1
|
Nettey-Oppong EE, Muhammad R, Ali A, Jeong HW, Seok YS, Kim SW, Choi SH. The Impact of Temperature and Pressure on the Structural Stability of Solvated Solid-State Conformations of Bombyx mori Silk Fibroins: Insights from Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5686. [PMID: 39685120 DOI: 10.3390/ma17235686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Bombyx mori silk fibroin is a promising biopolymer with notable mechanical strength, biocompatibility, and potential for diverse biomedical applications, such as tissue engineering scaffolds, and drug delivery. These properties are intrinsically linked to the structural characteristics of silk fibroin, making it essential to understand its molecular stability under varying environmental conditions. This study employed molecular dynamics simulations to examine the structural stability of silk I and silk II conformations of silk fibroin under changes in temperature (298 K to 378 K) and pressure (0.1 MPa to 700 MPa). Key parameters, including Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and Radius of Gyration (Rg) were analyzed, along with non-bonded interactions such as van der Waals and electrostatic potential energy. Our findings demonstrate that both temperature and pressure exert a destabilizing effect on silk fibroin, with silk I exhibiting a higher susceptibility to destabilization compared to silk II. Additionally, pressure elevated the van der Waals energy in silk I, while temperature led to a reduction. In contrast, electrostatic potential energy remained unaffected by these environmental conditions, highlighting stable long-range interactions throughout the study. Silk II's tightly packed β-sheet structure offers greater resilience to environmental changes, while the more flexible α-helices in silk I make it more susceptible to structural perturbations. These findings provide valuable insights into the atomic-level behavior of silk fibroin, contributing to a deeper understanding of its potential for applications in environments where mechanical or thermal stress is a factor. The study underscores the importance of computational approaches in exploring protein stability and supports the continued development of silk fibroin for biomedical and engineering applications.
Collapse
Affiliation(s)
| | - Riaz Muhammad
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ahmed Ali
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Hyun-Woo Jeong
- Department of Biomedical Engineering, Eulji University, Seongnam 13135, Republic of Korea
| | - Young-Seek Seok
- Gangwon-do Agricultural Product Registered Seed Station, Chuncheon 24410, Republic of Korea
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Seung Ho Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
- Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| |
Collapse
|
2
|
Egan G, Hannah AJ, Donnelly S, Connolly P, Seib FP. The Biologically Active Biopolymer Silk: The Antibacterial Effects of Solubilized Bombyx mori Silk Fibroin with Common Wound Pathogens. Adv Biol (Weinh) 2024; 8:e2300115. [PMID: 38411381 DOI: 10.1002/adbi.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 12/22/2023] [Indexed: 02/28/2024]
Abstract
Antibacterial properties are desirable in wound dressings. Silks, among many material formats, have been investigated for use in wound care. However, the antibacterial properties of liquid silk are poorly understood. The aim of this study is to investigate the inherent antibacterial properties of a Bombyx mori silk fibroin solution. Silk fibroin solutions containing ≥ 4% w/v silk fibroin do not support the growth of two common wound pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. When liquid silk is added to a wound pad and placed on inoculated culture plates mimicking wound fluid, silk is bacteriostatic. Viability tests of the bacterial cells in the presence of liquid silk show that cells remain intact within the silk but could not be cultured. Liquid silk appears to provide a hostile environment for S. aureus and P. aeruginosa and inhibits growth without disrupting the cell membrane. This effect can be beneficial for wound healing and supports future healthcare applications for silk. This observation also indicates that liquid silk stored prior to processing is unlikely to experience microbial spoilage.
Collapse
Affiliation(s)
- Gemma Egan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Aiden J Hannah
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Sean Donnelly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Patricia Connolly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
- Branch Bioresources, Fraunhofer Institute for Molecular Biology & Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
- Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| |
Collapse
|
3
|
Kaewchuchuen J, Matthew SAL, Phuagkhaopong S, Bimbo LM, Seib FP. Functionalising silk hydrogels with hetero- and homotypic nanoparticles. RSC Adv 2024; 14:3525-3535. [PMID: 38259992 PMCID: PMC10801455 DOI: 10.1039/d3ra07634b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Despite many reports detailing silk hydrogels, the development of composite silk hydrogels with homotypic and heterotypic silk nanoparticles and their impact on material mechanics and biology have remained largely unexplored. We hypothesise that the inclusion of nanoparticles into silk-based hydrogels enables the formation of homotropic and heterotropic material assemblies. The aim was to explore how well these systems allow tuning of mechanics and cell adhesion to ultimately control the cell-material interface. We utilised nonporous silica nanoparticles as a standard reference and compared them to nanoparticles derived from Bombyx mori silk and Antheraea mylitta (tasar) silk (approximately 100-150 nm in size). Initially, physically cross-linked B. mori silk hydrogels were prepared containing silica, B. mori silk nanoparticles, or tasar silk nanoparticles at concentrations of either 0.05% or 0.5% (w/v). The initial modulus (stiffness) of these nanoparticle-functionalised silk hydrogels was similar. Stress relaxation was substantially faster for nanoparticle-modified silk hydrogels than for unmodified control hydrogels. Increasing the concentrations of B. mori silk and silica nanoparticles slowed stress relaxation, while the opposite trend was observed for hydrogels modified with tasar nanoparticles. Cell attachment was similar for all hydrogels, but proliferation during the initial 24 h was significantly improved with the nanoparticle-modified hydrogels. Overall, this study demonstrates the manufacture and utilisation of homotropic and heterotropic silk hydrogels.
Collapse
Affiliation(s)
- Jirada Kaewchuchuen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University Bangkok Thailand
| | - Luis M Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra 3000-548 Coimbra Portugal
- CNC - Center for Neuroscience and Cell Biology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Fraunhofer Institute for Molecular Biology & Applied Ecology Branch Bioresources, Ohlebergsweg 12 35392 Giessen Germany
- Friedrich Schiller University Jena, Institute of Pharmacy Lessingstr. 8 07743 Jena Germany +49 3641 9 499 00
| |
Collapse
|
4
|
Matthew SL, Seib FP. Silk Bioconjugates: From Chemistry and Concept to Application. ACS Biomater Sci Eng 2024; 10:12-28. [PMID: 36706352 PMCID: PMC10777352 DOI: 10.1021/acsbiomaterials.2c01116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2023]
Abstract
Medical silks have captured global interest. While silk sutures have a long track record in humans, silk bioconjugates are still in preclinical development. This perspective examines key advances in silk bioconjugation, including the fabrication of silk-protein conjugates, bioconjugated silk particles, and bioconjugated substrates to enhance cell-material interactions in two and three dimensions. Many of these systems rely on chemical modification of the silk biopolymer, often using carbodiimide and reactive ester chemistries. However, recent progress in enzyme-mediated and click chemistries has expanded the molecular toolbox to enable biorthogonal, site-specific conjugation in a single step when combined with recombinant silk fibroin tagged with noncanonical amino acids. This perspective outlines key strategies available for chemical modification, compares the resulting silk conjugates to clinical benchmarks, and outlines open questions and areas that require more work. Overall, this assessment highlights a domain of new sunrise capabilities and development opportunities for silk bioconjugates that may ultimately offer new ways of delivering improved healthcare.
