1
|
Li M, Zhu G, Liu Z, Li L, Wang S, Liu Y, Lu W, Zeng Y, Cheng X, Shen W. Hydrogen Fertilization with Hydrogen Nanobubble Water Improves Yield and Quality of Cherry Tomatoes Compared to the Conventional Fertilizers. PLANTS (BASEL, SWITZERLAND) 2024; 13:443. [PMID: 38337976 PMCID: PMC10857181 DOI: 10.3390/plants13030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Although hydrogen gas (H2)-treated soil improves crop biomass, this approach appears difficult for field application due to the flammability of H2 gas. In this report, we investigated whether and how H2 applied in hydrogen nanobubble water (HNW) improves the yield and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) with and without fertilizers. Two-year-long field trials showed that compared to corresponding controls, HNW without and with fertilizers improved the cherry tomato yield per plant by 39.7% and 26.5% in 2021 (Shanghai), respectively, and by 39.4% and 28.2% in 2023 (Nanjing), respectively. Compared to surface water (SW), HNW increased the soil available nitrogen (N), phosphorus (P), and potassium (K) consumption regardless of fertilizer application, which may be attributed to the increased NPK transport-related genes in roots (LeAMT2, LePT2, LePT5, and SlHKT1,1). Furthermore, HNW-irrigated cherry tomatoes displayed a higher sugar-acid ratio (8.6%) and lycopene content (22.3%) than SW-irrigated plants without fertilizers. Importantly, the beneficial effects of HNW without fertilizers on the yield per plant (9.1%), sugar-acid ratio (31.1%), and volatiles (20.0%) and lycopene contents (54.3%) were stronger than those achieved using fertilizers alone. In short, this study clearly indicated that HNW-supplied H2 not only exhibited a fertilization effect on enhancing the tomato yield, but also improved the fruit's quality with a lower carbon footprint.
Collapse
Affiliation(s)
- Min Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Guanjie Zhu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Ziyu Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Shu Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Yuhao Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Wei Lu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Yan Zeng
- Life Science Group, Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (X.C.)
| | - Xu Cheng
- Life Science Group, Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (X.C.)
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| |
Collapse
|
2
|
Li S, Li J, Wang Q, Shi R, Yang X, Zhang Q. Determination of soluble solids content of multiple varieties of tomatoes by full transmission visible-near infrared spectroscopy. FRONTIERS IN PLANT SCIENCE 2024; 15:1324753. [PMID: 38322826 PMCID: PMC10844474 DOI: 10.3389/fpls.2024.1324753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Introduction Soluble solids content (SSC) is a pivotal parameter for assessing tomato quality. Traditional measurement methods are both destructive and time-consuming. Methods To enhance accuracy and efficiency in SSC assessment, this study employs full transmission visible and near-infrared (Vis-NIR) spectroscopy and multi-point spectral data collection techniques to quantitatively analyze SSC in two tomato varieties ('Provence' and 'Jingcai No.8' tomatoes). Preprocessing of the multi-point spectra is carried out using a weighted averaging approach, aimed at noise reduction, signal-to-noise ratio improvement, and overall data quality enhancement. Taking into account the potential influence of various detection orientations and preprocessing methods on model outcomes, we investigate the combination of partial least squares regression (PLSR) with two orientations (O1 and O2) and two preprocessing techniques (Savitzky-Golay smoothing (SG) and Standard Normal Variate transformation (SNV)) in the development of SSC prediction models. Results The model achieved the best results in the O2 orientation and SNV pretreatment as follows: 'Provence' tomato (Rp = 0.81, RMSEP = 0.69°Brix) and 'Jingcai No.8' tomatoes (Rp = 0.84, RMSEP = 0.64°Brix). To further optimize the model, characteristic wavelength selection is introduced through Least Angle Regression (LARS) with L1 and L2 regularization. Notably, when λ=0.004, LARS-L1 produces superior results ('Provence' tomato: Rp = 0.95, RMSEP = 0.35°Brix; 'Jingcai No.8' tomato: Rp = 0.96, RMSEP = 0.33°Brix). Discussion This study underscores the effectiveness of full transmission Vis-NIR spectroscopy in predicting SSC in different tomato varieties, offering a viable method for accurate and swift SSC assessment in tomatoes.
Collapse
Affiliation(s)
- Sheng Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Engineering Research Center for Production Mechanization of Oasis Characteristic Cash Crop, Ministry of Education, Shihezi, China
| | - Jiangbo Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qingyan Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ruiyao Shi
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xuhai Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Engineering Research Center for Production Mechanization of Oasis Characteristic Cash Crop, Ministry of Education, Shihezi, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Engineering Research Center for Production Mechanization of Oasis Characteristic Cash Crop, Ministry of Education, Shihezi, China
| |
Collapse
|
3
|
Yan Y, Wen Y, Wang Y, Wu X, Li X, Wang C, Zhao Y. Metabolome integrated with transcriptome reveals the mechanism of three different color formations in Taxus mairei arils. FRONTIERS IN PLANT SCIENCE 2024; 15:1330075. [PMID: 38322825 PMCID: PMC10844565 DOI: 10.3389/fpls.2024.1330075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Maire yew (Taxus mairei), an evergreen conifer, has high ornamental and medicinal value. The arils of this species has three different colors. However, the variation mechanisms of arils color formation remains unclear. Here, the gene expression and metabolite concentration were profiled for red (RTM), yellow (YTM), and purple (PTM) arils in different developmental stages. A total of 266 flavonoids and 35 carotenoids were identified. The predominant pigments identified in YTM were epiafzelechin, lutein, and β-Cryptoxanthin, while malvidin-3,5-di-O-glucoside and apigenin played crucial roles in PTM. And significant differential expression was observed among the HCT, DFR, LAR, ANS, crtB, NCED, and CCoAOMT genes across different color arils. During the maturation of yellow arils, the upregulation of HCT was strongly correlated with the accumulation of epiafzelechin. The diminished expression of DFR, LAR, and ANS seemed to inhibit the production of delphinidin-3-O-rutinoside. The decrease in crtB expression and concurrent increase in NCED expression potentially regulate the heightened accumulation of lutein. Meanwhile, the accumulation of β-cryptoxanthin appeared seemed to be positively influenced by NCED. As aril turning purple, the decreased expression of CCoAOMT seemed to facilitate the synthesis of apigenin. The substantial upregulation of DFR promoted the production of malvidin-3,5-di-O-glucoside. Additionally, the overexpression of MYBs may plays the important role in regulating the formation of different colored arils. In total, 14 genes were selected for qRT-PCR validation, the results indicated the reliability of the transcriptome sequences data. Our findings could provide valuable insight into the molecular breeding, development, and application of Maire yew resources.
Collapse
Affiliation(s)
- Yadan Yan
- Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, China
| | - Yafeng Wen
- Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, China
| | - Ye Wang
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xingtong Wu
- Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, China
| | - Xinyu Li
- Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, China
| | - Chuncheng Wang
- Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, China
| | - Yanghui Zhao
- Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, China
| |
Collapse
|
4
|
Wang L, Jin N, Xie Y, Zhu W, Yang Y, Wang J, Lei Y, Liu W, Wang S, Jin L, Yu J, Lyu J. Improvements in the Appearance and Nutritional Quality of Tomato Fruits Resulting from Foliar Spraying with Silicon. Foods 2024; 13:223. [PMID: 38254524 PMCID: PMC10814949 DOI: 10.3390/foods13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L-1 [CK], 0.6 mmol·L-1 [T1], 1.2 mmol·L-1 [T2], and 1.8 mmol·L-1 [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (PDS), the lycopene ε-cyclase gene (LCY-E), and the zeaxanthin cyclooxygenase gene (ZEP) in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L-1 exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Ning Jin
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Yandong Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Wen Zhu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Ye Yang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Jiaying Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Yongzhong Lei
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Wenkai Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Jian Lyu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| |
Collapse
|
5
|
Hamilton CD, Zaricor B, Dye CJ, Dresserl E, Michaels R, Allen C. Ralstonia solanacearum pandemic lineage strain UW551 overcomes inhibitory xylem chemistry to break tomato bacterial wilt resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13395. [PMID: 37846613 PMCID: PMC10782650 DOI: 10.1111/mpp.13395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Plant-pathogenic Ralstonia strains cause bacterial wilt disease by colonizing xylem vessels of many crops, including tomato. Host resistance is the best control for bacterial wilt, but resistance mechanisms of the widely used Hawaii 7996 tomato breeding line (H7996) are unknown. Using growth in ex vivo xylem sap as a proxy for host xylem, we found that Ralstonia strain GMI1000 grows in sap from both healthy plants and Ralstonia-infected susceptible plants. However, sap from Ralstonia-infected H7996 plants inhibited Ralstonia growth, suggesting that in response to Ralstonia infection, resistant plants increase inhibitors in their xylem sap. Consistent with this, reciprocal grafting and defence gene expression experiments indicated that H7996 wilt resistance acts in both above- and belowground plant parts. Concerningly, H7996 resistance is broken by Ralstonia strain UW551 of the pandemic lineage that threatens highland tropical agriculture. Unlike other Ralstonia, UW551 grew well in sap from Ralstonia-infected H7996 plants. Moreover, other Ralstonia strains could grow in sap from H7996 plants previously infected by UW551. Thus, UW551 overcomes H7996 resistance in part by detoxifying inhibitors in xylem sap. Testing a panel of xylem sap compounds identified by metabolomics revealed that no single chemical differentially inhibits Ralstonia strains that cannot infect H7996. However, sap from Ralstonia-infected H7996 contained more phenolic compounds, which are known to be involved in plant antimicrobial defence. Culturing UW551 in this sap reduced total phenolic levels, indicating that the resistance-breaking Ralstonia strain degrades these chemical defences. Together, these results suggest that H7996 tomato wilt resistance depends in part on inducible phenolic compounds in xylem sap.
