1
|
Shafi S, Khan MA, Ahmad J, Rabbani SA, Singh S, Najmi AK. Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach. Curr Drug Targets 2025; 26:109-131. [PMID: 39377414 DOI: 10.2174/0113894501335877240926101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024]
Abstract
Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, Ras Al Khaimah College of Pharmacy, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah, United Arab Emirates
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
2
|
Sermersheim TJ, Phillips LJ, Evans PL, Kahn BB, Welc SS, Witczak CA. Regulation of injury-induced skeletal myofiber regeneration by glucose transporter 4 (GLUT4). Skelet Muscle 2024; 14:33. [PMID: 39695900 DOI: 10.1186/s13395-024-00366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Insulin resistance and type 2 diabetes impair cellular regeneration in multiple tissues including skeletal muscle. The molecular basis for this impairment is largely unknown. Glucose uptake via glucose transporter GLUT4 is impaired in insulin resistance. In healthy muscle, acute injury stimulates glucose uptake. Whether decreased glucose uptake via GLUT4 impairs muscle regeneration is presently unknown. The goal of this study was to determine whether GLUT4 regulates muscle glucose uptake and/or regeneration following acute injury. METHODS Tibialis anterior and extensor digitorum longus muscles from wild-type, control, or muscle-specific GLUT4 knockout (mG4KO) mice were injected with the myotoxin barium chloride to induce muscle injury. After 3, 5, 7, 10, 14, or 21 days (in wild-type mice), or after 7 or 14 days (in control & mG4KO) mice, muscles were isolated to examine [3H]-2-deoxyglucose uptake, GLUT4 levels, extracellular fluid space, fibrosis, myofiber cross-sectional area, and myofiber centralized nuclei. RESULTS In wild-type mice, muscle glucose uptake was increased 3, 5, 7, and 10 days post-injury. There was a rapid decrease in GLUT4 protein levels that were restored to baseline at 5-7 days post-injury, followed by a super-compensation at 10-21 days. In mG4KO mice, there were no differences in muscle glucose uptake, extracellular fluid space, muscle fibrosis, myofiber cross-sectional areas, or percentage of centrally nucleated myofibers at 7 days post-injury. In contrast, at 14 days injured muscles from mG4KO mice exhibited decreased glucose uptake, muscle weight, myofiber cross sectional areas, and centrally nucleated myofibers, with no change in extracellular fluid space or fibrosis. CONCLUSIONS Collectively, these findings demonstrate that glucose uptake via GLUT4 regulates skeletal myofiber regeneration following acute injury.
Collapse
Affiliation(s)
- Tyler J Sermersheim
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Diabetes & Metabolic Diseases, Indianapolis, IN, USA
| | - LeAnna J Phillips
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Diabetes & Metabolic Diseases, Indianapolis, IN, USA
| | - Parker L Evans
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Diabetes & Metabolic Diseases, Indianapolis, IN, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Steven S Welc
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Diabetes & Metabolic Diseases, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Tsakiroglou M, Evans A, Doce-Carracedo A, Little M, Hornby R, Roberts P, Zhang E, Miyajima F, Pirmohamed M. Gene Expression Dysregulation in Whole Blood of Patients with Clostridioides difficile Infection. Int J Mol Sci 2024; 25:12653. [PMID: 39684365 DOI: 10.3390/ijms252312653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a global threat and has significant implications for individuals and health care systems. Little is known about host molecular mechanisms and transcriptional changes in peripheral immune cells. This is the first gene expression study in whole blood from patients with C. difficile infection. We took blood and stool samples from patients with toxigenic C. difficile infection (CDI), non-toxigenic C. difficile infection (GDH), inflammatory bowel disease (IBD), diarrhea from other causes (DC), and healthy controls (HC). We performed transcriptome-wide RNA profiling on peripheral blood to identify diarrhea common and CDI unique gene sets. Diarrhea groups upregulated innate immune responses with neutrophils at the epicenter. The common signature associated with diarrhea was non-specific and shared by various other inflammatory conditions. CDI had a unique 45 gene set reflecting the downregulation of humoral and T cell memory functions. Dysregulation of immunometabolic genes was also abundant and linked to immune cell fate during differentiation. Whole transcriptome analysis of white cells in blood from patients with toxigenic C. difficile infection showed that there is an impairment of adaptive immunity and immunometabolism.
Collapse
Affiliation(s)
- Maria Tsakiroglou
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony Evans
- Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alejandra Doce-Carracedo
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Clinical Directorate, GCP Laboratories, University of Liverpool, Liverpool L7 8TX, UK
| | - Margaret Little
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Rachel Hornby
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Paul Roberts
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Faculty of Science and Engineering, School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LZ, UK
| | - Eunice Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Fabio Miyajima
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio 61773-270, Brazil
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
4
|
Wang X, Liu R, Chen Z, Zhang R, Mei Y, Miao X, Bai X, Dong Y. Combining Transcriptomics and Proteomics to Screen Candidate Genes Related to Bovine Birth Weight. Animals (Basel) 2024; 14:2751. [PMID: 39335340 PMCID: PMC11429316 DOI: 10.3390/ani14182751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The placenta is a vital organ in bovine reproduction, crucial for blood supply, nutrient transport, and embryonic development. It plays an essential role in the intrauterine growth of calves. However, the molecular mechanisms governing placental function in calves remain inadequately understood. METHODS We established transcriptome and proteome databases for low-birth-weight (LB) and high-birth-weight (HB) calf placentae, identifying key genes and proteins associated with birth weight through bioinformatics analyses that included functional enrichment and protein-protein interactions (PPIs). Both mRNA and protein levels were validated. RESULTS A total of 1494 differentially expressed genes (DEGs) and 294 differentially expressed proteins (DEPs) were identified when comparing the LB group to the HB group. Furthermore, we identified 53 genes and proteins exhibiting significant co-expression across both transcriptomic and proteomic datasets; among these, 40 were co-upregulated, 8 co-downregulated, while 5 displayed upregulation at the protein level despite downregulation at the mRNA level. Functional enrichment analyses (GO and KEGG) and protein-protein interaction (PPI) analysis indicate that, at the transcriptional level, the primary factor contributing to differences in calf birth weight is that the placenta of the high-birth-weight (HB) group provides more nutrients to the fetus, characterized by enhanced nutrient transport (SLC2A1 and SLC2A11), energy metabolism (ACSL1, MICALL2, PAG2, COL14A1, and ELOVL5), and lipid synthesis (ELOVL5 and ELOVL7). In contrast, the placenta of the low-birth-weight (LB) group prioritizes cell proliferation (PAK1 and ITGA3) and angiogenesis. At the protein level, while the placentae from the HB group exhibit efficient energy production and lipid synthesis, they also demonstrate reduced immunity to various diseases such as systemic lupus erythematosus and bacterial dysentery. Conversely, the LB group placentae excel in regulating critical biological processes, including cell migration, proliferation, differentiation, apoptosis, and signal transduction; they also display higher disease immunity markers (COL6A1, TNC CD36, CD81, Igh-1a, and IGHG) compared to those of the HB group placentae. Co-expression analysis further suggests that increases in calf birth weight can be attributed to both high-efficiency energy production and lipid synthesis within the HB group placentae (ELOVL5, ELOVL7, and ACSL1), alongside cholesterol biosynthesis and metabolic pathways involving CYP11A1 and CYP17A1. CONCLUSION We propose that ELOVL5, ELOVL7, ACSL1, CYP11A1, and CYP17A1 serve as potential protein biomarkers for regulating calf birth weight through the modulation of the fatty acid metabolism, lipid synthesis, and cholesterol levels.