Collapse
Affiliation(s)
- Saphia
A. L. Matthew
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
- Branch
Bioresources, Fraunhofer Institute for Molecular
Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
5
|
Almalki WH. An Up-to-date Review on Protein-based Nanocarriers in the Management of Cancer. Curr Drug Deliv 2024; 21:509-524. [PMID: 37165498 DOI: 10.2174/1567201820666230509101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND A big health issue facing the world's population is cancer. An alarming increase in cancer patients was anticipated by worldwide demographic statistics, which showed that the number of patients with different malignancies was rapidly increasing. By 2025, probably 420 million cases were projected to be achieved. The most common cancers diagnosed are breast, colorectal, prostate, and lung. Conventional treatments, such as surgery, chemotherapy, and radiation therapy, have been practiced. OBJECTIVE In recent years, the area of cancer therapy has changed dramatically with expanded studies on the molecular-level detection and treatment of cancer. Recent advances in cancer research have seen significant advances in therapies such as chemotherapy and immunotherapy, although both have limitations in effectiveness and toxicity. METHODS The development of nanotechnology for anticancer drug delivery has developed several potentials as nanocarriers, which may boost the pharmacokinetic and pharmacodynamic effects of the drug product and substantially reduce the side effects. RESULTS The advancement in non-viral to viral-based protein-based nanocarriers for treating cancer has earned further recognition in this respect. Many scientific breakthroughs have relied on protein-based nanocarriers, and proteins are essential organic macromolecules for life. It allows targeted delivery of passive or active tumors using non-viral-based protein-based nanocarriers to viral-based protein nanocarriers. When targeting cancer cells, both animal and plant proteins may be used in a formulation process to create self-assembled viruses and platforms that can successfully eradicate metastatic cancer cells. CONCLUSION This review, therefore, explores in depth the applications of non-viral to viral proteinbased noncarriers with a specific focus on intracellular drug delivery and anti-cancer drug targeting ability.
Collapse
Affiliation(s)
- Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Aal-qura University, Saudi Arabia
| |
Collapse
|
6
|
Zhang Q, Toprakcioglu Z, Jayaram AK, Guo G, Wang X, Knowles TPJ. Formation of Protein Nanoparticles in Microdroplet Flow Reactors. ACS NANO 2023; 17:11335-11344. [PMID: 37306477 PMCID: PMC10311583 DOI: 10.1021/acsnano.3c00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Nanoparticles are increasingly being used for biological applications, such as drug delivery and gene transfection. Different biological and bioinspired building blocks have been used for generating such particles, including lipids and synthetic polymers. Proteins are an attractive class of material for such applications due to their excellent biocompatibility, low immunogenicity, and self-assembly characteristics. Stable, controllable, and homogeneous formation of protein nanoparticles, which is key to successfully delivering cargo intracellularly, has been challenging to achieve using conventional methods. In order to address this issue, we employed droplet microfluidics and utilized the characteristic of rapid and continuous mixing within microdroplets in order to produce highly monodisperse protein nanoparticles. We exploit the naturally occurring vortex flows within microdroplets to prevent nanoparticle aggregation following nucleation, resulting in systematic control over the particle size and monodispersity. Through combination of simulation and experiment, we find that the internal vortex velocity within microdroplets determines the uniformity of the protein nanoparticles, and by varying parameters such as protein concentration and flow rates, we are able to finely tune nanoparticle dimensional properties. Finally, we show that our nanoparticles are highly biocompatible with HEK-293 cells, and through confocal microscopy, we determine that the nanoparticles fully enter into the cell with almost all cells containing them. Due to the high throughput of the method of production and the level of control afforded, we believe that the approach described in this study for generating monodisperse protein-based nanoparticles has the potential for intracellular drug delivery or for gene transfection in the future.
Collapse
Affiliation(s)
- Qi Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Center
of Excellence for Environmental Safety and Biological Effects, Beijing
Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Zenon Toprakcioglu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Akhila K. Jayaram
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson
Avenue, Cambridge CB3 OHE, U.K.
| | - Guangsheng Guo
- Center
of Excellence for Environmental Safety and Biological Effects, Beijing
Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Xiayan Wang
- Center
of Excellence for Environmental Safety and Biological Effects, Beijing
Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson
Avenue, Cambridge CB3 OHE, U.K.
| |
Collapse
|
7
|
Promising Role of Silk-Based Biomaterials for Ocular-Based Drug Delivery and Tissue Engineering. Polymers (Basel) 2022; 14:polym14245475. [PMID: 36559842 PMCID: PMC9788421 DOI: 10.3390/polym14245475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Silk is a wonderful biopolymer that has a long history of medical applications. Surgical cords and medically authorised human analogues made of silk have a long history of use in management. We describe the use of silk in the treatment of eye diseases in this review by looking at the usage of silk fibroin for eye-related drug delivery applications and medication transfer to the eyes. During this ancient art endeavour, a reduced engineering project that employed silk as a platform for medicine delivery or a cell-filled matrix helped reignite interest. With considerable attention, this study explores the present usage of silk in ocular-based drug delivery. This paper also examines emerging developments with the use of silk as a biopolymer for the treatment of eye ailments. As treatment options for glaucoma, diabetic retinopathy, retinitis pigmentosa, and other retinal diseases and degenerations are developed, the trans-scleral route of drug delivery holds great promise for the selective, sustained-release delivery of these novel therapeutic compounds. We should expect a swarm of silk-inspired materials to enter clinical testing and use on the surface as the secrets of silk are unveiled. This article finishes with a discussion on potential silk power, which adds to better ideas and enhanced ocular medicine delivery.
Collapse
|
8
|
Wani SUD, Zargar MI, Masoodi MH, Alshehri S, Alam P, Ghoneim MM, Alshlowi A, Shivakumar HG, Ali M, Shakeel F. Silk Fibroin as an Efficient Biomaterial for Drug Delivery, Gene Therapy, and Wound Healing. Int J Mol Sci 2022; 23:ijms232214421. [PMID: 36430901 PMCID: PMC9692988 DOI: 10.3390/ijms232214421] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Silk fibroin (SF), an organic material obtained from the cocoons of a silkworm Bombyx mori, is used in several applications and has a proven track record in biomedicine owing to its superior compatibility with the human body, superb mechanical characteristics, and its controllable propensity to decay. Due to its robust biocompatibility, less immunogenic, non-toxic, non-carcinogenic, and biodegradable properties, it has been widely used in biological and biomedical fields, including wound healing. The key strategies for building diverse SF-based drug delivery systems are discussed in this review, as well as the most recent ways for developing functionalized SF for controlled or redirected medicines, gene therapy, and wound healing. Understanding the features of SF and the various ways to manipulate its physicochemical and mechanical properties enables the development of more effective drug delivery devices. Drugs are encapsulated in SF-based drug delivery systems to extend their shelf life and control their release, allowing them to travel further across the bloodstream and thus extend their range of operation. Furthermore, due to their tunable properties, SF-based drug delivery systems open up new possibilities for drug delivery, gene therapy, and wound healing.
Collapse
Affiliation(s)
- Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Correspondence: (S.A.); (F.S.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Areej Alshlowi
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - H. G. Shivakumar
- Department of Pharmaceutics, College of Pharmacy, JSS Academy of Technical Education, Noida 201301, India
| | - Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore 560049, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.A.); (F.S.)
| |
Collapse
|
9
|
Tomeh MA, Hadianamrei R, Xu D, Brown S, Zhao X. Peptide-functionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9. Colloids Surf B Biointerfaces 2022; 216:112549. [PMID: 35636321 DOI: 10.1016/j.colsurfb.2022.112549] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Silk fibroin is an FDA approved biopolymer for clinical applications with great potential in nanomedicine. However, silk-based nanoformulations are still facing several challenges in processing and drug delivery efficiency (such as reproducibility and targetability), especially in cancer therapy. To address these challenges, robust and controllable production methods are required for generating nanocarriers with desired properties. This study aimed to develop a novel method for the production of peptide-functionalized magnetic silk nanoparticles with higher selectivity for cancer cells for targeted delivery of the hydrophobic anticancer agent ASC-J9. A new microfluidic device with a swirl mixer was designed to fabricate magnetic silk nanoparticles (MSNP) with desired size and narrow size distribution. The surface of MSNPs was functionalized with a cationic amphiphilic anticancer peptide, G(IIKK)3I-NH2 (G3), to enhance their selectivity towards cancer cells. The G3-MSNPs increased the cellular uptake and anticancer activity of G3 in HCT 116 colorectal cancer cells compared to free G3. Moreover, the G3-MSNPs exhibited considerably higher cellular uptake and cytotoxicity in HCT 116 colorectal cancer cells compared to normal cells (HDFs). Encapsulating ASC-J9 in G3-MSNPs resulted in augmented anticancer activity compared to free ASC-J9 and non-functionalized ASC-J9 loaded MSNPs within its biological half-life. Hence, functionalizing MSNPs with G3 enabled targeted delivery of ASC-J9 to cancer cells and enhanced its anticancer effect. Functionalization of nanoparticles with anticancer peptides could be regarded as a new strategy for targeted delivery and enhanced efficiency of anticancer drugs. Furthermore, the microfluidic device introduced in this paper offers a robust and reproducible method for fabrication of small sized homogenous nanoparticles.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, Sheffield S1 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
10
|
Egan G, Phuagkhaopong S, Matthew SAL, Connolly P, Seib FP. Impact of silk hydrogel secondary structure on hydrogel formation, silk leaching and in vitro response. Sci Rep 2022; 12:3729. [PMID: 35260610 PMCID: PMC8904773 DOI: 10.1038/s41598-022-07437-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Silk can be processed into a broad spectrum of material formats and is explored for a wide range of medical applications, including hydrogels for wound care. The current paradigm is that solution-stable silk fibroin in the hydrogels is responsible for their therapeutic response in wound healing. Here, we generated physically cross-linked silk fibroin hydrogels with tuned secondary structure and examined their ability to influence their biological response by leaching silk fibroin. Significantly more silk fibroin leached from hydrogels with an amorphous silk fibroin structure than with a beta sheet-rich silk fibroin structure, although all hydrogels leached silk fibroin. The leached silk was biologically active, as it induced vitro chemokinesis and faster scratch assay wound healing by activating receptor tyrosine kinases. Overall, these effects are desirable for wound management and show the promise of silk fibroin and hydrogel leaching in the wider healthcare setting.
