI-70210, Kuopio, Finland
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Jarkko Tissari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Anni Hartikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Teemu J Rönkkö
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Kati Huttunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Petra Vartiainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Heikki Suhonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Miika Kortelainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Heikki Lamberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Ari Leskinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Finnish Meteorological Institute, Yliopistonranta 1 F, FI-70210, Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Marco Dilger
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Gunnar Dittmar
- Luxembourg institute of health, 1A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Johannes Beckers
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Technical University of Munich, Chair of Experimental Genetics, D-85350, Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jeroen Buters
- ZAUM - Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802, Munich, Germany
| | - Joana Candeias
- ZAUM - Center of Allergy & Environment, Technical University Munich/Helmholtz Center Munich, Biedersteiner Str. 29, D-80802, Munich, Germany
| | - Hendryk Czech
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland.,Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Pasi Yli-Pirilä
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Gülcin Abbaszade
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Tamara Kanashova
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, D-13125, Berlin, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Johannes Passig
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Henri Hakkarainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Jorma Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.,Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Maija-Riitta Hirvonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O.Box 1627, FI-70210, Kuopio, Finland
| |
Collapse
|
29
|
Colaço M, Duarte A, Zuzarte M, Costa BFO, Borges O. Airborne environmental fine particles induce intense inflammatory response regardless of the absence of heavy metal elements. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110500. [PMID: 32222596 DOI: 10.1016/j.ecoenv.2020.110500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Airborne environmental particles (EP) more commonly referred as particulate matter (PM) are an illustrative marker of air pollution that is associated with adverse effects on human health. Considering, PM is a complex mixture, not only in terms of its chemical composition, but also in the range of particle size, it is difficult to identify which attribute contributes more for the toxicity. Currently, there is no report about the immunotoxicological effects caused by PM with reduced content of heavy metals. This study intends to address this gap and provides a detailed characterization and immunotoxicity evaluation of PM collected in an urban area with heavy traffic congestion. Environmental particles were separated by different sizes though a sucrose gradient. This method allowed to achieve 4 sized fractions: EP f 15 % with a mean diameter of 284 nm ± 1.86 nm, EP f 25 % with a mean diameter of 461 nm ± 1.72 nm, EP f 35 % with a mean diameter of 1845 nm ± 251 nm and EP f 45 % with a mean diameter of 2204 nm ± 310 nm. Only the fractions with the smallest sizes (EP f 15 % and EP f 25 %) were subsequently studied. The chemical composition of both fractions was not substantially different, and the dominant elements were C, O, Ca and K. Only EP f 25 % showed to have a small amount of Fe. Therefore, the heavy metal elements were eliminated through centrifugation. Essentially, we found that the EP f 15 % was more cytotoxic in RAW 264.7 cells than EP f 25 %, which indicates the smaller size as the motive for the higher toxicity. In addition, both fractions of EP presented a good internalization in macrophages after 2 h exposure and induced the production of reactive oxygen species in a concentration-dependent manner. Moreover, EP f 15 % and EP f 25 % led to a strong secretion of proinflammatory cytokines (TNF-α and IL-6) in human peripheral blood mononuclear cells (hPBMCs) in the 3 concentrations tested. The inflammatory response observed was independent of the presence of heavy metals and endotoxins, since these last were suppressed by using polymyxin B sulfate. This report emphasizes the importance of an adequate physicochemical characterization and adequate controls in the experiments to achieve a right interpretation of the biological effects caused by PM.
Collapse
Affiliation(s)
- Mariana Colaço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Alana Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Benilde F O Costa
- CFisUC, Physics Department, University of Coimbra, 3004-516, Coimbra, Portugal
| | - Olga Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
30
|
Gonet T, Maher BA. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9970-9991. [PMID: 31381310 DOI: 10.1021/acs.est.9b01505] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Airborne particulate matter poses a serious threat to human health. Exposure to nanosized (<0.1 μm), vehicle-derived particulates may be hazardous due to their bioreactivity, their ability to penetrate every organ, including the brain, and their abundance in the urban atmosphere. Fe-bearing nanoparticles (<0.1 μm) in urban environments may be especially important because of their pathogenicity and possible association with neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This review examines current knowledge regarding the sources of vehicle-derived Fe-bearing nanoparticles, their chemical and mineralogical compositions, grain size distribution and potential hazard to human health. We focus on data reported for the following sources of Fe-bearing nanoparticles: exhaust emissions (both diesel and gasoline), brake wear, tire and road surface wear, resuspension of roadside dust, underground, train and tram emissions, and aircraft and shipping emissions. We identify limitations and gaps in existing knowledge as well as future challenges and perspectives for studies of airborne Fe-bearing nanoparticles.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|