Collapse
Affiliation(s)
- Corri D. Hamilton
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Beatriz Zaricor
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Carolyn Jean Dye
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Emma Dresserl
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Renee Michaels
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Caitilyn Allen
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Tu T, Liu H, Liu Z, Liang Y, Tan C, Feng D, Zou J. Amelioration of Atherosclerosis by lycopene is linked to the modulation of gut microbiota dysbiosis and related gut-heart axis activation in high-fat diet-fed ApoE -/- mice. Nutr Metab (Lond) 2023; 20:53. [PMID: 38041095 PMCID: PMC10691047 DOI: 10.1186/s12986-023-00772-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Interplay between gut microbiota and heart, termed "gut-heart" axis, has a crucial role in the pathogenesis of atherosclerosis. Our previous study showed that lycopene possesses anti-inflammatory and anti-atherosclerotic effects, but its link to the gut microbiota is poorly understood. Herein, we surmised that lycopene could regulate the gut microbiota, exert anti-atherosclerotic effect by regulating the "gut-heart" axis. METHODS Male ApoE-/- mice were fed a high-fat diet (HFD) with or without lycopene (0.1% w/w) for 19 weeks. Gut microbiota was analyzed by 16 S rRNA sequencing, the protein levels of zonula occludens-1 (ZO-1), occludin, toll-like receptor 4 (TLR4) and phospho-nuclear factor-κB (NF-κB) p65 were measured by Western blotting, the levels of serum inflammatory factors including monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were assayed using ELISA kits. Also, the concentrations of serum lipopolysaccharide (LPS), D-lactic acid (D-LA) and diamine peroxidase (DAO) were measured through ELISA method. RESULTS The aortic sinus sections revealed that lycopene supplementation significantly reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development caused by HFD. The analysis of gut microbiota showed that lycopene reduced the ratio of Firmicutes/Bacteroides and increased the relative abundance of Verrucomicrobia, Akkermansia and Alloprevotella, which were related to elevated intestinal barrier function and reduced inflammation. Moreover, lycopene up-regulated the expression of intestinal ZO-1 and occludin and decreased serum LPS, D-LA and DAO levels. In addition, lycopene inhibited the expression of TLR4 and phospho-NF-κB p65 in aortic sinus plaque, serum MCP-1, TNF-α, IL-1β, and IL-6 levels were also lowered by lycopene treatment. CONCLUSIONS Our results indicated the protective effect of lycopene against atherosclerosis induced by HFD and further revealed that its mechanism might be its prebiotic effect on maintaining gut microbiota homeostasis and improving intestinal barrier function, consequently reducing serum LPS-triggered inflammatory response in the heart.
Collapse
Affiliation(s)
- Tengcan Tu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, 120 Guidan Road, Foshan, 528200, Guangdong Province, China
| | - Hao Liu
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China
| | - Zhenhao Liu
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Yunyi Liang
- Health Management Center, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Chujun Tan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jun Zou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China.
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, 120 Guidan Road, Foshan, 528200, Guangdong Province, China.
| |
Collapse
|
7
|
Dainelli M, Pignattelli S, Bazihizina N, Falsini S, Papini A, Baccelli I, Mancuso S, Coppi A, Castellani MB, Colzi I, Gonnelli C. Can microplastics threaten plant productivity and fruit quality? Insights from Micro-Tom and Micro-PET/PVC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165119. [PMID: 37364840 DOI: 10.1016/j.scitotenv.2023.165119] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Solanum lycopersicum L., a crop grown worldwide with a high nutritional value for the human diet, was used to test the impact of microplastics on plant growth, productivity, and fruit quality. Two of the most represented microplastics in soils, polyethylene terephthalate (PET) and polyvinyl chloride (PVC), were tested. Plants were grown in pots with an environmentally realistic concentration of microplastics and, during the whole crop life cycle, photosynthetic parameters, number of flowers and fruits were monitored. At the end of the cultivation, plant biometry and ionome were evaluated, along with fruit production and quality. Both pollutants had negligible effects on shoot traits, with only PVC causing a significant reduction in shoot fresh weight. Despite an apparent low or no toxicity during the vegetative stage, both microplastics decreased the number of fruits and, in the case of PVC, also their fresh weights. The plastic polymer-induced decline in fruit production was coupled with wide variations in fruit ionome, with marked increases in Ni and Cd. By contrast there was a decline in the nutritionally valuable lycopene, total soluble solids, and total phenols. Altogether, our results reveal that microplastics can not only limit crop productivity but also negatively impact fruit quality and enhance the concentration of food safety hazards, thus raising concerns for their potential health risks for humans.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Sara Pignattelli
- CNR-Institute of Bioscience and Bioresources, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Nadia Bazihizina
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Ivan Baccelli
- CNR-Institute for Sustainable Plant Protection, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, via delle Idee 30, 50019 Sesto Fiorentino, Italy; Fondazione per il Futuro delle Città, Via Boccaccio 50, 50133 Firenze, Italy
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | | | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy
| |
Collapse
|
8
|
Zannat A, Hussain MA, Md Abdullah AH, Hossain MI, Saifullah M, Safhi FA, Alshallash KS, Mansour E, ElSayed AI, Hossain MS. Exploring genotypic variability and interrelationships among growth, yield, and quality characteristics in diverse tomato genotypes. Heliyon 2023; 9:e18958. [PMID: 37600404 PMCID: PMC10432218 DOI: 10.1016/j.heliyon.2023.e18958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Tomato is the most consumed vegetable crop worldwide, with excellent beneficial health properties and high content of vitamins, minerals, carotenoids, total antioxidants, and phenolic compounds. Hence, improving its genotypes is crucial to sustain its production and ensure food security, principally under the fast-growing worldwide population and abrupt global climate change. The present study aimed to explore the genotypic variability associated with specific characteristics in twenty-five diverse tomato genotypes. In addition, the relationships between growth, yield, and quality traits using both univariate (correlation coefficient, path analysis) and multivariate (principal component, principal coordinates, canonical variate) analysis methods were explored. The results indicated that the evaluated genotypes possessed highly significant variation. This is appropriate for future hybridization through tomato breeding programs. All evaluated genotypes demonstrated considerable potential to develop strong hybrid vigour for growth, yield, and quality characteristics. In particular, the genotypes LS009, LS011, and LS014 could be considered promising, high-yielding, and resistant to yellow leaf curl virus infestation (YLCV) disease parents for future breeding schemes. The number of fruits per plant, fruit diameter, and fruit weight proved strong positive relationships with fruit yield. Accordingly, these characteristics demonstrate their importance in improving fruit yield and could be exploited as indirect criteria for selecting high-yielding tomato genotypes through breeding programs.
Collapse
Affiliation(s)
- Arova Zannat
- Department of Horticulture, Sher-e-Bangla Agricultural University, Bangladesh
| | - Md Arif Hussain
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Bangladesh
| | - Abu Habib Md Abdullah
- Department of Agricultural Extension and Rural Development, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
| | - Md Ismail Hossain
- Department of Horticulture, Sher-e-Bangla Agricultural University, Bangladesh
| | - Md Saifullah
- Natural Resources Management Division, Bangladesh Agricultural Research Council, Farmgate, Dhaka, 1215, Bangladesh
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Khalid S. Alshallash
- College of Science and Humanities-Huraymila, Imam Mohammed Bin Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Abdelaleim I. ElSayed
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt
| | - Md Sazzad Hossain
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
9
|
Kumar A, Lakshmi V, Sangam S, Goswami TN, Kumar M, Akhtar S, Chattopadhyay T. Marker assisted early generation identification of root knot disease resistant orange tomato segregants with multiple desirable alleles. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1179-1192. [PMID: 37829698 PMCID: PMC10564703 DOI: 10.1007/s12298-023-01361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Enhanced bioavailability of cis-isomers of lycopene, accumulated in orange-fruited tangerine mutant has broadened the scope of nutritional enrichment in tomato. At the same time, advancements in the field of marker assisted selection (MAS) have made the stacking of multiple desirable alleles through molecular breeding to develop superior tomato genotypes possible. Here we report seedling stage MAS from 146 F2 plants, to identify 3 superior performing, root knot disease resistant orange-fruited segregants. In the selected segregants, fruit weight ranged from 39.2 to 54.6 g, pericarp thickness ranged from 4.56 to 6.05 mm and total soluble solid content ranged from 3.65 to 4.87° Brix. Presence of parental diversity allowed identification of the other desirable alleles of the genes governing late blight and mosaic disease resistance, growth habit (determinate and indeterminate) as well as fruit elongation and firmness. Resistance to root knot disease of the selected 3 segregants was also validated through a unique method employing in vitro rooted stem cuttings subjected to artificial inoculation, where the resistant parent and the selected segregants developed no galls in comparison to ~ 24 galls developed in the susceptible parent. The selected segregants form the base for development of multiple disease resistant, nutritionally enriched orange-fruited determinate/indeterminate tomato lines with superior fruit quality. The study also highlights the utility of early generation MAS for detailed characterization of segregants, through which multiple desirable alleles can be precisely targeted and fixed to develop superior tomato genotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01361-1.
