1
|
Ogbaini-Emovon E, Akpede G, Okogbenin S, Osagiede E, Tobin E, Asogun D, Okokhere P, Okonofua M, Akpede N, Akhideno P, Erameh C, Rafiu M, Azubuike C, Iraoya K, Iruolagbe C, Erohubie C, Ahmed D, Ediawe O, Okoguale J, Eifediyi R, Odia I, Agbukor J, Adomeh D, Odike MAC, Ovienria W, Elkanem A, Muoebenam EB, Ojide KC, Pallasch E, Müller J, Hinzmann J, Günther S, Pahlmann M, Thielebein A, Duraffour S, Oestereich L, Krumkamp R. Virus Load Kinetics in Lassa Fever Patients Treated With Ribavirin: A Retrospective Cohort Study From Southern Nigeria. Open Forum Infect Dis 2024; 11:ofae575. [PMID: 39450398 PMCID: PMC11500659 DOI: 10.1093/ofid/ofae575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Background The standard of care for Lassa fever is the use of ribavirin with supportive therapy. There is little information on the course of viremia and its relationship with clinical outcomes in patients treated with ribavirin. Methods We conducted a retrospective analysis of virologic and clinical parameters of 152 reverse transcription polymerase chain reaction-confirmed Lassa fever cases admitted and treated with ribavirin therapy. We describe the Lassa virus RNA kinetics in blood in relation to the clinical course of the patients. Results The overall mortality was 9%. The median duration (interquartile range [IQR]) of illness before admission was 8 (5-12) days. Median (IQR) Ct values on admission (t0 ) were lower among patients who died (21 [20-27]) than in those who survived (34 [30-37]; P < .01). The receiver operating characteristics curve of the association between outcome and Ct value at t0 had a high classification performance, with an AUC of 0.92 (95% CI, 0.86-0.98). The median time to viral clearance (IQR) was 10 (5-15) days. The viral load decreased steadily with the duration of treatment, and all survivors achieved viral clearance within 25 days of hospitalization. Conclusions Our study demonstrates that the Ct value on admission has prognostic value and Lassa fever patients treated with ribavirin typically clear the virus within 3-4 weeks of hospitalization. This kinetics has implications for the design of clinical case management and future clinical trial protocols.
Collapse
Affiliation(s)
- Ephraim Ogbaini-Emovon
- Institute of Viral Haemorrhagic Fever and Emergent Pathogens, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - George Akpede
- Department of Pediatrics, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Sylvanus Okogbenin
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Emmanuel Osagiede
- Department of Community, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ekaete Tobin
- Department of Community, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Danny Asogun
- Department of Community, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Peter Okokhere
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Martha Okonofua
- Institute of Viral Haemorrhagic Fever and Emergent Pathogens, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Nosa Akpede
- Department of Community, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Peter Akhideno
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Cyril Erameh
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Mojeed Rafiu
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Kelly Iraoya
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Chris Iruolagbe
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Christian Erohubie
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Dazumi Ahmed
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Osahogie Ediawe
- Institute of Viral Haemorrhagic Fever and Emergent Pathogens, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Joseph Okoguale
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Reuben Eifediyi
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ikponmwonsa Odia
- Institute of Viral Haemorrhagic Fever and Emergent Pathogens, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Jacqueline Agbukor
- Institute of Viral Haemorrhagic Fever and Emergent Pathogens, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Donatus Adomeh
- Institute of Viral Haemorrhagic Fever and Emergent Pathogens, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Maxy A C Odike
- Department of Histopathology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Wilson Ovienria
- Department of Ophthalmology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Anieno Elkanem
- Institute of Viral Haemorrhagic Fever and Emergent Pathogens, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ekene B Muoebenam
- Institute of Viral Haemorrhagic Fever and Emergent Pathogens, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Kingsley C Ojide
- Department of Medical Microbiology, Alex Ekwemen Federal Teaching Hospital, Abakaliki, Nigeria
| | - Elisa Pallasch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Jonas Müller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Hinzmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Meike Pahlmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anke Thielebein
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sophie Duraffour
- Department of Medical Microbiology, Alex Ekwemen Federal Teaching Hospital, Abakaliki, Nigeria
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| |
Collapse
|
2
|
Aida-Ficken V, Kelly JA, Chatterjee P, Jenks MH, McMullan LK, Albariño CG, Montgomery JM, Seley-Radtke KL, Spiropoulou CF, Flint M. Identification of a macrocyclic compound targeting the lassa virus polymerase. Antiviral Res 2024; 228:105923. [PMID: 38844175 DOI: 10.1016/j.antiviral.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
There are no approved vaccines or therapeutics for Lassa virus (LASV) infections. To identify compounds with anti-LASV activity, we conducted a cell-based screening campaign at biosafety level 4 and tested almost 60,000 compounds for activity against an infectious reporter LASV. Hits from this screen included several structurally related macrocycles. The most potent, Mac128, had a sub-micromolar EC50 against the reporter virus, inhibited wild-type clade IV LASV, and reduced viral titers by 4 orders of magnitude. Mechanistic studies suggested that Mac128 inhibited viral replication at the level of the polymerase.
Collapse
Affiliation(s)
- Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Jamie A Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
3
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
4
|
Martínez-Sobrido L, Ye C, de la Torre JC. Plasmid-Based Lassa Virus Reverse Genetics. Methods Mol Biol 2024; 2733:115-131. [PMID: 38064030 DOI: 10.1007/978-1-0716-3533-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Several mammarenaviruses cause hemorrhagic fever (HF) disease in humans and pose a significant public health problem in their endemic regions. The Old World (OW) mammarenavirus Lassa virus (LASV) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF) cases, a disease associated with high morbidity and mortality. No licensed vaccines are available to combat LASV infection, and anti-LASV drug therapy is limited to the off-label use of ribavirin whose efficacy remains controversial. The development of reverse genetics approaches has provided investigators with a powerful approach for the investigation of the molecular, cell biology and pathogenesis of mammarenaviruses. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in viral genome replication and gene transcription, assembly, and budding, which has facilitated the identification of several anti-mammarenavirus candidate drugs. Likewise, it is possible now to rescue infectious recombinant mammarenaviruses from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of viral pathogenesis. Reverse genetics have also allowed the generation of mammarenaviruses expressing foreign genes to facilitate virus detection, to identify antiviral drugs, and to generate live-attenuated vaccine (LAV) candidates. Likewise, reverse genetics techniques have allowed the generation of single-cycle infectious, reporter-expressing mammarenaviruses to study some aspects of the biology of HF-causing human mammarenavirus without the need of high security biocontainment laboratories. In this chapter, we describe the experimental procedures to generate recombinant (r)LASV using state-of-the-art plasmid-based reverse genetics.
Collapse
Affiliation(s)
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Huang C, Mantlo E, Paessler S. Lassa virus NP DEDDh 3'-5' exoribonuclease activity is required for optimal viral RNA replication and mutation control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536665. [PMID: 37090668 PMCID: PMC10120729 DOI: 10.1101/2023.04.12.536665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Lassa virus (LASV), a mammarenavirus from Arenaviridae, is the causative agent of Lassa fever (LF) endemic in West Africa. Currently, there are no vaccines or antivirals approved for LF. The RNA-dependent RNA polymerases (RdRp) of RNA viruses are error-prone. As a negative-sense RNA virus, how LASV copes with errors in RNA synthesis and ensures optimal RNA replication are not well elucidated. LASV nucleoprotein (NP) contains a DEDDH 3'-to-5' exoribonuclease motif (ExoN), which is known to be essential for LASV evasion of the interferon response via its ability to degrade virus-derived double-stranded RNA. Herein, we present evidence that LASV NP ExoN has an additional function important for viral RNA replication. We rescued an ExoN-deficient LASV mutant (ExoN- rLASV) by using a reverse genetics system. Our data indicated that abrogation of NP ExoN led to impaired LASV growth and RNA replication in interferon-deficient cells as compared with wild-type rLASV. By utilizing PacBio Single Molecule, Real-Time (SMRT) long-read sequencing technology, we found that rLASV lacking ExoN activity was prone to producing aberrant viral genomic RNA with structural variations. In addition, NP ExoN deficiency enhanced LASV sensitivity to mutagenic nucleoside analogues in virus titration assay. Next-generation deep sequencing analysis showed increased single nucleotide substitution in ExoN- LASV RNA following mutagenic 5-flurouracil treatment. In conclusion, our study revealed that LASV NP ExoN is required for efficient viral RNA replication and mutation control. Among negative-sense RNA viruses, LASV NP is the first example that a viral protein, other than the RdRp, contributes to reduce errors in RNA replication and maintain genomic RNA integrity. These new findings promote our understanding of the basics of LASV infection and inform antiviral and vaccine development.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Pathology, Galveston National Laboratory and
Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston,
TX, USA
| | - Emily Mantlo
- Department of Pathology, Galveston National Laboratory and
Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston,
TX, USA
- Current address: Department of Microbiology & Immunology,
Upstate Medical University, Syracuse, NY, USA
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory and
Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston,
TX, USA
| |
Collapse
|
6
|
Shaffer M, Fischer RJ, Gallogly S, Ginn O, Munster V, Bibby K. Environmental Persistence and Disinfection of Lassa Virus. Emerg Infect Dis 2023; 29:2285-2291. [PMID: 37877545 PMCID: PMC10617325 DOI: 10.3201/eid2911.230678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Lassa fever, caused by Lassa virus (LASV), is endemic to West Africa, where ≈300,000 illnesses and ≈5,000 deaths occur annually. LASV is primarily spread by infected multimammate rats via urine and fomites, highlighting the need to understand the environmental fate of LASV. We evaluated persistence of LASV Josiah and Sauerwald strains on surfaces, in aqueous solutions, and with sodium hypochlorite disinfection. Tested strains were more stable in deionized water (first-order rate constant [k] for Josiah, 0.23 days; for Sauerwald, k = 0.34 days) than primary influent wastewater (Josiah, k = 1.3 days; Sauerwald, k = 1.9 days). Both strains had similar decay rates on high-density polyethylene (Josiah, k = 4.3 days; Sauerwald, k = 2.3 days) and stainless steel (Josiah, k = 5.3 days; Sauerwald, k = 2.7 days). Sodium hypochlorite was highly effective at inactivating both strains. Our findings can inform future risk assessment and management efforts for Lassa fever.
Collapse
|
7
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
8
|
Bourner J, Salam AP, Jaspard M, Olayinka A, Fritzell C, Goncalves B, Vaillant M, Edwards T, Erameh C, Ajayi N, Ramharter M, Olliaro P. The West Africa Lassa fever Consortium pre-positioned protocol for a Phase II/III adaptive, randomised, controlled, platform trial to evaluate multiple Lassa fever therapeutics. Wellcome Open Res 2023; 8:122. [PMID: 39211525 PMCID: PMC11358687 DOI: 10.12688/wellcomeopenres.19041.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/04/2024] Open
Abstract
Background: This is a standardized, pre-positioned protocol for the coordinated evaluation of Lassa fever therapeutics. The protocol is the product of discussions that took place in 2021 and 2022 among international investigators from a wide range of scientific and medical disciplines working together within the West Africa Lassa fever Consortium (WALC). Methods: This is a clinical Phase II/III multicentre randomised controlled platform trial using a superiority framework with an equal allocation ratio and a composite primary endpoint of all-cause mortality OR new onset of i) acute kidney failure (AKF), OR ii) acute respiratory failure (ARF), OR iii) shock assessed from enrolment (D0) to D28. Discussion: This pre-positioned protocol was developed by the WALC and made available for adaptation and implementation by the wider Lassa fever research community in order to generate efficient, reliable, and comparable evidence for Lassa fever therapeutics.