Collapse
Affiliation(s)
- Xiuyuan Wang
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruili Liu
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenpeng Chen
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Renzheng Zhang
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanfang Mei
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiuping Miao
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuejin Bai
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
- Black Cattle Seed Industry Innovation Center, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yajuan Dong
- Laboratory of Animal Molecular, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
- Black Cattle Seed Industry Innovation Center, Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Zhang L, Wu M, Zhang J, Liu T, Fu S, Wang Y, Xu Z. The pivotal role of glucose transporter 1 in diabetic kidney disease. Life Sci 2024; 353:122932. [PMID: 39067659 DOI: 10.1016/j.lfs.2024.122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus (DM) is a significant public health problem. Diabetic kidney disease (DKD) is the most common complication of DM, and its incidence has been increasing with the increasing prevalence of DM. Given the association between DKD and mortality in patients with DM, DKD is a significant burden on public health resources. Despite its significance in DM progression, the pathogenesis of DKD remains unclear. Aberrant glucose uptake by cells is an important pathophysiological mechanism underlying DKD renal injury. Glucose is transported across the bilayer cell membrane by a glucose transporter (GLUT) located on the cell membrane. Multiple GLUT proteins have been identified in the kidney, and GLUT1 is one of the most abundantly expressed isoforms. GLUT1 is a crucial regulator of intracellular glucose metabolism and plays a key pathological role in the phenotypic changes in DKD mesangial cells. In an attempt to understand the pathogenesis of DKD better, we here present a review of studies on the role of GLUT1 in the development and progression of DKD.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jizhou Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tingting Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Cheng L, Yang C, Lu J, Huang M, Xie R, Lynch S, Elfman J, Huang Y, Liu S, Chen S, He B, Lin T, Li H, Chen X, Huang J. Oncogenic SLC2A11-MIF fusion protein interacts with polypyrimidine tract binding protein 1 to facilitate bladder cancer proliferation and metastasis by regulating mRNA stability. MedComm (Beijing) 2024; 5:e685. [PMID: 39156764 PMCID: PMC11324686 DOI: 10.1002/mco2.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Chimeric RNAs, distinct from DNA gene fusions, have emerged as promising therapeutic targets with diverse functions in cancer treatment. However, the functional significance and therapeutic potential of most chimeric RNAs remain unclear. Here we identify a novel fusion transcript of solute carrier family 2-member 11 (SLC2A11) and macrophage migration inhibitory factor (MIF). In this study, we investigated the upregulation of SLC2A11-MIF in The Cancer Genome Atlas cohort and a cohort of patients from Sun Yat-Sen Memorial Hospital. Subsequently, functional investigations demonstrated that SLC2A11-MIF enhanced the proliferation, antiapoptotic effects, and metastasis of bladder cancer cells in vitro and in vivo. Mechanistically, the fusion protein encoded by SLC2A11-MIF interacted with polypyrimidine tract binding protein 1 (PTBP1) and regulated the mRNA half-lives of Polo Like Kinase 1, Roundabout guidance receptor 1, and phosphoinositide-3-kinase regulatory subunit 3 in BCa cells. Moreover, PTBP1 knockdown abolished the enhanced impact of SLC2A11-MIF on biological function and mRNA stability. Furthermore, the expression of SLC2A11-MIF mRNA is regulated by CCCTC-binding factor and stabilized through RNA N4-acetylcytidine modification facilitated by N-acetyltransferase 10. Overall, our findings revealed a significant fusion protein orchestrated by the SLC2A11-MIF-PTBP1 axis that governs mRNA stability during the multistep progression of bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Chenwei Yang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sarah Lynch
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Justin Elfman
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yuhang Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Siting Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Baoqing He
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hui Li
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jian Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Arponen M, Jalava N, Widjaja N, Ivaska KK. Glucose transporters GLUT1, GLUT3, and GLUT4 have different effects on osteoblast proliferation and metabolism. Front Physiol 2022; 13:1035516. [PMID: 36523556 PMCID: PMC9744933 DOI: 10.3389/fphys.2022.1035516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 03/05/2024] Open
Abstract
Bone is an active tissue that undergoes constant remodeling. Bone formation requires energy and one of the energy sources of bone-forming osteoblasts is glucose, which is transported inside the cells via glucose transporters. However, the role of class I glucose transporters in the differentiation and metabolism of osteoblasts and their precursors, bone marrow mesenchymal stromal cells (BMSCs) remains inconclusive. Our aim was to characterize the expression and contribution of main class I glucose transporters, GLUT1, GLUT3, and GLUT4, during osteoblast proliferation and differentiation. To investigate the role of each GLUT, we downregulated GLUTs with siRNA technology in primary rat BMSCs. Live-cell imaging and RNA-seq analysis was used to evaluate downstream pathways in silenced osteoblasts. Glucose transporters GLUT1, GLUT3, and GLUT4 had distinct expression patterns in osteoblasts. GLUT1 was abundant in BMSCs, but rapidly and significantly downregulated during osteoblast differentiation by up to 80% (p < 0.001). Similar downregulation was observed for GLUT4 (p < 0.001). In contrast, expression levels of GLUT3 remained stable during differentiation. Osteoblasts lacked GLUT2. Silencing of GLUT4 resulted in a significant decrease in proliferation and differentiation of preosteoblasts (p < 0.001) and several pathways related to carbohydrate metabolism and cell signaling were suppressed. However, silencing of GLUT3 resulted in increased proliferation (p < 0.001), despite suppression of several pathways involved in cellular metabolism, biosynthesis and actin organization. Silencing of GLUT1 had no effect on proliferation and less changes in the transcriptome. RNA-seq dataset further revealed that osteoblasts express also class II and III glucose transporters, except for GLUT7. In conclusion, GLUT1, -3 and -4 may all contribute to glucose uptake in differentiating osteoblasts. GLUT4 expression was clearly required for osteoblast proliferation and differentiation. GLUT1 appears to be abundant in early precursors, but stable expression of GLUT3 suggest also a role for GLUT3 in osteoblasts. Presence of other GLUT members may further contribute to fine-tuning of glucose uptake. Together, glucose uptake in osteoblast lineage appears to rely on several glucose transporters to ensure sufficient energy for new bone formation.
Collapse
Affiliation(s)
| | | | | | - Kaisa K. Ivaska
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Ismail A, Tanasova M. Importance of GLUT Transporters in Disease Diagnosis and Treatment. Int J Mol Sci 2022; 23:8698. [PMID: 35955833 PMCID: PMC9368955 DOI: 10.3390/ijms23158698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Facilitative sugar transporters (GLUTs) are the primary method of sugar uptake in all mammalian cells. There are 14 different types of those transmembrane proteins, but they transport only a handful of substrates, mainly glucose and fructose. This overlap and redundancy contradict the natural tendency of cells to conserve energy and resources, and has led researchers to hypothesize that different GLUTs partake in more metabolic roles than just sugar transport into cells. Understanding those roles will lead to better therapeutics for a wide variety of diseases and disorders. In this review we highlight recent discoveries of the role GLUTs play in different diseases and disease treatments.
Collapse
Affiliation(s)
- Abdelrahman Ismail
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
9
|
Li DD, Jawale CV, Zhou C, Lin L, Trevejo-Nunez GJ, Rahman SA, Mullet SJ, Das J, Wendell SG, Delgoffe GM, Lionakis MS, Gaffen SL, Biswas PS. Fungal sensing enhances neutrophil metabolic fitness by regulating antifungal Glut1 activity. Cell Host Microbe 2022; 30:530-544.e6. [PMID: 35316647 PMCID: PMC9026661 DOI: 10.1016/j.chom.2022.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 12/30/2022]
Abstract
Combating fungal pathogens poses metabolic challenges for neutrophils, key innate cells in anti-Candida albicans immunity, yet how host-pathogen interactions cause remodeling of the neutrophil metabolism is unclear. We show that neutrophils mediate renal immunity to disseminated candidiasis by upregulating glucose uptake via selective expression of glucose transporter 1 (Glut1). Mechanistically, dectin-1-mediated recognition of β-glucan leads to activation of PKCδ, which triggers phosphorylation, localization, and early glucose transport by a pool of pre-formed Glut1 in neutrophils. These events are followed by increased Glut1 gene transcription, leading to more sustained Glut1 accumulation, which is also dependent on the β-glucan/dectin-1/CARD9 axis. Card9-deficient neutrophils show diminished glucose incorporation in candidiasis. Neutrophil-specific Glut1-ablated mice exhibit increased mortality in candidiasis caused by compromised neutrophil phagocytosis, reactive oxygen species (ROS), and neutrophil extracellular trap (NET) formation. In human neutrophils, β-glucan triggers metabolic remodeling and enhances candidacidal function. Our data show that the host-pathogen interface increases glycolytic activity in neutrophils by regulating Glut1 expression, localization, and function.
Collapse
Affiliation(s)
- De-Dong Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chetan V Jawale
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chunsheng Zhou
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Lin
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giraldina J Trevejo-Nunez
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed A Rahman
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Mullet
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha S Biswas
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Commensal and Opportunistic Bacteria Present in the Microbiota in Atlantic Cod ( Gadus morhua) Larvae Differentially Alter the Hosts' Innate Immune Responses. Microorganisms 2021; 10:microorganisms10010024. [PMID: 35056473 PMCID: PMC8779962 DOI: 10.3390/microorganisms10010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
The roles of host-associated bacteria have gained attention lately, and we now recognise that the microbiota is essential in processes such as digestion, development of the immune system and gut function. In this study, Atlantic cod larvae were reared under germ-free, gnotobiotic and conventional conditions. Water and fish microbiota were characterised by 16S rRNA gene analyses. The cod larvae’s transcriptional responses to the different microbial conditions were analysed by a custom Agilent 44 k oligo microarray. Gut development was assessed by transmission electron microscopy (TEM). Water and fish microbiota differed significantly in the conventional treatment and were dominated by different fast-growing bacteria. Our study indicates that components of the innate immune system of cod larvae are downregulated by the presence of non-pathogenic bacteria, and thus may be turned on by default in the early larval stages. We see indications of decreased nutrient uptake in the absence of bacteria. The bacteria also influence the gut morphology, reflected in shorter microvilli with higher density in the conventional larvae than in the germ-free larvae. The fact that the microbiota alters innate immune responses and gut morphology demonstrates its important role in marine larval development.