Collapse
Affiliation(s)
- Gemma Egan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Patricia Connolly
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, UK.
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
11
|
Yang W, Xie D, Liang Y, Chen N, Xiao B, Duan L, Wang M. Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Mitra K, Chadha A, Muthuvijayan V, Doble M. Self-Assembled Inhalable Immunomodulatory Silk Fibroin Nanocarriers for Enhanced Drug Loading and Intracellular Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:708-721. [DOI: 10.1021/acsbiomaterials.1c01357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kartik Mitra
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences& National Center for Catalysis Research (NCCR), Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- Tissue Engineering and Biomaterials Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences& National Center for Catalysis Research (NCCR), Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Quiñones JP, Roschger C, Iturmendi A, Henke H, Zierer A, Peniche-Covas C, Brüggemann O. Polyphosphazene-Based Nanocarriers for the Release of Camptothecin and Epirubicin. Pharmaceutics 2022; 14:169. [PMID: 35057062 PMCID: PMC8781282 DOI: 10.3390/pharmaceutics14010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
The design and study of efficient polymer-based drug delivery systems for the controlled release of anticancer drugs is one of the pillars of nanomedicine. The fight against metastatic and invasive cancers demands therapeutic candidates with increased and selective toxicity towards malignant cells, long-term activity and reduced side effects. In this sense, polyphosphazene nanocarriers were synthesized for the sustained release of the anticancer drugs camptothecin (CPT) and epirubicin (EPI). Linear poly(dichloro)phosphazene was modified with lipophilic tocopherol or testosterone glycinate, with antioxidant and antitumor activity, and with hydrophilic Jeffamine M1000 to obtain different polyphosphazene nanocarriers. It allowed us to encapsulate the lipophilic CPT and the more hydrophilic EPI. The encapsulation process was carried out via solvent exchange/precipitation, attaining a 9.2-13.6 wt% of CPT and 0.3-2.4 wt% of EPI. CPT-loaded polyphosphazenes formed 140-200 nm aggregates in simulated body physiological conditions (PBS, pH 7.4), resulting in an 80-100-fold increase of CPT solubility. EPI-loaded polyphosphazenes formed 250 nm aggregates in an aqueous medium. CPT and EPI release (PBS, pH 7.4, 37 °C) was monitored for 202 h, being almost linear during the first 8 h. The slow release of testosterone and tocopherol was also sustained for 150 h in PBS (pH 7.4 and 6.0) at 37 °C. The co-delivery of testosterone or tocopherol and the anticancer drugs from the nanocarriers was expected. Cells of the human breast cancer cell line MCF-7 demonstrated good uptake of anticancer-drug-loaded nanocarriers after 6 h. Similarly, MCF-7 spheroids showed good uptake of the anticancer-drug-loaded aggregates after 72 h. Almost all anticancer-drug-loaded polyphosphazenes exhibited similar or superior toxicity against MCF-7 cells and spheroids when compared to raw anticancer drugs. Additionally, cell-cycle arrest in the G2/M phase was increased in response to the drug-loaded nanocarriers. Almost no toxicity of anticancer-drug-loaded aggregates against primary human lung fibroblasts was observed. Furthermore, the aggregates displayed no hemolytic activity, which is in contrast to the parent anticancer drugs. Consequently, synthesized polyphosphazene-based nanocarriers might be potential nanomedicines for chemotherapy.
Collapse
Affiliation(s)
- Javier Pérez Quiñones
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Cornelia Roschger
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); (A.Z.)
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Andreas Zierer
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); (A.Z.)
| | - Carlos Peniche-Covas
- Facultad de Química, Universidad de La Habana, Zapata S/N entre G y Carlitos Aguirre, La Habana 10400, Cuba;
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| |
Collapse
|
14
|
Huang Z, Fu F, Wu L, Wang W, Wang W, Shi C, Huang Y, Pan X, Wu C. Bibliometric landscape of the researches on protein corona of nanoparticles. FRONTIERS OF MATERIALS SCIENCE 2021; 15:477-493. [PMID: 34840853 PMCID: PMC8606624 DOI: 10.1007/s11706-021-0571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Unclear biological fate hampers the clinical translation of nanoparticles for biomedical uses. In recent years, it is documented that the formation of protein corona upon nanoparticles is a critical factor leading to the ambiguous biological fate. Efforts have been made to explore the protein corona forming behaviors on nanoparticles, and rearrangement of the relevant studies will help to understand the current trend of such a topic. In this work, the publications about protein corona of nanoparticles in Science Citation Index Expanded database of Web of Science from 2007 to 2020 (1417 in total) were analyzed in detail, and the bibliometrics landscape of them was showcased. The basic bibliometrics characteristics were summarized to provide an overall understanding. Citation analysis was performed to scrutinize the peer interests of these papers. The research hotspots in the field were evaluated, based on which some feasible topics for future studies were proposed. In general, the results demonstrated that protein corona of nanoparticles was a prospective research area, and had attracted global research interests. It was believed that this work could comprehensively highlight the bibliometrics landscape, inspire further exploitation on protein corona of nanoparticles, and ultimately promote the clinical translation of nanoparticles.
Collapse
Affiliation(s)
- Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Linjing Wu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chaonan Shi
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510006 China
| |
Collapse
|
15
|
Pérez Quiñones J, Roschger C, Zierer A, Peniche-Covas C, Brüggemann O. Self-Assembled Silk Fibroin-Based Aggregates for Delivery of Camptothecin. Polymers (Basel) 2021; 13:polym13213804. [PMID: 34771362 PMCID: PMC8587969 DOI: 10.3390/polym13213804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
A water-soluble hydrolysate of silk fibroin (SF) (~30 kDa) was esterified with tocopherol, ergocalciferol, and testosterone to form SF aggregates for the controlled delivery of the anticancer drug camptothecin (CPT). Elemental analysis and 1H NMR spectroscopy showed a degree of substitution (DS) on SF of 0.4 to 3.8 mol %. Yields of 58 to 71% on vitamins- and testosterone-grafted SF conjugates were achieved. CPT was efficiently incorporated into the lipophilic core of SF aggregates using a dialysis-precipitation method, achieving drug contents of 6.3-8.5 wt %. FTIR spectra and DSC thermograms showed that tocopherol- and testosterone-grafted SF conjugates predominantly adopted a β-sheet conformation. After the esterification of tyrosine residues on SF chains with the vitamin or testosterone, the hydrodynamic diameters almost doubled or tripled that of SF. The zeta potential values after esterification increased to about -30 mV, which favors the stability of aggregates in aqueous medium. Controlled and almost quantitative release of CPT was achieved after 6 days in PBS at 37 °C, with almost linear release during the first 8 h. MCF-7 cancer cells exhibited good uptake of CPT-loaded SF aggregates after 6 h, causing cell death and cell cycle arrest in the G2/M phase. Substantial uptake of the CPT-loaded aggregates into MCF-7 spheroids was shown after 3 days. Furthermore, all CPT-loaded SF aggregates demonstrated superior toxicity to MCF-7 spheroids compared with parent CPT. Blank SF aggregates induced no hemolysis at pH 6.2 and 7.4, while CPT-loaded SF aggregates provoked hemolysis at pH 6.2 but not at pH 7.4. In contrast, parent CPT caused hemolysis at both pH tested. Therefore, CPT-loaded SF aggregates are promising candidates for chemotherapy.
