1
|
Akram F, Fatima T, Shabbir I, Haq IU, Ibrar R, Mukhtar H. Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors. Mol Biotechnol 2025; 67:817-833. [PMID: 38461181 DOI: 10.1007/s12033-024-01108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Badirujjaman M, Thummer RP, Bhabak KP. Esterase-Responsive Self-Immolative Prodrugs for the Sustained Delivery of the Anticancer Drug 5-Fluorouracil with Turn-On Fluorescence. Chem Asian J 2025; 20:e202400846. [PMID: 39484866 DOI: 10.1002/asia.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Stimuli-responsive prodrugs of anticancer drugs are advantageous for the selective delivery of drugs to cancer cells with minimized off-target side effects. In the present study, esterase-activatable fluorogenic prodrugs of the chemotherapeutic drug 5-fluorouracil (5-FU) have been rationally designed and synthesized using multi-step organic synthesis. While 5-FU was connected directly with the fluorophore via a C-N bond in the prodrug BJ-50, an additional self-immolative benzylic spacer with a carbonate linker was incorporated in the prodrug BJ-92. Although absorption and emission spectroscopic studies revealed the activation of both the prodrugs by porcine liver esterase (PLE), reverse-phase HPLC studies confirmed the inability of BJ-50 to release the active drug 5-FU. In contrast, a sustained release of 5-FU and Cou-OH was observed from BJ-92 in the presence of PLE. The endogenous esterase-mediated activation of the prodrug BJ-92 was validated by the turn-on fluorescence in A549 cells and the anti-proliferative activities in A549, and HEK-293 cells. Modulation of the expression of a few cancer marker proteins by BJ-92 and 5-FU was studied to evaluate their anticancer activities. As esterases are overexpressed in cancer cells, the prodrug in the present study would be helpful in selectively delivering 5-FU to cancer cells with reduced off-target side-effects.
Collapse
Affiliation(s)
- Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
3
|
Wang X, Deng X, Xin L, Dong C, Hu G, Zhou HB. Pegylated NIR Fluorophore-Conjugated OBHSA Prodrug for ERα-Targeted Theranostics with Enhanced Imaging and Long-Term Retention. Molecules 2025; 30:305. [PMID: 39860175 PMCID: PMC11767339 DOI: 10.3390/molecules30020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach. A novel esterase-activated EPR strategy prodrug, OBHSA-PEG-DCM, was designed. This prodrug links OBHSA, a protein degrader capable of efficient ERα protein degradation, to the PEG-modified fluorescent group (dicyanomethylene-4H-pyran, DCM) via an ester bond. This integration facilitates targeted drug delivery and enhances the retention of the fluorescent group within the tumor, allowing distinct in vivo tumor imaging periods. Experimental results show that, benefiting from overexpressed esterase in cancer cells, OBHSA-PEG-DCM can be efficiently hydrolyzed, releasing OBHSA and pegylated DCM. OBHSA demonstrated potent inhibition against MCF-7 cells (IC50 = 1.09 μM). Simultaneously, pegylated DCM exhibited remarkable in vivo imaging capabilities, lasting up to 12 days in mice, due to the enhanced permeability and retention (EPR) effect. OBHSA-PEG-DCM holds promise as a theranostic agent for ERα-positive breast cancer, offering both therapeutic and diagnostic capabilities. Importantly, this study highlights the utility of pegylated NIR fluorophores for long-circulating drug delivery systems, addressing current challenges in achieving high-contrast tumor imaging and effective targeted drug release.
Collapse
Affiliation(s)
- Xiaohua Wang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Xiaofei Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
| | - Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Madikonda AK, Ajayakumar A, Nadendla S, Banothu J, Muripiti V. Esterase-responsive nanoparticles (ERN): A targeted approach for drug/gene delivery exploits. Bioorg Med Chem 2024; 116:118001. [PMID: 39556942 DOI: 10.1016/j.bmc.2024.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Nanoparticles are being developed to enhance drug delivery to cancer tumors, leveraging advantages such as the enhanced permeability and retention (EPR) effect. However, traditional nanoparticles often face challenges with low specificity for cancer cells, leading to inefficient delivery and unwanted side effects. Esterase-responsive nanoparticles offer a maximum targeted approach to tumor cells because they release their therapeutic payload at the tumor site under the influence of esterase activity. This review explores the role of esterase-responsive nanoparticles in drug and gene delivery, examines esterase prodrug therapy, and discusses prostate-specific membrane antigen (PSMA) targets esterase-responsive nanoparticles in prostate cancer treatment. Additionally, we reviewed the current research progress and future potential of esterase-responsive nanoparticles in enhancing drug and gene delivery.
Collapse
Affiliation(s)
- Ashok Kumar Madikonda
- Department of Biochemistry & Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod 671320, Kerala, India
| | - Amritha Ajayakumar
- Department of Biochemistry & Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod 671320, Kerala, India
| | - Sudeena Nadendla
- Department of Chemistry, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod 671320, Kerala, India
| | - Janardhan Banothu
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Venkanna Muripiti
- Department of Education, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod 671320, Kerala, India.
| |
Collapse
|
5
|
Li L, Hu R, Zhang X, Liu G, Liu W, Wang H, Wang B, Guo L, Ma S, Yan L, Zhang B, Zhang C, Diao H. Carboxylesterase-activatable multi-in-one nanoplatform for near-infrared fluorescence imaging guided chemo/photodynamic/sonodynamic therapy toward cervical cancer. Int J Biol Macromol 2024; 283:137899. [PMID: 39571850 DOI: 10.1016/j.ijbiomac.2024.137899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Traditional tumor treatment faces great challenge owning to inherent drawbacks. Activatable prodrugs with multi-modality therapeutic capacity are highly desired. In this consideration, a responsiveness-released multi-in-one nanoplatform, PLGA-PEG@HC, toward cervical cancer therapy was innovatively developed. Among the nanoplatform, HC was constructed by incorporating chlorambucil, a classic chemotherapy drug into a near-infrared photo- and sono-sensitizer, HCH via ester linker, which can be specifically hydrolyzed by carboxylesterase (CES). HC is scarcely fluorescent and toxic due to the caging of HCH and chlorambucil, thus achieving low background signal and minimal side effects. However, once selectively hydrolyzed by tumor enriched CES, ester bond will be broken. Consequently, HCH and chlorambucil are released so as to achieve near-infrared fluorescence imaging and synergistic photodynamic/sonodynamic/chemo therapy. PLGA-PEG packaging ensures the biocompatibility of HC. The as-obtained nanoplatform, with diameter of 97 nm, achieves tumor targeting capacity via EPR. In vitro and in vivo applications have demonstrated that PLGA-PEG@HC can accumulate in tumor tissues, exhibit CES-activatable near-infrared fluorescence imaging and efficient tumor suppression capacity. Compared with the reported combinational therapy materials which are complex in compositions, PLGA-PEG@HC is simple in formulation but demonstrates near-infrared fluorescence traced and considerable therapy efficacy toward tumors, which may accelerate the clinical translation.