Collapse
|
11
|
Sędzikowska A, Szablewski L. Human Glucose Transporters in Renal Glucose Homeostasis. Int J Mol Sci 2021; 22:13522. [PMID: 34948317 PMCID: PMC8708129 DOI: 10.3390/ijms222413522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
The kidney plays an important role in glucose homeostasis by releasing glucose into the blood stream to prevent hypoglycemia. It is also responsible for the filtration and subsequent reabsorption or excretion of glucose. As glucose is hydrophilic and soluble in water, it is unable to pass through the lipid bilayer on its own; therefore, transport takes place using carrier proteins localized to the plasma membrane. Both sodium-independent glucose transporters (GLUT proteins) and sodium-dependent glucose transporters (SGLT proteins) are expressed in kidney tissue, and mutations of the genes coding for these glucose transporters lead to renal disorders and diseases, including renal cancers. In addition, several diseases may disturb the expression and/or function of renal glucose transporters. The aim of this review is to describe the role of the kidney in glucose homeostasis and the contribution of glucose transporters in renal physiology and renal diseases.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
12
|
Hirvonen OP, Kyröläinen H, Lehti M, Kainulainen H. Randomized Trial: D-Glyceric Acid Activates Mitochondrial Metabolism in 50–60-Year-Old Healthy Humans. FRONTIERS IN AGING 2021; 2:752636. [PMID: 35822033 PMCID: PMC9261421 DOI: 10.3389/fragi.2021.752636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022]
Abstract
Background: Based on earlier studies, natural metabolite D-glyceric acid (DGA) does not seem to play any role in whole-body metabolism. Nevertheless, one ethanol oxidation-related rat study with controversial results raised our interest. According to preparatory studies for the regulatory approval of DGA, some highly conserved mechanism seems to subtly activate the cellular energy metabolism. Therefore, the present 25-days double-blind human study with placebo control was initiated. Purpose: The main target in the present study with 27 healthy 50–60-year-old human volunteers was to find out whether an “acute” 4-days and a longer 21-days exogenous DGA regimen caused moderate activation of the mitochondrial energy metabolism. The simultaneous target was to find out whether a halved dose of DGA continued to be an effective regimen. Main Findings: The results revealed the following statistically significant findings: 1) plasma concentrations of metabolites related to aerobic energy production, especially lactate, were strongly reduced, 2) systemic inflammation was lowered both in 4- and 21-days, 3) mitochondria-related mRNA expressions in circulating immune cells were noticeably modulated at Day4, 4) cellular membrane integrity seemed to be sharply enhanced, and 5) cellular NADH/NAD+ -ratio was upregulated. Conclusion: Mitochondrial metabolism was clearly upregulated at the whole-body level in both 4- and 21 days. At the same time, the effect of DGA was very well tolerated. Based on received solid results, the DGA regimen may alleviate acute and chronic energy metabolic challenges in main organs like the liver, CNS, and skeletal muscles. Enhanced membrane integrity combined with lower systemic inflammation and activated metabolic flows by the DGA regimen may be beneficial especially for the aging population.
Collapse
|
13
|
Annandale M, Daniels LJ, Li X, Neale JPH, Chau AHL, Ambalawanar HA, James SL, Koutsifeli P, Delbridge LMD, Mellor KM. Fructose Metabolism and Cardiac Metabolic Stress. Front Pharmacol 2021; 12:695486. [PMID: 34267663 PMCID: PMC8277231 DOI: 10.3389/fphar.2021.695486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of mortality in diabetes. High fructose consumption has been linked with the development of diabetes and cardiovascular disease. Serum and cardiac tissue fructose levels are elevated in diabetic patients, and cardiac production of fructose via the intracellular polyol pathway is upregulated. The question of whether direct myocardial fructose exposure and upregulated fructose metabolism have potential to induce cardiac fructose toxicity in metabolic stress settings arises. Unlike tightly-regulated glucose metabolism, fructose bypasses the rate-limiting glycolytic enzyme, phosphofructokinase, and proceeds through glycolysis in an unregulated manner. In vivo rodent studies have shown that high dietary fructose induces cardiac metabolic stress and functional disturbance. In vitro, studies have demonstrated that cardiomyocytes cultured in high fructose exhibit lipid accumulation, inflammation, hypertrophy and low viability. Intracellular fructose mediates post-translational modification of proteins, and this activity provides an important mechanistic pathway for fructose-related cardiomyocyte signaling and functional effect. Additionally, fructose has been shown to provide a fuel source for the stressed myocardium. Elucidating the mechanisms of fructose toxicity in the heart may have important implications for understanding cardiac pathology in metabolic stress settings.
Collapse
Affiliation(s)
- M Annandale
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - L J Daniels
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - X Li
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - J P H Neale
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - A H L Chau
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - H A Ambalawanar
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - S L James
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - P Koutsifeli
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - L M D Delbridge
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - K M Mellor
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Andrade P, Gazda MA, Araújo PM, Afonso S, Rasmussen JA, Marques CI, Lopes RJ, Gilbert. MTP, Carneiro M. Molecular parallelisms between pigmentation in the avian iris and the integument of ectothermic vertebrates. PLoS Genet 2021; 17:e1009404. [PMID: 33621224 PMCID: PMC7935293 DOI: 10.1371/journal.pgen.1009404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/05/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
Birds exhibit striking variation in eye color that arises from interactions between specialized pigment cells named chromatophores. The types of chromatophores present in the avian iris are lacking from the integument of birds or mammals, but are remarkably similar to those found in the skin of ectothermic vertebrates. To investigate molecular mechanisms associated with eye coloration in birds, we took advantage of a Mendelian mutation found in domestic pigeons that alters the deposition of yellow pterin pigments in the iris. Using a combination of genome-wide association analysis and linkage information in pedigrees, we mapped variation in eye coloration in pigeons to a small genomic region of ~8.5kb. This interval contained a single gene, SLC2A11B, which has been previously implicated in skin pigmentation and chromatophore differentiation in fish. Loss of yellow pigmentation is likely caused by a point mutation that introduces a premature STOP codon and leads to lower expression of SLC2A11B through nonsense-mediated mRNA decay. There were no substantial changes in overall gene expression profiles between both iris types as well as in genes directly associated with pterin metabolism and/or chromatophore differentiation. Our findings demonstrate that SLC2A11B is required for the expression of pterin-based pigmentation in the avian iris. They further highlight common molecular mechanisms underlying the production of coloration in the iris of birds and skin of ectothermic vertebrates.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Małgorzata A. Gazda
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- MARE–Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Jacob. A. Rasmussen
- Center for Evolutionary Genomics, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ricardo J. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - M. Thomas P. Gilbert.
- Center for Evolutionary Genomics, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- The GLOBE Institute, Faculty of Health and Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Chen X, Zhao Y, Gao Y, Qi Y, Du J. Outcomes in hepatocellular carcinoma patients undergoing sorafenib treatment: toxicities, cellular oxidative stress, treatment adherence, and quality of life: Erratum. Anticancer Drugs 2021; 32:345-364. [PMID: 33417326 DOI: 10.1097/cad.0000000000001029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou
| |
Collapse
|
16
|
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11:76-98. [PMID: 33274014 PMCID: PMC7672939 DOI: 10.4331/wjbc.v11.i3.76] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
Collapse
Affiliation(s)
- Tiannan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Xinge Hu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
17
|
Teixeira GP, Faria RX. Influence of purinergic signaling on glucose transporters: A possible mechanism against insulin resistance? Eur J Pharmacol 2020; 892:173743. [PMID: 33220279 DOI: 10.1016/j.ejphar.2020.173743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023]
Abstract
Metabolic disorders, such as insulin resistance, affect many people worldwide due to the prevalence of obesity and type 2 diabetes, which are pathologies that impair glycemic metabolism. Glucose is the primary energetic substrate of the body and is essential for cellular function. As the cell membrane is not permeable to glucose molecules, there are two distinct groups of glucose transporters: sodium-glucose-linked transporters (SGLTs) and the glucose transporter (GLUT) family. These transporters facilitate the entry of glucose into the bloodstream or cytoplasm where it functions in the production of adenosine 5 ́-triphosphate (ATP). This nucleotide acts in several cellular mechanisms, such as protein phosphorylation and cellular immune processes. ATP directly and indirectly acts as an agonist for purinergic receptors in high concentrations in the extracellular environment. Composed by P1 and P2 groups, the purinoreceptors cover several cellular mechanisms involving cytokines, tumors, and metabolic signaling pathways. Previous publications have indicated that the purinergic signaling activity in insulin resistance and glucose transporters modulates relevant actions on the deregulations that can affect glycemic homeostasis. Thus, this review focuses on the pharmacological influence of purinergic signaling on the modulation of glucose transporters, aiming for a new way to combat insulin resistance and other metabolic disorders.