Collapse
Affiliation(s)
- Javier Pérez Quiñones
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria;
- Correspondence: or ; Tel.: +43-670-4039820
| | - Cornelia Roschger
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); or (A.Z.)
| | - Andreas Zierer
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); or (A.Z.)
| | - Carlos Peniche-Covas
- Facultad de Química, Universidad de La Habana, Zapata S/N entre G y Carlitos Aguirre, La Habana 10400, Cuba;
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria;
| |
Collapse
|
16
|
Florczak A, Deptuch T, Kucharczyk K, Dams-Kozlowska H. Systemic and Local Silk-Based Drug Delivery Systems for Cancer Therapy. Cancers (Basel) 2021; 13:5389. [PMID: 34771557 PMCID: PMC8582423 DOI: 10.3390/cancers13215389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
For years, surgery, radiotherapy, and chemotherapy have been the gold standards to treat cancer, although continuing research has sought a more effective approach. While advances can be seen in the development of anticancer drugs, the tools that can improve their delivery remain a challenge. As anticancer drugs can affect the entire body, the control of their distribution is desirable to prevent systemic toxicity. The application of a suitable drug delivery platform may resolve this problem. Among other materials, silks offer many advantageous properties, including biodegradability, biocompatibility, and the possibility of obtaining a variety of morphological structures. These characteristics allow the exploration of silk for biomedical applications and as a platform for drug delivery. We have reviewed silk structures that can be used for local and systemic drug delivery for use in cancer therapy. After a short description of the most studied silks, we discuss the advantages of using silk for drug delivery. The tables summarize the descriptions of silk structures for the local and systemic transport of anticancer drugs. The most popular techniques for silk particle preparation are presented. Further prospects for using silk as a drug carrier are considered. The application of various silk biomaterials can improve cancer treatment by the controllable delivery of chemotherapeutics, immunotherapeutics, photosensitizers, hormones, nucleotherapeutics, targeted therapeutics (e.g., kinase inhibitors), and inorganic nanoparticles, among others.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
17
|
Gorenkova N, Maitz MF, Böhme G, Alhadrami HA, Jiffri EH, Totten JD, Werner C, Carswell HVO, Seib FP. The innate immune response of self-assembling silk fibroin hydrogels. Biomater Sci 2021; 9:7194-7204. [PMID: 34553708 DOI: 10.1039/d1bm00936b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses.
Collapse
Affiliation(s)
- Natalia Gorenkova
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya street, Moscow, 119991, Russian Federation
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Georg Böhme
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Hani A Alhadrami
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia
| | - Essam H Jiffri
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia
| | - John D Totten
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.,Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstraße 105, 01307 Dresden, Germany
| | - Hilary V O Carswell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, UK
| |
Collapse
|
18
|
Phuagkhaopong S, Mendes L, Müller K, Wobus M, Bornhäuser M, Carswell HVO, Duarte IF, Seib FP. Silk Hydrogel Substrate Stress Relaxation Primes Mesenchymal Stem Cell Behavior in 2D. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30420-30433. [PMID: 34170674 PMCID: PMC8289244 DOI: 10.1021/acsami.1c09071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
Tissue-mimetic silk hydrogels are being explored for diverse healthcare applications, including stem cell delivery. However, the impact of stress relaxation of silk hydrogels on human mesenchymal stem cell (MSC) biology is poorly defined. The aim of this study was to fabricate silk hydrogels with tuned mechanical properties that allowed the regulation of MSC biology in two dimensions. The silk content and stiffness of both elastic and viscoelastic silk hydrogels were kept constant to permit direct comparisons. Gene expression of IL-1β, IL-6, LIF, BMP-6, BMP-7, and protein tyrosine phosphatase receptor type C were substantially higher in MSCs cultured on elastic hydrogels than those on viscoelastic hydrogels, whereas this pattern was reversed for insulin, HNF-1A, and SOX-2. Protein expression was also mechanosensitive and the elastic cultures showed strong activation of IL-1β signaling in response to hydrogel mechanics. An elastic substrate also induced higher consumption of glucose and aspartate, coupled with a higher secretion of lactate, than was observed in MSCs grown on viscoelastic substrate. However, both silk hydrogels changed the magnitude of consumption of glucose, pyruvate, glutamine, and aspartate, and also metabolite secretion, resulting in an overall lower metabolic activity than that found in control cells. Together, these findings describe how stress relaxation impacts the overall biology of MSCs cultured on silk hydrogels.
Collapse
Affiliation(s)
- Suttinee Phuagkhaopong
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Luís Mendes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Katrin Müller
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Manja Wobus
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Martin Bornhäuser
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
- Center
for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden 01307, Germany
| | - Hilary V. O. Carswell
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Iola F. Duarte
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
- EPSRC
Future Manufacturing Research Hub for Continuous Manufacturing and
Advanced Crystallisation (CMAC), University
of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, U.K.
- Leibniz
Institute of Polymer Research Dresden, Max
Bergmann Center of Biomaterials Dresden, Dresden 01069, Germany
| |
Collapse
|
19
|
Matthew SAL, Totten JD, Phuagkhaopong S, Egan G, Witte K, Perrie Y, Seib FP. Silk Nanoparticle Manufacture in Semi-Batch Format. ACS Biomater Sci Eng 2020; 6:6748-6759. [PMID: 33320640 DOI: 10.1021/acsbiomaterials.0c01028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silk nanoparticles have demonstrated utility across a range of biomedical applications, especially as drug delivery vehicles. Their fabrication by bottom-up methods such as nanoprecipitation, rather than top-down manufacture, can improve critical nanoparticle quality attributes. Here, we establish a simple semi-batch method using drop-by-drop nanoprecipitation at the lab scale that reduces special-cause variation and improves mixing efficiency. The stirring rate was an important parameter affecting nanoparticle size and yield (400 < 200 < 0 rpm), while the initial dropping height (5.5 vs 7.5 cm) directly affected nanoparticle yield. Varying the nanoparticle standing time in the mother liquor between 0 and 24 h did not significantly affect nanoparticle physicochemical properties, indicating that steric and charge stabilizations result in high-energy barriers for nanoparticle growth. Manufacture across all tested formulations achieved nanoparticles between 104 and 134 nm in size with high β-sheet content, spherical morphology, and stability in aqueous media for over 1 month at 4 °C. This semi-automated drop-by-drop, semi-batch silk desolvation offers an accessible, higher-throughput platform for standardization of parameters that are difficult to control using manual methodologies.