Collapse
Affiliation(s)
- Lihong Li
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China.
| | - Rongrong Hu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xinyu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Guangyang Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wen Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China
| | - Haojiang Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Bin Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lixia Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Sufang Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lili Yan
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Department of Chemistry, Shanxi Medical University, Taiyuan 030001, PR China
| | - Boye Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Haipeng Diao
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China.
| |
Collapse
|
6
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Ghosh D, Khan A, Bag S, Mallick AI, De P. Dual stimuli-responsive biotinylated polymer-drug conjugate for dual drug delivery. J Mater Chem B 2024; 12:11826-11840. [PMID: 39439369 DOI: 10.1039/d4tb01762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stimuli-responsive nanoscale polymer-drug conjugates are one of the most promising alternatives in the realm of advanced therapeutics, rendering several characteristics such as spatio-temporal control over drug release, reduced off-target toxicity, enhanced bioavailability, and longer blood circulation time of the drug. Fostered by the aforementioned conceptualization, our quest to develop an ideal polymer-drug conjugate has originated the present investigation of developing a reactive oxygen species (ROS) and esterase-responsive self-assembled polymer-drug (chlorambucil, CBL) conjugate with biotin pendants (DP2) for cancer cell targeting, surrogating another antineoplastic drug, doxorubicin (DOX) via physical encapsulation (DP2@DOX). The ROS and esterase trigger not only released the covalently stitched CBL but also resulted in DOX release by dismantling the amphiphilic balance of the nanoaggregates. Biotinylation-mediated enhancement of cellular uptake of DP2@DOX was reflected in the synergistic anticancer activity of both the drugs (CBL and DOX) in HeLa cells (biotin receptor-positive cells) compared to HEK 293T cells (biotin receptor-negative cells). Furthermore, the selective internalization of the fluorophore-tagged DOX-loaded polymer (DP4@DOX) in HeLa cells compared to HEK 293T cells was confirmed by confocal microscopy and flow cytometry. In summary, the present investigation demonstrates a state-of-the-art self-assembled polymer-drug conjugate as a next-generation dual stimuli-responsive drug delivery vehicle.
Collapse
Affiliation(s)
- Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| |
Collapse
|
8
|
Banerjee A, K A, Davis M, Saha B, De P. Coassembly of Charged Copolymer Amphiphiles Featuring pH-Regulated Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39556323 DOI: 10.1021/acs.langmuir.4c03403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Understanding the formation of highly ordered structures through self-assembly is crucial for developing various biologically relevant systems. A significant expansion in the development of self-assembly chemistry features stable coassembly formation using a mixture of two oppositely charged polymers. This study provides insightful findings on the coassembly of hydrophobic coumarin-integrated cationic (P1-P3) and anionic (P1'-P3') copolymers toward the formation of vesicles in aqueous medium at pH 7.4, with a hydrodynamic diameter (Dh) of 160 ± 10 nm and electrically neutral zwitterionic surfaces, confirmed by dynamic light scattering. Upon varying the solution pH, an intriguing charge switchable behavior (+ve → 0 → -ve) and a drastic morphological transition to spherical aggregates of the vesicles were noticed. At pH 7.4, these coassembled vesicles possess a neutral surface charge, empowering them to resist nonspecific protein (pepsin and lysozyme) adsorption via electrostatic repulsion, as evidenced by size evolution and protein binding measurements. Additionally, the bilayer membrane allows for the encapsulation of hydrophilic and hydrophobic guest molecules and their sustained release in the presence of 10 mM esterase; thus, this study demonstrates potential applications of coassembly to serve as a drug delivery vehicle.
Collapse
Affiliation(s)
- Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Arya K
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Maria Davis
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
9
|
Ahmad M, Muir A, Langton MJ. Off-On Photo- and Redox-Triggered Anion Transport Using an Indole-Based Hydrogen Bond Switch. ACS OMEGA 2024; 9:45572-45580. [PMID: 39554452 PMCID: PMC11561614 DOI: 10.1021/acsomega.4c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
A stimulus-responsive indole-based hydrogen bonding switch is reported, which enables off-on activation of transmembrane ion transport in response to photo- and redox triggers. This is achieved by alkylation of an indole-based anionophore, preorganized through intramolecular hydrogen bonding, with o-nitrobenzyl and azobenzene cages. This renders the anionophore inactive through formation of a six-membered intramolecular hydrogen bonding interaction and locking of the anion binding protons. Decaging with biologically relevant light and redox stimuli leads to efficient activation of anion transport across lipid bilayer membranes by unlocking the hydrogen bond donors, such that they are now available for anion binding and transport.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Andrew Muir
- Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K.
| | | |
Collapse
|
10
|
Misra R, Barman P, Bhabak KP. Esterase-Responsive Fluorogenic Prodrugs of Aldose Reductase Inhibitor Epalrestat: An Innovative Strategy toward Enhanced Anticancer Activity. ACS APPLIED BIO MATERIALS 2024; 7:6542-6553. [PMID: 39146213 DOI: 10.1021/acsabm.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In addition to the conventional chemotherapeutic drugs, potent inhibitors of key enzymes that are differentially overexpressed in cancer cells and associated with its progression are often considered as the drugs of choice for treating cancer. Aldose reductase (AR), which is primarily associated with complications of diabetes, is known to be closely related to the development of cancer and drug resistance. Epalrestat (EPA), an FDA-approved drug, is a potent inhibitor of AR and exhibits anticancer activity. However, its poor pharmacokinetic properties limit its bioavailability and therapeutic benefits. We report herein the first examples of esterase-responsive turn-on fluorogenic prodrugs for the sustained release of EPA to cancer cells with a turn-on fluorescence readout. Carboxylesterases are known to be overexpressed in several organ-specific cancer cells and help in selective uncaging of drug from the prodrugs. The prodrugs were synthesized using a multistep organic synthesis and successfully characterized. Absorption and emission spectroscopic studies indicated successful activation of the prodrugs in the presence of porcine liver esterase (PLE) under physiological condition. HPLC studies revealed a simultaneous release of both the drug and the fluorophore from the prodrugs over time with mechanistic insights. While the inhibitory potential of EPA released from the prodrugs toward the enzyme AR was validated in the aqueous medium, the anticancer activity of the prodrugs was studied in a representative cervical cancer cell line. Interestingly, our results revealed that the development of the prodrugs can significantly enhance the anticancer potential of EPA. Finally, the drug uncaging process from the prodrugs by the intracellular esterases was studied in the cellular medium by measuring the turn-on fluorescence using fluorescence microscopy. Therefore, the present study highlights the rational development of the fluorogenic prodrugs of EPA, which will help enhance its anticancer potential with better therapeutic potential.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
11
|
Lv J, Xu Y, Liu Y, Sakurai K, Yu H, Tang Z. Co-delivery of Plinabulin and Tirapazamine boosts anti-tumor efficacy by simultaneously destroying tumor blood vessels and killing tumor cells. Biomaterials 2024; 309:122586. [PMID: 38718615 DOI: 10.1016/j.biomaterials.2024.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 06/03/2024]
Abstract
It is imperative to optimize chemotherapy for heightened anti-tumor therapeutic efficacy. Unrestrained tumor cell proliferation and sustained angiogenesis are pivotal for cancer progression. Plinabulin, a vascular disrupting agent, selectively destroys tumor blood vessels. Tirapazamine (TPZ), a hypoxia-activated prodrug, intensifies cytotoxicity in diminishing oxygen levels within tumor cells. Despite completing Phase III clinical trials, both agents exhibited modest treatment efficiency due to dose-limiting toxicity. In this study, we employed methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-b-PDLLA) to co-deliver Plinabulin and TPZ to the tumor site, concurrently disrupting blood vessels and eliminating tumor cells, addressing both symptoms and the root cause of tumor progression. Plinabulin was converted into a prodrug with esterase response (PSM), and TPZ was synthesized into a hexyl chain-containing derivative (TPZHex) for effective co-delivery. PSM and TPZHex were co-encapsulated with mPEG-b-PDLLA, forming nanodrugs (PT-NPs). At the tumor site, PT-NPs responded to esterase overexpression, releasing Plinabulin, disrupting blood vessels, and causing nutritional and oxygen deficiency. TPZHex was activated in response to increased hypoxia, killing tumor cells. In treating 4T1 tumors, PT-NPs demonstrated enhanced therapeutic efficacy, achieving a 92.9 % tumor suppression rate and a 20 % cure rate. This research presented an innovative strategy to enhance synergistic efficacy and reduce toxicity in combination chemotherapy.