Collapse
Affiliation(s)
- Guilherme Pegas Teixeira
- Laboratory of Toxoplasmosis and Other Protozoans, Oswaldo Cruz Institute (IOC), Avenida Brasil, 4365, CEP, Rio de Janeiro, Fiocruz, 21040-900, Brazil.
| | - Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Oswaldo Cruz Institute (IOC), Avenida Brasil, 4365, CEP, Rio de Janeiro, Fiocruz, 21040-900, Brazil.
| |
Collapse
|
18
|
Holman GD. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflugers Arch 2020; 472:1155-1175. [PMID: 32591905 PMCID: PMC7462842 DOI: 10.1007/s00424-020-02411-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
The SLC2 genes code for a family of GLUT proteins that are part of the major facilitator superfamily (MFS) of membrane transporters. Crystal structures have recently revealed how the unique protein fold of these proteins enables the catalysis of transport. The proteins have 12 transmembrane spans built from a replicated trimer substructure. This enables 4 trimer substructures to move relative to each other, and thereby alternately opening and closing a cleft to either the internal or the external side of the membrane. The physiological substrate for the GLUTs is usually a hexose but substrates for GLUTs can include urate, dehydro-ascorbate and myo-inositol. The GLUT proteins have varied physiological functions that are related to their principal substrates, the cell type in which the GLUTs are expressed and the extent to which the proteins are associated with subcellular compartments. Some of the GLUT proteins translocate between subcellular compartments and this facilitates the control of their function over long- and short-time scales. The control of GLUT function is necessary for a regulated supply of metabolites (mainly glucose) to tissues. Pathophysiological abnormalities in GLUT proteins are responsible for, or associated with, clinical problems including type 2 diabetes and cancer and a range of tissue disorders, related to tissue-specific GLUT protein profiles. The availability of GLUT crystal structures has facilitated the search for inhibitors and substrates and that are specific for each GLUT and that can be used therapeutically. Recent studies are starting to unravel the drug targetable properties of each of the GLUT proteins.
Collapse
Affiliation(s)
- Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
19
|
Berger C, Zdzieblo D. Glucose transporters in pancreatic islets. Pflugers Arch 2020; 472:1249-1272. [PMID: 32394191 PMCID: PMC7462922 DOI: 10.1007/s00424-020-02383-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The fine-tuning of glucose uptake mechanisms is rendered by various glucose transporters with distinct transport characteristics. In the pancreatic islet, facilitative diffusion glucose transporters (GLUTs), and sodium-glucose cotransporters (SGLTs) contribute to glucose uptake and represent important components in the glucose-stimulated hormone release from endocrine cells, therefore playing a crucial role in blood glucose homeostasis. This review summarizes the current knowledge about cell type-specific expression profiles as well as proven and putative functions of distinct GLUT and SGLT family members in the human and rodent pancreatic islet and further discusses their possible involvement in onset and progression of diabetes mellitus. In context of GLUTs, we focus on GLUT2, characterizing the main glucose transporter in insulin-secreting β-cells in rodents. In addition, we discuss recent data proposing that other GLUT family members, namely GLUT1 and GLUT3, render this task in humans. Finally, we summarize latest information about SGLT1 and SGLT2 as representatives of the SGLT family that have been reported to be expressed predominantly in the α-cell population with a suggested functional role in the regulation of glucagon release.
Collapse
Affiliation(s)
- Constantin Berger
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Daniela Zdzieblo
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Neunerplatz 2, 97082, Würzburg, Germany.
| |
Collapse
|
20
|
Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules 2020; 10:biom10060868. [PMID: 32517099 PMCID: PMC7356687 DOI: 10.3390/biom10060868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Increased glucose uptake is a known hallmark of cancer. Cancer cells need glucose for energy production via glycolysis and the tricarboxylic acid cycle, and also to fuel the pentose phosphate pathway, the serine biosynthetic pathway, lipogenesis, and the hexosamine pathway. For this reason, glucose transport inhibition is an emerging new treatment for different malignancies, including lung cancer. However, studies both in animal models and in humans have shown high levels of heterogeneity in the utilization of glucose and other metabolites in cancer, unveiling a complexity that is difficult to target therapeutically. Here, we present an overview of different levels of heterogeneity in glucose uptake and utilization in lung cancer, with diagnostic and therapeutic implications.
Collapse
|
21
|
Transporters of glucose and other carbohydrates in bacteria. Pflugers Arch 2020; 472:1129-1153. [PMID: 32372286 DOI: 10.1007/s00424-020-02379-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Glucose arguably is the most important energy carrier, carbon source for metabolites and building block for biopolymers in all kingdoms of life. The proper function of animal organs and tissues depends on the continuous supply of glucose from the bloodstream. Most animals can resorb only a small number of monosaccharides, mostly glucose, galactose and fructose, while all other sugars oligosaccharides and dietary fibers are degraded and metabolized by the microbiota of the lower intestine. Bacteria, in contrast, are omnivorous. They can import and metabolize structurally different sugars and, as a consortium of different species, utilize almost any sugar, sugar derivative and oligosaccharide occurring in nature. Bacteria have membrane transport systems for the uptake of sugars against steep concentration gradients energized by ATP, the proton motive force and the high energy glycolytic intermediate phosphoenolpyruvate (PEP). Different uptake mechanisms and the broad range of overlapping substrate specificities allow bacteria to quickly adapt to and colonize changing environments. Here, we review the structures and mechanisms of bacterial representatives of (i) ATP-dependent cassette (ABC) transporters, (ii) major facilitator (MFS) superfamily proton symporters, (iii) sodium solute symporters (SSS) and (iv) enzyme II integral membrane subunits of the bacterial PEP-dependent phosphotransferase system (PTS). We give a short overview on the distribution of transporter genes and their phylogenetic relationship in different bacterial species. Some sugar transporters are hijacked for import of bacteriophage DNA and antibacterial toxins (bacteriocins) and they facilitate the penetration of polar antibiotics. Finally, we describe how the expression and activity of certain sugar transporters are controlled in response to the availability of sugars and how the presence and uptake of sugars may affect pathogenicity and host-microbiota interactions.
Collapse
|
22
|
Stanirowski PJ, Lipa M, Bomba-Opoń D, Wielgoś M. Expression of placental glucose transporter proteins in pregnancies complicated by fetal growth disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:95-131. [PMID: 33485490 DOI: 10.1016/bs.apcsb.2019.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During pregnancy fetal growth disorders, including fetal macrosomia and fetal growth restriction (FGR) are associated with numerous maternal-fetal complications, as well as due to the adverse effect of the intrauterine environment lead to an increased morbidity in adult life. Accumulating evidence suggests that occurrence of fetal macrosomia or FGR, may be associated with alterations in the transfer of nutrients across the placenta, in particular of glucose. The placental expression and activity of specific GLUT transporters are the main regulatory factors in the process of maternal-fetal glucose exchange. This review article summarizes the results of previous studies on the expression of GLUT transporters in the placenta, concentrating on human pregnancies complicated by intrauterine fetal growth disorders. Characteristics of each transporter protein found in the placenta is presented, alterations in the location and expression of GLUT isoforms observed in individual placental compartments are described, and the factors regulating the expression of selected GLUT proteins are examined. Based on the above data, the potential function of each GLUT isoform in the maternal-fetal glucose transfer is determined. Further on, a detailed analysis of changes in the expression of glucose transporters in pregnancies complicated by fetal growth disorders is given, and significance of these modifications for the pathogenesis of fetal macrosomia and FGR is discussed. In the final part novel interventional approaches that might reduce the risk associated with abnormalities of intrauterine fetal growth through modifications of placental GLUT-mediated glucose transfer are explored.