Collapse
Affiliation(s)
| | | | - Marie Jaspard
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
| | | | - Camille Fritzell
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
| | | | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tansy Edwards
- The London School of Hygiene and Tropical Medicine, London, UK
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Nnennaya Ajayi
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Michael Ramharter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Dept of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piero Olliaro
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - The WALC Work Package 2 Working Group
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
- Nigeria Centre for Disease Control, Abuja, Nigeria
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Luxembourg, Luxembourg
- The London School of Hygiene and Tropical Medicine, London, UK
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Dept of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Schrauf S, Tomberger Y, Nambulli S, Duprex WP, Tschismarov R, Tauber E, Ramsauer K. Biodistribution and toxicology evaluation of a recombinant measles Schwarz-based Lassa vaccine in cynomolgus macaques. J Appl Toxicol 2023; 43:719-733. [PMID: 36480160 DOI: 10.1002/jat.4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
MV-LASV is an investigational measles Schwarz-based vaccine for the prevention of Lassa fever. A repeated-dose toxicity study in cynomolgus macaques was performed to assess the biodistribution and local and systemic toxicological effects. Monkeys received three immunizations of MV-LASV or saline intramuscularly with a 2-week interval. An increase in anti-measles antibodies confirmed the reaction of the immune system to the vaccine backbone. Clinical observations, body weight, body temperature, local tolerance, electrocardiogram parameters, various clinical pathology parameters (hematology, coagulation urinalysis, serum chemistry, and C-reactive protein) were monitored. Gross pathology and histopathology of various tissues were evaluated. MV-LASV induced a mild increase in fibrinogen and C-reactive protein concentrations. This coincided with microscopic inflammation at the injection sites which partially or fully resolved following a 3-week recovery period. Viral RNA was found in secondary lymphoid organs and injection sites and gall bladder. No viral shedding to the environment was observed. Overall, the vaccine was locally and systemically well tolerated, supporting a first-in-human study.
Collapse
Affiliation(s)
- Sabrina Schrauf
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Yvonne Tomberger
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Erich Tauber
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
10
|
Bourner J, Salam AP, Jaspard M, Olayinka A, Fritzell C, Goncalves B, Vaillant M, Edwards T, Erameh C, Ajayi N, Ramharter M, Olliaro P. The West Africa Lassa fever Consortium pre-positioned protocol for a Phase II/III adaptive, randomised, controlled, platform trial to evaluate multiple Lassa fever therapeutics. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.19041.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: This is a standardized, pre-positioned protocol for the coordinated evaluation of Lassa fever therapeutics. The protocol is the product of discussions that took place in 2021 and 2022 among international investigators from a wide range of scientific and medical disciplines working together within the West Africa Lassa fever Consortium (WALC). Methods: This is a clinical Phase II/III multicentre randomised controlled platform trial using a superiority framework with an equal allocation ratio and a composite primary endpoint of all-cause mortality OR new onset of i) acute kidney failure (AKF), OR ii) acute respiratory failure (ARF), OR iii) shock assessed from enrolment (D0) to D28. Discussion: This pre-positioned protocol was developed by the WALC and made available for adaptation and implementation by the wider Lassa fever research community in order to generate efficient, reliable, and comparable evidence for Lassa fever therapeutics.
Collapse
|
11
|
Li Y. Genetic basis underlying Lassa fever endemics in the Mano River region, West Africa. Virology 2023; 579:128-136. [PMID: 36669329 DOI: 10.1016/j.virol.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Lassa fever (LF), a haemorrhagic fever disease caused by Lassa virus (LASV), is a serious public health burden in West Africa. The Mano River region (Sierra Leone, Guinea, Liberia, and Côte d'Ivoire) has been an endemic focus of the disease over the past decades. Here, we deciphered the genetic basis underlying LF endemics in this region. Clade model and type I functional divergence analyses revealed that the major LASV group, Kenema sub-clade, which is currently circulating in the Eastern Province of Sierra Leone, has been affected by different selective pressure compared to isolates from the other areas with effects on the viral RNA-dependent RNA polymerase (L protein) and probably nucleoprotein (NP). Further, contingency analysis showed that, in the early endemic, the sub-clade has undergone adaptive diversification via acceleration of amino acid substitutions in L protein. These findings highlight the key viral factor and local adaptation regarding the endemicity of LF.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, People's Republic of China.
| |
Collapse
|
12
|
Brouwer PJM, Antanasijevic A, Ronk AJ, Müller-Kräuter H, Watanabe Y, Claireaux M, Perrett HR, Bijl TPL, Grobben M, Umotoy JC, Schriek AI, Burger JA, Tejjani K, Lloyd NM, Steijaert TH, van Haaren MM, Sliepen K, de Taeye SW, van Gils MJ, Crispin M, Strecker T, Bukreyev A, Ward AB, Sanders RW. Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host Microbe 2022; 30:1759-1772.e12. [PMID: 36400021 PMCID: PMC9794196 DOI: 10.1016/j.chom.2022.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom P L Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thijs H Steijaert
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marlies M van Haaren
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
13
|
Brisse M, Fernández-Alarcón C, Huang Q, Kirk N, Schleiss MR, Liang Y, Ly H. Hearing loss in outbred Hartley guinea pigs experimentally infected with Pichinde virus as a surrogate model of human mammarenaviral hemorrhagic fevers. Virulence 2022; 13:1049-1061. [PMID: 35758052 PMCID: PMC9794012 DOI: 10.1080/21505594.2022.2087948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lassa fever (LF) is a neglected tropical disease that is caused by Lassa virus (LASV), a human hemorrhagic fever-causing mammarenavirus. A notable sequela of LF is sensorineural hearing loss (SNHL) that can develop in about 33% of the patients. Animal models of LF-associated SNHL have been limited in size and scope because LASV is a biosafety level 4 (BSL4) pathogen that requires its handling in a high biocontainment laboratory. In this report, we describe the development of an alternative arenavirus hearing loss model by infecting outbred Hartley guinea pigs with a virulent strain (rP18) of the Pichinde virus (PICV), which is a guinea pig-adapted mammarenavirus that has been used as a surrogate model of mammarenaviral hemorrhagic fevers in a conventional (BSL2) laboratory. By measuring auditory brainstem response (ABR) throughout the course of the virulent rP18 PICV infection, we noticed that some of the animals experienced an acute but transient level of hearing loss. Cochleae of hearing-impaired animals, but not of controls, had demonstrable viral RNA by quantitative RT-PCR, indicating the presence of virus in the affected inner ear with no overt histopathological changes. In contrast, neither the outbred Hartley guinea pigs infected with a known avirulent strain (rP2) of PICV nor those that were mock-infected showed any evidence of hearing loss or viral infection of the inner ear. This is the first report of an immunocompetent small animal model of mammarenavirus-induced hearing loss that can be used to evaluate potential therapeutics against virus-induced hearing impairment under a conventional laboratory setting.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Twin Cities, Minnesota, USA,Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | | | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Natalie Kirk
- Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Twin Cities, Minnesota, USA,Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Mark R. Schleiss
- Department of Pediatrics, School of Medicine University of Minnesota, Twin Cities, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Hinh Ly
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Twin Cities, Minnesota, USA,Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Twin Cities, Minnesota, USA,Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA,CONTACT Hinh Ly
| |
Collapse
|
14
|
Opara NU, Nwagbara UI, Hlongwana KW. The COVID-19 Impact on the Trends in Yellow Fever and Lassa Fever Infections in Nigeria. Infect Dis Rep 2022; 14:932-941. [PMID: 36412749 PMCID: PMC9680345 DOI: 10.3390/idr14060091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Lassa fever (LF) and yellow fever (YF) belong to a group of viral hemorrhagic fevers (VHFs). These viruses have common features and damages the organs and blood vessels; they also impair the body's homeostasis. Some VHFs cause mild disease, while some cause severe disease and death such as in the case of Ebola or Marburg. LF virus and YF virus are two of the most recent emerging viruses in Africa, resulting in severe hemorrhagic fever in humans. Lassa fever virus is continuously on the rise both in Nigeria and neighboring countries in West Africa, with an estimate of over 500,000 cases of LF, and 5000 deaths, annually. YF virus is endemic in temperate climate regions of Africa, Central America (Guatemala, Honduras, Nicaragua, El Salvador), and South America (such as Brazil, Argentina, Peru, and Chile) with an annual estimated cases of 200,000 and 30,000 deaths globally. This review examines the impact of the COVID-19 pandemic on the trend in epidemiology of these two VHFs to delineate responses that are associated with protective or pathogenic outcomes.
Collapse
Affiliation(s)
- Nnennaya U. Opara
- Institute for Academic Medicine, Department of Emergency Medicine, Charleston Area Medical Center, Charleston, WV 25304, USA
- Department of Health Administration, University of Phoenix, Phoenix, AZ 85040, USA
- Correspondence: or
| | - Ugochinyere I. Nwagbara
- Department of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa
| | - Khumbulani W. Hlongwana
- Cancer and Infectious Disease Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
15
|
Villalaín J. Interaction of Lassa virus fusion and membrane proximal peptides with late endosomal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184031. [PMID: 35964711 DOI: 10.1016/j.bbamem.2022.184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Mammarenaviruses include many significant worldwide-widespread human pathogens, among them Lassa virus (LASV), having a dramatic morbidity and mortality rate. They are a potential high-risk menace to the worldwide public health since there are no treatments and there is a high possibility of animal-to-human and human-to-human viral transmission. These viruses enter into the cells by endocytosis fusing its membrane envelope with the late endosomal membrane thanks to the glycoprotein GP2, a membrane fusion protein of class I. This protein contains different domains, among them the N-terminal fusion peptide (NFP), the internal fusion loop (IFL), the membrane proximal external region (MPER) and the transmembrane domain (TMD). All these domains are implicated in the membrane fusion process. In this work, we have used an all-atom molecular dynamics study to know the binding of these protein domains with a complex membrane mimicking the late endosome one. We show that the NFP/IFL domain is capable of spontaneously inserting into the membrane without a significant change of secondary structure, the MPER domain locates at the bilayer interface with an orientation parallel to the membrane surface and tends to interact with other MPER domains, and the TMD domain tilts inside the bilayer. Moreover, they predominantly interact with negatively charged phospholipids. Overall, these membrane-interacting domains would characterise a target that would make possible to find effective antiviral molecules against LASV in particular and Mammarenaviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
16
|
Establishment of Recombinant Trisegmented Mopeia Virus Expressing Two Reporter Genes for Screening of Mammarenavirus Inhibitors. Viruses 2022; 14:v14091869. [PMID: 36146676 PMCID: PMC9505675 DOI: 10.3390/v14091869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Highly pathogenic Arenaviruses, like the Lassa Virus (LASV), pose a serious public health threat in affected countries. Research and development of vaccines and therapeutics are urgently needed but hampered by the necessity to handle these pathogens under biosafety level 4 conditions. These containment restrictions make large-scale screens of antiviral compounds difficult. Therefore, the Mopeia virus (MOPV), closely related to LASV, is often used as an apathogenic surrogate virus. We established for the first time trisegmented MOPVs (r3MOPV) with duplicated S segments, in which one of the viral genes was replaced by the reporter genes ZsGreen (ZsG) or Renilla Luciferase (Rluc), respectively. In vitro characterization of the two trisegmented viruses (r3MOPV ZsG/Rluc and r3MOPV Rluc/ZsG), showed comparable growth behavior to the wild type virus and the expression of the reporter genes correlated well with viral titer. We used the reporter viruses in a proof-of-principle in vitro study to evaluate the antiviral activity of two well characterized drugs. IC50 values obtained by Rluc measurement were similar to those obtained by virus titers. ZsG expression was also suitable to evaluate antiviral effects. The trisegmented MOPVs described here provide a versatile and valuable basis for rapid high throughput screening of broadly reactive antiviral compounds against arenaviruses under BSL-2 conditions.