Collapse
Affiliation(s)
- Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
12
|
Varpe P, Joga R, Aglave G, Vasu P, Yerram S, Bellapu KK, Srivastava S, Kumar S. Esterase responsive release of anti-cancer agents from conjugated lipid nanocarrier and the regulatory considerations. Pharm Pat Anal 2024; 13:31-43. [PMID: 39324857 PMCID: PMC11449025 DOI: 10.1080/20468954.2024.2347796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 09/27/2024]
Abstract
The release of active agents in tumors rather than normal tissues, limits systemic exposure and toxicities. Targeting over-expressed esterase enzyme in the tumor microenvironment can selectively release immune-active agents like Programmed Death-1 (PD-1) and PD-1 ligand inhibitors from ester-sensitive lipid nanocarriers, offering a novel approach compared with conventional therapies. PD-1 and PD-L1 association cause T-cell inactivation, whereas blocking their association improves their cytotoxic mechanism. The patent application US2022/0080051-A1 discloses a novel immune-active agent conjugated with lipid to form a nanocarrier for esterase-sensitive release. These nanocarriers selectively enter leaky vasculature of tumors through enhanced permeability and retention effect, undergo ester cleavage to release agents, and are reported to increase bioavailability by 24 times. Further, with other agents or alone it achieves targeted synergistic cancer therapy. Also, the current patent spotlight delves into the crucial formulation considerations necessary for obtaining successful approval of lipidic nano products from relevant regulatory authorities.
Collapse
Affiliation(s)
- Priya Varpe
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Gayatri Aglave
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Pavan Vasu
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Sravani Yerram
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kiran Kumar Bellapu
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana , 500037, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
- Department of Pharmaceutics, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan 303121, India
| |
Collapse
|
13
|
Zhou D, Zhang Z, Pan L, Wang Y, Yang J, Gao Y, Song Y. Sucrose-Powered Liposome Nanosensors for Urinary Glucometer-Based Monitoring of Cancer. Angew Chem Int Ed Engl 2024; 63:e202404493. [PMID: 38687277 DOI: 10.1002/anie.202404493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Timely detection of early-stage cancer holds immense potential in enhancing prognostic outcomes. There is an increasing desire for versatile tools to enable simple, sensitive, and cost-effective cancer detection. By exploiting the extraintestinal metabolic inertness and efficiency renal clearance of sucrose, we designed a liposome nanosensor using sucrose as a messenger to convert tumor-specific esterase activity into glucose meter readout, enabling economical and sensitive urinalysis for cancer detection in point-of-care testing (POCT). Our results demonstrate that the nanosensors exhibited significant signal differences between tumor-bearing and healthy mice in both orthotopic and metastatic tumor models. Additionally, efficient elimination of the nanosensors through the hepatobiliary pathway was observed with no significant toxicity. Such a non-invasive diagnostic modality significantly assists in personalized pharmacological treatment and follow-up efficacy assessment. We envision that this modular liposome nanosensor platform might be applied for economically detecting diverse diseases via a simple urinary test.
Collapse
Affiliation(s)
- Dongtao Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhibin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Liqing Pan
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yanyi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology Department, School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, Wuhu, 241002, China
| | - Yujun Song
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Bag S, Gadpayle MP, Ghosh D, Maiti S, De P. Biotinylated Theranostic Amphiphilic Polyurethane for Targeted Drug Delivery. Biomacromolecules 2024; 25:4233-4245. [PMID: 38838045 DOI: 10.1021/acs.biomac.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In the area of drug delivery aided by stimuli-responsive polymers, the biodegradability of nanocarriers is one of the major challenges that needs to be addressed with the utmost sincerity. Herein, a hydrogen sulfide (H2S) responsive hydrophobic dansyl-based trigger molecule is custom designed and successfully incorporated into the water-soluble polyurethane backbone, which is made of esterase enzyme susceptible urethane bonds. The amphiphilic polyurethanes, PUx (x = 2 and 3) with a biotin chain end, formed self-assembled nanoaggregates. A hemolysis and cytotoxicity profile of doxorubicin (DOX)-loaded biotinylated PU3 nanocarriers revealed that it is nonhemolytic and has excellent selectivity toward HeLa cells (biotin receptor-positive cell lines) causing ∼60% cell death while maintaining almost 100% cell viability for HEK 293T cells (biotin receptor-negative cell lines). Furthermore, better cellular internalization of DOX-loaded fluorescent nanocarriers in HeLa cells than in HEK 293T cells confirmed receptor-mediated endocytosis. Thus, this work ensures that the synthesized polymers serve as biodegradable nanocarriers for anticancer therapeutics.
Collapse
Affiliation(s)
- Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Mandip Pratham Gadpayle
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| |
Collapse
|
15
|
Wei Y, Lv J, Zhu S, Wang S, Su J, Xu C. Enzyme-responsive liposomes for controlled drug release. Drug Discov Today 2024; 29:104014. [PMID: 38705509 DOI: 10.1016/j.drudis.2024.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Compared to other nanovectors, liposomes exhibit unique advantages, such as good biosafety and high drug-loading capacity. However, slow drug release from conventional liposomes makes most payloads unavailable, restricting the therapeutic efficacy. Therefore, in the last ∼20 years, enzyme-responsive liposomes have been extensively investigated, which liberate drugs under the stimulation of enzymes overexpressed at disease sites. In this review, we elaborate on the research progress on enzyme-responsive liposomes. The involved enzymes mainly include phospholipases, particularly phospholipase A2, matrix metalloproteinases, cathepsins, and esterases. These enzymes can cleave ester bonds or specific peptide sequences incorporated in the liposomes for controlled drug release by disrupting the primary structure of liposomes, detaching protective polyethylene glycol shells, or activating liposome-associated prodrugs. Despite decades of efforts, there are still a lack marketed products of enzyme-responsive liposomes. Therefore, more efforts should be made to improve the safety and effectiveness of enzyme-responsive liposomes and address the issues associated with production scale-up.