Collapse
Affiliation(s)
- Paweł Jan Stanirowski
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland; Club 35. Polish Society of Gynecologists and Obstetricians, Warsaw, Poland
| | - Michał Lipa
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland; Club 35. Polish Society of Gynecologists and Obstetricians, Warsaw, Poland
| | - Dorota Bomba-Opoń
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Mirosław Wielgoś
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Liu B, Wang Y, Zhang Y, Yan B. Mechanisms of Protective Effects of SGLT2 Inhibitors in Cardiovascular Disease and Renal Dysfunction. Curr Top Med Chem 2019; 19:1818-1849. [PMID: 31456521 DOI: 10.2174/1568026619666190828161409] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is one of the most common forms of the disease worldwide. Hyperglycemia and insulin resistance play key roles in type 2 diabetes mellitus. Renal glucose reabsorption is an essential feature in glycaemic control. Kidneys filter 160 g of glucose daily in healthy subjects under euglycaemic conditions. The expanding epidemic of diabetes leads to a prevalence of diabetes-related cardiovascular disorders, in particular, heart failure and renal dysfunction. Cellular glucose uptake is a fundamental process for homeostasis, growth, and metabolism. In humans, three families of glucose transporters have been identified, including the glucose facilitators GLUTs, the sodium-glucose cotransporter SGLTs, and the recently identified SWEETs. Structures of the major isoforms of all three families were studied. Sodium-glucose cotransporter (SGLT2) provides most of the capacity for renal glucose reabsorption in the early proximal tubule. A number of cardiovascular outcome trials in patients with type 2 diabetes have been studied with SGLT2 inhibitors reducing cardiovascular morbidity and mortality. The current review article summarises these aspects and discusses possible mechanisms with SGLT2 inhibitors in protecting heart failure and renal dysfunction in diabetic patients. Through glucosuria, SGLT2 inhibitors reduce body weight and body fat, and shift substrate utilisation from carbohydrates to lipids and, possibly, ketone bodies. These pleiotropic effects of SGLT2 inhibitors are likely to have contributed to the results of the EMPA-REG OUTCOME trial in which the SGLT2 inhibitor, empagliflozin, slowed down the progression of chronic kidney disease and reduced major adverse cardiovascular events in high-risk individuals with type 2 diabetes. This review discusses the role of SGLT2 in the physiology and pathophysiology of renal glucose reabsorption and outlines the unexpected logic of inhibiting SGLT2 in the diabetic kidney.
Collapse
Affiliation(s)
- Ban Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yangyang Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China.,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Biao Yan
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient's age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
25
|
Selig JI, Ouwens DM, Raschke S, Thoresen GH, Fischer JW, Lichtenberg A, Akhyari P, Barth M. Impact of hyperinsulinemia and hyperglycemia on valvular interstitial cells - A link between aortic heart valve degeneration and type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2526-2537. [PMID: 31152868 DOI: 10.1016/j.bbadis.2019.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/27/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is a known risk factor for cardiovascular diseases and is associated with an increased risk to develop aortic heart valve degeneration. Nevertheless, molecular mechanisms leading to the pathogenesis of valve degeneration in the context of diabetes are still not clear. Hence, we hypothesized that classical key factors of type 2 diabetes, hyperinsulinemia and hyperglycemia, may affect signaling, metabolism and degenerative processes of valvular interstitial cells (VIC), the main cell type of heart valves. Therefore, VIC were derived from sheep and were treated with hyperinsulinemia, hyperglycemia and the combination of both. The presence of insulin receptors was shown and insulin led to increased proliferation of the cells, whereas hyperglycemia alone showed no effect. Disturbed insulin response was shown by impaired insulin signaling, i.e. by decreased phosphorylation of Akt/GSK-3α/β pathway. Analysis of glucose transporter expression revealed absence of glucose transporter 4 with glucose transporter 1 being the predominantly expressed transporter. Glucose uptake was not impaired by disturbed insulin response, but was increased by hyperinsulinemia and was decreased by hyperglycemia. Analyses of glycolysis and mitochondrial respiration revealed that VIC react with increased activity to hyperinsulinemia or hyperglycemia, but not to the combination of both. VIC do not show morphological changes and do not acquire an osteogenic phenotype by hyperinsulinemia or hyperglycemia. However, the treatment leads to increased collagen type 1 and decreased α-smooth muscle actin expression. This work implicates a possible role of diabetes in early phases of the degeneration of aortic heart valves.
Collapse
Affiliation(s)
- Jessica I Selig
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - D Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Department of Endocrinology, Ghent University Hospital, Ghent, Belgium.
| | - Silja Raschke
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Jens W Fischer
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Payam Akhyari
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Mareike Barth
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
26
|
Ferreira R, Pons JL, Labesse G. Insights into Substrate and Inhibitor Selectivity among Human GLUT Transporters through Comparative Modeling and Molecular Docking. ACS OMEGA 2019; 4:4748-4760. [PMID: 32462103 PMCID: PMC7244221 DOI: 10.1021/acsomega.8b03447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
The solute carrier 2 family is composed of 14 transporters, which are members of the major facilitator superfamily. Despite their high physiological importance, there are still many open questions concerning their function and specificity, and in some cases, their physiological substrate is still unknown. To understand the determinants of the substrate and inhibitor specificity, we modeled all human glucose transport carriers (GLUTs) and simulated their interaction with known ligands. Comparative modeling was performed with the @TOME-2 pipeline, employing multiple templates and providing an ensemble of models for each GLUT. We analyzed models in both outward-occluded and inward-open conformations, to compare exofacial and endofacial binding sites throughout the family and understand differences in susceptibility of GLUTs to the inhibitor cytochalasin B. Finally, we employed molecular docking and bioinformatics to identify residues likely critical for recognition of myo-inositol by GLUT13 and urate by GLUT9. These results provide insights into the molecular basis for the specificity for these substrates. In addition, we suggested a potential recognition site of glucosamine by GLUT11 to be evaluated in future experiments.
Collapse
Affiliation(s)
- Rafaela
Salgado Ferreira
- Centre
de Biochimie Structurale, CNRS-5048, INSERM-U1054, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
- Laboratório
de Modelagem Molecular e Planejamento de Fármacos, Departamento
de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | - Jean-Luc Pons
- Centre
de Biochimie Structurale, CNRS-5048, INSERM-U1054, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Gilles Labesse
- Centre
de Biochimie Structurale, CNRS-5048, INSERM-U1054, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
- E-mail:
| |
Collapse
|
27
|
Carreño D, Corro N, Torres-Estay V, Véliz LP, Jaimovich R, Cisternas P, San Francisco IF, Sotomayor PC, Tanasova M, Inestrosa NC, Godoy AS. Fructose and prostate cancer: toward an integrated view of cancer cell metabolism. Prostate Cancer Prostatic Dis 2018; 22:49-58. [PMID: 30104655 DOI: 10.1038/s41391-018-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023]
Abstract
Activation of glucose transporter-1 (Glut-1) gene expression is a molecular feature of cancer cells that increases glucose uptake and metabolism. Increased glucose uptake is the basis for the clinical localization of primary tumors using positron emission tomography (PET) and 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) as a radiotracer. However, previous studies have demonstrated that a considerable number of cancers, which include prostate cancer (CaP), express low to undetectable levels of Glut-1 and that FDG-PET has limited clinical applicability in CaP. This observation could be explained by a low metabolic activity of CaP cells that may be overcome using different hexoses, such as fructose, as the preferred energy source. However, these hypotheses have not been examined critically in CaP. This review article summarizes what is currently known about transport and metabolism of hexoses, and more specifically fructose, in CaP and provides experimental evidences indicating that CaP cells may have increased capacity to transport and metabolize fructose in vitro and in vivo. Moreover, this review highlights recent findings that allow better understanding of how metabolism of fructose may regulate cancer cell proliferation and how fructose uptake and metabolism, through the de novo lipogenesis pathway, may provide new opportunities for CaP early diagnosis, staging, and treatment.