Collapse
Affiliation(s)
- Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - John D Totten
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Gemma Egan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Kimia Witte
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
20
|
Ghalei S, Mondal A, Hopkins S, Singha P, Devine R, Handa H. Silk Nanoparticles: A Natural Polymeric Platform for Nitric Oxide Delivery in Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53615-53623. [PMID: 33205962 DOI: 10.1021/acsami.0c13813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the preparation and characterization of nitric oxide (NO) releasing silk fibroin nanoparticles (SF NPs) are described for the first time. S-Nitroso-N-acetylpenicillamine (SNAP)-loaded SF NPs (SNAP-SF NPs) were prepared via an antisolvent/self-assembling method by adding a SNAP/ethanol solution to an aqueous SF solution and freeze-thawing. The prepared SNAP-SF NPs had a diameter ranging from 300 to 400 nm and an overall negative charge of -28.76 ± 0.73 mV. Among the different SNAP/SF ratios tested, the highest encapsulation efficiency (18.3 ± 1.3%) and loading capacity (9.1 ± 0.6%) values were attributed to the 1:1 ratio. The deconvolution of the amide I band in the FTIR spectra of SF NPs and SNAP-SF NPs showed an increase in the β-sheet content for SNAP-SF NPs, confirming the hydrophobic interactions between SNAP and silk macromolecules. SNAP-SF NPs released up to 1.31 ± 0.02 × 10-10 mol min-1 mg-1 NO over a 24 h period. Moreover, SNAP-SF NPs showed concentration-dependent antibacterial effects against methicillin-resistant Staphylococcus aureus and Escherichia coli. Furthermore, they did not elicit any marked cytotoxicity against 3T3 mouse fibroblast cells at concentrations equal to or below 2 mg/mL. Overall, these results demonstrated that SNAP-SF NPs have great potential to be used as a NO delivery platform for biomedical applications such as tissue engineering and wound healing, where synergistic properties of SF and NO are desired.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
21
|
Florczak A, Grzechowiak I, Deptuch T, Kucharczyk K, Kaminska A, Dams-Kozlowska H. Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4946. [PMID: 33158060 PMCID: PMC7663281 DOI: 10.3390/ma13214946] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Although progress is observed in cancer treatment, this disease continues to be the second leading cause of death worldwide. The current understanding of cancer indicates that treating cancer should not be limited to killing cancer cells alone, but that the target is the complex tumor microenvironment (TME). The application of nanoparticle-based drug delivery systems (DDS) can not only target cancer cells and TME, but also simultaneously resolve the severe side effects of various cancer treatment approaches, leading to more effective, precise, and less invasive therapy. Nanoparticles based on proteins derived from silkworms' cocoons (like silk fibroin and sericins) and silk proteins from spiders (spidroins) are intensively explored not only in the oncology field. This natural-derived material offer biocompatibility, biodegradability, and simplicity of preparation methods. The protein-based material can be tailored for size, stability, drug loading/release kinetics, and functionalized with targeting ligands. This review summarizes the current status of drug delivery systems' development based on proteins derived from silk fibroin, sericins, and spidroins, which application is focused on systemic cancer treatment. The nanoparticles that deliver chemotherapeutics, nucleic acid-based therapeutics, natural-derived agents, therapeutic proteins or peptides, inorganic compounds, as well as photosensitive molecules, are introduced.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Inga Grzechowiak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Alicja Kaminska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
| | - Hanna Dams-Kozlowska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
22
|
Ma Y, Canup BSB, Tong X, Dai F, Xiao B. Multi-Responsive Silk Fibroin-Based Nanoparticles for Drug Delivery. Front Chem 2020; 8:585077. [PMID: 33240846 PMCID: PMC7670059 DOI: 10.3389/fchem.2020.585077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Silk fibroin has the merits of biocompatibility, biodegradability, ease of processing, and feasibility of modification, which present it as a promising drug delivery material. This review focuses on the structures of silk fibroin, the controlled transformation of secondary structures, and the formation mechanism of silk fibroin-based nanoparticles (SFNPs). We also discuss the intrinsic multi-responsive, surface functionalization, and transgenic modification of SFNPs for drug delivery.
Collapse
Affiliation(s)
- Ya Ma
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Chongqing, China
| | - Brandon S. B. Canup
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Zhang X, Huang Y, Song H, Canup BSB, Gou S, She Z, Dai F, Ke B, Xiao B. Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J Control Release 2020; 328:454-469. [PMID: 32890553 DOI: 10.1016/j.jconrel.2020.08.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023]
Abstract
Lung metastasis of breast cancer is a leading cause of cancer-related death in women. Herein, we attempted to simultaneously inhibit the growth and lung metastasis of breast cancer by delivering quercetin (QU) using LyP-1-functionalized regenerated silk fibroin-based nanoparticles (NPs). The generated LyP-1-QU-NPs had a desirable diameter (203.2 nm) and a negatively charged surface (-12.7 mV). Interestingly, these NPs exhibited intrinsic responsibilities when triggered by various stimulating factors in the tumor microenvironment (acidic pH, reactive oxygen species, and glutathione). In vitro experiments revealed that the introduction of LyP-1 to the NP surface could significantly increase their cellular uptake efficiencies by 4 T1 cells, and facilitate their accumulation in mitochondria. Moreover, LyP-1-QU-NPs showed the strongest mitochondrial damage effect among all the treatment groups. We also found that LyP-1-QU-NPs not only exhibited excellent pro-apoptotic activities but also presented strong inhibitory effects on cell mobility (migration and invasion) through anti-glycolysis and pro-autophagy. Mice experiments confirmed that LyP-1-QU-NPs could efficiently inhibit the in situ growth of breast tumors and further restrict their lung metastasis. Collectively, our results demonstrate that LyP-1-QU-NPs, which integrates the functions of tumor cell targeting, mitochondria targeting, bioresponsive drug release, pro-apoptosis, and anti-mobility, can be developed as a promising nanotherapeutic for the effective treatment of breast cancer and its lung metastasis.
Collapse
Affiliation(s)
- Xueqing Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yamei Huang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Beibei, Chongqing 400715, PR China
| | - Heliang Song
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Brandon S B Canup
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Shuangquan Gou
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Beibei, Chongqing 400715, PR China
| | - Zhigang She
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Beibei, Chongqing 400715, PR China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Beibei, Chongqing 400715, PR China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
24
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
25
|
Niu L, Shi M, Feng Y, Sun X, Wang Y, Cheng Z, Li M. The Interactions of Quantum Dot-Labeled Silk Fibroin Micro/Nanoparticles with Cells. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3372. [PMID: 32751473 PMCID: PMC7436185 DOI: 10.3390/ma13153372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
Abstract
When silk fibroin particles are used for controlled drug delivery, particle size plays a key role in the location of the carrier on the cells as well as the transport pathway, utilization efficiency, and therapeutic effect of the drugs. In this study, the interactions of different-sized silk fibroin particles and cell lines were investigated. Silk fibroin microparticles with dry size of 1.9 ± 0.4 μm (2.7 ± 0.3 μm in wet state) and silk fibroin nanoparticles with dry size of 51.5 ± 11.0 nm (174.8 ± 12.5 nm in wet state) were prepared by salting-out method and high-voltage electrospray method, respectively. CdSe/ZnS quantum dots were coupled to the surface of the micro/nanoparticles. Photostability observations indicated that the fluorescence stability of the quantum dots was much higher than that of fluorescein isothiocyanate. In vitro, microparticles and nanoparticles were co-cultured with human umbilical vein endothelial cells EA.hy 926 and cervical cancer cells HeLa, respectively. The fluorescence test and cell viability showed that the EA.hy926 cells tended to be adhered to the microparticle surfaces and the cell proliferation was significantly promoted, while the nanoparticles were more likely to be internalized in HeLa cells and the cell proliferation was notably inhibited. Our findings might provide useful information concerning effective drug delivery that microparticles may be preferred if the drugs need to be delivered to normal cell surface, while nanoparticles may be preferred if the drugs need to be transmitted in tumor cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren’ai Road, Industrial Park, Suzhou 215123, China; (L.N.); (M.S.); (Y.F.); (X.S.); (Y.W.); (Z.C.)
| |
Collapse
|
26
|
Solomun JI, Totten JD, Wongpinyochit T, Florence AJ, Seib FP. Manual Versus Microfluidic-Assisted Nanoparticle Manufacture: Impact of Silk Fibroin Stock on Nanoparticle Characteristics. ACS Biomater Sci Eng 2020; 6:2796-2804. [PMID: 32582839 PMCID: PMC7304816 DOI: 10.1021/acsbiomaterials.0c00202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Silk has a long track record of clinical use in the human body, and new formulations, including silk nanoparticles, continue to reveal the promise of this natural biopolymer for healthcare applications. Native silk fibroin can be isolated directly from the silk gland, but generating sufficient material for routine studies is difficult. Consequently, silk fibroin, typically extracted from cocoons, serves as the source for nanoparticle formation. This silk requires extensive processing (e.g., degumming, dissolution, etc.) to yield a hypoallergenic aqueous silk stock, but the impact of processing on nanoparticle production and characteristics is largely unknown. Here, manual and microfluidic-assisted silk nanoparticle manufacturing from 60- and 90-min degummed silk yielded consistent particle sizes (100.9-114.1 nm) with low polydispersity. However, the zeta potential was significantly lower (P < 0.05) for microfluidic-manufactured nanoparticles (-28 to -29 mV) than for manually produced nanoparticles (-39 to -43 mV). Molecular weight analysis showed a nanoparticle composition similar to that of the silk fibroin starting stock. Reducing the molecular weight of silk fibroin reduced the particle size for degumming times ≤30 min, whereas increasing the molecular weight polydispersity improved the nanoparticle homogeneity. Prolonged degumming (>30 min) had no significant effect on particle attributes. Overall, the results showed that silk fibroin processing directly impacts nanoparticle characteristics.