Collapse
Affiliation(s)
- Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Jiajing Lv
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Shiyu Zhu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China.
| |
Collapse
|
16
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
17
|
Wu D, Fu K, Zhang W, Li Y, Ji Y, Dai Y, Yang G. Chitosan nanomedicines-engineered bifidobacteria complexes for effective colorectal tumor-targeted delivery of SN-38. Int J Pharm 2024; 659:124283. [PMID: 38810933 DOI: 10.1016/j.ijpharm.2024.124283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The clinical application of 7-ethyl hydroxy-camptothecin (SN-38) maintains challenges not only due to its poor solubility and stability but also the lack of effective carriers to actively deliver SN-38 to deep tumor sites. Although SN-38-based nanomedicines could improve the solubility and stability from different aspects, the tumor targeting efficiency remains very low. Leveraging the hypoxic taxis of bifidobacteria bifidum (B. bifi) to the deep tumor area, we report SN-38-based nanomedicines-engineered bifidobacterial complexes for effective tumor-targeted delivery. Firstly, SN-38 was covalently coupled with poly-L-glutamic acid (L-PGA) and obtained soluble polymeric prodrug L-PGA-SN38 to improve its solubility and stability. To prolong the drug release, L-PGA-SN38 was mildly complexed with chitosan to form nanomedicines, and nanomedicines engineered B. bifi were further elaborated via electrostatic interaction of the excess of cationic chitosan shell from nanomedicines and anionic teichoic acid from B. bifi. The engineered B. bifi complexes inherited the bioactivity of native B. bifi and exhibited distinctly enhanced accumulation at the tumor site. More importantly, significantly elevated anti-tumor efficacy was achieved after the treatment of CS-L-PGA-SN38 NPs/B. bifi complexes, with favorable tumor suppression up to 80%. Such a B. bifi-mediated delivery system offers a promising platform for effective drug delivery and enhanced drug accumulation in the hypoxia deep tumor with superior anti-tumor efficacy.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Kaili Fu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yazhen Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaning Ji
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiwei Dai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
18
|
Wang MM, Choi MR, Battistella C, Gattis B, Qiao B, Evangelopoulos M, Mirkin CA, Olvera de la Cruz M, Zhang B, Gianneschi NC. Proteomimetic Polymers Trigger Potent Antigen-Specific T Cell Responses to Limit Tumor Growth. J Am Chem Soc 2024; 146:14959-14971. [PMID: 38781575 DOI: 10.1021/jacs.3c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses. Key design parameters, namely payload linkage chemistry, degree of polymerization, and side chain composition, were varied to optimize vaccine formulations. Linking antigens to the polymer backbone using an intracellularly cleaved disulfide bond copolymerized with a diluent amount of oligo(ethylene glycol) (OEG) resulted in the highest payload-specific potentiation of antigen immunogenicity, enhancing dendritic cell (DC) activation and antigen-specific T cell responses. Vaccination with PLPs carrying either gp100, E7, or adpgk peptides significantly increased the survival of mice inoculated with B16F10, TC-1, or MC38 tumors, respectively, without the need for adjuvants. B16F10-bearing mice immunized with gp100-carrying PLPs showed increased antitumor CD8+ T cell immunity, suppressed tumor growth, and treatment synergy when paired with two distinct stimulator of interferon gene (STING) agonists. In a human papillomavirus-associated TC-1 model, combination therapy with PLP and 2'3'-cGAMP resulted in 40% of mice completely eliminating implanted tumors while also displaying curative protection from rechallenge, consistent with conferment of lasting immunological memory. Finally, PLPs can be stored long-term in a lyophilized state and are highly tunable, underscoring the unique properties of the platform for use as generalizable cancer vaccines.
Collapse
Affiliation(s)
- Max M Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Mi-Ran Choi
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Claudia Battistella
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Brayley Gattis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Natural Sciences, Baruch College, City University of New York, New York, New York 10010, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60208, United States
| |
Collapse
|
19
|
Poursani E, Cirillo G, Curcio M, Vittorio O, De Luca M, Leggio A, Nicoletta FP, Iemma F. Dual-responsive chondroitin sulfate self-assembling nanoparticles for combination therapy in metastatic cancer cells. Int J Pharm X 2024; 7:100235. [PMID: 38486882 PMCID: PMC10937311 DOI: 10.1016/j.ijpx.2024.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
In this study, we developed self-assembling nanoparticles (LCPs) able to trigger the release of Chlorambucil (Chl) and Doxorubicin (DOX) to MDA-MB-231 cells by exploiting the enzyme and redox signals. The DOX loaded LCPs was prepared by the self-assembly of two chondroitin sulphate (CS) derivatives, obtained by the covalent conjugation of Lipoic Acid (LA) and Chlorambucil (Chl) to the CS backbone. After the physic-chemical characterization of the conjugates by FT-IR, 1H NMR, and determination of the critical aggregation concentration, spherical nanoparticles with mean hydrodynamic diameter of 45 nm (P.D.I. 0.24) and Z-potential of - 44 mV were obtained by water addition/solvent evaporation method. In vitro experiments for the release of Chl and DOX were performed in healthy and cancer cells, using a cell culture media to maintain the physiological intracellular conditions (pH 7.4) (and concentration of esterase and GSH. The results allowed the selective release of the payloads to be detected: Chl release of 0 and 41% were obtained after 2 h incubation in normal and in cancer cells respectively, while values of 35 (in healthy cells) and 60% (in cancer cells) were recorded for DOX release after 96 h. Finally, viability studies proved the ability of the newly proposed nanosystem to enhance the cytotoxic activity of the two drugs against cancer cells.