Collapse
Affiliation(s)
- Daniela Carreño
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Néstor Corro
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Loreto P Véliz
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Department of Cell Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Paula C Sotomayor
- Center for Integrative Medicine and Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, MI, 49931, USA
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Department of Cell Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro S Godoy
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
28
|
Placental Expression of Glucose Transporter Proteins in Pregnancies Complicated by Gestational and Pregestational Diabetes Mellitus. Can J Diabetes 2018; 42:209-217. [DOI: 10.1016/j.jcjd.2017.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
|
29
|
Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol 2018; 152:11-20. [PMID: 29548810 DOI: 10.1016/j.bcp.2018.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022]
Abstract
Only limited data are available on the inhibition of the sugar transporter GLUT5 by flavonoids or other classes of bioactives. Intestinal GLUT7 is poorly characterised and no information exists concerning its inhibition. We aimed to study the expression of GLUT7 in Caco-2/TC7 intestinal cells, and evaluate inhibition of glucose transport by GLUT2 and GLUT7, and of fructose transport by GLUT2, GLUT5 and GLUT7, by flavonoids. Differentiated Caco-2/TC7 cell monolayers were used to investigate GLUT7 expression, as well as biotinylation and immunofluorescence to assess GLUT7 location. For mechanistic sugar transport studies, X. laevis oocytes were injected with individual mRNA, and GLUT protein expression on oocyte membranes was confirmed. Oocytes were incubated with D-[14C(U)]-glucose or D-[14C(U)]-fructose in the presence of flavonoids, and uptake was estimated by liquid scintilation counting. In differentiated Caco-2/TC7 cell monolayers, GLUT7 was mostly expressed apically. When applied apically, or to both compartments, sorbitol, galactose, L-glucose or sucrose did not affect GLUT7 mRNA expression. Fructose applied to both sides increased GLUT7 mRNA (13%, p ≤ 0.001) and total GLUT7 protein (2.7-fold, p ≤ 0.05), while the ratio between apical, basolateral and total GLUT7 protein was unchanged. In the X. laevis oocyte model, GLUT2-mediated glucose and fructose transport were inhibited by quercetin, (-)-epigallocatechin gallate (EGCG) and apigenin, GLUT5-mediated fructose transport was inhibited by apigenin and EGCG, but not by quercetin, and GLUT7-mediated uptake of both glucose and fructose was inhibited by apigenin, but not by quercetin nor EGCG. Expression of GLUT7 was increased by fructose, but only when applied to Caco-2/TC7 cells both apically and basolaterally. Since GLUT2, GLUT5 and GLUT7 show different patterns of inhibition by the tested flavonoids, we suggest that they have the potential to be used as investigational tools to distinguish sugar transporter activity in different biological settings.
Collapse
Affiliation(s)
- Julia S Gauer
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
30
|
Zhang J, Jiang S, Wei J, Yip KP, Wang L, Lai EY, Liu R. Glucose dilates renal afferent arterioles via glucose transporter-1. Am J Physiol Renal Physiol 2018; 315:F123-F129. [PMID: 29513069 PMCID: PMC6335005 DOI: 10.1152/ajprenal.00409.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glomerular hyperfiltration occurs during the early stage of diabetes. An acute glucose infusion increases glomerular filtration rate. The involvement of tubuloglomerular feedback response and direct effect of glucose on the afferent arterioles (Af-Arts) have been suggested. However, the signaling pathways to trigger Af-Art dilatation have not been fully identified. Therefore, in the present study we tested our hypothesis that an increase in glucose concentration enhances endothelial nitric oxide synthesis activity and dilates the Af-Arts via glucose transporter-1 (GLUT1) using isolated mouse Af-Arts with perfusion. We isolated and microperfused the Af-Arts from nondiabetic C57BL/6 mice. The Af-Arts were preconstricted with norepinephrine (1 µM). When we switched the d-glucose concentration from low (5 mM) to high (30 mM) in the perfusate, the preconstricted Af-Arts significantly dilated by 37.8 ± 7.1%, but L-glucose did not trigger the dilation. GLUT1 mRNA was identified in microdisserted Af-Arts measured by RT-PCR. Changes in nitric oxide (NO) production in Af-Art were also measured using fluorescent probe when ambient glucose concentration was increased. When the d-glucose concentration was switched from 5 to 30 mM, NO generation in Af-Art was significantly increased by 19.2 ± 6.2% (84.7 ± 4.1 to 101.0 ± 9.3 U/min). l-Glucose had no effect on the NO generation. The GLUT1-selective antagonist 4-[({[4-(1,1-Dimethylethyl)phenyl]sulfonyl}amino)methyl]- N-3-pyridinylbenzamide and the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester blocked the high glucose-induced NO generation and vasodilation. In conclusion, we demonstrated that an increase in glucose concentration dilates the Af-Art by stimulation of the endothelium-derived NO production mediated by GLUT1.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida.,Department of Physiology, Zhejiang University School of Medicine , Zhejiang , China
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - En Yin Lai
- Department of Physiology, Zhejiang University School of Medicine , Zhejiang , China
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| |
Collapse
|
31
|
McMillin SL, Schmidt DL, Kahn BB, Witczak CA. GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle. Diabetes 2017; 66:1491-1500. [PMID: 28279980 PMCID: PMC5440020 DOI: 10.2337/db16-1075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/24/2017] [Indexed: 12/23/2022]
Abstract
GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [3H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [3H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake.
Collapse
Affiliation(s)
- Shawna L McMillin
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Denise L Schmidt
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Carol A Witczak
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| |
Collapse
|
32
|
Avian and Mammalian Facilitative Glucose Transporters. MICROARRAYS 2017; 6:microarrays6020007. [PMID: 28379195 PMCID: PMC5487954 DOI: 10.3390/microarrays6020007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
The GLUT members belong to a family of glucose transporter proteins that facilitate glucose transport across the cell membrane. The mammalian GLUT family consists of thirteen members (GLUTs 1-12 and H⁺-myo-inositol transporter (HMIT)). Humans have a recently duplicated GLUT member, GLUT14. Avians express the majority of GLUT members. The arrangement of multiple GLUTs across all somatic tissues signifies the important role of glucose across all organisms. Defects in glucose transport have been linked to metabolic disorders, insulin resistance and diabetes. Despite the essential importance of these transporters, our knowledge regarding GLUT members in avians is fragmented. It is clear that there are no chicken orthologs of mammalian GLUT4 and GLUT7. Our examination of GLUT members in the chicken revealed that some chicken GLUT members do not have corresponding orthologs in mammals. We review the information regarding GLUT orthologs and their function and expression in mammals and birds, with emphasis on chickens and humans.
Collapse
|
33
|
Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 2017; 230:70-75. [DOI: 10.1016/j.ijcard.2016.12.083] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/12/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
|
34
|
Specific regions of the brain are capable of fructose metabolism. Brain Res 2016; 1657:312-322. [PMID: 28034722 DOI: 10.1016/j.brainres.2016.12.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and non-alcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40-60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5-10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15-150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production.
Collapse
|
35
|
Kovach CP, Al Koborssy D, Huang Z, Chelette BM, Fadool JM, Fadool DA. Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel. Front Physiol 2016; 7:178. [PMID: 27242550 PMCID: PMC4871887 DOI: 10.3389/fphys.2016.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
Gene-targeted deletion of the potassium channel Kv1.3 (Kv1.3−∕−) results in “Super-smeller” mice with a sensory phenotype that includes an increased olfactory ability linked to changes in olfactory circuitry, increased abundance of olfactory cilia, and increased expression of odorant receptors and the G-protein, Golf. Kv1.3−∕− mice also have a metabolic phenotype including lower body weight and decreased adiposity, increased total energy expenditure (TEE), increased locomotor activity, and resistance to both diet- and genetic-induced obesity. We explored two cellular aspects to elucidate the mechanism by which loss of Kv1.3 channel in the olfactory bulb (OB) may enhance glucose utilization and metabolic rate. First, using in situ hybridization we find that Kv1.3 and the insulin-dependent glucose transporter type 4 (GLUT4) are co-localized to the mitral cell layer of the OB. Disruption of Kv1.3 conduction via construction of a pore mutation (W386F Kv1.3) was sufficient to independently translocate GLUT4 to the plasma membrane in HEK 293 cells. Because olfactory sensory perception and the maintenance of action potential (AP) firing frequency by mitral cells of the OB is highly energy demanding and Kv1.3 is also expressed in mitochondria, we next explored the structure of this organelle in mitral cells. We challenged wildtype (WT) and Kv1.3−∕− male mice with a moderately high-fat diet (MHF, 31.8 % kcal fat) for 4 months and then examined OB ultrastructure using transmission electron microscopy. In WT mice, mitochondria were significantly enlarged following diet-induced obesity (DIO) and there were fewer mitochondria, likely due to mitophagy. Interestingly, mitochondria were significantly smaller in Kv1.3−∕− mice compared with that of WT mice. Similar to their metabolic resistance to DIO, the Kv1.3−∕− mice had unchanged mitochondria in terms of cross sectional area and abundance following a challenge with modified diet. We are very interested to understand how targeted disruption of the Kv1.3 channel in the OB can modify TEE. Our study demonstrates that Kv1.3 regulates mitochondrial structure and alters glucose utilization; two important metabolic changes that could drive whole system changes in metabolism initiated at the OB.