Collapse
Affiliation(s)
- Awnish Kumar
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210 India
| | - Vijaya Lakshmi
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210 India
| | - Surabhi Sangam
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210 India
| | - Tarak Nath Goswami
- Department of Entomology, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210 India
| | - Mankesh Kumar
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210 India
| | - Shirin Akhtar
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210 India
| | - Tirthartha Chattopadhyay
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210 India
| |
Collapse
|
10
|
Renzetti S, Gennings C, Calza S. A weighted quantile sum regression with penalized weights and two indices. Front Public Health 2023; 11:1151821. [PMID: 37533534 PMCID: PMC10392701 DOI: 10.3389/fpubh.2023.1151821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023] Open
Abstract
Background New statistical methodologies were developed in the last decade to face the challenges of estimating the effects of exposure to multiple chemicals. Weighted Quantile Sum (WQS) regression is a recent statistical method that allows estimating a mixture effect associated with a specific health effect and identifying the components that characterize the mixture effect. Objectives In this study, we propose an extension of WQS regression that estimates two mixture effects of chemicals on a health outcome in the same model through the inclusion of two indices, one in the positive direction and one in the negative direction, with the introduction of a penalization term. Methods To evaluate the performance of this new model we performed both a simulation study and a real case study where we assessed the effects of nutrients on obesity among adults using the National Health and Nutrition Examination Survey (NHANES) data. Results The method showed good performance in estimating both the regression parameter and the weights associated with the single elements when the penalized term was set equal to the magnitude of the Akaike information criterion of the unpenalized WQS regression. The two indices further helped to give a better estimate of the parameters [Positive direction Median Error (PME): 0.022; Negative direction Median Error (NME): -0.044] compared to the standard WQS without the penalization term (PME: -0.227; NME: 0.215). In the case study, WQS with two indices was able to find a significant effect of nutrients on obesity in both directions identifying sodium and magnesium as the main actors in the positive and negative association, respectively. Discussion Through this work, we introduced an extension of WQS regression that improved the accuracy of the parameter estimates when considering a mixture of elements that can have both a protective and a harmful effect on the outcome; and the advantage of adding a penalization term when estimating the weights.
Collapse
Affiliation(s)
- Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
11
|
Chen C, Zhang M, Zhang M, Yang M, Dai S, Meng Q, Lv W, Zhuang K. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening. PLANT PHYSIOLOGY 2023; 192:2067-2080. [PMID: 36891812 PMCID: PMC10315317 DOI: 10.1093/plphys/kiad151] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs (EIN3/EILs) are important ethylene response factors during fruit ripening. Here, we discovered that EIL2 controls carotenoid metabolism and ascorbic acid (AsA) biosynthesis in tomato (Solanum lycopersicum). In contrast to the red fruits presented in the wild type (WT) 45 d after pollination, the fruits of CRISPR/Cas9 eil2 mutants and SlEIL2 RNA interference lines (ERIs) showed yellow or orange fruits. Correlation analysis of transcriptome and metabolome data for the ERI and WT ripe fruits revealed that SlEIL2 is involved in β-carotene and AsA accumulation. ETHYLENE RESPONSE FACTORs (ERFs) are the typical components downstream of EIN3 in the ethylene response pathway. Through a comprehensive screening of ERF family members, we determined that SlEIL2 directly regulates the expression of 4 SlERFs. Two of these, SlERF.H30 and SlERF.G6, encode proteins that participate in the regulation of LYCOPENE-β-CYCLASE 2 (SlLCYB2), encoding an enzyme that mediates the conversion of lycopene to carotene in fruits. In addition, SlEIL2 transcriptionally repressed L-GALACTOSE 1-PHOSPHATE PHOSPHATASE 3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) expression, which resulted in a 1.62-fold increase of AsA via both the L-galactose and myoinositol pathways. Overall, we demonstrated that SlEIL2 functions in controlling β-carotene and AsA levels, providing a potential strategy for genetic engineering to improve the nutritional value and quality of tomato fruit.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Shanshan Dai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
12
|
Geographical Origin Identification of Chinese Tomatoes Using Long-Wave Fourier-Transform Near-Infrared Spectroscopy Combined with Deep Learning Methods. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Morelli CF, Cutignano A, Speranza G, Abbamondi GR, Rabuffetti M, Iodice C, De Prisco R, Tommonaro G. Taste Compounds and Polyphenolic Profile of Tomato Varieties Cultivated with Beneficial Microorganisms: A Chemical Investigation on Nutritional Properties and Sensory Qualities. Biomolecules 2023; 13:biom13010117. [PMID: 36671502 PMCID: PMC9855395 DOI: 10.3390/biom13010117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
There is a strong need to develop eco-sustainable agricultural techniques to improve crop yields while preserving biomolecule contents and reducing the adverse environmental impact of agro-chemicals. The use of microorganisms in agriculture represents an attractive and innovative solution. Herein, a chemical study on the nutritional and sensory qualities of San Marzano Cirio 3 (SMC3), Corbarino (CO) and Brandywine (BW) tomato varieties cultivated with and without effective microorganisms (EM) is reported. LC-MS analysis of the methanolic extracts allowed for the identification of 21 polyphenol derivatives. In different proportions among the studied varieties, the two main polyphenols were rutin and naringenin chalcone; the latter was isolated and chemically identified by complementary HR-ESIMS/MS and NMR methods. SMC3 and CO were richer in naringenin chalcone. Conversely, BW showed higher proportions of rutin; however, in all cases, the relative amounts of the two polyphenols considered together increased over the other minor components after the EM treatment. The qualitative and quantitative HPLC analyses of taste-active compounds (aspartic acid, glutamic acid, AMP and GMP) revealed a significant difference in aspartic and glutamic acids and ribonucleotide contents according to the cultivation condition (±EM), particularly in BW. This study provides chemical data in support of the use of EM green technology for the cultivation of edible agricultural products, such as tomato preserves, and may even improve nutritional and sensory qualities while safeguarding the environment.
Collapse
Affiliation(s)
| | - Adele Cutignano
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
- Correspondence: (A.C.); (G.T.); Tel.: +39-081-8675313 (A.C.); +39-081-8675029 (G.T.)
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Gennaro Roberto Abbamondi
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Marco Rabuffetti
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Carmine Iodice
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Rocco De Prisco
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giuseppina Tommonaro
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
- Correspondence: (A.C.); (G.T.); Tel.: +39-081-8675313 (A.C.); +39-081-8675029 (G.T.)
| |
Collapse
|
14
|
Wang C, Fu Y, Cao Y, Huang J, Lin H, Shen P, Julian McClements D, Han L, Zhao T, Yan X, Li Q. Enhancement of lycopene bioaccessibility in tomatoes using excipient emulsions: Effect of dark tea polysaccharides. Food Res Int 2023; 163:112123. [PMID: 36596089 DOI: 10.1016/j.foodres.2022.112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/11/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
This study fabricated a novel excipient emulsion by adding dark tea polysaccharides to improve the bioaccessibility of lycopene from tomatoes. Results indicated that addition of tea polysaccharides greatly increased the antioxidant activity of excipient emulsions. Additionally, tea polysaccharides markedly improved the physical stability of excipient emulsion when being mixed with tomato puree and passing through a simulated gastrointestinal tract, contributing to an increase in electrostatic and steric repulsion between the droplets. Besides, certain amount of tea polysaccharides (0.05 - 0.2 wt%) could increase the rate and extent of lipid digestion in tomato-emulsion mixtures. Finally, lycopene bioaccessibility was significantly increased (from 16.95 % to 26.21 %) when 0.1 wt% tea polysaccharides were included, which was mainly ascribed to the ability of tea polysaccharides to increase lipid digestion and reduce carotenoid oxidation within the gastrointestinal tract. These results suggest that well-designed excipient emulsions may increase carotenoids bioavailability in the complex food matrices.