Collapse
Affiliation(s)
- Ensieh Poursani
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2052, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, Rende 87036, Italy
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, Rende 87036, Italy
| | - Orazio Vittorio
- School of Biomedical Science, University of New South Wales, Randwick, NSW 2052, Australia
| | - Michele De Luca
- Department of Pharmacy Health and Nutritional Science, University of Calabria, Rende 87036, Italy
| | - Antonella Leggio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, Rende 87036, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, Rende 87036, Italy
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, Rende 87036, Italy
| |
Collapse
|
20
|
Yadav P, Rana K, Chakraborty R, Khan A, Mehta D, Jain D, Aggarwal B, Jha SK, Dasgupta U, Bajaj A. Engineered nanomicelles targeting proliferation and angiogenesis inhibit tumour progression by impairing the synthesis of ceramide-1-phosphate. NANOSCALE 2024; 16:10350-10365. [PMID: 38739006 DOI: 10.1039/d3nr04806c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ruchira Chakraborty
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Bharti Aggarwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Somesh K Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
21
|
Ahmad M, Johnson TG, Flerin M, Duarte F, Langton MJ. Responsive Anionophores with AND Logic Multi-Stimuli Activation. Angew Chem Int Ed Engl 2024; 63:e202403314. [PMID: 38517056 DOI: 10.1002/anie.202403314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Toby G Johnson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Martin Flerin
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthew J Langton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
22
|
Wen Y, Li K, Ni M, Jiang H, Wu H, Yu Q, Li J, Li X, Wei J, Wu W, Xu H. Dendritic Polylysine with Paclitaxel and Triptolide Codelivery for Enhanced Cancer Ferroptosis through the Accumulation of ROS. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597227 DOI: 10.1021/acsami.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Recently, paclitaxel (PTX) was reported to increase intracellular lipid reactive oxygen species (ROS) levels, triggering cancer cell ferroptosis. Based on this, some efforts had been made to improve PTX treatment for non-small-cell lung cancer (NSCLC). Our previous studies demonstrated that triptolide (TPL) could improve the antitumor effect of PTX. Nevertheless, the poor solubility and side effects often limit the application of chemotherapy drugs. In this paper, we constructed a novel nanodrug delivery system (NDDS) chemosynthesis by PEGylated generation 3 (G3) dendritic polylysine coloaded with PTX and TPL (PTX-TPL-PEG-PLL, PTPP), which was endowed with the ability of tumor targeting and favorable solubility. In addition, we demonstrated that TPL could induce ROS generation by regulating the NF-κB signaling pathway to enhance the ferroptosis-induced effect of PTX. Besides, ferroptosis induced by PTPP could improve chemoresistance through inhibiting the level of P-gp, GPX4, and SLC7A11. Furthermore, we determined that ferroptosis may strengthen the immune response by increasing the expression of CD8+ T cells and IFN-γ+ cells while decreasing Treg cells. In general, PTPP may be a potential system for NSCLC treatment.
Collapse
Affiliation(s)
- Yuanyuan Wen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
| | - Kaiming Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengnan Ni
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Jiang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haisi Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qinqi Yu
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jinyu Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jifu Wei
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
| | - Wei Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Huae Xu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
23
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
24
|
Yadav P, Rana K, Nardini V, Khan A, Pani T, Kar A, Jain D, Chakraborty R, Singh R, Jha SK, Mehta D, Sharma H, Sharma RD, Deo SVS, Sengupta S, Patil VS, Faccioli LH, Dasgupta U, Bajaj A. Engineered nanomicelles inhibit the tumour progression via abrogating the prostaglandin-mediated immunosuppression. J Control Release 2024; 368:548-565. [PMID: 38462044 DOI: 10.1016/j.jconrel.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Cancer treatment is challenged due to immunosuppressive inflammatory tumour microenvironment (TME) caused by infiltration of tumour-promoting and inhibition of tumour-inhibiting immune cells. Here, we report the engineering of chimeric nanomicelles (NMs) targeting the cell proliferation using docetaxel (DTX) and inflammation using dexamethasone (DEX) that alters the immunosuppressive TME. We show that a combination of phospholipid-DTX conjugate and PEGylated-lipid-DEX conjugate can self-assemble to form sub-100 nm chimeric NMs (DTX-DEX NMs). Anti-cancer activities against syngeneic and xenograft mouse models showed that the DTX-DEX NMs are more effective in tumour regression, enhance the survival of mice over other treatment modes, and alter the tumour stroma. DTX-DEX NMs cause a significant reduction in myeloid-derived suppressor cells, alter the polarization of macrophages, and enhance the accumulation of cytotoxic CD4+ and CD8+ T cells in tumour tissues, along with alterations in cytokine expression. We further demonstrated that these DTX-DEX NMs inhibit the synthesis of prostaglandins, especially PGE2, by targeting the cyclooxygenase 2 that is partly responsible for immunosuppressive TME. Therefore, this study presents, for the first time, the engineering of lithocholic acid-derived chimeric NMs that affect the prostaglandin pathway, alter the TME, and mitigate tumour progression with enhanced mice survival.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Viviani Nardini
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café, s.n, Ribeirão Preto 14040-903, SP, Brazil
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Trishna Pani
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Animesh Kar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Ruchira Chakraborty
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Ragini Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Somesh K Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; National Institute of Biomedical Genomics, Post office- Netaji Subhas Sanatorium, Kalyani 741251, India
| | - Veena S Patil
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lúcia Helena Faccioli
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café, s.n, Ribeirão Preto 14040-903, SP, Brazil
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon 122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3(rd) Milestone Faridabad-Gurgaon Expressway, NCR Biotech Cluster, Faridabad 121001, Haryana, India.
| |
Collapse
|
25
|
Zhang H, Wei S, Hu Y, Zhang Y, Yao H, Qi G, Adu-Frimpong M, Sun C. Influence of Different Ratios of DSPE-PEG2k on Ester Prodrug Self-Assembly Nanoparticles for Cell Migration and Proliferation Suppression. Int J Nanomedicine 2024; 19:2807-2821. [PMID: 38525014 PMCID: PMC10959298 DOI: 10.2147/ijn.s446741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Background Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Shunru Wei
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Yunfei Hu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Hao Yao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Gang Qi
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Congyong Sun
- Department of Central Laboratory, The Affiliated Huaian No.1 People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, 223300, People’s Republic of China
| |
Collapse
|
26
|
Singh D, Sharma Y, Dheer D, Shankar R. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review. Int J Biol Macromol 2024; 261:129901. [PMID: 38316328 DOI: 10.1016/j.ijbiomac.2024.129901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Stimuli responsive delivery systems, also known as smart/intelligent drug delivery systems, are specialized delivery vehicles designed to provide spatiotemporal control over drug release at target sites in various diseased conditions, including tumor, inflammation and many others. Recent advances in the design and development of a wide variety of stimuli-responsive (pH, redox, enzyme, temperature) materials have resulted in their widespread use in drug delivery and tissue engineering. The aim of this review is to provide an insight of recent nanoparticulate drug delivery systems including polymeric nanoparticles, dendrimers, lipid-based nanoparticles and the design of new polymer-drug conjugates (PDCs), with a major emphasis on natural along with synthetic commercial polymers used in their construction. Special focus has been placed on stimuli-responsive polymeric materials, their preparation methods, and the design of novel single and multiple stimuli-responsive materials that can provide controlled drug release in response a specific stimulus. These stimuli-sensitive drug nanoparticulate systems have exhibited varying degrees of substitution with enhanced in vitro/in vivo release. However, in an attempt to further increase drug release, new dual and multi-stimuli based natural polymeric nanocarriers have been investigated which respond to a mixture of two or more signals and are awaiting clinical trials. The translation of biopolymeric directed stimuli-sensitive drug delivery systems in clinic demands a thorough knowledge of its mechanism and drug release pattern in order to produce affordable and patient friendly products.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Yashika Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Uma Maheswari RT, Ajithkumar V, Varalakshmi P, Rajan M. CD44 tagged hyaluronic acid - chitosan liposome carrier for the delivery of berberine and doxorubicin into lung cancer cells. Int J Biol Macromol 2023; 253:126599. [PMID: 37652327 DOI: 10.1016/j.ijbiomac.2023.126599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Liposomes are unique biomolecular, capable of loading both hydrophilic and hydrophobic molecules and delivered into the biological system. Liposomes (L) coated with hyaluronic acid (HA) and chitosan (CS) carrier system was fabricated. Berberine (BER) and doxorubicin (DOX) were encapsulated to enhance drug proliferation and therapeutic effect in lung cancer cells. The FTIR, XRD, SEM, and TEM techniques were carried out for functional group identification, crystallinity, and surface morphology analysis, respectively. In-vitro drug release confirms the sustained release of BER and DOX in various physiological environments. HA-CS@BER&DOX-L has good penetration ability and higher cytotoxicity effect in the A549 cells, and the IC50 value of HA-CS@BER&DOX-L is 89.19 μg/300 μL. The pure liposome showed a negligible cytotoxicity effect, and the HA-CS@BER&DOX-L could efficiently induce the apoptosis of A549 cells. The cellular uptake analysis of the HA-CS@BER&DOX-L effectively targeted and entered the A549 cells and clearly observed C. elegans images. Hence, the proposed system will be a potential treatment methodology to enhance the cytotoxicity of the A549 cancer cells and be useful to future drug administration methodology development.