Collapse
Affiliation(s)
- Jana I. Solomun
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.
- Jena
Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 07743 Jena, Germany
| | - John D. Totten
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.
- EPSRC
Future Manufacturing Research Hub for Continuous Manufacturing and
Advanced Crystallisation (CMAC), University
of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, U.K.
| | - Thidarat Wongpinyochit
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.
| | - Alastair J. Florence
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.
- EPSRC
Future Manufacturing Research Hub for Continuous Manufacturing and
Advanced Crystallisation (CMAC), University
of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, U.K.
| | - F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.
- EPSRC
Future Manufacturing Research Hub for Continuous Manufacturing and
Advanced Crystallisation (CMAC), University
of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, U.K.
- Leibniz
Institute of Polymer Research Dresden, Max
Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
27
|
Martínez Martínez T, García Aliaga Á, López-González I, Abella Tarazona A, Ibáñez Ibáñez MJ, Cenis JL, Meseguer-Olmo L, Lozano-Pérez AA. Fluorescent DTPA-Silk Fibroin Nanoparticles Radiolabeled with 111In: A Dual Tool for Biodistribution and Stability Studies. ACS Biomater Sci Eng 2020; 6:3299-3309. [DOI: 10.1021/acsbiomaterials.0c00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Teresa Martínez Martínez
- Unidad de Radiofarmacia, Hospital Clı́nico Universitario Virgen de la Arrixaca, Murcia 30120, Spain
| | - Ángeles García Aliaga
- Unidad de Radiofarmacia, Hospital Clı́nico Universitario Virgen de la Arrixaca, Murcia 30120, Spain
| | - Iván López-González
- Regeneration and Tissue Repair Group, UCAM—Universidad Católica San Antonio. Guadalupe 30107, Murcia Spain
| | | | | | - José Luis Cenis
- Departamento de Biotecnologı́a, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca (Murcia) 30150, Spain
| | - Luis Meseguer-Olmo
- Regeneration and Tissue Repair Group, UCAM—Universidad Católica San Antonio. Guadalupe 30107, Murcia Spain
| | - Antonio Abel Lozano-Pérez
- Departamento de Biotecnologı́a, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca (Murcia) 30150, Spain
| |
Collapse
|
28
|
Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics 2020; 12:pharmaceutics12030217. [PMID: 32131531 PMCID: PMC7150957 DOI: 10.3390/pharmaceutics12030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Applications of nanoparticles in various fields have been addressed. Nanomaterials serve as carriers for transporting conventional drugs or proteins through lysosomes to various cellular targets. The basic function of lysosomes is to trigger degradation of proteins and lipids. Understanding of lysosomal functions is essential for enhancing the efficacy of nanoparticles-mediated therapy and reducing the malfunctions of cellular metabolism. The lysosomal function is modulated by the movement of ions through various ion channels. Thus, in this review, we have focused on the recruited ion channels for lysosomal function, to understand the lysosomal modulation through the nanoparticles and its applications. In the future, lysosomal channels-based targets will expand the therapeutic application of nanoparticles-associated drugs.
Collapse
|
29
|
Wang Z, Zhi K, Ding Z, Sun Y, Li S, Li M, Pu K, Zou J. Emergence in protein derived nanomedicine as anticancer therapeutics: More than a tour de force. Semin Cancer Biol 2020; 69:77-90. [PMID: 31962173 DOI: 10.1016/j.semcancer.2019.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
Cancer has thwarted as a major health problem affecting the global population. With an alarming increase in the patient population suffering from diverse varieties of cancers, the global demographic data predicts sharp escalation in the number of cancer patients. This can be expected to reach 420 million cases by 2025. Among the diverse types of cancers, the most frequently diagnosed cancers are the breast, colorectal, prostate and lung cancer. From years, conventional treatment approaches like surgery, chemotherapy and radiation therapy have been practiced. In the past few years, increasing research on molecular level diagnosis and treatment of cancers have significantly changed the realm of cancer treatment. Lately, uses of advanced chemotherapy and immunotherapy like treatments have gained significant progress in the cancer therapy, but these approaches have several limitations on their safety and toxicity. This has generated lot of momentum for the evolution of new drug delivery approaches for the effective delivery of anticancer therapeutics, which may improve the pharmacokinetic and pharmacodynamic effect of the drugs along with significant reduction in the side effects. In this regard, the protein-based nano-medicines have gained wider attention in the management of cancer. Proteins are organic macromolecules essential, for life and have quite well explored in developing the nano-carriers. Furthermore, it provides passive or active tumour cell targeted delivery, by using protein based nanovesicles or virus like structures, antibody drug conjugates, viral particles, etc. Moreover, by utilizing various formulation strategies, both the animal and plant derived proteins can be converted to produce self-assembled virus like nano-metric structures with high efficiency in targeting the metastatic cancer cells. Therefore, the present review extensively discusses the applications of protein-based nano-medicine with special emphasis on intracellular delivery/drug targeting ability for anticancer drugs.
Collapse
Affiliation(s)
- Zhenchang Wang
- Department of Spleen, Stomach and Liver Diseases, Guangxi International Zhuang Medical Hospital, Guangxi, Nanning, 530201, China
| | - Kangkang Zhi
- Vascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhongyang Ding
- General Surgery, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, Nanjing, 214023, China
| | - Yi Sun
- Oncology Department, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Jiamusi University, Heilongjiang, Jiamu, 154003, China
| | - Manyuan Li
- Laboratory Department, Jinzhou Maternal and Infant Hospital, Liaoning, Jinzhou, 121000, China
| | - Kefeng Pu
- Suzhou Institute of Nanotechnology and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
30
|
Zhang H, Lai L, Wang Y, Ye B, Deng S, Ding A, Teng L, Qiu L, Chen J. Silk Fibroin for CpG Oligodeoxynucleotide Delivery. ACS Biomater Sci Eng 2019; 5:6082-6088. [PMID: 33405662 DOI: 10.1021/acsbiomaterials.9b01413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) have attracted increasing attention as immunotherapeutic agents. However, efficient transfection of CpG ODNs into the immune cells remains a big challenge. In this study, for the first time, we reported that silk fibroin (SF) could function as an efficient carrier for CpG ODNs. A novel strategy was developed to prepare SF-CpG ODNs nanoparticles (NPs) based on self-assembly of SF. The as-prepared SF-CpG NPs were spherical in shape and were uniformly dispersed. SF-CpG NPs exhibited good stability and biocompatibility. SF-CpG NPs possessed significantly enhanced (7 folds) cellular uptake compared with CpG ODNs. Release of CpG ODNs from SF-CpG NPs was accelerated in environment-mimicking TLR9-localized endo/lysosome. SF-CpG NPs stimulated about four folds higher levels of immune cytokines and nitric oxide compared with CpG ODNs. Our results suggested that SF notably improved the CpG ODNs delivery. SF-CpG NPs have strong potential in immunotherapy.