Collapse
Affiliation(s)
- Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yinxin Fu
- Wuhan Fourth Hospital, Puai Hospital, Wuhan, Hubei 430032, China
| | - Yi Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jialu Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Hongyi Lin
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | | | - Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Tiantian Zhao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaoxuan Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qian Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
15
|
Characterization of chitosan edible coatings made with natural extracts of Solanum lycopersicum and Moringa oleifera for preserving fresh pork tenderloin. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Application of Exogenous Melatonin Improves Tomato Fruit Quality by Promoting the Accumulation of Primary and Secondary Metabolites. Foods 2022; 11:foods11244097. [PMID: 36553839 PMCID: PMC9778358 DOI: 10.3390/foods11244097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Melatonin plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how melatonin regulates primary and secondary metabolites during fruit growth and development are poorly understood. In this study, the surfaces of tomato fruit were sprayed with different concentrations of melatonin (0, 50, and 100 µmol·L-1) on the 20th day after anthesis; we used high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS) to determine the changes in primary and secondary metabolite contents during fruit development and measured the activity of sucrose metabolizing enzymes during fruit development. Our results showed that 100 µmol·L-1 melatonin significantly promoted the accumulation of soluble sugar in tomato fruit by increasing the activities of sucrose synthase (SS), sucrose phosphate synthase (SPS), and acid convertase (AI). The application of 100 µmol·L-1 melatonin also increased the contents of ten amino acids in tomato fruit as well as decreased the contents of organic acids. In addition, 100 µmol·L-1 melatonin application also increased the accumulation of some secondary metabolites, such as six phenolic acids, three flavonoids, and volatile substances (including alcohols, aldehydes, and ketones). In conclusion, melatonin application improves the internal nutritional and flavor quality of tomato fruit by regulating the accumulation of primary and secondary metabolites during tomato fruit ripening. In the future, we need to further understand the molecular mechanism of melatonin in tomato fruit to lay a solid foundation for quality improvement breeding.
Collapse
|
17
|
Schmidt-Szantner B, Berki M, Lengyel-Kónya É, Milotay P, Molnár-Mondovics Á, Daood HG, Tömösközi-Farkas R. Investigation of Bioactive Components in New Resistant Hungarian Tomato Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:3408. [PMID: 36501447 PMCID: PMC9740243 DOI: 10.3390/plants11233408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The aim of the present work was to evaluate the influence of genetic impact on the content of some characteristic secondary metabolites in tomato fruits. The study was conducted to screen 14 different tomato genotypes for antioxidant capacity and quality attributes (polyphenols, tocopherols, carotenoids, vitamin C) to select the genetic lines with high biological value, multiple disease resistance, and high yield capacity for further usage in crop improvement programs. Significant differences were found among the different hybrids and cultivation seasons for the phytochemical content of the fruits. The varieties developed by breeding to increase their resistance were found to differ significantly. During a 3-year cultivation experiment, the level of lycopene in freshly harvested fruits ranged between 10.38 and 63.23 mg.kg-1 fwt for outdoor-cultivated Naik114 and Naik352, respectively. As for β-carotene, its content varied between 0.49 mg.kg-1 for Unorosso and 11.66 mg.kg-1 for Cherrola F1. The highest level of vitamin C (702.59 mg.kg-1) was recorded for Cherrola F1, while the lowest level (1.36.86 mg.kg-1) was determined in fruits of Unorosso. Neither polyphenol nor vitamin C showed positive correlation with antioxidant activity. In the three cultivation seasons, the highest concentration of polyphenols (579.19-804.12 mg.kg-1 fwt) was determined in fruits of outdoor-cultivated Cherolla F1 variety. The α- and γ-tocopherol content varied between 2.56 and 18.99 mg.kg-1, and 0.28 and 9.35 mg.kg-1, respectively, in fresh tomato fruit. Among the newly bred resistant varieties, the ZKI114 variety was proved to have outstanding features concerning the amounts of the bioactive components.
Collapse
Affiliation(s)
- Barbara Schmidt-Szantner
- Vegetable Research Center, Hungarian University of Agriculture and Life Sciences, 6000 Kecskemét, Hungary
| | - Mária Berki
- Food Science Research Group, Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Éva Lengyel-Kónya
- Food Science Research Group, Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Péter Milotay
- Vegetable Research Center, Hungarian University of Agriculture and Life Sciences, 6000 Kecskemét, Hungary
| | - Ágnes Molnár-Mondovics
- Vegetable Research Center, Hungarian University of Agriculture and Life Sciences, 6000 Kecskemét, Hungary
| | - Hussein G. Daood
- Szent Isván Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Rita Tömösközi-Farkas
- Food Science Research Group, Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
18
|
An innovative approach for maintaining the quality of pink tomatoes stored at optimum and above-optimum temperatures using a microporous membrane patch. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
J-Shaped Association of Tomato Intake with New-Onset Hypertension in General Adults: A Nationwide Prospective Cohort Study. Nutrients 2022; 14:nu14224813. [PMID: 36432500 PMCID: PMC9696212 DOI: 10.3390/nu14224813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
We aim to examine the prospective association between the intake of dietary tomatoes and the risk of new-onset hypertension and its modifiable factors in general adults. A total of 11,460 adults without hypertension from the China Health and Nutrition Survey (CHNS) were enrolled, with follow-up beginning in 1997 and ending in 2015. Dietary tomato intake was measured by three consecutive 24-h dietary recalls combined with a household food inventory. The study outcome was new-onset hypertension, defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg or diagnosed by physicians or under anti-hypertensive treatment during the follow-up. Finally, 4015 subjects developed new-onset hypertension during 92,335.5 person-years of follow-up. After multivariate adjustment for dietary and non-dietary risk factors, hazard ratios for increased consumption of dietary tomatoes were 0.42 (95% confidence interval, 0.37−0.47), 0.51 (0.46−0.57), and 0.82 (0.74−0.92) compared with non-consumers. Overall, cubic spline regression suggested a novel J-shaped association between dietary tomato intake and new-onset hypertension, with the lowest risk observed at approximately 10 to 13 g/day (p < 0.001 for curvature). Moreover, the association between dietary tomato intake and risk of new-onset hypertension was stronger in females or individuals who refrained from smoking or drinking (p = 0.024, p = 0.043, and p = 0.044 for interaction, respectively).
Collapse
|
20
|
Wang J, Yuan H, Wu Y, Yu J, Ali B, Zhang J, Tang Z, Xie J, Lyu J, Liao W. Application of 5-aminolevulinic acid promotes ripening and accumulation of primary and secondary metabolites in postharvest tomato fruit. Front Nutr 2022; 9:1036843. [PMID: 36438749 PMCID: PMC9686309 DOI: 10.3389/fnut.2022.1036843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
5-Aminolevulinic acid (ALA) plays a vital role in promoting plant growth, enhancing stress resistance, and improving fruit yield and quality. In the present study, tomato fruits were harvested at mature green stage and sprayed with 200 mg L-1 ALA on fruit surface. During ripening, the estimation of primary and secondary metabolites, carotenoids, and chlorophyll contents, and the expression levels of key genes involved in their metabolism were carried out. The results showed that ALA significantly promoted carotenoids accumulation by upregulating the gene expression levels of geranylgeranyl diphosphate synthase (GGPPS, encoding geranylgeranyl diphosphate synthase), phytoene synthase 1 (PSY1, encoding phytoene synthase), phytoene desaturase (PDS, encoding phytoene desaturase), and lycopeneβ-cyclase (LCYB, encoding lycopene β-cyclase), whereas chlorophyll content decreased by downregulating the expression levels of Mg-chelatase (CHLH, encoding Mg-chelatase) and protochlorophyllide oxidoreductase (POR, encoding protochlorophyllide oxidoreductase). Besides, the contents of soluble solids, vitamin C, soluble protein, free amino acids, total soluble sugar, organic acid, total phenol, and flavonoid were increased in ALA-treated tomato fruit, but the fruit firmness was decreased. These results indicated that the exogenous ALA could not only promote postharvest tomato fruit ripening but also improve the internal nutritional and flavor quality of tomato fruit.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hong Yuan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
21
|
Faria-Silva C, de Sousa M, Carvalheiro MC, Simões P, Simões S. Alpha-tomatine and the two sides of the same coin: An anti-nutritional glycoalkaloid with potential in human health. Food Chem 2022; 391:133261. [DOI: 10.1016/j.foodchem.2022.133261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 01/10/2023]
|
22
|
|
23
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
24
|
Pereira AM, Martins AO, Batista-Silva W, Condori-Apfata JA, Nascimento VL, Silva VF, Oliveira LA, Medeiros DB, Martins SCV, Fernie AR, Nunes-Nesi A, Araújo WL. Elevated carbon assimilation and metabolic reprogramming in tomato high pigment mutants support the increased production of pigments. PLANT CELL REPORTS 2022; 41:1907-1929. [PMID: 35833988 DOI: 10.1007/s00299-022-02900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
High pigment mutants in tomato (Solanum lycopersicum L.), a loss of function in the control of photomorphogenesis, with greater pigment production, show altered growth, greater photosynthesis, and a metabolic reprogramming. High pigment mutations cause plants to be extremely responsive to light and produce excessive pigmentation as well as fruits with high levels of health-beneficial nutrients. However, the association of these traits with changes in the physiology and metabolism of leaves remains poorly understood. Here, we performed a detailed morphophysiological and metabolic characterization of high pigment 1 (hp1) and high pigment 2 (hp2) mutants in tomato (Solanum lycopersicum L. 'Micro-Tom') plants under different sunlight conditions (natural light, 50% shading, and 80% shading). These mutants occur in the DDB1 (hp1) and DET1 (hp2) genes, which are related to the regulation of photomorphogenesis and chloroplast development. Our results demonstrate that these mutations delay plant growth and height, by affecting physiological and metabolic parameters at all stages of plant development. Although the mutants were characterized by higher net CO2 assimilation, lower stomatal limitation, and higher carboxylation rates, with anatomical changes that favour photosynthesis, we found that carbohydrate levels did not increase, indicating a change in the energy flow. Shading minimized the differences between mutants and the wild type or fully reversed them in the phenotype at the metabolic level. Our results indicate that the high levels of pigments in hp1 and hp2 mutants represent an additional energy cost for these plants and that extensive physiological and metabolic reprogramming occurs to support increased pigment biosynthesis.