Collapse
|
17
|
Fang J, Pietzsch C, Witwit H, Tsaprailis G, Crynen G, Cho KF, Ting AY, Bukreyev A, Saphire EO, de la Torre JC. Proximity interactome analysis of Lassa polymerase reveals eRF3a/GSPT1 as a druggable target for host-directed antivirals. Proc Natl Acad Sci U S A 2022; 119:e2201208119. [PMID: 35858434 PMCID: PMC9340056 DOI: 10.1073/pnas.2201208119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 01/21/2023] Open
Abstract
Completion of the Lassa virus (LASV) life cycle critically depends on the activities of the virally encoded, RNA-dependent RNA polymerase in replication and transcription of the viral RNA genome in the cytoplasm of infected cells. The contribution of cellular proteins to these processes remains unclear. Here, we applied proximity proteomics to define the interactome of LASV polymerase in cells under conditions that recreate LASV RNA synthesis. We engineered a LASV polymerase-biotin ligase (TurboID) fusion protein that retained polymerase activity and successfully biotinylated the proximal proteome, which allowed the identification of 42 high-confidence LASV polymerase interactors. We subsequently performed a small interfering RNA (siRNA) screen to identify those interactors that have functional roles in authentic LASV infection. As proof of principle, we characterized eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we found to be a proviral factor that physically associates with LASV polymerase. Targeted degradation of GSPT1 by a small-molecule drug candidate, CC-90009, resulted in strong inhibition of LASV infection in cultured cells. Our work demonstrates the feasibility of using proximity proteomics to illuminate and characterize yet-to-be-defined host-pathogen interactome, which can reveal new biology and uncover novel targets for the development of antivirals against highly pathogenic RNA viruses.
Collapse
Affiliation(s)
- Jingru Fang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Colette Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550
| | - Haydar Witwit
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, Scripps Research, Jupiter, FL 33458
| | | | - Alice Y. Ting
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550
| | | | | |
Collapse
|
18
|
Nguyen THV, Yekwa E, Selisko B, Canard B, Alvarez K, Ferron F. Inhibition of Arenaviridae nucleoprotein exonuclease by bisphosphonate. IUCRJ 2022; 9:468-479. [PMID: 35844481 PMCID: PMC9252148 DOI: 10.1107/s2052252522005061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Arenaviruses are emerging enveloped negative-sense RNA viruses that cause neurological and hemorrhagic diseases in humans. Currently, no FDA-approved vaccine or therapeutic agent is available except for ribavirin, which must be administered early during infection for optimum efficacy. A hallmark of arenavirus infection is rapid and efficient immune suppression mediated by the exonuclease domain encoded by the nucleoprotein. This exonuclease is therefore an attractive target for the design of novel antiviral drugs since exonuclease inhibitors might not only have a direct effect on the enzyme but could also boost viral clearance through stimulation of the innate immune system of the host cell. Here, in silico screening and an enzymatic assay were used to identify a novel, specific but weak inhibitor of the arenavirus exonuclease, with IC50 values of 65.9 and 68.6 µM for Mopeia virus and Lymphocytic choriomeningitis virus, respectively. This finding was further characterized using crystallographic and docking approaches. This study serves as a proof of concept and may have assigned a new therapeutic purpose for the bisphosphonate family, therefore paving the way for the development of inhibitors against Arenaviridae.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Elsie Yekwa
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Barbara Selisko
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Bruno Canard
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Karine Alvarez
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - François Ferron
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
19
|
Mittal A, Chauhan A. Aspects of Biological Replication and Evolution Independent of the Central Dogma: Insights from Protein-Free Vesicular Transformations and Protein-Mediated Membrane Remodeling. J Membr Biol 2022; 255:185-209. [PMID: 35333977 PMCID: PMC8951669 DOI: 10.1007/s00232-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Biological membrane remodeling is central to living systems. In spite of serving as “containers” of whole-living systems and functioning as dynamic compartments within living systems, biological membranes still find a “blue collar” treatment compared to the “white collar” nucleic acids and proteins in biology. This may be attributable to the fact that scientific literature on biological membrane remodeling is only 50 years old compared to ~ 150 years of literature on proteins and a little less than 100 years on nucleic acids. However, recently, evidence for symbiotic origins of eukaryotic cells from data only on biological membranes was reported. This, coupled with appreciation of reproducible amphiphilic self-assemblies in aqueous environments (mimicking replication), has already initiated discussions on origins of life beyond nucleic acids and proteins. This work presents a comprehensive compilation and meta-analyses of data on self-assembly and vesicular transformations in biological membranes—starting from model membranes to establishment of Influenza Hemagglutinin-mediated membrane fusion as a prototypical remodeling system to a thorough comparison between enveloped mammalian viruses and cellular vesicles. We show that viral membrane fusion proteins, in addition to obeying “stoichiometry-driven protein folding”, have tighter compositional constraints on their amino acid occurrences than general-structured proteins, regardless of type/class. From the perspective of vesicular assemblies and biological membrane remodeling (with and without proteins) we find that cellular vesicles are quite different from viruses. Finally, we propose that in addition to pre-existing thermodynamic frameworks, kinetic considerations in de novo formation of metastable membrane structures with available “third-party” constituents (including proteins) were not only crucial for origins of life but also continue to offer morphological replication and/or functional mechanisms in modern life forms, independent of the central dogma.
Collapse
Affiliation(s)
- Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India. .,Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Akanksha Chauhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
20
|
Brisse M, Huang Q, Rahman M, Di D, Liang Y, Ly H. RIG-I and MDA5 Protect Mice From Pichinde Virus Infection by Controlling Viral Replication and Regulating Immune Responses to the Infection. Front Immunol 2021; 12:801811. [PMID: 34925387 PMCID: PMC8677829 DOI: 10.3389/fimmu.2021.801811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
RIG-I and MDA5 are major cytoplasmic innate-immune sensor proteins that recognize aberrant double-stranded RNAs generated during virus infection to activate type 1 interferon (IFN-I) and IFN-stimulated gene (ISG) expressions to control virus infection. The roles of RIG-I and MDA5 in controlling replication of Pichinde virus (PICV), a mammarenavirus, in mice have not been examined. Here, we showed that MDA5 single knockout (SKO) and RIG-I/MDA5 double knockout (DKO) mice are highly susceptible to PICV infection as evidenced by their significant reduction in body weights during the course of the infection, validating the important roles of these innate-immune sensor proteins in controlling PICV infection. Compared to the wildtype mice, SKO and DKO mice infected with PICV had significantly higher virus titers and lower IFN-I expressions early in the infection but appeared to exhibit a late and heightened level of adaptive immune responses to clear the infection. When a recombinant rPICV mutant virus (rPICV-NPmut) that lacks the ability to suppress IFN-I was used to infect mice, as expected, there were heightened levels of IFN-I and ISG expressions in the wild-type mice, whereas infected SKO and DKO mice showed delayed mouse growth kinetics and relatively low, delayed, and transient levels of innate and adaptive immune responses to this viral infection. Taken together, our data suggest that PICV infection triggers activation of immune sensors that include but might not be necessarily limited to RIG-I and MDA5 to stimulate effective innate and adaptive immune responses to control virus infection in mice.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Mizanur Rahman
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Da Di
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Hinh Ly
- Biochemistry, Molecular Biology and Biophysics Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States
| |
Collapse
|
21
|
Wozniak DM, Riesle-Sbarbaro SA, Kirchoff N, Hansen-Kant K, Wahlbrink A, Stern A, Lander A, Hartmann K, Krasemann S, Kurth A, Prescott J. Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir - Mastomys natalensis. Emerg Microbes Infect 2021; 10:2313-2325. [PMID: 34792436 PMCID: PMC8654411 DOI: 10.1080/22221751.2021.2008773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lassa virus (LASV), a Risk Group-4 zoonotic haemorrhagic fever virus, affects sub-Saharan African countries. Lassa fever, caused by LASV, results in thousands of annual deaths. Although decades have elapsed since the identification of the Natal multimammate mouse (Mastomys natalensis) as a natural reservoir of LASV, little effort has been made to characterize LASV infection in its reservoir. The natural route of infection and transmission of LASV within M. natalensis remains unknown, and the clinical impact of LASV in M. natalensis is mostly undescribed. Herein, using an outbred colony of M. natalensis, we investigate the replication and dissemination dynamics of LASV in this reservoir following various inoculation routes. Inoculation with LASV, regardless of route, resulted in a systemic infection and accumulation of abundant LASV-RNA in many tissues. LASV infection in the Natal multimammate mice was subclinical, however, clinical chemistry values were transiently altered and immune infiltrates were observed histologically in lungs, spleens and livers, indicating a minor disease with coordinated immune responses are elicited, controlling infection. Intranasal infection resulted in unique virus tissue dissemination dynamics and heightened LASV shedding, compared to subcutaneous inoculation. Our study provides important insights into LASV infection in its natural reservoir using a contemporary infection system, demonstrating that specific inoculation routes result in disparate dissemination outcomes, suggesting intranasal inoculation is important in the maintenance of LASV in the natural reservoir, and emphasizes that selection of the appropriate inoculation route is necessary to examine aspects of viral replication, transmission and responses to zoonotic viruses in their natural reservoirs.
Collapse
Affiliation(s)
- D M Wozniak
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | | | - N Kirchoff
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - K Hansen-Kant
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Wahlbrink
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Stern
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Lander
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - K Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Kurth
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - J Prescott
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
22
|
Murphy HL, Ly H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence 2021; 12:2989-3014. [PMID: 34747339 PMCID: PMC8923068 DOI: 10.1080/21505594.2021.2000290] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic disease that is endemic to West Africa. The causative agent of LF is Lassa virus (LASV), which causes approximately 300,000 infections and 5,000 deaths annually. There are currently no approved therapeutics or FDA-approved vaccines against LASV. The high genetic variability between LASV strains and immune evasion mediated by the virus complicate the development of effective therapeutics and vaccines. Here, we aim to provide a comprehensive review of the basic biology of LASV and its mechanisms of disease pathogenesis and virulence in various animal models, as well as an update on prospective vaccines, therapeutics, and diagnostics for LF. Until effective vaccines and/or therapeutics are available for use to prevent or treat LF, a better level of understanding of the basic biology of LASV, its natural genetic variations and immune evasion mechanisms as potential pathogenicity factors, and of the rodent reservoir-vector populations and their geographical distributions, is necessary for the development of accurate diagnostics and effective therapeutics and vaccines against this deadly human viral pathogen.