Collapse
|
31
|
Gou S, Huang Y, Sung J, Xiao B, Merlin D. Silk fibroin-based nanotherapeutics: application in the treatment of colonic diseases. Nanomedicine (Lond) 2019; 14:2373-2378. [PMID: 31290366 PMCID: PMC7026768 DOI: 10.2217/nnm-2019-0058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The incidence of colonic diseases (e.g., inflammatory bowel diseases and colon cancer) is rapidly rising. Nanotherapeutic has been considered as a promising strategy in the treatment of colonic diseases. Silk fibroin (SF) has been widely used as a drug-carrier matrix. Interestingly, SF-based nanoparticles (SFNPs) have intrinsic anti-inflammatory activity, wound healing capacity and lysosomal environment-responsive drug-release property. With further investigations, the sequences of SF molecules could be precisely modified through chemical reactions or transgenic techniques to greatly improve the properties of SFNPs. Here, we review recent advances in the application of SFNPs toward the treatment of colonic diseases. We also discuss future developments that might improve the anti-inflammatory and anti-colon cancer activities of SF-based nanotherapeutics.
Collapse
Affiliation(s)
- Shuangquan Gou
- State Key Laboratory of Silkworm Genome Biology, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry & Function Manufacturing, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yamei Huang
- State Key Laboratory of Silkworm Genome Biology, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry & Function Manufacturing, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
- Key Laboratory of Sericultural Biology & Genetic Breeding, Ministry of Agriculture & Rural Affairs, College of Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
| | - Junsik Sung
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials & Energy, Southwest University, Beibei, Chongqing 400715, PR China
- Key Laboratory of Sericultural Biology & Genetic Breeding, Ministry of Agriculture & Rural Affairs, College of Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
32
|
Florczak A, Mackiewicz A, Dams-Kozlowska H. Cellular uptake, intracellular distribution and degradation of Her2-targeting silk nanospheres. Int J Nanomedicine 2019; 14:6855-6865. [PMID: 32021156 PMCID: PMC6716583 DOI: 10.2147/ijn.s217854] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/27/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The development of nanocarrier technology has attracted great interest in the last decade. Biodegradable spheres made of functionalized silk have considerable potential to be used as drug delivery systems for cancer treatment. A targeting ligand displayed at the surface of a carrier, with a specific affinity towards a particular receptor, can further enhance the accumulation and uptake of nanoparticles at the site of a tumor. MATERIALS AND METHODS The hybrid constructs were obtained by adding a Her2-binding peptide (H2.1) to MS1 and MS2 bioengineered silks based on the MaSp1 and MaSp2 proteins from N. clavipes, respectively. The H2.1MS1 and H2.1MS2 proteins were blended at a weight ratio of 8:2. Stable silk particles were formed by mixing a soluble protein with potassium phosphate using a micromixing technique. We used specific inhibitors of endocytosis to determine the cellular uptake pathway of the silk nanoparticles in human Her2-positive breast cancer cells. The subcellular distribution of silk particles was investigated by evaluating the signal colocalization with organelle-specific tracker. Moreover, lysosomal and exosomal inhibitors were implemented to evaluate their impact on the silk spheres behavior and degradation. RESULTS The functionalized spheres were specifically taken up by Her2-positive cancer cells. Silk particles facilitated the entry into cells through both the clathrin- and caveola-dependent pathways of endocytosis. Upon entering the cells, the particles accumulated in the lysosomes, where intracellular degradation occurred. CONCLUSIONS The present study demonstrated directly that the lysosomal function was essential for silk-based carrier elimination. The degradation of the carrier is of great importance to develop an optimal drug delivery system.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan60-806, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan61-866, Poland
| | - Andrzej Mackiewicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan60-806, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan61-866, Poland
| | - Hanna Dams-Kozlowska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan60-806, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan61-866, Poland
| |
Collapse
|
33
|
Wongpinyochit T, Vassileiou AD, Gupta S, Mushrif SH, Johnston BF, Seib FP. Unraveling the Impact of High-Order Silk Structures on Molecular Drug Binding and Release Behaviors. J Phys Chem Lett 2019; 10:4278-4284. [PMID: 31318218 DOI: 10.1021/acs.jpclett.9b01591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silk continues to amaze: over the past decade, new research threads have emerged that include the use of silk fibroin for advanced pharmaceutics, including its suitability for drug delivery. Despite this ongoing interest, the details of silk fibroin structures and their subsequent drug interactions at the molecular level remain elusive, primarily because of the difficulties encountered in modeling the silk fibroin molecule. Here, we generated an atomistic silk model containing amorphous and crystalline regions. We then exploited advanced well-tempered metadynamics simulations to generate molecular conformations that we subsequently exposed to classical molecular dynamics simulations to monitor both drug binding and release. Overall, this study demonstrated the importance of the silk fibroin primary sequence, electrostatic interactions, hydrogen bonding, and higher-order conformation in the processes of drug binding and release.
Collapse
Affiliation(s)
- Thidarat Wongpinyochit
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , 161 Cathedral Street , Glasgow G4 0RE , United Kingdom
| | - Antony D Vassileiou
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , 161 Cathedral Street , Glasgow G4 0RE , United Kingdom
| | - Sukriti Gupta
- Energy Research Institute @ NTU, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459
| | - Samir H Mushrif
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459
- Department of Chemical and Materials Engineering , University of Alberta , 9211-116 Street Northwest , Edmonton , Alberta T6G 1H9 , Canada
| | - Blair F Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , 161 Cathedral Street , Glasgow G4 0RE , United Kingdom
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , United Kingdom
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , 161 Cathedral Street , Glasgow G4 0RE , United Kingdom
- Leibniz Institute of Polymer Research Dresden , Max Bergmann Center of Biomaterials Dresden , Hohe Strasse 6 , 01069 Dresden , Germany
| |
Collapse
|
34
|
Gou S, Huang Y, Wan Y, Ma Y, Zhou X, Tong X, Huang J, Kang Y, Pan G, Dai F, Xiao B. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 2019; 212:39-54. [DOI: 10.1016/j.biomaterials.2019.05.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
|
35
|
Totten JD, Wongpinyochit T, Carrola J, Duarte IF, Seib FP. PEGylation-Dependent Metabolic Rewiring of Macrophages with Silk Fibroin Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14515-14525. [PMID: 30977355 DOI: 10.1021/acsami.8b18716] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Silk fibroin nanoparticles are emerging as promising nanomedicines, but their full therapeutic potential is yet to be realized. These nanoparticles can be readily PEGylated to improve colloidal stability and to tune degradation and drug release profiles; however, the relationship between silk fibroin nanoparticle PEGylation and macrophage activation still requires elucidation. Here, we used in vitro assays and nuclear magnetic resonance based metabolomics to examine the inflammatory phenotype and metabolic profiles of macrophages following their exposure to unmodified or PEGylated silk fibroin nanoparticles. The macrophages internalized both types of nanoparticles, but they showed different phenotypic and metabolic responses to each nanoparticle type. Unmodified silk fibroin nanoparticles induced the upregulation of several processes, including production of proinflammatory mediators (e.g., cytokines), release of nitric oxide, and promotion of antioxidant activity. These responses were accompanied by changes in the macrophage metabolomic profiles that were consistent with a proinflammatory state and that indicated an increase in glycolysis and reprogramming of the tricarboxylic acid cycle and the creatine kinase/phosphocreatine pathway. By contrast, PEGylated silk fibroin nanoparticles induced milder changes to both inflammatory and metabolic profiles, suggesting that immunomodulation of macrophages with silk fibroin nanoparticles is PEGylation-dependent. Overall, PEGylation of silk fibroin nanoparticles reduced the inflammatory and metabolic responses initiated by macrophages, and this observation could be used to guide the therapeutic applications of these nanoparticles.