Collapse
Affiliation(s)
- Auderlan M Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Auxiliadora O Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Vitor L Nascimento
- Setor de Fisiologia Vegetal - Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil
| | - Victor F Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leonardo A Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
25
|
Yuan J, Liu Y, Wang Z, Lei T, Hu Y, Zhang L, Yuan M, Wang J, Li Y. Genome-Wide Analysis of the NAC Family Associated with Two Paleohexaploidization Events in the Tomato. Life (Basel) 2022; 12:1236. [PMID: 36013415 PMCID: PMC9410287 DOI: 10.3390/life12081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
NAC transcription factors play an important regulatory role in tomato fruit ripening. We chose a novel perspective to explore the traces left by two paleopolyploidizations in the NAC family using a bioinformatics approach. We found that 85 (S. lycopersicum) and 88 (S. pennellii) members of the NAC family were present in two tomatoes, and most of them were amplified from two paleohexaploidizations. We differentiated NAC family members from the different paleohexaploidizations and found that the SWGT-derived NAC genes had more rearrangement events, so it was different from the DWGT-derived NAC genes in terms of physicochemical properties, phylogeny, and gene location. The results of selection pressure show that DWGT-derived NAC genes tended to be positively selected in S. lycopersicum and negatively selected in S. pennellii. A comprehensive analysis of paleopolyploidization and expression reveals that DWGT-derived NAC genes tend to promote fruit ripening, and are expressed at the early and middle stages, whereas SWGT-derived NAC genes tend to terminate fruit growth and are expressed at the late stages of fruit ripening. This study obtained NAC genes from different sources that can be used as materials for tomato fruit development, and the method in the study can be extended to the study of other plants.
Collapse
Affiliation(s)
- Jiale Yuan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Ying Liu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Zhenyi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Tianyu Lei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Hu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Min Yuan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
26
|
Mortazavi M, Bains A, Afsah-Hejri L, Ehsani R, LiWang PJ. SARS-CoV-2 pseudotyped virus persists on the surface of multiple produce but can be inactivated with gaseous ozone. Heliyon 2022; 8:e10280. [PMID: 35991981 PMCID: PMC9376980 DOI: 10.1016/j.heliyon.2022.e10280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Due to the immense societal and economic impact that the COVID-19 pandemic has caused, limiting the spread of SARS-CoV-2 is one of the most important priorities at this time. The global interconnectedness of the food industry makes it one of the biggest concerns for SARS-CoV-2 outbreaks. Although fomites are currently considered a low-risk route of transmission for SARS-CoV-2, new variants of the virus can potentially alter the transmission dynamics. In this study, we compared the survival rate of pseudotyped SARS-CoV-2 on plastic with some commonly used food samples (i.e., apple, strawberry, grapes, tomato, cucumber, lettuce, parsley, Brazil nut, almond, cashew, and hazelnut). The porosity level and the chemical composition of different food products affect the virus's stability and infectivity. Our results showed that tomato, cucumber, and apple offer a higher survival rate for the pseudotyped viruses. Next, we explored the effectiveness of ozone in deactivating the SARS-CoV-2 pseudotyped virus on the surface of tomato, cucumber, and apple. We found that the virus was effectively inactivated after being exposed to 15 ppm of ozone for 1 h under ambient conditions. SEM imaging revealed that while ozone exposure altered the wax layer on the surface of produce, it did not seem to damage the cells and their biological structures. The results of our study indicate that ozonated air can likely provide a convenient method of effectively disinfecting bulk food shipments that may harbour the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Mehrad Mortazavi
- Department of Mechanical Engineering, University of California, Merced, CA, USA
| | - Arjan Bains
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Leili Afsah-Hejri
- Department of Mechanical Engineering, University of California, Merced, CA, USA
| | - Reza Ehsani
- Department of Mechanical Engineering, University of California, Merced, CA, USA
| | - Patricia J LiWang
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| |
Collapse
|
27
|
Wang C, Li M, Duan X, Abu-Izneid T, Rauf A, Khan Z, Mitra S, Emran TB, Aljohani ASM, Alhumaydhi FA, Thiruvengadam M, Suleria HAR. Phytochemical and Nutritional Profiling of Tomatoes; Impact of Processing on Bioavailability - A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Chuqi Wang
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Minhao Li
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Xinyu Duan
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, Al Ain Campus, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Aires ES, Ferraz AKL, Carvalho BL, Teixeira FP, Putti FF, de Souza EP, Rodrigues JD, Ono EO. Foliar Application of Salicylic Acid to Mitigate Water Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131775. [PMID: 35807727 DOI: 10.1590/1678-4499.20210320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Salicylic acid (SA) is an important plant regulator reported as a mitigator of water deficit in plants, however without a recommendation for use in field conditions. Thus, this research aims to validate the use of SA under field conditions in regions with low water availability. For that, we evaluated CO2 assimilation (A), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), and carboxylation efficiency (A/Ci) at 15, 30, and 45 days of continuous stress water deficit, as well as the application of salicylic acid (0.0; 0.5; 1.0; 1.5; 2.0 mM) in tomato plants subjected to continuous water deficit (45 days), in two years (2019 and 2020). The water deficit reduced the A, gs, E and A/Ci, while the foliar application of SA increased these parameters in all evaluated times, resulting in similar or even higher values than in plants without water deficit. Water deficit caused floral abortion in tomato plants, without the application of SA, reducing the number of fruit production. In contrast, plants that received about 1.3 mM of SA increased A and A/Ci and translocated the photo-assimilates, mainly to flowers and fruits, reducing floral abortion and increasing fruit production. Thus, foliar application of SA was efficient in mitigating the deleterious effects of water deficit in tomato plants regarding the gas exchange and fruit production.
Collapse
Affiliation(s)
- Eduardo Santana Aires
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Andrew Kim Lopes Ferraz
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Beatriz Lívero Carvalho
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Fabricio Palla Teixeira
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Fernando Ferrari Putti
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã 17602-496, Brazil
| | - Emanuele Possas de Souza
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - João Domingos Rodrigues
- Department of Botany, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Elizabeth Orika Ono
- Department of Botany, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| |
Collapse
|
29
|
Effect of Elevated Carbon Dioxide Exposure on Nutrition-Health Properties of Micro-Tom Tomatoes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113592. [PMID: 35684524 PMCID: PMC9182198 DOI: 10.3390/molecules27113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: The anthropogenically induced rise in atmospheric carbon dioxide (CO2) and associated climate change are considered a potential threat to human nutrition. Indeed, an elevated CO2 concentration was associated with significant alterations in macronutrient and micronutrient content in various dietary crops. (2) Method: In order to explore the impact of elevated CO2 on the nutritional-health properties of tomato, we used the dwarf tomato variety Micro-Tom plant model. Micro-Toms were grown in culture chambers under 400 ppm (ambient) or 900 ppm (elevated) carbon dioxide. Macronutrients, carotenoids, and mineral contents were analyzed. Biological anti-oxidant and anti-inflammatory bioactivities were assessed in vitro on activated macrophages. (3) Results: Micro-Tom exposure to 900 ppm carbon dioxide was associated with an increased carbohydrate content whereas protein, minerals, and total carotenoids content were decreased. These modifications of composition were associated with an altered bioactivity profile. Indeed, antioxidant anti-inflammatory potential were altered by 900 ppm CO2 exposure. (4) Conclusions: Taken together, our results suggest that (i) the Micro-Tom is a laboratory model of interest to study elevated CO2 effects on crops and (ii) exposure to 900 ppm CO2 led to the decrease of nutritional potential and an increase of health beneficial properties of tomatoes for human health.
Collapse
|
30
|
Control of Tomato Wilt Disease Fungus Fusarium oxysporum f.sp. Lycopersicon by Single or Combine Interaction of Mycorrhiza, Trichoderma harzianum, and Effective Microorganisms (Microbial Blend). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tomato plant is usually infected with various pathogens such as pests, bacteria, and different mycoflora. In this investigation, Tomato plant cultivar Beeli was pathogenized with Fusarium oxysporum f.sp. Lycopersicon (FOL1) fungi. The FOL1 fungus was controlled by inoculating the pathogenized Tomato plants with each one of the biocontrol microorganisms, such as Arbuscular mycorrhiza (AM), Trichoderma harzianum (T. harzianum), and microbial blend, named as Effective Microorganisms (EM). Consequently, the effect of these biocontrol microorganisms on the amount of chlorophyll, proteins, and defense enzymes of the Tomato plant was estimated. The results showed that the AM, T. harzianum fungi, and “EM” gave similar ameliorative effects. However, there are regulated increasing content of chlorophyll, proteins, and the activities of many protecting compounds such as acid invertase peroxidase. Moreover, these important plant defense mechanisms have a vital role in oxidizing phenolic compounds, which could increase antimicrobial activity. Altogether, the results demonstrate that the protein and chlorophyll are increased differently in all treatments. The protein level is the highest in FOL1 + EM treatment and the ML showed the highest level of chlorophyll.