Collapse
Affiliation(s)
- Ramakrishna Thilagar Uma Maheswari
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Velmurugan Ajithkumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
28
|
Schötz S, Griepe AK, Goerisch BB, Kortam S, Vainer YS, Dimde M, Koeppe H, Wedepohl S, Quaas E, Achazi K, Schroeder A, Haag R. Esterase-Responsive Polyglycerol-Based Nanogels for Intracellular Drug Delivery in Rare Gastrointestinal Stromal Tumors. Pharmaceuticals (Basel) 2023; 16:1618. [PMID: 38004483 PMCID: PMC10675119 DOI: 10.3390/ph16111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Rare gastrointestinal stromal tumors (GISTs) are caused by mutations in the KIT and PDGFRA genes. Avapritinib (BLU-285) is a targeted selective inhibitor for mutated KIT and PDGFRA receptors that can be used to treat these tumors. However, there are subtypes of GISTs that exhibit resistance against BLU-285 and thus require other treatment strategies. This can be addressed by employing a drug delivery system that transports a combination of drugs with distinct cell targets. In this work, we present the synthesis of esterase-responsive polyglycerol-based nanogels (NGs) to overcome drug resistance in rare GISTs. Using inverse nanoprecipitation mediated with inverse electron-demand Diels-Alder cyclizations (iEDDA) between dPG-methyl tetrazine and dPG-norbornene, multi-drug-loaded NGs were formed based on a surfactant-free encapsulation protocol. The obtained NGs displayed great stability in the presence of fetal bovine serum (FBS) and did not trigger hemolysis in red blood cells over a period of 24 h. Exposing the NGs to Candida Antarctica Lipase B (CALB) led to the degradation of the NG network, indicating the capability of targeted drug release. The bioactivity of the loaded NGs was tested in vitro on various cell lines of the GIST-T1 family, which exhibit different drug resistances. Cell internalization with comparable uptake kinetics of the NGs could be confirmed by confocal laser scanning microscopy (CLSM) and flow cytometry for all cell lines. Cell viability and live cell imaging studies revealed that the loaded NGs are capable of intracellular drug release by showing similar IC50 values to those of the free drugs. Furthermore, multi-drug-loaded NGs were capable of overcoming BLU-285 resistance in T1-α-D842V + G680R cells, demonstrating the utility of this carrier system.
Collapse
Affiliation(s)
- Sebastian Schötz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Adele K. Griepe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Björn B. Goerisch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Sally Kortam
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Yael Shammai Vainer
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Haifa 32000, Israel;
| | - Mathias Dimde
- Research Center of Electron Microscopy, Freie Universität Berlin, Fabeckstr, 36A, 14195 Berlin, Germany;
| | - Hanna Koeppe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Stefanie Wedepohl
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Elisa Quaas
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Katharina Achazi
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Haifa 32000, Israel;
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| |
Collapse
|
29
|
Sullivan H, Liang Y, Worthington K, Luo C, Gianneschi NC, Christman KL. Enzyme-Responsive Nanoparticles for the Targeted Delivery of an MMP Inhibitor to Acute Myocardial Infarction. Biomacromolecules 2023; 24:4695-4704. [PMID: 37695847 PMCID: PMC10646957 DOI: 10.1021/acs.biomac.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Herein, we have developed a drug-loaded matrix metalloproteinase (MMP)-responsive micellar nanoparticle (NP) intended for minimally invasive intravenous injection during the acute phase of myocardial infarction (MI) and prolonged retention in the heart for small-molecule drug delivery. Peptide-polymer amphiphiles (PPAs) bearing a small-molecule MMP inhibitor (MMPi), PD166793, were synthesized via ring-opening metathesis polymerization (ROMP) and formulated into spherical micelles by transitioning to aqueous solution. The resulting micellar NPs underwent MMP-induced aggregation, demonstrating enzyme responsiveness. Using a rat MI model, we observed that these NPs were capable of successfully extravasating into the infarcted region of the heart where they were retained due to the active, enzyme-mediated targeting, remaining detectable after 1 week post administration without increasing macrophage recruitment. Furthermore, in vitro studies show that these NPs demonstrated successful drug release following MMP treatment and maintained drug bioactivity as evidenced by comparable MMP inhibition to free MMPi. This work establishes a targeted NP platform for delivering small-molecule therapeutics to the heart after MI, opening possibilities for myocardial infarction treatment.