Collapse
Affiliation(s)
- John D Totten
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , 161 Cathedral Street , Glasgow G4 0RE , U.K
| | - Thidarat Wongpinyochit
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , 161 Cathedral Street , Glasgow G4 0RE , U.K
| | - Joana Carrola
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro , 3810-193 Aveiro , Portugal
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , 161 Cathedral Street , Glasgow G4 0RE , U.K
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , 01069 Dresden , Germany
| |
Collapse
|
36
|
Silk fibroin peptide suppresses proliferation and induces apoptosis and cell cycle arrest in human lung cancer cells. Acta Pharmacol Sin 2019; 40:522-529. [PMID: 29921888 DOI: 10.1038/s41401-018-0048-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/20/2018] [Indexed: 12/21/2022] Open
Abstract
Silkworm cocoon was recorded to cure carbuncle in the Compendium of Materia Medica. Previous studies have demonstrated that the supplemental silk protein sericin exhibits anticancer activity. In the present study, we investigated the effects of silk fibroin peptide (SFP) extracted from silkworm cocoons against human lung cancer cells in vitro and in vivo and its possible anticancer mechanisms. SFP that we prepared had high content of glycine (~ 30%) and showed a molecular weight of ~ 10 kDa. Intragastric administration of SFP (30 g/kg/d) for 14 days did not affect the weights, vital signs, routine blood indices, and blood biochemical parameters in mice. MTT assay showed that SFP dose-dependently inhibited the growth of human lung cancer A549 and H460 cells in vitro with IC50 values of 9.921 and 9.083 mg/mL, respectively. SFP also dose-dependently suppressed the clonogenic activity of the two cell lines. In lung cancer H460 xenograft mice, intraperitoneal injection of SFP (200 or 500 mg/kg/d) for 40 days significantly suppressed the tumor growth, but did not induce significant changes in the body weight. We further examined the effects of SFP on cell cycle and apoptosis in H460 cells using flow cytometry, which revealed that SFP-induced cell cycle arrest at the S phase, and then promoted cell apoptosis. We demonstrated that SFP (20-50 mg/mL) dose-dependently downregulates Bcl-2 protein expression and upregulates Bax protein in H460 cells during cell apoptosis. The results suggest that SFP should be studied further as a novel therapeutic agent for the treatment of lung cancer.
Collapse
|
37
|
Wongpinyochit T, Totten JD, Johnston BF, Seib FP. Microfluidic-assisted silk nanoparticle tuning. NANOSCALE ADVANCES 2019; 1:873-883. [PMID: 36132231 PMCID: PMC9473249 DOI: 10.1039/c8na00208h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 05/13/2023]
Abstract
Silk is now making inroads into advanced pharmaceutical and biomedical applications. Both bottom-up and top-down approaches can be applied to silk and the resulting aqueous silk solution can be processed into a range of material formats, including nanoparticles. Here, we demonstrate the potential of microfluidics for the continuous production of silk nanoparticles with tuned particle characteristics. Our microfluidic-based design ensured efficient mixing of different solvent phases at the nanoliter scale, in addition to controlling the solvent ratio and flow rates. The total flow rate and aqueous : solvent ratios were important parameters affecting yield (1 mL min-1 > 12 mL min-1). The ratios also affected size and stability; a solvent : aqueous total flow ratio of 5 : 1 efficiently generated spherical nanoparticles 110 and 215 nm in size that were stable in water and had a high beta-sheet content. These 110 and 215 nm silk nanoparticles were not cytotoxic (IC50 > 100 μg mL-1) but showed size-dependent cellular trafficking. Overall, microfluidic-assisted silk nanoparticle manufacture is a promising platform that allows control of the silk nanoparticle properties by manipulation of the processing variables.
Collapse
Affiliation(s)
- Thidarat Wongpinyochit
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - John D Totten
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Blair F Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Strasse 6 01069 Dresden Germany
| |
Collapse
|
38
|
Holland C, Numata K, Rnjak‐Kovacina J, Seib FP. The Biomedical Use of Silk: Past, Present, Future. Adv Healthc Mater 2019; 8:e1800465. [PMID: 30238637 DOI: 10.1002/adhm.201800465] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/04/2018] [Indexed: 11/07/2022]
Abstract
Humans have long appreciated silk for its lustrous appeal and remarkable physical properties, yet as the mysteries of silk are unraveled, it becomes clear that this outstanding biopolymer is more than a high-tech fiber. This progress report provides a critical but detailed insight into the biomedical use of silk. This journey begins with a historical perspective of silk and its uses, including the long-standing desire to reverse engineer silk. Selected silk structure-function relationships are then examined to appreciate past and current silk challenges. From this, biocompatibility and biodegradation are reviewed with a specific focus of silk performance in humans. The current clinical uses of silk (e.g., sutures, surgical meshes, and fabrics) are discussed, as well as clinical trials (e.g., wound healing, tissue engineering) and emerging biomedical applications of silk across selected formats, such as silk solution, films, scaffolds, electrospun materials, hydrogels, and particles. The journey finishes with a look at the roadmap of next-generation recombinant silks, especially the development pipeline of this new industry for clinical use.
Collapse
Affiliation(s)
- Chris Holland
- Department of Materials Science and Engineering The University of Sheffield Sir Robert Hadfield Building, Mappin Street Sheffield South Yorkshire S1 3JD UK
| | - Keiji Numata
- Biomacromolecules Research Team RIKEN Center for Sustainable Resource Science 2‐1 Hirosawa Wako Saitama 351‐0198 Japan
| | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - F. Philipp Seib
- Leibniz Institute of Polymer Research Dresden Max Bergmann Center of Biomaterials Dresden Dresden 01069 Germany
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow G4 0RE UK
| |
Collapse
|
39
|
Tran SH, Wilson CG, Seib FP. A Review of the Emerging Role of Silk for the Treatment of the Eye. Pharm Res 2018; 35:248. [PMID: 30397820 PMCID: PMC6223815 DOI: 10.1007/s11095-018-2534-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Silk is a remarkable biopolymer with a long history of medical use. Silk fabrications have a robust track record for load-bearing applications, including surgical threads and meshes, which are clinically approved for use in humans. The progression of top-down and bottom-up engineering approaches using silk as the basis of a drug delivery or cell-loaded matrix helped to re-ignite interest in this ancient material. This review comprehensively summarises the current applications of silk for tissue engineering and drug delivery, with specific reference to the eye. Additionally, the review also covers emerging trends for the use of silk as a biologically active biopolymer for the treatment of eye disorders. The review concludes with future capabilities of silk to contribute to advanced, electronically-enhanced ocular drug delivery concepts.
Collapse
Affiliation(s)
- Simon H Tran
- 37D Biosystems, Inc., 2372 Morse Avenue, Suite 433, Irvine, California, 92614, USA
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany.
| |
Collapse
|
40
|
Wongpinyochit T, Johnston BF, Seib FP. Degradation Behavior of Silk Nanoparticles-Enzyme Responsiveness. ACS Biomater Sci Eng 2018; 4:942-951. [PMID: 33418776 DOI: 10.1021/acsbiomaterials.7b01021] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silk nanoparticles are viewed as promising vectors for intracellular drug delivery as they can be taken up into cells by endocytosis and trafficked to lysosomes, where lysosomal enzymes and the low pH trigger payload release. However, the subsequent degradation of the silk nanoparticles themselves still requires study. Here, we report the responsiveness of native and PEGylated silk nanoparticles to degradation following exposure to proteolytic enzymes (protease XIV and α-chymotrypsin) and papain, a cysteine protease. Both native and PEGylated silk nanoparticles showed similar degradation behavior over a 20 day exposure period (degradation rate: protease XIV > papain ≫ α-chymotrypsin). Within 1 day, the silk nanoparticles were rapidly degraded by protease XIV, resulting in a ∼50% mass loss, an increase in particle size, and a reduction in the amorphous content of the silk secondary structure. By contrast, 10 days of papain treatment was necessary to observe any significant change in nanoparticle properties, and α-chymotrypsin treatment had no effect on silk nanoparticle characteristics over the 20-day study period. Silk nanoparticles were also exposed ex vivo to mammalian lysosomal enzyme preparations to mimic the complex lysosomal microenvironment. Preliminary results indicated a 45% reduction in the silk nanoparticle size over a 5-day exposure. Overall, the results demonstrate that silk nanoparticles undergo enzymatic degradation, but the extent and kinetics are enzyme-specific.
Collapse
Affiliation(s)
- Thidarat Wongpinyochit
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Blair F Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|