Collapse
Affiliation(s)
- Hannah L Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| |
Collapse
|
23
|
Merson L, Bourner J, Jalloh S, Erber A, Salam AP, Flahault A, Olliaro PL. Clinical characterization of Lassa fever: A systematic review of clinical reports and research to inform clinical trial design. PLoS Negl Trop Dis 2021; 15:e0009788. [PMID: 34547033 PMCID: PMC8486098 DOI: 10.1371/journal.pntd.0009788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/01/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Research is urgently needed to reduce the morbidity and mortality of Lassa fever (LF), including clinical trials to test new therapies and to verify the efficacy and safety of the only current treatment recommendation, ribavirin, which has a weak clinical evidence base. To help establish a basis for the development of an adaptable, standardised clinical trial methodology, we conducted a systematic review to identify the clinical characteristics and outcomes of LF and describe how LF has historically been defined and assessed in the scientific literature. METHODOLOGY Primary clinical studies and reports of patients with suspected and confirmed diagnosis of LF published in the peer-reviewed literature before 15 April 2021 were included. Publications were selected following a two-stage screening of abstracts, then full-texts, by two independent reviewers at each stage. Data were extracted, verified, and summarised using descriptive statistics. RESULTS 147 publications were included, primarily case reports (36%), case series (28%), and cohort studies (20%); only 2 quasi-randomised studies (1%) were found. Data are mostly from Nigeria (52% of individuals, 41% of publications) and Sierra Leone (42% of individuals, 31% of publications). The results corroborate the World Health Organisation characterisation of LF presentation. However, a broader spectrum of presenting symptoms is evident, such as gastrointestinal illness and other nervous system and musculoskeletal disorders that are not commonly included as indicators of LF. The overall case fatality ratio was 30% in laboratory-confirmed cases (1896/6373 reported in 109 publications). CONCLUSION Systematic review is an important tool in the clinical characterisation of diseases with limited publications. The results herein provide a more complete understanding of the spectrum of disease which is relevant to clinical trial design. This review demonstrates the need for coordination across the LF research community to generate harmonised research methods that can contribute to building a strong evidence base for new treatments and foster confidence in their integration into clinical care.
Collapse
Affiliation(s)
- Laura Merson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Josephine Bourner
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Astrid Erber
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Alex Paddy Salam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Piero L. Olliaro
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Gowen BB, Naik S, Westover JB, Brown ER, Gantla VR, Fetsko A, Dagley AL, Blotter DJ, Anderson N, McCormack K, Henkel G. Potent inhibition of arenavirus infection by a novel fusion inhibitor. Antiviral Res 2021; 193:105125. [PMID: 34197863 DOI: 10.1016/j.antiviral.2021.105125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022]
Abstract
Several arenaviruses, including Lassa and Lujo viruses in Africa and five New World arenavirus (NWA) species in the Americas, cause life-threatening viral hemorrhagic fevers. In the absence of licensed antiviral therapies, these viruses pose a significant public health risk. The envelope glycoprotein complex (GPC) mediates arenavirus entry through a pH-dependent fusion of the viral and host endosomal membranes. It thus is recognized as a viable target for small-molecule fusion inhibitors. Here, we report on the antiviral activity and pre-clinical development of the novel broad-spectrum arenavirus fusion inhibitors, ARN-75039 and ARN-75041. In Tacaribe virus (TCRV) pseudotyped and native virus assays, the ARN compounds were active in the low to sub-nanomolar range with selectivity indices exceeding 1000. Pharmacokinetic analysis of the orally administered compounds revealed an extended half-life in mice supporting once-daily dosing, and the compounds were well tolerated at the highest tested dose of 100 mg/kg. In a proof-of-concept prophylactic efficacy study, doses of 10 and 35 mg/kg of either compound dramatically improved survival outcome and potently inhibited TCRV replication in serum and various tissues. Additionally, in contrast to surviving mice that received ribavirin or placebo, animals treated with ARN-75039 or ARN-75041 were cured of TCRV infection. In a follow-up study with ARN-75039, impressive therapeutic efficacy was demonstrated under conditions where treatment was withheld until after the onset of disease. Taken together, the data strongly support the continued development of ARN-75039 as a candidate therapeutic for the treatment of severe arenaviral diseases.
Collapse
Affiliation(s)
- Brian B Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | | | - Jonna B Westover
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | | | | | - Ashley L Dagley
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Dallan J Blotter
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Nicole Anderson
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | | |
Collapse
|
25
|
Arruda LB, Haider N, Olayemi A, Simons D, Ehichioya D, Yinka-Ogunleye A, Ansumana R, Thomason MJ, Asogun D, Ihekweazu C, Fichet-Calvet E, Kock RA. The niche of One Health approaches in Lassa fever surveillance and control. Ann Clin Microbiol Antimicrob 2021; 20:29. [PMID: 33894784 PMCID: PMC8067790 DOI: 10.1186/s12941-021-00431-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus (LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped by various parameters such as weather seasonality and even virus and rodent-host genetics. Furthermore, human behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control of human-to-human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African communities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. This review discusses the causes and consequences of LF from a One Health perspective, and how the application of this concept can improve the surveillance and control of this disease in West Africa.
Collapse
Affiliation(s)
- Liã Bárbara Arruda
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hatfield, UK
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Nigeria
| | - David Simons
- The Royal Veterinary College, University of London, Hatfield, UK
| | - Deborah Ehichioya
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria.,Department of Microbiology, Ambrose Alli University, Ekpoma, Nigeria
| | | | - Rashid Ansumana
- School of Community Health Sciences, Njala University, Bo, Sierra Leone
| | - Margaret J Thomason
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Danny Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | | | - Richard A Kock
- The Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
26
|
Chika-Igwenyi NM, Harrison RE, Psarra C, Gil-Cuesta J, Gulamhusein M, Onwe EO, Onoh RC, Unigwe US, Ajayi NA, Nnadozie UU, Ojide CK, Nwidi DU, Ezeanosike O, Sampson E, Adeke AS, Ugwu CN, Anebonam U, Tshiang JK, Maikere J, Reid A. Early onset of neurological features differentiates two outbreaks of Lassa fever in Ebonyi state, Nigeria during 2017-2018. PLoS Negl Trop Dis 2021; 15:e0009169. [PMID: 33684118 PMCID: PMC7984835 DOI: 10.1371/journal.pntd.0009169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/22/2021] [Accepted: 01/22/2021] [Indexed: 01/15/2023] Open
Abstract
Lassa fever (LF) is an acute viral haemorrhagic illness with various non-specific clinical manifestations. Neurological symptoms are rare at the early stage of the disease, but may be seen in late stages, in severely ill patients.The aim of this study was to describe the epidemiological evolution, socio-demographic profiles, clinical characteristics, and outcomes of patients seen during two Lassa fever outbreaks in Ebonyi State, between December 2017 and December 2018. Routinely collected clinical data from all patients admitted to the Virology Centre of the hospital during the period were analysed retrospectively. Out of a total of 83 cases, 70(84.3%) were RT-PCR confirmed while 13 (15.7%) were probable cases. Sixty-nine (83.1%) patients were seen in outbreak 1 of whom 53.6% were urban residents, while 19%, 15%, and 10% were farmers, students and health workers respectively. There were 14 (16.8%) patients, seen in second outbreak with 92.9% rural residents. There were differences in clinical symptoms, signs and laboratory findings between the two outbreaks. The case fatality rates were 29.9% in outbreak 1 and 85.7% for outbreak 2. Neurological features and abnormal laboratory test results were associated with higher mortality rate, seen in outbreak 2. This study revealed significant differences between the two outbreaks. Of particular concern was the higher case fatality during the outbreak 2 which may be from a more virulent strain of the Lassa virus. This has important public health implications and further molecular studies are needed to better define its characteristics.
Collapse
Affiliation(s)
- Nneka M. Chika-Igwenyi
- Department of Medicine, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | | | - Christina Psarra
- Médecins sans Frontières Operational Research Unit (LuxOR), Operational Centre Brussels, Belgium
| | - Julita Gil-Cuesta
- Médecins sans Frontières Operational Research Unit (LuxOR), Operational Centre Brussels, Belgium
| | - Maria Gulamhusein
- Médecins sans Frontières Operational Research Unit (LuxOR), Operational Centre Brussels, Belgium
| | - Emeka O. Onwe
- Department of Paediatrics, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | - Robinson C. Onoh
- Department of Obstetrics and Gynaecology, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | - Uche S. Unigwe
- Department of Medicine, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
- University of Nigeria Teaching Hospital, Ituku Ozalla Enugu, Nigeria
| | - Nnennaya A. Ajayi
- Department of Medicine, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | - Ugochukwu U. Nnadozie
- Division of Plastic Surgery, Department of Surgery, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | - Chiedozie K. Ojide
- Department of Medical Microbiology, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
- Virology Laboratory, Virology Centre,AlexEkwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | - Damian U. Nwidi
- Department of Medicine, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | - Obumneme Ezeanosike
- Department of Paediatrics, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | - Emeka Sampson
- Ebonyi State Ministry of Health, Abakaliki, Ebonyi, Nigeria
| | - Azuka S. Adeke
- Department of Community Medicine, Alex Ekwueme Federal University Teaching Hospital Abakiliki, Abakaliki, Ebonyi, Nigeria
| | - Collins N. Ugwu
- Department of Medicine, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Ebonyi, Nigeria
| | | | | | | | - Anthony Reid
- Médecins sans Frontières Operational Research Unit (LuxOR), Operational Centre Brussels, Belgium
| |
Collapse
|
27
|
Lassa Virus Circulation in Small Mammal Populations in Bo District, Sierra Leone. BIOLOGY 2021; 10:biology10010028. [PMID: 33466234 PMCID: PMC7824740 DOI: 10.3390/biology10010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022]
Abstract
Simple Summary Lassa fever is a viral hemorrhagic fever caused by the Lassa virus (LASV). It is a deadly rodent-borne zoonosis with outbreaks occurring mostly in Sierra Leone, Guinea, Liberia, and Nigeria, in West Africa. In Sierra Leone, surveillance activities of LASV focus mainly on the Kenema area in the eastern region, known to be the epicentre. Little is known about the presence of the virus in the Bo area, where Mastomys natalensis and Rattus rattus share habitats with humans. Our study investigated the circulation and phylogeny of new LASV strains and virus seroprevalence in rodent populations of villages in Bo district. Information provided here will be of great importance in prioritizing areas for Lassa fever surveillance and preventive measures to mitigate future outbreaks. Our rodent longitudinal survey carried out over two years (2014–2016) identified Mastomys natalensis as the most prevalent species. While seropositive small mammals were found in every village, the four Mastomys natalensis rodents that tested PCR-positive for Lassa virus were found in only two villages. Phylogenetic analysis showed that these sequences belong to the Sierra Leonean clade, within lineage IV. In conclusion, LASV is present, with low circulation, in small mammals in rural settings around Bo. Abstract Lassa fever is a viral hemorrhagic fever caused by the Lassa virus LASV, which was first isolated in the rodent Mastomys natalensis in 1974 in Kenema, Sierra Leone. As little is known about the abundance and the presence of LASV in rodents living in the Bo area, we carried out a small mammal longitudinal population survey. A standardized trapping session was performed in various habitats and seasons in six villages over two years (2014–2016) and samples collected were tested for arenavirus IgG and LASV. A Bayesian phylogenetic analysis was performed on sequences identified by PCR. A total of 1490 small mammals were collected, and 16 rodent species were identified, with M. natalensis (355, 24%) found to be the most prevalent species. Forty-one (2.8%) samples were IgG positive, and 31 of these were trapped in homes and 10 in surrounding vegetation. Twenty-nine of 41 seropositive rodents were M. natalensis. We detected four LASV by PCR in two villages, all found in M. natalensis. Phylogenetic analysis showed that the sequences were distributed within the Sierra Leonean clade within lineage IV, distinguishing a Bo sub-clade older than a Kenema sub-clade. Compared to other settings, we found a low abundance of M. natalensis and a low circulation of LASV in rodents in villages around Bo district.
Collapse
|
28
|
Designing a multi-epitope vaccine against the Lassa virus through reverse vaccinology, subtractive proteomics, and immunoinformatics approaches. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Balogun OO, Akande OW, Hamer DH. Lassa Fever: An Evolving Emergency in West Africa. Am J Trop Med Hyg 2020; 104:466-473. [PMID: 33236712 PMCID: PMC7866331 DOI: 10.4269/ajtmh.20-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 11/07/2022] Open
Abstract
Lassa fever remains endemic in parts of West Africa and continues to pose as a quiescent threat globally. We described the background on Lassa fever, factors contributing to its emergence and spread, preventive measures, and potential solutions. This review provides a holistic and comprehensive source for academicians, clinicians, researchers, policymakers, infectious disease epidemiologists, virologists, and other stakeholders.