Collapse
Affiliation(s)
- Christopher P Kovach
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Dolly Al Koborssy
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | - Zhenbo Huang
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | | | - James M Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Debra A Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA; Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
36
|
Barron CC, Bilan PJ, Tsakiridis T, Tsiani E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism 2016; 65:124-39. [PMID: 26773935 DOI: 10.1016/j.metabol.2015.10.007] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
It is long recognized that cancer cells display increased glucose uptake and metabolism. In a rate-limiting step for glucose metabolism, the glucose transporter (GLUT) proteins facilitate glucose uptake across the plasma membrane. Fourteen members of the GLUT protein family have been identified in humans. This review describes the major characteristics of each member of the GLUT family and highlights evidence of abnormal expression in tumors and cancer cells. The regulation of GLUTs by key proliferation and pro-survival pathways including the phosphatidylinositol 3-kinase (PI3K)-Akt, hypoxia-inducible factor-1 (HIF-1), Ras, c-Myc and p53 pathways is discussed. The clinical utility of GLUT expression in cancer has been recognized and evidence regarding the use of GLUTs as prognostic or predictive biomarkers is presented. GLUTs represent attractive targets for cancer therapy and this review summarizes recent studies in which GLUT1, GLUT3, GLUT5 and others are inhibited to decrease cancer growth.
Collapse
Affiliation(s)
- Carly C Barron
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Philip J Bilan
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Theodoros Tsakiridis
- Department of Oncology, and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
37
|
Navale AM, Paranjape AN. Glucose transporters: physiological and pathological roles. Biophys Rev 2016; 8:5-9. [PMID: 28510148 DOI: 10.1007/s12551-015-0186-2] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022] Open
Abstract
Glucose is a primary energy source for most cells and an important substrate for many biochemical reactions. As glucose is a need of each and every cell of the body, so are the glucose transporters. Consequently, all cells express these important proteins on their surface. In recent years developments in genetics have shed new light on the types and physiology of various glucose transporters, of which there are two main types-sodium-glucose linked transporters (SGLTs) and facilitated diffusion glucose transporters (GLUT)-which can be divided into many more subclasses. Transporters differ in terms of their substrate specificity, distribution and regulatory mechanisms. Glucose transporters have also received much attention as therapeutic targets for various diseases. In this review, we attempt to present a simplified view of this complex topic which may be of interest to researchers involved in biochemical and pharmacological research.
Collapse
Affiliation(s)
- Archana M Navale
- Department of Pharmacology, Faculty of Pharmacy, Parul University, P.O. Limda, Waghodia Taluka, Vadodara District, 391760, Gujarat, India.
| | | |
Collapse
|
38
|
Abstract
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions.
Collapse
Affiliation(s)
- Dan Shao
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Hassel B, Elsais A, Frøland AS, Taubøll E, Gjerstad L, Quan Y, Dingledine R, Rise F. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro. J Neurochem 2015; 133:572-81. [PMID: 25708447 DOI: 10.1111/jnc.13079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 12/11/2022]
Abstract
Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was expressed too. Neocortical cells also took up and metabolized glyceraldehyde oxidatively.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Norwegian Defence Research Establishment, Kjeller, Norway
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Szarka A, Balogh T. In silico aided thoughts on mitochondrial vitamin C transport. J Theor Biol 2014; 365:181-9. [PMID: 25451960 DOI: 10.1016/j.jtbi.2014.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 01/20/2023]
Abstract
The huge demand of mitochondria as the quantitatively most important sources of ROS in the majority of heterotrophic cells for vitamin C is indisputable. The reduced form of the vitamin, l-ascorbic acid, is imported by an active mechanism requiring two sodium-dependent vitamin C transporters (SVCT1 and SVCT2). The oxidized form, dehydroascorbate is taken up by different members of the GLUT family. Because of the controversial experimental results the picture on mitochondrial vitamin C transport became quite obscure by the spring of 2014. Thus in silico prediction tools were applied in aid of the support of in vitro and in vivo results. The role of GLUT1 as a mitochondrial dehydroascorbate transporter could be reinforced by in silico predictions however the mitochondrial presence of GLUT10 is not likely since this transport protein got far the lowest mitochondrial localization scores. Furthermore the possible roles of GLUT9 and 11 in mitochondrial vitamin C transport can be proposed leastwise on the base of their computational localization analysis. In good concordance with the newest experimental observations on SVCT2 the mitochondrial presence of this transporter could also be supported by the computational prediction tools.
Collapse
Affiliation(s)
- András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary; Pathobiochemistry Research Group of Hungarian Academy of Sciences and Semmelweis University, 1444 Budapest, PO Box 260, Budapest, Hungary.
| | - Tibor Balogh
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary
| |
Collapse
|
41
|
Karim S, Adams DH, Lalor PF. Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol 2012; 18:6771-81. [PMID: 23239915 PMCID: PMC3520166 DOI: 10.3748/wjg.v18.i46.6771] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 02/06/2023] Open
Abstract
Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules. To date 14 members of this family, also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3). The expression of these different receptor subtypes varies between different species, tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin. The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis, storage and redistribution of carbohydrates. Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure, confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis. There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes, the most import cells in glucose regulation and glycogen storage. However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver, all of which require carbohydrate to function. A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis. This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required.
Collapse
|
42
|
Carter AM. Evolution of Placental Function in Mammals: The Molecular Basis of Gas and Nutrient Transfer, Hormone Secretion, and Immune Responses. Physiol Rev 2012; 92:1543-76. [DOI: 10.1152/physrev.00040.2011] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Placenta has a wide range of functions. Some are supported by novel genes that have evolved following gene duplication events while others require acquisition of gene expression by the trophoblast. Although not expressed in the placenta, high-affinity fetal hemoglobins play a key role in placental gas exchange. They evolved following duplications within the beta-globin gene family with convergent evolution occurring in ruminants and primates. In primates there was also an interesting rearrangement of a cassette of genes in relation to an upstream locus control region. Substrate transfer from mother to fetus is maintained by expression of classic sugar and amino acid transporters at the trophoblast microvillous and basal membranes. In contrast, placental peptide hormones have arisen largely by gene duplication, yielding for example chorionic gonadotropins from the luteinizing hormone gene and placental lactogens from the growth hormone and prolactin genes. There has been a remarkable degree of convergent evolution with placental lactogens emerging separately in the ruminant, rodent, and primate lineages and chorionic gonadotropins evolving separately in equids and higher primates. Finally, coevolution in the primate lineage of killer immunoglobulin-like receptors and human leukocyte antigens can be linked to the deep invasion of the uterus by trophoblast that is a characteristic feature of human placentation.
Collapse
Affiliation(s)
- Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
43
|
Reinicke K, Sotomayor P, Cisterna P, Delgado C, Nualart F, Godoy A. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J Cell Biochem 2012; 113:553-62. [PMID: 21938742 DOI: 10.1002/jcb.23379] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over-expression of hexose transporters (Gluts), specifically Glut-1, is a common event in human malignancies. In prostate cancer (CaP), however, expression of Gluts has been characterized poorly. In this study, expression and distribution of Glut-1 and Glut-5 proteins were characterized using immunohistochemistry in 76 specimens of benign prostate, 10 specimens of high-grade intraepithelial neoplasia (HGPIN), and 28 specimens of CaP. In addition, mRNA expression of Glut-2, Glut-7, Glut-9, and Glut-11 was analyzed in a set of five specimens of benign prostate and CaP. In benign prostate, Glut-1 localized to the basal cells and to the basolateral membrane of secretory/luminal epithelial cells. Glut-5, however, localized to the apical membrane of secretory/luminal epithelial cells. In HGPIN, Glut-1 was immunohistochemically undetectable. Glut-5, however, localized to the apical membrane of the neoplastic epithelial cells. In CaP, Glut-1 and Glut-5, were immunohistochemically undetectable. However, over-expression of GLUT1 was observed in some specimens of highly proliferative intraductal CaP. Glut-7, Glut-9, and Glut-11 mRNAs were detected in benign prostate and CaP, however, only Glut-11 mRNA was consistently up-regulated in CaP compared to benign prostate. Low levels of expression of Glut-1 protein in the majority of CaP could explain, at least in part, the limited clinical applicability of positron emission tomography using 2-[18F]-fluoro-2-deoxy-D-glucose for imaging CaP. Moreover, expression of Glut-5 in HGPIN suggested that fructose could be utilized as potential metabolic substrate in HGPIN. Understanding the molecular mechanisms involved in regulation/dysregulation of Gluts in CaP could provide insight in the understanding of hexose metabolism in CaP.