Collapse
|
31
|
Sandhya D, Jogam P, Venkatapuram AK, Savitikadi P, Peddaboina V, Allini VR, Abbagani S. Highly efficient Agrobacterium-mediated transformation and plant regeneration system for genome engineering in tomato. Saudi J Biol Sci 2022; 29:103292. [PMID: 35540178 PMCID: PMC9079358 DOI: 10.1016/j.sjbs.2022.103292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is an important vegetable and nutritious crop plant worldwide. They are rich sources of several indispensable compounds such as lycopene, minerals, vitamins, carotenoids, essential amino acids, and bioactive polyphenols. Plant regeneration and Agrobacterium-mediated genetic transformation system from different explants in various genotypes of tomato are necessary for genetic improvement. Among diverse plant growth regulator (PGR) combinations and concentrations tested, Zeatin (ZEA) at 2.0 mg l-1 in combination with 0.1 mg l-1 indole-3-acetic acid (IAA) generated the most shoots/explant from the cotyledon of Arka Vikas (36.48 shoots/explant) and PED (24.68 shoots/explant), respectively. The hypocotyl explant produced 28.76 shoots/explant in Arka Vikas and 19.44 shoots/explant in PED. In contrast, leaf explant induced 23.54 shoots/explant in Arka Vikas and 17.64 shoots/explant in PED. The obtained multiple shoot buds from three explant types were elongated on a medium fortified with Gibberellic acid (GA3) (1.0 mg l-1), IAA (0.5 mg l-1), and ZEA (0.5 mg l-1) in both the cultivars. The rooting was observed on a medium amended with 0.5 mg l-1 indole 3-butyric acid (IBA). The transformation efficiency was significantly improved by optimizing the pre-culture of explants, co-cultivation duration, bacterial density and infection time, and acetosyringone concentration. The presence of transgenes in the plant genome was validated using different methods like histochemical GUS assay, Polymerase Chain Reaction (PCR), and Southern blotting. The transformation efficiency was 42.8% in PED and 64.6% in Arka Vikas. A highly repeatable plant regeneration protocol was established by manipulating various plant growth regulators (PGRs) in two tomato cultivars (Arka Vikas and PED). The Agrobacterium-mediated transformation method was optimized using different explants like cotyledon, hypocotyl, and leaf of two tomato genotypes. The present study could be favourable to transferring desirable traits and precise genome editing techniques to develop superior tomato genotypes.
Collapse
Affiliation(s)
- Dulam Sandhya
- Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009, India
| | - Phanikanth Jogam
- Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009, India
| | | | | | | | | | - Sadanandam Abbagani
- Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009, India
| |
Collapse
|
32
|
Wang C, Wu H, Liu Z, Barrow C, Dunshea F, Suleria HAR. Bioaccessibility and movement of phenolic compounds from tomato ( Solanum lycopersicum) during in vitro gastrointestinal digestion and colonic fermentation. Food Funct 2022; 13:4954-4966. [PMID: 35441650 DOI: 10.1039/d2fo00223j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tomatoes (Solanum lycopersicum) are highly involved in diets consumed worldwide, and are rich in bioactive compounds including phenolics, carotenoids and vitamins. In this study, four different varieties of fresh tomato pulp (Oxheart, Green Zebra, Kumato and Roma) were used to estimate the bioaccessibility of target phenolic compounds during in vitro gastrointestinal digestion and colonic fermentation, and to determine their antioxidant capacity. The production of short chain fatty acids (SCFAs) was also estimated during colonic fermentation. Among these, Roma displayed relatively higher total phenolic content (TPC) and free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay) values after gastrointestinal digestion of 0.31 mg gallic acid equivalents (GAE) per g and 0.12 mg Trolox equivalents (TE) per g. Kumato exhibited the highest total flavonoid content (TFC) of 2.47 mg quercetin equivalents (QE) per g after 8 hours of colonic fermentation. Oxheart and Roma showed similar ferric reducing antioxidant power (FRAP) values of around 4.30 mg QE per g after 4 hours of faecal reaction. Catechin was the most bioaccessible phenolic compound in all fresh tomatoes, and could be completely decomposed after intestinal digestion, whereas the release of some bonded phenolic compounds required the action of gut microflora. Kumato and Green Zebra showed higher production of individual and total SCFAs for 16 hours of fermentation, which would provide more gut health benefits.
Collapse
Affiliation(s)
- Chuqi Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3217, Australia
| | - Frank Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia. .,Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia. .,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3217, Australia
| |
Collapse
|
33
|
Omac B, Moreira RG, Castell‐Perez EM. Integrated electron beam irradiation treatment with hydrogen peroxide aqueous solution to inactivate
Salmonella
on grape tomatoes. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Basri Omac
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
- Department of Food Processing Munzur University Tunceli Turkey
| | - Rosana G. Moreira
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| | - Elena M. Castell‐Perez
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| |
Collapse
|
34
|
Laranjeira T, Costa A, Faria-Silva C, Ribeiro D, de Oliveira JMPF, Simões S, Ascenso A. Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management. Molecules 2022; 27:1701. [PMID: 35268802 PMCID: PMC8911995 DOI: 10.3390/molecules27051701] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Tomato producing and processing industries present undoubted potential for industrial discarded products valorization whether due to the overproduction of fresh tomatoes or to the loss during processing. Although tomato by-products are not yet considered a raw material, several studies have suggested innovative and profitable applications. It is often referred to as "tomato pomace" and is quite rich in a variety of bioactive compounds. Lycopene, vitamin C, β-carotene, phenolic compounds, and tocopherol are some of the bioactives herein discussed. Tomato by-products are also rich in minerals. Many of these compounds are powerful antioxidants with anti-inflammatory properties besides modulating the immune system. Several researchers have focused on the possible application of natural ingredients, especially those extracted from foods, and their physiological and pharmacological effects. Herein, the effects of processing and further applications of the bioactive compounds present in tomato by-products were carefully reviewed, especially regarding the anti-inflammatory and anti-cancer effects. The aim of this review was thus to highlight the existing opportunities to create profitable and innovative applications for tomato by-products in health context.
Collapse
Affiliation(s)
- Tânia Laranjeira
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Ana Costa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (C.F.-S.)
| | - Catarina Faria-Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (C.F.-S.)
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.R.); (J.M.P.F.d.O.)
- Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.R.); (J.M.P.F.d.O.)
| | - Sandra Simões
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (C.F.-S.)
| | - Andreia Ascenso
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (C.F.-S.)
| |
Collapse
|
35
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
36
|
Conti V, Romi M, Guarnieri M, Cantini C, Cai G. Italian Tomato Cultivars under Drought Stress Show Different Content of Bioactives in Pulp and Peel of Fruits. Foods 2022; 11:foods11030270. [PMID: 35159422 PMCID: PMC8834277 DOI: 10.3390/foods11030270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: This study aims to evaluate the performance, in terms of accumulation of antioxidant compounds in fruits, of nine local and three commercial Italian tomato cultivars subjected to drought stress. The same local cultivars had been previously studied at morpho-physiological level. Methods: The present manuscript analyzes drought stress as a tool to increase the amount of secondary metabolites that can enhance fruit quality. Nutraceutical characterization of the fruits was performed by analyzing the content of antioxidants, phenols, flavonoids, lycopene, ascorbic acid (vitamin C), rutin, caffeic acid, and naringenin. At the same time, plant sensitivity to stress during the reproductive phase was monitored in terms of flower abscission, fruit drop, and seed germination. Results: Perina turns out to be the tomato cultivar with the best nutraceutical properties in the absence of stress while the Quarantino cultivar is so for flavonoid content (control plants) and lycopene and vitamin C content (stressed plants). Perina and Quarantino are the cultivars with the best response to drought and Perina has the highest concentrations of bioactives. Quarantino responds most effectively to stress in the reproductive phase. Conclusions: data confirm that drought stress increases bioactive production in some local cultivars of tomato, which produce higher quality fruits.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-232392
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.G.); (G.C.)
| | - Massimo Guarnieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.G.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.G.); (G.C.)
| |
Collapse
|
37
|
Albadawi DAI, Ravishankar D, Vallance TM, Patel K, Osborn HMI, Vaiyapuri S. Impacts of Commonly Used Edible Plants on the Modulation of Platelet Function. Int J Mol Sci 2022; 23:605. [PMID: 35054793 PMCID: PMC8775512 DOI: 10.3390/ijms23020605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore, numerous studies have been conducted to develop new antiplatelet agents and notably, to establish the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis and thrombosis.