Collapse
Affiliation(s)
- Oluwafemi O. Balogun
- Massachusetts Department of Public Health, Boston, Massachusetts
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts
| | - Oluwatosin W. Akande
- Department of Epidemiology and Community Health, University of Ilorin Teaching Hospital, Ilorin, Kwara
| | - Davidson H. Hamer
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
30
|
Magassouba N, Koivogui E, Conde S, Kone M, Koropogui M, Soropogui B, Kekoura I, Hinzmann J, Günther S, Keita S, Duraffour S, Fichet-Calvet E. A Sporadic and Lethal Lassa Fever Case in Forest Guinea, 2019. Viruses 2020; 12:v12101062. [PMID: 32977629 PMCID: PMC7598168 DOI: 10.3390/v12101062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Lassa fever is a rodent-borne disease caused by Lassa virus (LASV). It causes fever, dizziness, vertigo, fatigue, coughing, diarrhea, internal bleeding and facial edema. The disease has been known in Guinea since 1960 but only anectodical acute cases have been reported to date. In January 2019, a 35-year-old man, a wood merchant from Kissidougou, Forest Guinea, presented himself at several health centers with persistent fever, frequent vomiting and joint pain. He was repeatedly treated for severe malaria, and died three weeks later in Mamou regional hospital. Differential diagnosis identified LASV as the cause of death. No secondary cases were reported. The complete LASV genome was obtained using next-generation sequencing. Phylogenetic analysis showed that this strain, namely the Kissidougou strain, belongs to the clade IV circulating in Guinea and Sierra Leone, and is thought to have emerged some 150 years ago. Due to the similarity of symptoms with malaria, Lassa fever is still a disease that is difficult to recognize and that may remain undiagnosed in health centers in Guinea.
Collapse
Affiliation(s)
- N’Faly Magassouba
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea; (N.M.); (M.K.); (B.S.); (I.K.)
| | - Enogo Koivogui
- Agence Nationale de Sécurité Sanitaire, Ministry of Health, Conakry, Guinea; (E.K.); (S.C.); (M.K.); (S.K.)
| | - Sory Conde
- Agence Nationale de Sécurité Sanitaire, Ministry of Health, Conakry, Guinea; (E.K.); (S.C.); (M.K.); (S.K.)
| | - Moussa Kone
- Agence Nationale de Sécurité Sanitaire, Ministry of Health, Conakry, Guinea; (E.K.); (S.C.); (M.K.); (S.K.)
| | - Michel Koropogui
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea; (N.M.); (M.K.); (B.S.); (I.K.)
| | - Barrè Soropogui
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea; (N.M.); (M.K.); (B.S.); (I.K.)
| | - Ifono Kekoura
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea; (N.M.); (M.K.); (B.S.); (I.K.)
| | - Julia Hinzmann
- Virology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.H.); (S.G.); (S.D.)
- Virology Department, German Center for Infection Research (DZIF), partner site Hamburg–Lübeck–Borstel–Riems, 20359 Hamburg, Germany
| | - Stephan Günther
- Virology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.H.); (S.G.); (S.D.)
- Virology Department, German Center for Infection Research (DZIF), partner site Hamburg–Lübeck–Borstel–Riems, 20359 Hamburg, Germany
| | - Sakoba Keita
- Agence Nationale de Sécurité Sanitaire, Ministry of Health, Conakry, Guinea; (E.K.); (S.C.); (M.K.); (S.K.)
| | - Sophie Duraffour
- Virology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.H.); (S.G.); (S.D.)
- Virology Department, German Center for Infection Research (DZIF), partner site Hamburg–Lübeck–Borstel–Riems, 20359 Hamburg, Germany
| | - Elisabeth Fichet-Calvet
- Virology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.H.); (S.G.); (S.D.)
- Virology Department, German Center for Infection Research (DZIF), partner site Hamburg–Lübeck–Borstel–Riems, 20359 Hamburg, Germany
- Correspondence: ; Tel.: +49-4042-818-942
| |
Collapse
|
31
|
Wolf T, Ellwanger R, Goetsch U, Wetzstein N, Gottschalk R. Fifty years of imported Lassa fever: a systematic review of primary and secondary cases. J Travel Med 2020; 27:5808990. [PMID: 32219400 DOI: 10.1093/jtm/taaa035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/08/2020] [Indexed: 01/15/2023]
Abstract
RATIONALE FOR SYSTEMATIC REVIEW Lassa fever is the most common cause of imported haemorrhagic fevers cases in non-endemic countries. As a disease with a high case fatality rate that has regularly caused clusters of nosocomial transmission in endemic areas, prompt diagnosis is vital. We conducted a systematic review of imported cases of the last 50 years with the aim of defining the clinical and epidemiological characteristics that will enhance early diagnosis, prompt initiation of treatment and an appropriate public health response to Lassa fever cases. METHODS We performed a retrospective, systematic review of 36 primary and two secondary cases of Lassa fever in non-endemic countries outside West Africa by searching the PubMed database. This yielded 56 relevant publications that were included in our analysis. RESULTS The case fatality rate of 35.1% for imported cases was higher than that reported for endemic countries. The majority of patients showed clinical features consistent with Lassa fever and had a typical exposure. There was a considerable delay in diagnosis in imported cases with high associated numbers of contacts. Ribavirin was rarely used for post-exposure prophylaxis. Only two secondary transmissions occurred. Thirty-one percent of patients received Lassa fever-specific treatment and five required intensive care. CONCLUSIONS Although importation of Lassa fever to non-endemic countries is a rare event, it has repeatedly happened over five decades. Suspicion of Lassa fever should be based on careful consideration of clinical features and exposure history in order to assist early diagnosis in returning travellers from West Africa.
Collapse
Affiliation(s)
- Timo Wolf
- Department of Internal Medicine II-Infectious Diseases, University Hospital Frankfurtxs, Frankfurt, Germany
| | - Regina Ellwanger
- Department of Internal Medicine II-Infectious Diseases, University Hospital Frankfurtxs, Frankfurt, Germany.,Health Protection Authority, Municipality of Frankfurt am Main, Frankfurt, Germany
| | - Udo Goetsch
- Health Protection Authority, Municipality of Frankfurt am Main, Frankfurt, Germany
| | - Nils Wetzstein
- Department of Internal Medicine II-Infectious Diseases, University Hospital Frankfurtxs, Frankfurt, Germany
| | - Rene Gottschalk
- Health Protection Authority, Municipality of Frankfurt am Main, Frankfurt, Germany.,Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Bösch NM, Borsa M, Greczmiel U, Morinaka BI, Gugger M, Oxenius A, Vagstad AL, Piel J. Landornamides: Antiviral Ornithine‐Containing Ribosomal Peptides Discovered through Genome Mining. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nina M. Bösch
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Mariana Borsa
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Ute Greczmiel
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Brandon I. Morinaka
- Department of Pharmacy National University of Singapore 18 Science Drive 4 Singapore 117543 Singapore
| | - Muriel Gugger
- Institut Pasteur Collection des Cyanobactéries Département de Microbiologie 75015 Paris France
| | - Annette Oxenius
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Anna L. Vagstad
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jörn Piel
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
33
|
Bösch NM, Borsa M, Greczmiel U, Morinaka BI, Gugger M, Oxenius A, Vagstad AL, Piel J. Landornamides: Antiviral Ornithine‐Containing Ribosomal Peptides Discovered through Genome Mining. Angew Chem Int Ed Engl 2020; 59:11763-11768. [DOI: 10.1002/anie.201916321] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/11/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Nina M. Bösch
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Mariana Borsa
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Ute Greczmiel
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Brandon I. Morinaka
- Department of Pharmacy National University of Singapore 18 Science Drive 4 Singapore 117543 Singapore
| | - Muriel Gugger
- Institut Pasteur Collection des Cyanobactéries Département de Microbiologie 75015 Paris France
| | - Annette Oxenius
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Anna L. Vagstad
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jörn Piel
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
34
|
Mateer EJ, Maruyama J, Card GE, Paessler S, Huang C. Lassa Virus, but Not Highly Pathogenic New World Arenaviruses, Restricts Immunostimulatory Double-Stranded RNA Accumulation during Infection. J Virol 2020; 94:e02006-19. [PMID: 32051278 PMCID: PMC7163147 DOI: 10.1128/jvi.02006-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/09/2020] [Indexed: 12/14/2022] Open
Abstract
The arenaviruses Lassa virus (LASV), Junín virus (JUNV), and Machupo virus (MACV) can cause severe and fatal diseases in humans. Although these pathogens are closely related, the host immune responses to these virus infections differ remarkably, with direct implications for viral pathogenesis. LASV infection is immunosuppressive, with a very low-level interferon response. In contrast, JUNV and MACV infections stimulate a robust interferon (IFN) response in a retinoic acid-inducible gene I (RIG-I)-dependent manner and readily activate protein kinase R (PKR), a known host double-stranded RNA (dsRNA) sensor. In response to infection with RNA viruses, host nonself RNA sensors recognize virus-derived dsRNA as danger signals and initiate innate immune responses. Arenavirus nucleoproteins (NPs) contain a highly conserved exoribonuclease (ExoN) motif, through which LASV NP has been shown to degrade virus-derived immunostimulatory dsRNA in biochemical assays. In this study, we for the first time present evidence that LASV restricts dsRNA accumulation during infection. Although JUNV and MACV NPs also have the ExoN motif, dsRNA readily accumulated in infected cells and often colocalized with dsRNA sensors. Moreover, LASV coinfection diminished the accumulation of dsRNA and the IFN response in JUNV-infected cells. The disruption of LASV NP ExoN with a mutation led to dsRNA accumulation and impaired LASV replication in minigenome systems. Importantly, both LASV NP and RNA polymerase L protein were required to diminish the accumulation of dsRNA and the IFN response in JUNV infection. For the first time, we discovered a collaboration between LASV NP ExoN and L protein in limiting dsRNA accumulation. Our new findings provide mechanistic insights into the differential host innate immune responses to highly pathogenic arenavirus infections.IMPORTANCE Arenavirus NPs contain a highly conserved DEDDh ExoN motif, through which LASV NP degrades virus-derived, immunostimulatory dsRNA in biochemical assays to eliminate the danger signal and inhibit the innate immune response. Nevertheless, the function of NP ExoN in arenavirus infection remains to be defined. In this study, we discovered that LASV potently restricts dsRNA accumulation during infection and minigenome replication. In contrast, although the NPs of JUNV and MACV also harbor the ExoN motif, dsRNA readily formed during JUNV and MACV infections, accompanied by IFN and PKR responses. Interestingly, LASV NP alone was not sufficient to limit dsRNA accumulation. Instead, both LASV NP and L protein were required to restrict immunostimulatory dsRNA accumulation. Our findings provide novel and important insights into the mechanism for the distinct innate immune response to these highly pathogenic arenaviruses and open new directions for future studies.