Collapse
Affiliation(s)
- Karin Reinicke
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
44
|
Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter-directed therapy. Blood 2012; 119:4686-97. [PMID: 22452979 DOI: 10.1182/blood-2011-09-377846] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma is one of numerous malignancies characterized by increased glucose consumption, a phenomenon with significant prognostic implications in this disease. Few studies have focused on elucidating the molecular underpinnings of glucose transporter (GLUT) activation in cancer, knowledge that could facilitate identification of promising therapeutic targets. To address this issue, we performed gene expression profiling studies involving myeloma cell lines and primary cells as well as normal lymphocytes to uncover deregulated GLUT family members in myeloma. Our data demonstrate that myeloma cells exhibit reliance on constitutively cell surface-localized GLUT4 for basal glucose consumption, maintenance of Mcl-1 expression, growth, and survival. We also establish that the activities of the enigmatic transporters GLUT8 and GLUT11 are required for proliferation and viability in myeloma, albeit because of functionalities probably distinct from whole-cell glucose supply. As proof of principle regarding the therapeutic potential of GLUT-targeted compounds, we include evidence of the antimyeloma effects elicited against both cell lines and primary cells by the FDA-approved HIV protease inhibitor ritonavir, which exerts a selective off-target inhibitory effect on GLUT4. Our work reveals critical roles for novel GLUT family members and highlights a therapeutic strategy entailing selective GLUT inhibition to specifically target aberrant glucose metabolism in cancer.
Collapse
|
45
|
Mellor KM, Bell JR, Wendt IR, Davidoff AJ, Ritchie RH, Delbridge LMD. Fructose modulates cardiomyocyte excitation-contraction coupling and Ca²⁺ handling in vitro. PLoS One 2011; 6:e25204. [PMID: 21980397 PMCID: PMC3182977 DOI: 10.1371/journal.pone.0025204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/30/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND High dietary fructose has structural and metabolic cardiac impact, but the potential for fructose to exert direct myocardial action is uncertain. Cardiomyocyte functional responsiveness to fructose, and capacity to transport fructose has not been previously demonstrated. OBJECTIVE The aim of the present study was to seek evidence of fructose-induced modulation of cardiomyocyte excitation-contraction coupling in an acute, in vitro setting. METHODS AND RESULTS The functional effects of fructose on isolated adult rat cardiomyocyte contractility and Ca²⁺ handling were evaluated under physiological conditions (37°C, 2 mM Ca²⁺, HEPES buffer, 4 Hz stimulation) using video edge detection and microfluorimetry (Fura2) methods. Compared with control glucose (11 mM) superfusate, 2-deoxyglucose (2 DG, 11 mM) substitution prolonged both the contraction and relaxation phases of the twitch (by 16 and 36% respectively, p<0.05) and this effect was completely abrogated with fructose supplementation (11 mM). Similarly, fructose prevented the Ca²⁺ transient delay induced by exposure to 2 DG (time to peak Ca²⁺ transient: 2 DG: 29.0±2.1 ms vs. glucose: 23.6±1.1 ms vs. fructose +2 DG: 23.7±1.0 ms; p<0.05). The presence of the fructose transporter, GLUT5 (Slc2a5) was demonstrated in ventricular cardiomyocytes using real time RT-PCR and this was confirmed by conventional RT-PCR. CONCLUSION This is the first demonstration of an acute influence of fructose on cardiomyocyte excitation-contraction coupling. The findings indicate cardiomyocyte capacity to transport and functionally utilize exogenously supplied fructose. This study provides the impetus for future research directed towards characterizing myocardial fructose metabolism and understanding how long term high fructose intake may contribute to modulating cardiac function.
Collapse
Affiliation(s)
- Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics 2011; 8:113-28. [PMID: 18660845 DOI: 10.2174/138920207780368187] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 12/08/2006] [Accepted: 12/17/2007] [Indexed: 12/17/2022] Open
Abstract
Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the NaM(+)/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na(+)-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human.
Collapse
Affiliation(s)
- Feng-Qi Zhao
- Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
47
|
Edamatsu M, Kondo Y, Ando M. Multiple expression of glucose transporters in the lateral wall of the cochlear duct studied by quantitative real-time PCR assay. Neurosci Lett 2010; 490:72-7. [PMID: 21182893 DOI: 10.1016/j.neulet.2010.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/02/2010] [Accepted: 12/11/2010] [Indexed: 11/20/2022]
Abstract
We have investigated the gene expression of the facilitated glucose transporter (GLUT), H+-coupled myo-inositol cotransporter (HMIT), and Na+ glucose cotransporter (SGLT) in the lateral wall of the cochlear duct by conventional RT-PCR and quantitative real-time PCR. The isoforms GLUT1, -3, -4, -5, -8, -10, -12 and HMIT were detected in both the stria vascularis and the spiral ligament, whereas no SGLT isoforms could be detected in these tissues. Quantitative real-time PCR analysis revealed significant differences in the gene expression of GLUT1, -4, -5, -10, and HMIT isoforms between the stria vascularis and the spiral ligament. This result reflects the tissue-dependent distributions of GLUT isoforms. These findings strongly suggest that a number of GLUT isoforms participate in glucose transport in the stria vascularis and the spiral ligament.
Collapse
Affiliation(s)
- Midori Edamatsu
- Laboratory of Cell Physiology, Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | | | | |
Collapse
|
48
|
Mellor KM, Ritchie RH, Davidoff AJ, Delbridge LMD. Elevated dietary sugar and the heart: experimental models and myocardial remodeling. Can J Physiol Pharmacol 2010; 88:525-40. [PMID: 20555422 DOI: 10.1139/y10-005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A dramatic rise in the prevalence of insulin resistance has been paralleled by increasing dietary consumption of sugar. The use of added sweeteners containing fructose (sucrose and high-fructose corn syrup) has increased by 25% over the past 3 decades. High fructose intake has the potential to adversely influence systemic and cellular metabolism via insulin resistance and glycolytic dysregulation. As a tissue that is both insulin sensitive and glycolysis dependent, the heart may be especially vulnerable to fructose over-consumption. In this review, experimental studies of elevated dietary sugar intake are evaluated, including sucrose and fructose dietary manipulation models. The possible role of the GLUT5 transporter as a mediator of cardiomyocyte fructose uptake is considered. The impact of dietary sucrose and fructose on cardiac insulin-dependent signaling in the context of perturbed systemic metabolic response is detailed. Myocardial dysfunction, modified growth, and oxidative stress responses associated with high dietary sugar intake are discussed. Finally, the involvement of the renin-angiotensin system in mediating fructose cardiopathology is considered. This review highlights the importance of obtaining new mechanistic data that can contribute to a more developed understanding of how high sugar intake directly contributes to structural and functional cardiomyopathy.
Collapse
Affiliation(s)
- Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | |
Collapse
|
49
|
Bibee KP, Illsley NP, Moley KH. Asymmetric syncytial expression of GLUT9 splice variants in human term placenta and alterations in diabetic pregnancies. Reprod Sci 2010; 18:20-7. [PMID: 20926839 DOI: 10.1177/1933719110380276] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glucose transport from the maternal to fetal side of the placenta is critical for fetal growth and development due to the absence of fetal gluconeogenesis. Human GLUT9, existing as 2 isoforms, is a novel member of the transporter family. This study investigated the localization and relative expression levels of these isoforms in the human term placenta from both control and diabetic patients. Placenta samples were collected from normal pregnancies and those complicated by maternal diabetes (White classifications A1, A2, and B). Antibodies specific for the different isoforms were used to detect expression. Both forms of the protein are expressed in syncytiotrophoblast cells. Subcellular fractionation revealed an asymmetrical expression pattern with GLUT9a on basal membranes, whereas GLUT9b localizes to microvillus membranes. Expression of both isoforms is significantly increased in placental tissue from diabetic pregnancies. Altered expression of GLUT9 in the placenta may play a role in the fetal pathophysiology associated with diabetes-complicated pregnancies.
Collapse
Affiliation(s)
- Kristin P Bibee
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
50
|
Augustin R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life 2010; 62:315-33. [PMID: 20209635 DOI: 10.1002/iub.315] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein family of facilitative glucose transporters comprises 14 isoforms that share common structural features such as 12 transmembrane domains, N- and C-termini facing the cytoplasm of the cell, and a N-glycosylation side either within the first or fifth extracellular loop. Based on their sequence homology, three classes can be distinguished: class I includes GLUT1-4 and GLUT14, class II the "odd transporters" GLUT5, 7, 9, 11, and class III the "even transporters" GLUT6, 8, 10, 12 and the proton driven myoinositol transporter HMIT (or GLUT13). With the cloning and characterization of the more recent class II and III isoforms, it became apparent that despite their structural similarities, the different isoforms not only show a distinct tissue-specific expression pattern but also show distinct characteristics such as alternative splicing, specific (sub)cellular localization, and affinities for a spectrum of substrates. This review summarizes the current understanding of the physiological role for the various transport facilitators based on human genetically inherited disorders or single-nucleotide polymorphisms and knockout mice models. The emphasis of the review will be on the potential functional role of the more recent isoforms.
Collapse
Affiliation(s)
- Robert Augustin
- Department of Cardiometabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach a.d. Riss, Germany.
| |
Collapse
|