Collapse
Affiliation(s)
- Holly
L. Sullivan
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Yifei Liang
- Department
of Chemistry, International Institute for Nanotechnology, Simpson-Querrey
Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kendra Worthington
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Colin Luo
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, International Institute for Nanotechnology, Simpson-Querrey
Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Departments
of Materials Science & Engineering, Biomedical Engineering and
Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry & Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Karen L. Christman
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
30
|
Jiang X, Liu J, Lee MJ, Peng C, Luo T, Tillman L, Weichselbaum RR, Lin W. Nanoscale coordination polymer synergizes photodynamic therapy and toll-like receptor activation for enhanced antigen presentation and antitumor immunity. Biomaterials 2023; 302:122334. [PMID: 37776767 PMCID: PMC10841466 DOI: 10.1016/j.biomaterials.2023.122334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
While activating antitumor immunity with toll-like receptor (TLR) agonists provides a promising approach toward cancer immunotherapy, existing TLR agonists, including resiquimod (R848), have shown poor tumor selectivity and ineffective TLR activation in tumors for optimal antitumor effects. We hypothesized that improved delivery of TLR agonists to tumors and their effective combination with tumor antigens could significantly enhance their antitumor efficacy. Here, we report a novel nanoscale coordination polymer, Ce6/R848, for the co-delivery of Ce6 photosensitizer to elicit immunogenic cell death via photodynamic therapy (PDT) and cholesterol-conjugated R848 (Chol-R848) for tumor-selective TLR7/8 activation. Upon light irradiation, Ce6-mediated PDT released tumor antigens while selectively delivered R848 activated TLR7/8 in the tumors to synergistically activate antigen-presenting cells and prime T cells for enhanced innate and adaptive antitumor immune responses. Ce6/R848 achieved a 50% cure rate and 99.4% inhibition of tumor growth in subcutaneous MC38 colorectal tumors with minimal systemic toxicity.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Jing Liu
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758, S Maryland Ave, Chicago, IL, 60637, USA
| | - Morten J Lee
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Cheng Peng
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758, S Maryland Ave, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758, S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
31
|
Zhang F, Pei G, Huang B, Xu J, Zhang L. Exploring release mechanisms by disrupting π-π stacking regions in stable micelles. J Mater Chem B 2023; 11:9246-9259. [PMID: 37721031 DOI: 10.1039/d3tb01388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
π-π stacking strategies can enhance the stability performance of delivery platforms but are often restricted by incomplete drug release performance, even with the help of crosslinking strategies. Therefore, there has been considerable interest in enhancing the drug release performance by disrupting the π-π stacking region (structural rearrangements). Herein, we synthesized poly(3-(isobutyloxy)-2-oxopropyl benzoate)-b-poly(2-hydroxybutyl methacrylate)-co-poly((ethylene glycol)methylether methacrylate) [PBOOPMA-b-P(HBMA-co-PEGMA), PHB] and revealed the drug release mechanism of PHB-based micelles. The structural rearrangements derived from the crosslinking strategy were revealed to improve the early release performance by 43-55% using micellar dissolutions. Moreover, the esterase-responsive strategy was elucidated to induce reassembly with 77-79% size variation, intensifying the structural rearrangements, which was also synergistic with the crosslinking strategy. Based on the advantages of improving drug release performance, the esterase-responsive strategy was considered a promising candidate for enhancing late release performance. Meanwhile, it is believed that such responsive modulation (crosslinking, esterase-responsive) in the π-π stacking region will become highly promising for subsequent research. Finally, the biosafety of 95.81% at 400 mg L-1 and drug cytotoxicity of IC50 ≈ 2.5 mg L-1 of PHB-EDE@CPT were also validated, confirming the broad application prospects of PHB-based crosslinked micelles.
Collapse
Affiliation(s)
- Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Gongcui Pei
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Baihao Huang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianchang Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
32
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
33
|
Li D, Ren T, Ge Y, Wang X, Sun G, Zhang N, Zhao L, Zhong R. A multi-functional hypoxia/esterase dual stimulus responsive and hyaluronic acid-based nanomicelle for targeting delivery of chloroethylnitrosouea. J Nanobiotechnology 2023; 21:291. [PMID: 37612719 PMCID: PMC10464291 DOI: 10.1186/s12951-023-02062-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Yunxuan Ge
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
34
|
Liang P, Zhang Y, Schmidt BF, Ballou B, Qian W, Dong Z, Wu J, Wang L, Bruchez MP, Dong X. Esterase-Activated, pH-Responsive, and Genetically Targetable Nano-Prodrug for Cancer Cell Photo-Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207535. [PMID: 36807550 DOI: 10.1002/smll.202207535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/31/2023] [Indexed: 05/11/2023]
Abstract
Activatable prodrugs have drawn considerable attention for cancer cell ablation owing to their high specificity in drug delivery systems. However, phototheranostic prodrugs with dual organelle-targeting and synergistic effects are still rare due to low intelligence of their structures. Besides, the cell membrane, exocytosis, and diffusional hindrance by the extracellular matrix reduce drug uptake. Moreover, the up-regulation of heat shock protein and short singlet-oxygen lifetime in cancer cells hamper photo-ablation efficacy, especially in the mono-therapeutic model. To overcome those obstacles, we prepare an esterase-activated DM nano-prodrug, which is conjugated by diiodine-substituted fluorogenic malachite green derivative (MG-2I) and phototherapeutic agent DPP-OH via hydrolyzable ester linkage, having pH-responsiveness and genetically targetable activity for dual organelles-targeting to optimize photo-ablation efficacy. The DM nanoparticles (NPs) present improved pH-responsive photothermal/photodynamic property by the protonation of diethylaminophenyl units in acidic environment. More importantly, the MG-2I and DPP-OH moieties can be released from DM nano-prodrug through overexpressed esterase; then specifically target lysosomes and mitochondria in CT-26 Mito-FAP cells. Hence, near-infrared DM NPs can trigger parallel damage in dual-organelles with strong fluorescence and effective phototoxicity, thus inducing serious mitochondrial dysfunction and apoptotic death, showing excellent photo-ablation effect based on esterase-activated, pH-responsive, and genetically targetable activities.
Collapse
Affiliation(s)
- Pingping Liang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuanying Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Byron Ballou
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Wei Qian
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ziyi Dong
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jiahui Wu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lingling Wang
- Department of general surgery of the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230002, China
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
35
|
Shen P, Zhang X, Ding N, Zhou Y, Wu C, Xing C, Zeng L, Du L, Yuan J, Kang Y. Glutathione and Esterase Dual-Responsive Smart Nano-drug Delivery System Capable of Breaking the Redox Balance for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20697-20711. [PMID: 37083309 DOI: 10.1021/acsami.3c01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Conventional chemotherapy usually fails to achieve its intended effect because of the poor water solubility, poor tumor selectivity, and low tumor accumulation of chemotherapy drugs. The systemic toxicity of chemotherapy agents is also a problem that cannot be ignored. It is expected that smart nano-drug delivery systems that are able to respond to tumor microenvironments will provide better therapeutic outcomes with decreased side effects of chemotherapeutics. Nano-drug delivery systems capable of breaking the redox balance can also increase the sensitivity of tumor cells to chemotherapeutics. In this study, using polymer-containing disulfide bonds, ester bonds, and d-α-tocopherol polyethylene glycol succinate (TPGS), which can amplify reactive oxygen species (ROS) in tumor cells, we have successfully prepared a smart glutathione (GSH) and esterase dual-responsive nano-drug delivery system (DTX@PAMBE-SS-TPGS NPs) with the ability to deplete GSH as well as amplify ROS and effectively release an encapsulated chemotherapy drug (DTX) in tumor cells. The potential of DTX@PAMBE-SS-TPGS NPs for enhanced antitumor effects was thoroughly evaluated using in vitro as well as in vivo experiments. Our research offers a promising strategy for maximizing the efficacy of tumor therapy.