Collapse
Affiliation(s)
- Elizabeth J Mateer
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Junki Maruyama
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Galen E Card
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cheng Huang
- Department of Pathology, Galveston National Laboratory and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
35
|
Adaptive genetic diversification of Lassa virus associated with the epidemic split of north-central Nigerian and non-Nigerian lineages. Virology 2020; 545:10-15. [PMID: 32174454 DOI: 10.1016/j.virol.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Lassa fever (LF) is a viral hemorrhagic fever that causes high morbidity and severe mortality annually. The disease is endemic to two geographically separate areas within tropical West Africa, one in Nigeria and the second predominantly in Sierra Leone-Guinea-Liberia-Mali. Lassa virus (LASV), the causative agent of the disease, exhibits clear delineation of phylogeography between the endemic areas. In order to characterize the genetic nature of Nigerian-non-Nigerian epidemic split, we performed molecular epidemiological analyses on non-Nigerian isolates (lineage IV as well as lineage V) and their sister group from north-central Nigeria (lineage III). The results showed that adaptive genetic diversification has occurred between these currently circulating clusters in the spread process, and a number of replacement divergences have been fixed between these clusters on the viral RNA-dependent RNA polymerase (L protein). This study highlights the viral L protein could be a determinant factor for the epidemic split.
Collapse
|
36
|
Cai Y, Ye C, Cheng B, Nogales A, Iwasaki M, Yu S, Cooper K, Liu DX, Hart R, Adams R, Brady T, Postnikova EN, Kurtz J, St Claire M, Kuhn JH, de la Torre JC, Martínez-Sobrido L. A Lassa Fever Live-Attenuated Vaccine Based on Codon Deoptimization of the Viral Glycoprotein Gene. mBio 2020; 11:e00039-20. [PMID: 32098811 PMCID: PMC7042690 DOI: 10.1128/mbio.00039-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Lassa virus (LASV) is endemic in Western Africa and is estimated to infect hundreds of thousands of individuals annually. A considerable number of these infections result in Lassa fever (LF), which is associated with significant morbidity and a case-fatality rate as high as 69% among hospitalized confirmed patients. U.S. Food and Drug Administration-approved LF vaccines are not available. Current antiviral treatment is limited to off-label use of a nucleoside analogue, ribavirin, that is only partially effective and associated with significant side effects. We generated and characterized a recombinant LASV expressing a codon-deoptimized (CD) glycoprotein precursor gene (GPC), rLASV-GPC/CD. Comparison of growth kinetics and peak titers showed that rLASV-GPC/CD is slightly attenuated in cell culture compared to wild-type (WT) recombinant LASV (rLASV-WT). However, rLASV-GPC/CD is highly attenuated in strain 13 and Hartley guinea pigs, as reflected by the absence of detectable clinical signs in animals inoculated with rLASV-GPC/CD. Importantly, a single subcutaneous dose of rLASV-GPC/CD provides complete protection against an otherwise lethal exposure to LASV. Our results demonstrate the feasibility of implementing a CD approach for developing a safe and effective LASV live-attenuated vaccine candidate. Moreover, rLASV-GPC/CD might provide investigators with a tool to safely study LASV outside maximum (biosafety level 4) containment, which could accelerate the elucidation of basic aspects of the molecular and cell biology of LASV and the development of novel LASV medical countermeasures.IMPORTANCE Lassa virus (LASV) infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever (LF) cases. Licensed LF vaccines are not available, and anti-LF therapy is limited to off-label use of the nucleoside analog ribavirin with uncertain efficacy. We describe the generation of a novel live-attenuated LASV vaccine candidate. This vaccine candidate is based on mutating wild-type (WT) LASV in a key region of the viral genome, the glycoprotein precursor (GPC) gene. These mutations do not change the encoded GPC but interfere with its production in host cells. This mutated LASV (rLASV-GPC/CD) behaves like WT LASV (rLASV-WT) in cell culture, but in contrast to rLASV-WT, does not cause disease in inoculated guinea pigs. Guinea pigs immunized with rLASV-GPC/CD were protected against an otherwise lethal exposure to WT LASV. Our results support the testing of this candidate vaccine in nonhuman primate models ofLF.
Collapse
Affiliation(s)
- Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Chengjin Ye
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Benson Cheng
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Masaharu Iwasaki
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Ricky Adams
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Tyler Brady
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Elena N Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jonathan Kurtz
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Marisa St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
37
|
Duvignaud A, Jaspard M, Etafo IC, Serra B, Abejegah C, Gabillard D, Doutchi M, Alabi JF, Adedokun MA, Akinpelu AO, Oyegunle OO, Etafo J, Dede AO, Onyechi MN, Ireneh MU, Gbenga-Ayeni O, Fadiminiyi KG, Ehigbor PI, Ouattara E, Levy-Marchal C, Karcher S, N'guessan-Koffi L, Ahyi I, Amani E, Diabaté M, Siloué B, Schaeffer J, Augier A, Ogbaini-Emovon E, Salam AP, Horby P, Ahmed LA, Günther S, Adedosu AN, Anglaret X, Ayodeji OO, Malvy D. Lassa fever clinical course and setting a standard of care for future randomized trials: A protocol for a cohort study of Lassa-infected patients in Nigeria (LASCOPE). Travel Med Infect Dis 2020; 36:101557. [PMID: 31978611 DOI: 10.1016/j.tmaid.2020.101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lassa Fever (LF), is a severe viral disease prevalent in Western Africa. It is classified as a priority disease by the World Health Organization (WHO). Ribavirin is the recommended therapy despite weak evidence of its efficacy. Promising therapeutic agents are becoming available for evaluation in human. Before launching therapeutic trials, we need data on the evolution of the disease under the best possible conditions of care. METHODS We have initiated a prospective study in Nigeria to better understand the clinical course and prognostic factors of LF while implementing high quality standardized care. Inclusion criteria are: suspected or confirmed LF and informed consent. Participants are followed 60 days from admission and receive free of charge standardized supportive care and biological monitoring, as well as intravenous ribavirin for those with confirmed LF. Data are collected using standardized case report forms (CRF). Primary and secondary outcomes are fatality and severe morbidity, with special focus on acute kidney dysfunction and pregnancy complications. Factors associated with outcomes will be investigated. RESULTS The cohort is planned for 3 years. Inclusions started in April 2018 at the Federal Medical Center Owo in Ondo State. A second site will open in Nigeria in 2020 and discussions are underway to open a site in Benin. 150 to 200 new participants are expected per year. CONCLUSIONS This cohort will: provide evidence to standardize LF case management; provide key inputs to design future clinical trials of novel therapeutics; and establish clinical research teams capable of conducting such trials in LF-endemic areas. STUDY REGISTRATION The LASCOPE study was registered on ClinicalTrial.gov (NCT03655561).
Collapse
Affiliation(s)
- Alexandre Duvignaud
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Department of Infectious Diseases and Tropical Medicine, Division of Tropical Medicine and Clinical International Health, CHU de Bordeaux, Hôpital Pellegrin, Place Amélie Raba Léon, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Marie Jaspard
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire; The Alliance for International Medical Action, Route de l'Aéroport, Rue NG 96 BP: 15530, Dakar, Senegal.
| | - Ijeoma Chukwudumebi Etafo
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Béatrice Serra
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire; The Alliance for International Medical Action, Route de l'Aéroport, Rue NG 96 BP: 15530, Dakar, Senegal.
| | - Chukwuyem Abejegah
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Delphine Gabillard
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Mahamadou Doutchi
- The Alliance for International Medical Action, Route de l'Aéroport, Rue NG 96 BP: 15530, Dakar, Senegal; Department of Infectious Diseases, Centre Hospitalier National de Zinder, Zinder, Niger.
| | - Josephine Funmilola Alabi
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Moses Adeniyi Adedokun
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Adewale Oladayo Akinpelu
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Oyebimpe Ope Oyegunle
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Johnson Etafo
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Ayoleyi Omowunmi Dede
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Macdonald Nonso Onyechi
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Moronke Uzuajemeh Ireneh
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Olufunke Gbenga-Ayeni
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Kehinde Gbemisola Fadiminiyi
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Patience Iziegbe Ehigbor
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Eric Ouattara
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Claire Levy-Marchal
- The Alliance for International Medical Action, Route de l'Aéroport, Rue NG 96 BP: 15530, Dakar, Senegal.
| | - Sophie Karcher
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Larissa N'guessan-Koffi
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Irmine Ahyi
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Elvis Amani
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Mamoudou Diabaté
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Bertine Siloué
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Justine Schaeffer
- The Alliance for International Medical Action, Route de l'Aéroport, Rue NG 96 BP: 15530, Dakar, Senegal.
| | - Augustin Augier
- The Alliance for International Medical Action, Route de l'Aéroport, Rue NG 96 BP: 15530, Dakar, Senegal.
| | - Ephraim Ogbaini-Emovon
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, KM 87 Benin Auchi Rd, Irrua, Edo State, Nigeria.
| | - Alex Paddy Salam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, United Kingdom.
| | - Peter Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, United Kingdom.
| | - Liasu Adeagbo Ahmed
- Department of Family Medicine, Owo Federal Medical Centre, Michael Adekun Ajasin Road, PMB, 1053, Owo, Ondo State, Nigeria.
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany.
| | - Akinola Nelson Adedosu
- Viral Hemorrhagic Fever Laboratory, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Xavier Anglaret
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| | - Oladele Oluwafemi Ayodeji
- Lassa Fever Response Team, Infection Control and Research Centre, Federal Medical Centre Owo, Michael Adekun Ajasin Road, PMB 1053, Owo, Ondo State, Nigeria.
| | - Denis Malvy
- Inserm U1219, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France; Department of Infectious Diseases and Tropical Medicine, Division of Tropical Medicine and Clinical International Health, CHU de Bordeaux, Hôpital Pellegrin, Place Amélie Raba Léon, 33076, Bordeaux, France; Programme PAC-CI/ANRS Research Site, CHU de Treichville, 18 BP 1954 Abidjan 18, Abidjan, Côte d'Ivoire.
| |
Collapse
|
38
|
Cubitt B, Ortiz-Riano E, Cheng BY, Kim YJ, Yeh CD, Chen CZ, Southall NOE, Zheng W, Martinez-Sobrido L, de la Torre JC. A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity. Antiviral Res 2020; 173:104667. [PMID: 31786250 PMCID: PMC6954049 DOI: 10.1016/j.antiviral.2019.104667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
The mammarenavirus Lassa (LASV) is highly prevalent in West Africa where it infects several hundred thousand individuals annually resulting in a high number of Lassa fever (LF) cases, a febrile disease associated with high morbidity and significant mortality. Mounting evidence indicates that the worldwide-distributed prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. There are not Food and Drug Administration (FDA) licensed vaccines and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that is only partially effective and can cause significant side effects. Therefore, there is an unmet need for novel antiviral drugs to combat LASV. This task would be facilitated by the implementation of high throughput screens (HTS) to identify inhibitors of the activity of the virus ribonucleoprotein (vRNP) responsible for directing virus RNA genome replication and gene transcription. The use of live LASV for this purpose is jeopardized by the requirement of biosafety level 4 (BSL4) containment. We have developed a virus-free cell platform, where expression levels of reporter genes serve as accurate surrogates of vRNP activity, to develop cell-based assays compatible with HTS to identify inhibitors of LASV and LCMV mammarenavirus vRNP activities.