Collapse
Affiliation(s)
- Dina A. I. Albadawi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Divyashree Ravishankar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Thomas M. Vallance
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| |
Collapse
|
38
|
Effect of regulated deficit irrigation on commercial quality parameters, carotenoids, phenolics and sugars of the black cherry tomato (Solanum lycopersicum L.) ʽSunchocolaʼ. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Pearl Grey Shading Net Boosts the Accumulation of Total Carotenoids and Phenolic Compounds That Accentuate the Antioxidant Activity of Processing Tomato. Antioxidants (Basel) 2021; 10:antiox10121999. [PMID: 34943102 PMCID: PMC8698697 DOI: 10.3390/antiox10121999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most consumed vegetables worldwide due to its low caloric intake and high fiber, minerals, and phenolic compounds, making it a high-quality functional food. However, fruit quality attributes can be affected by pre-harvest factors, especially environmental stresses. This research aimed to evaluate the influence of two shading nets (white net −30% and pearl grey net −40% shading degree) on the yield and phytochemical profile of tomato fruits grown in summer under the Mediterranean climate. Mineral and organic acid content (by ion chromatography-IC), phenolic profile (by ultra-high performance liquid chromatography-UHPLC coupled with an Orbitrap high-resolution mass spectrometry-HRMS), carotenoid content (by high-performance liquid chromatography with diode array detection-HPLC-DAD), and antioxidant activities DPPH, ABTS, and FRAP (by UV-VIS spectrophotometry) were determined. Tomato fruits grown under the pearl grey net recorded the highest values of total phenolic compounds (14,997 µg 100 g−1 of fresh weight) and antioxidant activities DPPH, ABTS, and FRAP, without affecting either fruit color or marketable yield. The reduction of solar radiation through pearl grey nets proved to be an excellent tool to increase the phytochemical quality of tomato fruits during summer cultivation in a Mediterranean environment.
Collapse
|
40
|
Uncertainty, insightful ignorance, and curiosity: Improving future food science research. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Wang J, Tang X, Lu Y, Zheng Y, Zeng F, Shi W, Zhou P. Lycopene Regulates Dietary Dityrosine-Induced Mitochondrial-Lipid Homeostasis by Increasing Mitochondrial Complex Activity. Mol Nutr Food Res 2021; 66:e2100724. [PMID: 34780105 DOI: 10.1002/mnfr.202100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/13/2021] [Indexed: 12/22/2022]
Abstract
SCOPE Dityrosine (DT), a marker of protein oxidation, is widely found in many high-protein foods. Dietary intake of DT induces myocardial oxidative stress injury and impairs energy metabolism. Lycopene is a common dietary supplement with antioxidant and mitochondrial-lipid homeostasis modulating abilities. This study aimed to examine the effects of lycopene on DT-induced disturbances in myocardial function and energy metabolism. METHODS AND RESULTS Four-week-old C57BL/6J mice received intragastric administration of either tyrosine (420 µg kg-1 BW), DT (420 µg kg-1 BW), or lycopene at high (10 mg kg-1 BW) and low (5 mg kg-1 BW) doses for 35 days. Lycopene administration effectively reduced oxidative stress, cardiac fatty acid accumulation, and cardiac hypertrophy and improved mitochondrial performance in DT-induced mice. In vitro experiments in H9c2 cells showed that DT directly inhibited the activity of the respiratory chain complex, whereas oxidative phosphorylation and β-oxidation gene expression is upregulated. Lycopene enhanced the activity of the complexes and inhibited ROS production caused by compensatory regulation. CONCLUSION Lycopene improves DT-mediated myocardial energy homeostasis disorder by promoting the activity of respiratory chain complexes I and IV and alleviates the accumulation of cardiac fatty acids and myocardial hypertrophy.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yipin Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yingying Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,National Enineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fanhang Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wentao Shi
- School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
42
|
Wu X, Yu L, Pehrsson PR. Are Processed Tomato Products as Nutritious as Fresh Tomatoes? Scoping Review on the Effects of Industrial Processing on Nutrients and Bioactive Compounds in Tomatoes. Adv Nutr 2021; 13:138-151. [PMID: 34666349 PMCID: PMC8803485 DOI: 10.1093/advances/nmab109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 01/05/2023] Open
Abstract
Tomatoes are the second most consumed vegetable in the United States. In 2017, American people consumed 9.2 kg of tomatoes from a fresh market and 33.2 kg of processed tomato products per capita. One commonly asked question by consumers and the nutrition community is "Are processed tomato products as nutritious as fresh tomatoes?" This review addresses this question by summarizing the current understandings on the effects of industrial processing on the nutrients and bioactive compounds of tomatoes. Twelve original research papers were found to study the effects of different industrial processing methods on the nutrients and/or bioactive compounds in tomato products. The data suggested that different processing methods had different effects on different compounds in tomatoes. However, currently available data are still limited, and the existing data are often inconsistent. The USDA National Nutrient Database for Standard Reference Legacy was utilized to estimate nutrient contents from raw tomatoes and processed tomato products. In addition, several other important factors specifically related to the industrial processing of tomatoes were also discussed. To conclude, there is no simple "yes" or "no" answer to the question "Are processed tomato products as nutritious as fresh tomatoes?" Many factors must be considered when comparing the nutritious value between fresh tomatoes and processed tomato products. At this point, we do not have sufficient data to fully understand all of the factors and their impacts.
Collapse
Affiliation(s)
- Xianli Wu
- Address correspondence to XW (e-mail: )
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| |
Collapse
|
43
|
Liu MH, Li YF, Chen BH. Inhibition of Melanoma Cells A375 by Carotenoid Extract and Nanoemulsion Prepared from Pomelo Leaves. PLANTS 2021; 10:plants10102129. [PMID: 34685938 PMCID: PMC8539030 DOI: 10.3390/plants10102129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
This study aims to determine carotenoids in pomelo leaves (Citrus grandis Osbeck), a rich source of nutrients and phytochemicals, by high-performance liquid chromatography-mass spectrometry and prepare carotenoid nanoemulsions for the study of its inhibitory mechanism on melanoma cells A375. Fourteen carotenoids were separated within 27 min by using a YMC-C30 column and a gradient mobile phase of methanol-acetonitrile-water (84:14:2, v/v/v) and methylene chloride with a flow rate of 1 mL/min and detection wavelength of 450 nm. All-trans-lutein plus its cis-isomers were present in the largest amount (3012.97 μg/g), followed by all-trans-neoxanthin (309.2 μg/g), all-trans-violaxanthin (208.5 μg/g), all-trans-β-carotene plus its cis-isomers (203.17 μg/g), all-trans-α-carotene plus its cis-isomers (152.5 μg/g), all-trans-zeaxanthin (54.67 μg/g), and all-trans-β-cryptoxanthin plus its cis-isomers (24.56 μg/g). A stable carotenoid nanoemulsion was prepared with a mean particle size of 13.3 nm, zeta-potential of −66.6 mV, a polydispersity index of 0.132 and an encapsulation efficiency of 99%. Both the carotenoid extract and nanoemulsion could upregulate p53, p21, cyclin B and cyclin A expressions in melanoma A375 cells and downregulate CDK1 and CDK2 in a concentration-dependent manner. Also, they could upregulate Bax and cytochrome-C and downregulate Bcl-2, leading to cell apoptosis through activation of caspase-9, caspase-8 and caspase-3. Compared to extract, carotenoid nanoemulsion was shown to be more effective in inhibiting the growth of melanoma cells A375. This finding further demonstrated that a carotenoid nanoemulsion prepared from pomelo leaves possessed a great potential to be developed into functional foods or even botanic drugs.
Collapse
Affiliation(s)
- Man-Hai Liu
- Department of Food Science, China University of Science and Technology, Taipei 11581, Taiwan;
| | - Yi-Fen Li
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Department of Nutrition, China Medical University, Taichung 40401, Taiwan
- Correspondence: ; Tel.: +886-2-2905-3626; Fax: +886-2-2209-3271
| |
Collapse
|
44
|
Impact of Peels Extracts from an Italian Ancient Tomato Variety Grown under Drought Stress Conditions on Vascular Related Dysfunction. Molecules 2021; 26:molecules26144289. [PMID: 34299564 PMCID: PMC8307906 DOI: 10.3390/molecules26144289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. Methods: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. Results: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). Conclusions: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.
Collapse
|
45
|
Mokgehle TM, Madala N, Gitari WM, Tavengwa NT. Advances in the development of biopolymeric adsorbents for the extraction of metabolites from nutraceuticals with emphasis on Solanaceae and subsequent pharmacological applications. Carbohydr Polym 2021; 264:118049. [PMID: 33910751 DOI: 10.1016/j.carbpol.2021.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Biopolymers are renowned for their sustainable, biodegradable, biocompatible and most of them have antitoxic characteristics. These versatile naturally derived compounds include proteins, polynucleotides (RNA and DNA) and polysaccharides. Cellulose and chitosan are the most abundant polysaccharides. Proteins and polysaccharides have been applied as emulsifiers. Additional applications of proteins and polysaccharides include cosmetics, food and wastewater treatment for adsorption of dyes and pesticides. However, more interesting applications of biopolymers are emerging, such as use in transport systems for delivery of plant derived nutraceuticals to sites of inflammation, due to its inherent ability to immobilize different biological and chemical systems. This review aims to give a summary on new trends and complement what is already known in the development of polysaccharides and proteins as adsorbents of nutraceutical compounds. The application of polysaccharides/protein containing the adsorbed Solanum derived nutraceutical compounds for drug deliveryis also reviewed.