Collapse
Affiliation(s)
- Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emilio Ortiz-Riano
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Benson Yh Cheng
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Charles D Yeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - N O E Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Juan C de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
39
|
Babalola SO, Babatunde JA, Remilekun OM, Amaobichukwu AR, Abiodun AM, Jide I, Adeshina ASI, Chikwe I, Aremu OS. Lassa virus RNA detection from suspected cases in Nigeria, 2011-2017. Pan Afr Med J 2019; 34:76. [PMID: 31819792 PMCID: PMC6884721 DOI: 10.11604/pamj.2019.34.76.16425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/02/2019] [Indexed: 11/11/2022] Open
Abstract
Introduction The diagnosis of Lassa fever is crucial to confirm cases, as well as to control/prevent nosocomial and community-based transmission and initiation of treatment, which is still limited in the country. Thus, we aimed at providing some information on the laboratory detection of Lassa from suspected cases in Nigeria. Methods This was a retrospective study of seasonal Lassa fever outbreaks data from 1,263 samples analyzed using Reverse Transcription-Polymerase Chain Reaction (RT-PCR) at the Virology Research Laboratory, College of Medicine, University of Lagos/Lagos University Teaching Hospital between year 2011 and 2017. Data were analyzed using the 21st edition of SPSS statistical software (2015). Results The RT-PCR test confirmed the presence of Lassa in 112 (8.9%) comprising 61 (54.4%) males, 48 (42.9%) females and 3 (2.7%) individuals without gender information. Those aged between 18 and 49 years were mostly affected. There was a decline in the detection of Lassa from 4.7% in 2011/2012 to less than 1% by the 2014/2015. However, during the 2015/2016 and 2016/2017 seasons the detection rates increased to 10.4% and 15.1% respectively. The Northern region of Nigeria reported high confirmed cases of Lassa. The South Western region also witnessed an increased Lassa fever positivity rate of 13.4% of which Lagos and Ogun states being the focal state of Lassa activity in the region. Conclusion These established the need for heightening the continued surveillance for Lassa as well as the establishment of other testing facilities within these endemic regions for prompt diagnosis of Lassa fever.
Collapse
Affiliation(s)
- Salu Olumuyiwa Babalola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos (CMUL), PM.B. 12003, Lagos, Nigeria.,Centre for Human and Zoonotic Virology (CHAZVY), Central Research Laboratory, College of Medicine, University of Lagos (CMUL)/Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - James Ayorinde Babatunde
- Centre for Human and Zoonotic Virology (CHAZVY), Central Research Laboratory, College of Medicine, University of Lagos (CMUL)/Lagos University Teaching Hospital (LUTH), Lagos, Nigeria.,Department of Biochemistry, College of Medicine, University of Lagos, PM.B. 12003, Lagos, Nigeria
| | - Orenolu Mercy Remilekun
- Centre for Human and Zoonotic Virology (CHAZVY), Central Research Laboratory, College of Medicine, University of Lagos (CMUL)/Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Anyanwu Roosevelt Amaobichukwu
- Centre for Human and Zoonotic Virology (CHAZVY), Central Research Laboratory, College of Medicine, University of Lagos (CMUL)/Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Abdullah Mariam Abiodun
- Centre for Human and Zoonotic Virology (CHAZVY), Central Research Laboratory, College of Medicine, University of Lagos (CMUL)/Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Idris Jide
- Honourable Commissioner for Health, Lagos State Ministry of Health, Alausa, Ikeja, Lagos, Nigeria
| | - Abdus-Salam Ismail Adeshina
- Epidemiology Unit, Directorate of Disease Control, Lagos State Ministry of Health, Alausa, Ikeja, Lagos, Nigeria
| | - Ihekweazu Chikwe
- Nigerian Centre for Disease Control (NCDC), Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Omilabu Sunday Aremu
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos (CMUL), PM.B. 12003, Lagos, Nigeria.,Centre for Human and Zoonotic Virology (CHAZVY), Central Research Laboratory, College of Medicine, University of Lagos (CMUL)/Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| |
Collapse
|
40
|
Differential Immune Responses to Hemorrhagic Fever-Causing Arenaviruses. Vaccines (Basel) 2019; 7:vaccines7040138. [PMID: 31581720 PMCID: PMC6963578 DOI: 10.3390/vaccines7040138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause hemorrhagic fever outbreaks in South America. While these arenaviruses are highly pathogenic in humans, recent evidence indicates that pathogenic OW and NW arenaviruses interact with the host immune system differently, which may have differential impacts on viral pathogenesis. Severe Lassa fever cases are characterized by profound immunosuppression. In contrast, pathogenic NW arenavirus infections are accompanied by elevated levels of Type I interferon and pro-inflammatory cytokines. This review aims to summarize recent findings about interactions of these pathogenic arenaviruses with the innate immune machinery and the subsequent effects on adaptive immunity, which may inform the development of vaccines and therapeutics against arenavirus infections.
Collapse
|
41
|
Eberhardt KA, Mischlinger J, Jordan S, Groger M, Günther S, Ramharter M. Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis. Int J Infect Dis 2019; 87:15-20. [PMID: 31357056 DOI: 10.1016/j.ijid.2019.07.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/14/2019] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Lassa fever (LF) causes annual outbreaks in endemic regions with high mortality of symptomatic patients. Ribavirin is recommended as standard treatment for LF in national and international guidelines but the evidence base for this recommendation has been questioned recently. METHODS We conducted a systematic review and included 6 studies providing efficacy data of ribavirin treatment for LF (PROSPERO protocol CRD42018103994). RESULTS Besides retrospective case series, the evidence mostly relies on a single prospective clinical trial with critical risk of bias. In this trial, LF associated mortality is reduced for patients with elevated aspartate aminotransferase (AST) when treated with ribavirin (OR 0.41, 95% CI 0.23-0.73), while mortality is higher for patients without elevated AST (OR 2.37, 95% CI 1.07-5.25). CONCLUSIONS Based on the available data, current treatment guidelines may therefore put patients with mild LF at increased risk of death. The role of ribavirin in the treatment of LF requires urgent reassessment.
Collapse
Affiliation(s)
- Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Mischlinger
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Jordan
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mirjam Groger
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michael Ramharter
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Kim YJ, Cubitt B, Chen E, Hull MV, Chatterjee AK, Cai Y, Kuhn JH, de la Torre JC. The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antiviral Res 2019; 169:104558. [PMID: 31302150 DOI: 10.1016/j.antiviral.2019.104558] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Several mammarenaviruses, chiefly Lassa virus (LASV) in Western Africa and Junín virus (JUNV) in the Argentine Pampas, cause severe disease in humans and pose important public health problems in their endemic regions. Moreover, mounting evidence indicates that the worldwide-distributed mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The lack of licensed mammarenavirus vaccines and partial efficacy of current anti-mammarenavirus therapy limited to an off-label use of the nucleoside analog ribavirin underscore an unmet need for novel therapeutics to combat human pathogenic mammarenavirus infections. This task can be facilitated by the implementation of "drug repurposing" strategies to reduce the time and resources required to advance identified antiviral drug candidates into the clinic. We screened a drug repurposing library of 11,968 compounds (Repurposing, Focused Rescue and Accelerated Medchem [ReFRAME]) and identified several potent inhibitors of LCMV multiplication that had also strong anti-viral activity against LASV and JUNV. Our findings indicate that enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis, the pro-viral MCL1 apoptosis regulator, BCL2 family member protein and the mitochondrial electron transport complex III, play critical roles in the completion of the mammarenavirus life cycle, suggesting they represent potential druggable targets to counter human pathogenic mammarenavirus infections.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emily Chen
- California Institute for Biomedical Research, La Jolla, CA, 92037, USA
| | - Mitchell V Hull
- California Institute for Biomedical Research, La Jolla, CA, 92037, USA
| | | | - Yingyun Cai
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Juan C de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
43
|
Keïta M, Kizerbo GA, Subissi L, Traoré FA, Doré A, Camara MF, Barry A, Pallawo R, Baldé MO, Magassouba N, Djingarey MH, Fall IS. Investigation of a cross-border case of Lassa fever in West Africa. BMC Infect Dis 2019; 19:606. [PMID: 31291900 PMCID: PMC6621975 DOI: 10.1186/s12879-019-4240-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022] Open
Abstract
Background Infectious disease prevention and control strategies require a coordinated, transnational approach. To establish core capacities of the International Health Regulations (IHR), the World Health Organization (WHO) developed the Integrated Diseases Surveillance and Response (IDSR) strategy. Epidemic-prone Lassa fever, caused by Lassa virus, is an endemic disease in the West African countries of Ghana, Guinea, Mali, Benin, Liberia, Sierra Leone, Togo and Nigeria. It’s one of the major public health threats in these countries. Here it is reported an epidemiological investigation of a cross-border case of Lassa fever, which demonstrated the importance of strengthened capacities of IHR and IDSR. Case presentation On January 9th, 2018 a 35-year-old Guinean woman with fever, neck pain, body pain, and vomiting went to a hospital in Ganta, Liberia. Over the course of her illness, the case visited various health care facilities in both Liberia and Guinea. A sample collected on January 10th was tested positive for Lassa virus by RT-PCR in a Liberian laboratory. The Guinean Ministry of Health (MoH) was officially informed by WHO Country Office for Guinea and for Liberia. Conclusion This case report revealed how an epidemic-prone disease such as Lassa fever can rapidly spread across land borders and how such threat can be quickly controlled with communication and collaboration within the IHR framework.
Collapse
Affiliation(s)
- Mory Keïta
- Organisation Mondiale de la Santé - Bureau Régional de l'Afrique, BP: 06, Cité du Djoué, Brazzaville, Congo.
| | - Georges Alfred Kizerbo
- Organisation Mondiale de la Santé - Bureau de Pays de la Guinée, BP: 817, Immeuble BAH, Quartier Cameroun, Conakry, Guinea
| | - Lorenzo Subissi
- Sciensano, 1050 Ixelles, Rue Juliette Wytsman 14, Brussels, Belgium
| | - Fodé Amara Traoré
- Université Gamal Abdel Nasser, Faculté des Sciences et Techniques de la Santé, BP: 1147, Commune de Dixinn, Route de Donka, Quartier Landréah, Conakry, Guinea
| | - Ahmadou Doré
- Université Gamal Abdel Nasser, Laboratoire National des Fièvres Hémorragiques de Guinée, Carrefour Nongo-Conteyah, Conakry, Guinea
| | - Mohamed Fode Camara
- Ministère de la Santé, BP: 585, Boulevard du commerce - Almamya Kaloum, Conakry, Guinea
| | - Ahmadou Barry
- Organisation Mondiale de la Santé - Bureau de Pays de la Guinée, BP: 817, Immeuble BAH, Quartier Cameroun, Conakry, Guinea
| | - Raymond Pallawo
- Organisation Mondiale de la Santé - Bureau de Pays de la Guinée, BP: 817, Immeuble BAH, Quartier Cameroun, Conakry, Guinea
| | - Mamadou Oury Baldé
- Organisation Mondiale de la Santé - Bureau de Pays de la Guinée, BP: 817, Immeuble BAH, Quartier Cameroun, Conakry, Guinea
| | - Nfaly Magassouba
- Université Gamal Abdel Nasser, Faculté des Sciences et Techniques de la Santé, BP: 1147, Commune de Dixinn, Route de Donka, Quartier Landréah, Conakry, Guinea.,Université Gamal Abdel Nasser, Laboratoire National des Fièvres Hémorragiques de Guinée, Carrefour Nongo-Conteyah, Conakry, Guinea
| | - Mamoudou Harouna Djingarey
- Organisation Mondiale de la Santé - Bureau Régional de l'Afrique, BP: 06, Cité du Djoué, Brazzaville, Congo
| | - Ibrahima Socé Fall
- Organisation Mondiale de la Santé - Bureau Régional de l'Afrique, BP: 06, Cité du Djoué, Brazzaville, Congo
| |
Collapse
|
44
|
[Arenavirus research and antiviral candidate]. Uirusu 2019; 68:51-62. [PMID: 31105135 DOI: 10.2222/jsv.68.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arenavirus is a genetic term for viruses belonging to the family Arenaviridae and is presented from lymphocytic choriomeningitis virus (LCMV), which shows almost no pathogenicity to humans, to Lassa virus, Junin virus, Machupo virus, Chapare virus, Lujo virus, Sabia virus, and Guanarito virus, which shows high pathogenicity to humans. These viruses except for LCMV are risk group 4 pathogens specified by World Health Organization. Based on this designation, it is designated as Class I pathogens in Japan. Although there have been no reports excluding one imported case of the Lassa fever patient, it is not surprising whenever imported cases occur in our country. Considering the disease severity and mortality rate, it is an urgent matter to develop vaccines and therapeutic drugs in endemic areas, and maintenances of these are also important in countries other than endemic areas. However, basic research on highly pathogenic arenavirus infections and development of therapeutic drugs are not easily progressed, because handling in highly safe research facilities is indispensable. In this article, we will outline the current knowledge from the recent basic research on arenavirus to the development situation of antivirals against arenaviruses.