Collapse
Affiliation(s)
- Tebogo Mphatlalala Mokgehle
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Wilson Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
46
|
Arooj M, Imran S, Inam‐ur‐Raheem M, Rajoka MSR, Sameen A, Siddique R, Sahar A, Tariq S, Riaz A, Hussain A, Siddeeg A, Aadil RM. Lotus seeds ( Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review. Food Sci Nutr 2021; 9:3971-3987. [PMID: 34262752 PMCID: PMC8269573 DOI: 10.1002/fsn3.2313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Nelumbinis semen is commonly known as lotus seeds that have been used as a vegetable, functional food, and medicine for 7,000 years. These are low caloric, a rich source of multiple nutrients and bioactive constituents, which make it a unique therapeutic food. N. semen plays an important part in the physiological functions of the body. Nowadays, people are more conscious about their health and desire to treat disease naturally with minimal side effects. So, functional foods are getting popularity due to a wide range of essential constituents, which are associated to decrease the risk of chronic diseases. These bioactive compounds from seeds are involved in anti-adipogenic, antioxidant, antitumor, cardiovascular, hepato-protective, anti-inflammatory, anti-fertility, anti-microbial, anti-viral, hypoglycemic, etc. Moreover, the relationship between functional compounds along with their mechanism of action in the body, their extraction from the seeds for further research would be of great interest.
Collapse
Affiliation(s)
- Muzalfa Arooj
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Saira Imran
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Aysha Sameen
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Rabia Siddique
- Department of ChemistryGovernment College UniversityFaisalabadPakistan
| | - Amna Sahar
- Department of Food EngineeringUniversity of AgricultureFaisalabadPakistan
| | - Shiza Tariq
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Ayesha Riaz
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Abid Hussain
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
47
|
Wang J, Zhang J, Li J, Dawuda MM, Ali B, Wu Y, Yu J, Tang Z, Lyu J, Xiao X, Hu L, Xie J. Exogenous Application of 5-Aminolevulinic Acid Promotes Coloration and Improves the Quality of Tomato Fruit by Regulating Carotenoid Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:683868. [PMID: 34220904 PMCID: PMC8243651 DOI: 10.3389/fpls.2021.683868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/06/2021] [Indexed: 05/03/2023]
Abstract
5-Aminolevulinic acid (ALA) plays an important role in plant growth and development. It can also be used to enhance crop resistance to environmental stresses and improve the color and internal quality of fruits. However, there are limited reports regarding the effects of ALA on tomato fruit color and its regulatory mechanisms. Therefore, in this study, the effects of exogenous ALA on the quality and coloration of tomato fruits were examined. Tomato (Solanum lycopersicum "Yuanwei No. 1") fruit surfaces were treated with different concentrations of ALA (0, 100, and 200 mg⋅L-1) on the 24th day after fruit setting (mature green fruit stage), and the content of soluble sugar, titratable acid, soluble protein, vitamin C, and total free amino acids, as well as amino acid components, intermediates of lycopene synthetic and metabolic pathways, and ALA metabolic pathway derivatives were determined during fruit ripening. The relative expression levels of genes involved in lycopene synthesis and metabolism and those involved in ALA metabolism were also analyzed. The results indicated that exogenous ALA (200 mg⋅L-1) increased the contents of soluble sugars, soluble proteins, total free amino acids, and vitamin C as well as 11 kinds of amino acid components in tomato fruits and reduced the content of titratable acids, thus improving the quality of tomato fruits harvested 4 days earlier than those of the control plants. In addition, exogenous ALA markedly improved carotenoid biosynthesis by upregulating the gene expression levels of geranylgeranyl diphosphate synthase, phytoene synthase 1, phytoene desaturase, and lycopene β-cyclase. Furthermore, exogenous ALA inhibited chlorophyll synthesis by downregulating the genes expression levels of Mg-chelatase and protochlorophyllide oxidoreductase. These findings suggest that supplementation with 200 mg⋅L-1 ALA not only enhances the nutritional quality and color of the fruit but also promotes early fruit maturation in tomato.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
48
|
Dufera LT, Hofacker W, Esper A, Hensel O. Physicochemical quality of twin layer solar tunnel dried tomato slices. Heliyon 2021; 7:e07127. [PMID: 34095594 PMCID: PMC8167221 DOI: 10.1016/j.heliyon.2021.e07127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
The objective of this experimental study was to evaluate the effect of twin layer solar tunnel drying on physicochemical quality of tomato slices. The novelty of this dryer is that it has two layers of trays unlike Hohenheim solar tunnel dryer which makes it to have drying capacity of more than two times compare to type hohenheim solar tunnel dryer with equal collector area. The experiment consists of two (tray position and drying position) factors with two levels of tray position (upper tray (samples exposed to direct solar radiation) and lower tray (samples are exposed to only heated air)) and three levels of drying position (collector out let,middle of the dryer and dryer out let) with three replications. During the experiment 180 kg of Tomato slices of Galilea variety with 5mm thickness were dried in the twin layer solar tunnel dryer. Data on physicochemical quality of tomato were collected and analyzed using SAS (version 9.2). software. From the experimental result; an increase in lycopene and phenolic content retention along the length of the dryer was observed while Vitamin C retention showed a decreasing trend. Large retention of total phenol, lycopene and beta carotene content were observed for the lower tray dried tomato slices compared to the upper tray dried ones. The water activity and PH values of the solar tunnel dried tomatoes were within the safe range from microbial growth, enzymatic and non-enzymatic browning. Compared to sun drying; solar tunnel dried tomatoes showed a much better nutrient retention for all quality parameters which is comparable with the data reported for energy intensive mechanical dryers.
Collapse
Affiliation(s)
- Lelise Tilahun Dufera
- Department of Post-Harvest Management, Jimma University, P.O.Box 307, Jimma, Ethiopia
| | - Werner Hofacker
- Institute of Applied Thermo and Fluid Dynamics, Konstanz University of Applied Sciences, D-78462 Konstanz, Germany
| | | | - Oliver Hensel
- Department of Agricultural Engineering, University of Kassel, Witzenhausen, Germany
| |
Collapse
|
49
|
Méndez-Flores OG, Ochoa-Díaz López H, Castro-Quezada I, Olivo-Vidal ZE, García-Miranda R, Rodríguez-Robles U, Irecta-Nájera CA, López-Ramírez G, Sánchez-Chino XM. The Milpa as A Supplier of Bioactive Compounds: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- OG Méndez-Flores
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - H Ochoa-Díaz López
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - I Castro-Quezada
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
| | - ZE Olivo-Vidal
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - R García-Miranda
- Health Department, El Colegio De La Frontera Sur, San Cristóbal De Las Casas, Chiapas, México
- Escuela De Lenguas-Campus III San Cristóbal, Universidad Autónoma De Chiapas, San Cristóbal De Las Casas, Chiapas, México
| | - U Rodríguez-Robles
- Departamento De Ecología Y Recursos Naturales. Centro Universitario De La Costa Sur. Universidad De Guadalajara, Autlán De Navarro, Jalisco, México
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| | - CA Irecta-Nájera
- Health Department, El Colegio De La Frontera Sur, Villahermosa, Tabasco, México
| | - G López-Ramírez
- Departamento De Fisiología, Biofísica Y Neurociencias, Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad De México, México
| | - XM Sánchez-Chino
- Cátedra-CONACyT, Health Department, El Colegio De La Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, México
| |
Collapse
|
50
|
Chattopadhyay T, Hazra P, Akhtar S, Maurya D, Mukherjee A, Roy S. Skin colour, carotenogenesis and chlorophyll degradation mutant alleles: genetic orchestration behind the fruit colour variation in tomato. PLANT CELL REPORTS 2021; 40:767-782. [PMID: 33388894 DOI: 10.1007/s00299-020-02650-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 05/22/2023]
Abstract
The genetics underlying the fruit colour variation in tomato is an interesting area of both basic and applied research in plant biology. There are several factors, like phytohormones, environmental signals and epistatic interactions between genes, which modulate the ripe fruit colour in tomato. However, three aspects: genetic regulation of skin pigmentation, carotenoid biosynthesis and ripening-associated chlorophyll degradation in tomato fruits are of pivotal importance. Different genes along with their mutant alleles governing the aforementioned characters have been characterized in detail. Moreover, the interaction of these mutant alleles has been explored, which has paved the way for developing novel tomato genotypes with unique fruit colour and beneficial phytonutrient composition. In this article, we review the genes and the corresponding mutant alleles underlying the variation in tomato skin pigmentation, carotenoid biosynthesis and ripening-associated chlorophyll degradation. The possibility of generating novel fruit colour-variants using different combinations of these mutant alleles is documented. Furthermore, the involvement of some other mutant alleles (like those governing purple fruit colour and high fruit pigmentation), not belonging to the aforementioned three categories, are discussed in brief. The simplified representation of the assembled information in this article should not only help a broad range of readers in their basic understanding of this complex phenomenon but also trigger them for further exploration of the same. The article would be useful for genetic characterization of fruit colour-variants and molecular breeding for fruit colour improvement in tomato using the well-characterized mutant alleles.
Collapse
Affiliation(s)
- Tirthartha Chattopadhyay
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
| | - Pranab Hazra
- Department of Vegetable Science, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Shirin Akhtar
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Deepak Maurya
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Arnab Mukherjee
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Sheuli Roy
- Alumna, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
- Bihar Agricultural College, Bihar Agricultural University, Qtr. No. C1/14, Sabour, Bhagalpur, Bihar, 813210, India
| |
Collapse
|