Collapse
|
45
|
Dedkov VG, Magassouba N'F, Safonova MV, Naydenova EV, Ayginin AA, Soropogui B, Kourouma F, Camara AB, Camara J, Kritzkiy AA, Tuchkov IV, Shchelkanov MY, Maleev VV. Development and Evaluation of a One-Step Quantitative RT-PCR Assay for Detection of Lassa Virus. J Virol Methods 2019; 271:113674. [PMID: 31170468 PMCID: PMC7113850 DOI: 10.1016/j.jviromet.2019.113674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 11/01/2022]
Abstract
Lassa fever is a severe viral hemorrhagic illness caused by Lassa virus. Based on estimates, the number of LASV infections ranges from 300,000 to 500,000 cases in endemic areas with a fatality rate of 1%. Development of fast and sensitive tools for the control and prevention of Lassa virus infection as well as for clinical diagnostics of Lassa fever are crucial. Here we reported development and evaluation of a one-step quantitative RT-qPCR assay for the Lassa virus detection - LASV-Fl. This assay is suitable for the detection of lineages I-IV of Lassa virus. The limit of detection of the assay ranged from 103 copies/ml to 105 copies/ml and has 96.4% diagnostic sensitivity, whereas analytical and diagnostic specificities both were 100%. Serum, whole blood and tissue are suitable for use with the assay. The assay contains all the necessary components to perform the analysis, including an armored positive control (ARC+) and an armored internal control (IC). The study was done during the mission of specialized anti-epidemic team of the Russian Federation (SAET) in the Republic of Guinea in 2015-2018. Based on sequencing data, LASV-specific assay was developed using synthetic MS2-phage-based armored RNA particles, RNA from Lassa virus strain Josiah, and further, evaluated in field conditions using samples from patients and Mastomys natalensis rodents.
Collapse
Affiliation(s)
- Vladimir G Dedkov
- Pasteur Institute, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Saint-Petersburg, Russia; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - N 'Faly Magassouba
- Laboratorie de Virologic B1568, Université Gamal Abdel Nasser de Conakry, Projet de Recherche sur les Fièvres Hémorragiques en Guinée, Conakry, Guinea
| | - Marina V Safonova
- Anti-Plague Center, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Ekaterina V Naydenova
- Russian Research Anti-Plague Institute «Microbe», Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Saratov, Russia
| | - Andrey A Ayginin
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Barre Soropogui
- Laboratorie de Virologic B1568, Université Gamal Abdel Nasser de Conakry, Projet de Recherche sur les Fièvres Hémorragiques en Guinée, Conakry, Guinea
| | - Fode Kourouma
- Laboratorie de Virologic B1568, Université Gamal Abdel Nasser de Conakry, Projet de Recherche sur les Fièvres Hémorragiques en Guinée, Conakry, Guinea
| | - Amara B Camara
- Laboratorie de Virologic B1568, Université Gamal Abdel Nasser de Conakry, Projet de Recherche sur les Fièvres Hémorragiques en Guinée, Conakry, Guinea
| | - Jacob Camara
- Laboratorie de Virologic B1568, Université Gamal Abdel Nasser de Conakry, Projet de Recherche sur les Fièvres Hémorragiques en Guinée, Conakry, Guinea
| | - Andrey A Kritzkiy
- Russian Research Anti-Plague Institute «Microbe», Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Saratov, Russia
| | - Igor V Tuchkov
- Russian Research Anti-Plague Institute «Microbe», Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Saratov, Russia
| | | | - Victor V Maleev
- Central Research Institute for Epidemiology, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| |
Collapse
|
46
|
Grahn A, Bråve A, Tolfvenstam T, Studahl M. Absence of Nosocomial Transmission of Imported Lassa Fever during Use of Standard Barrier Nursing Methods. Emerg Infect Dis 2019; 24:978-987. [PMID: 29775178 PMCID: PMC6004835 DOI: 10.3201/eid2406.172097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nosocomial transmission of Lassa virus (LASV) is reported to be low when care for the index patient includes proper barrier nursing methods. We investigated whether asymptomatic LASV infection occurred in healthcare workers who used standard barrier nursing methods during the first 15 days of caring for a patient with Lassa fever in Sweden. Of 76 persons who were defined as having been potentially exposed to LASV, 53 provided blood samples for detection of LASV IgG. These persons also responded to a detailed questionnaire to evaluate exposure to different body fluids from the index patient. LASV-specific IgG was not detected in any of the 53 persons. Five of 53 persons had not been using proper barrier nursing methods. Our results strengthen the argument for a low risk of secondary transmission of LASV in humans when standard barrier nursing methods are used and the patient has only mild symptoms.
Collapse
|
47
|
Dan-Nwafor CC, Ipadeola O, Smout E, Ilori E, Adeyemo A, Umeokonkwo C, Nwidi D, Nwachukwu W, Ukponu W, Omabe E, Anaebonam U, Igwenyi N, Igbodo G, Eteng W, Uzoma I, Saleh M, Agboeze J, Mutbam S, de Gooyer T, Short R, Aniaku E, Onoh R, Ogah E, Nguku P, Oladejo J, Peter C, Ojo O, Ihekweazu C. A cluster of nosocomial Lassa fever cases in a tertiary health facility in Nigeria: Description and lessons learned, 2018. Int J Infect Dis 2019; 83:88-94. [PMID: 30930184 DOI: 10.1016/j.ijid.2019.03.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Lassa fever is an acute viral haemorrhagic disease endemic in Nigeria. The 2018 Lassa fever outbreak in Nigeria was unprecedented, with 8% of all cases occurring among healthcare workers (HCWs). A disproportionately high number of these infections occurred in HCWs working in a tertiary health facility in Nigeria. This paper describes the cluster of Lassa fever infections among HCWs in a treatment centre and the lessons learnt. METHODS We analysed clinical, epidemiological and laboratory data from surveillance and laboratory records kept during the 2018 outbreak. Interviews were conducted with surviving HCWs using a questionnaire developed specifically for the investigation of Lassa fever infections in HCWs. Descriptive analysis of the data was performed in Microsoft excel. RESULTS The index case was a 15-year-old male who presented at the health facility with fever and uncontrolled nasopharyngeal bleeding, following a recent uvulectomy by a traditional healer. Overall, 16 HCWs were affected (15 confirmed and 1 probable) with five deaths (CFR-31.6%). Of the 15 confirmed cases, five (33.3%) were asymptomatic. Nine HCWs were direct contacts of the index case; the remaining six HCWs had no direct contact with the index case. HCW interviews identified a low index of suspicion for Lassa fever leading to inadequate infection prevention and control (IPC) practices as possible contributing factors to nosocomial transmission. CONCLUSION Maintaining a high index of suspicion for Lassa fever in all patients, especially in endemic areas, is essential in adhering to adequate IPC practices in health facilities in order to prevent nosocomial transmission of Lassa fever among HCWs. There is a need to continually train and sensitise HCWs on strict adherence to IPC measures while providing care, irrespective of a patient's provisional diagnosis.
Collapse
Affiliation(s)
- Chioma C Dan-Nwafor
- Nigeria Centre for Disease Control, Abuja, Nigeria; African Field Epidemiology Network, Nigeria.
| | | | | | - Elsie Ilori
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | | | - Damian Nwidi
- Federal Teaching hospital Abakiliki Ebonyi State, Nigeria
| | - Williams Nwachukwu
- Nigeria Centre for Disease Control, Abuja, Nigeria; African Field Epidemiology Network, Nigeria
| | - Winifred Ukponu
- University of Maryland Abuja, Nigeria; Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Emeka Omabe
- Federal Teaching hospital Abakiliki Ebonyi State, Nigeria
| | | | - Nneka Igwenyi
- Federal Teaching hospital Abakiliki Ebonyi State, Nigeria
| | | | - Womi Eteng
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | | | - Joseph Agboeze
- Federal Teaching hospital Abakiliki Ebonyi State, Nigeria
| | | | | | | | | | - Robinson Onoh
- Federal Teaching hospital Abakiliki Ebonyi State, Nigeria
| | - Emeka Ogah
- Federal Teaching hospital Abakiliki Ebonyi State, Nigeria
| | | | - John Oladejo
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Olubunmi Ojo
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | | |
Collapse
|
48
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
49
|
Mazzola LT, Kelly-Cirino C. Diagnostics for Lassa fever virus: a genetically diverse pathogen found in low-resource settings. BMJ Glob Health 2019; 4:e001116. [PMID: 30899575 PMCID: PMC6407561 DOI: 10.1136/bmjgh-2018-001116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Lassa fever virus (LASV) causes acute viral haemorrhagic fever with symptoms similar to those seen with Ebola virus infections. LASV is endemic to West Africa and is transmitted through contact with excretions of infected Mastomys natalensis rodents and other rodent species. Due to a high fatality rate, lack of treatment options and difficulties with prevention and control, LASV is one of the high-priority pathogens included in the WHO R&D Blueprint. The WHO LASV vaccine strategy relies on availability of effective diagnostic tests. Current diagnostics for LASV include in-house and commercial (primarily research-only) laboratory-based serological and nucleic acid amplification tests. There are two commercially available (for research use only) rapid diagnostic tests (RDTs), and a number of multiplex panels for differential detection of LASV infection from other endemic diseases with similar symptoms have been evaluated. However, a number of diagnostic gaps remain. Lineage detection is a challenge due to the genomic diversity of LASV, as pan-lineage sensitivity for both molecular and immunological detection is necessary for surveillance and outbreak response. While pan-lineage ELISA and RDTs are commercially available (for research use only), validation and external quality assessment (EQA) is needed to confirm detection sensitivity for all known or relevant strains. Variable sensitivity of LASV PCR tests also highlights the need for improved validation and EQA. Given that LASV outbreaks typically occur in low-resource settings, more options for point-of-care testing would be valuable. These requirements should be taken into account in target product profiles for improved LASV diagnostics.
Collapse
|
50
|
Tang K, He S, Zhang X, Guo J, Chen Q, Yan F, Banadyga L, Zhu W, Qiu X, Guo Y. Tangeretin, an extract from Citrus peels, blocks cellular entry of arenaviruses that cause viral hemorrhagic fever. Antiviral Res 2018; 160:87-93. [PMID: 30339847 DOI: 10.1016/j.antiviral.2018.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
Abstract
The family Arenaviridae consists of numerous enveloped RNA viruses with ambisense coding strategies. Eight arenaviruses, including Lassa virus, are known to cause severe and fatal viral hemorrhagic fever (VHF) in humans, yet vaccines and treatments for disease caused by arenaviruses are very limited. In this study, we screened a natural product library consisting of 131 compounds and identified tangeretin, a polymethoxylated flavone widely present in citrus fruit peels, as a Lassa virus entry inhibitor that blocks viral fusion. Further analyses demonstrated the efficacy of tangeretin against seven other VHF-causing arenaviruses, suggesting that this compound, which has a history of medical usage, could be used to develop an effective therapeutic to treat infection and disease caused by Lassa virus and related viruses.
Collapse
Affiliation(s)
- Ke Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Xiaoyu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiamei Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Feihu Yan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, 130122, China
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|