Collapse
Affiliation(s)
- Ping Shen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyi Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ni Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yinhua Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Changquan Wu
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Key Laboratory of Neuroimaging, Longhua District, Shenzhen 518107, China
| | - Jianpeng Yuan
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
36
|
Cho H, Jeon SI, Shim MK, Ahn CH, Kim K. In situ albumin-binding and esterase-specifically cleaved BRD4-degrading PROTAC for targeted cancer therapy. Biomaterials 2023; 295:122038. [PMID: 36787659 DOI: 10.1016/j.biomaterials.2023.122038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) have recently been of great interest in cancer therapy. However, the bioavailability of PROTACs is considerably restricted due to their high hydrophobicity, poor cell permeability, and thereby low tumor targeting ability. Herein, esterase-cleavable maleimide linker (ECMal)-conjugated bromodomain 4 (BRD4)-degrading PROTAC (ECMal-PROTAC) is newly synthesized to exploit plasma albumin as an 'innate drug carrier' that can be accumulated in targeted tumor tissues. The BRD4-degrading ECMal-PROTAC is spontaneously bound to albumins via the thiol-maleimide click chemistry and its esterase-specific cleavage of ECMal-PROTAC is characterized in physiological conditions. The albumin-bound ECMal-PROTACs (Alb-ECMal-PROTACs) have an average size of 6.99 ± 1.38 nm, which is similar to that of free albumins without denaturation or aggregation. When Alb-ECMal-PROTACs are treated to 4T1 tumor cells, they are actively endocytosed and reach their highest intracellular level within 12 h. Furthermore, the maleimide linkers of Alb-ECMal-PROTACs are cleaved by the esterase to release free BRD-4 degrading PROTACs and the cell-internalized PROTACs successfully catalyze the selective degradation of BRD4 proteins, resulting in BRD4 deficiency-related apoptosis. When ECMal-PROTACs are intravenously injected into tumor-bearing mice, they exhibit a 16.3-fold higher tumor accumulation than free BRD4-PROTAC, due to the shuttling effect of albumin for tumor targeting. Finally, ECMal-PROTACs show 5.3-fold enhanced antitumor efficacy compared to free BRD4-PROTAC, without provoking any severe systemic toxicity. The expression of Bcl-2 and c-Myc, the downstream oncogenic proteins of BRD4, are also effectively suppressed. In summary, the in situ albumin binding of ECMal-PROTAC is proven as a promising strategy that effectively modulates its pharmacokinetics and therapeutic performance with high applicability to other types of PROTACs.
Collapse
Affiliation(s)
- Hanhee Cho
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong Ik Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Man Kyu Shim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
37
|
Shashni B, Nagasaki Y. Short-chain fatty acid-releasing nano-prodrugs for attenuating growth and metastasis of melanoma. Acta Biomater 2023; 159:226-236. [PMID: 36736848 DOI: 10.1016/j.actbio.2023.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Low-molecular-weight (LMW) short-chain fatty acids (SCFAs), such as propionic and butyric acids, have been reported to possess anti-neoplastic effects; however, rapid renal clearance and high dose-based side effects limit their clinical translation. Hence, in this study, we have designed a new self-assembling nano-prodrugs that can effectively supply SCFAs: endogenous enzyme-metabolizable block copolymer poly(ethylene glycol)block-poly(vinyl ester) possessing several units of SCFAs conjugated as side chains via ester linkages. These amphiphilic polymers spontaneously self-assemble into nanostructures under aqueous conditions to form orally administrable nano-prodrugs (butyric acid: NanoBA and propionic acid: NanoPA). Herein, we show the therapeutic efficacy of SCFA nanoparticles (NanoSCFA) in a mouse model of metastasis (melanoma). Ad libitum intake of our NanoSCFA markedly demonstrated a decrease in the metastatic tumor nodules in the lungs compared with the effect observed after LMW SCFA administration with no discernible toxicity to the GI tract. In contrast, LMW SCFAs, even at a lower concentration than that of the NanoSCFA, facilitated villus atrophy. Taken together, our work suggests that the use of NanoSCFA as a therapeutic intervention for metastatic cancer is preferable over typical LMW SCFAs. STATEMENT OF SIGNIFICANCE: Low-molecular-weight (LMW) short-chain fatty acids (SCFAs) have shown versatile therapeutic effects on various diseases, including anti-tumorigenesis effects. However, their clinical translation is limited due to their poor pharmacokinetic profile and adverse effects. To overcome these limitations, we have developed new amphiphilic block copolymer-based SCFA-prodrugs, which self-assemble into nanoparticles in aqueous media (NanoSCFA). SCFAs are covalently conjugated to the hydrophobic polymer segment via ester linkage, which can be enzymatically metabolized after oral administration. In the present study, we confirmed that ad libitum intake of NanoSCFAs retarded the growth and metastatic potential of B16-F10 tumors compared to the LMW SCFAs with negligible discernible toxicity, reflecting NanoSCFA as a preferable therapeutic intervention to LMW SCFA counterparts.
Collapse
Affiliation(s)
- Babita Shashni
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's Program in Medical Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
38
|
Han HH, Wang HM, Jangili P, Li M, Wu L, Zang Y, Sedgwick AC, Li J, He XP, James TD, Kim JS. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem Soc Rev 2023; 52:879-920. [PMID: 36637396 DOI: 10.1039/d2cs00673a] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Yi Zang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Lingang laboratory, Shanghai 201203, China
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jia Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
39
|
Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. MEDICAL REVIEW (2021) 2023; 3:4-30. [PMID: 37724108 PMCID: PMC10471091 DOI: 10.1515/mr-2022-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Huicong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zi Mei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
40
|
Yuan L, Su Y, Yu B, Shen Y, Cong H. D-A-D organic small molecules with AIE effect for fluorescence imaging guided photothermal therapy. Biomater Sci 2023; 11:985-997. [PMID: 36541206 DOI: 10.1039/d2bm01912d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Near infrared (NIR) fluorescent organic molecules as fluorescent probes accurately guide photothermal therapy as a potential antitumor method. However, the aggregation and quenching of organic fluorescent molecules and poor tissue permeability greatly limit their therapeutic effect and clinical transformation. In this paper, with a D-A-D structure as the molecular skeleton, cyclopentadithiophene (CPDT) as the donor (D), diketopyrrolopyrrole (DPP) as the acceptor (A), and long-chain isooctane as the shielding unit, organic fluorescent small molecules with a strong absorption band and bright NIR-II emission were synthesized. Then, tetraphenylethylene (TPE) molecules with typical AIE structure characteristics were introduced on both sides of the organic fluorescent small molecules, and an organic small molecular fluorophore (TDA) with AIE characteristics and the photothermal effect was designed. Through a series of experimental characterization techniques, it is proved that TDA NPs have good biocompatibility and tissue permeability, and can accurately locate the tumor location through NIR-II fluorescence imaging to achieve local photothermal treatment of tumors.
Collapse
Affiliation(s)
- Lin Yuan
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Yingbin Su
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
41
|
Xu DZ, Sun XY, Liang YX, Huang HW, Liu R, Lu ZL, He L. Esterase-Responsive Polymeric Micelles Containing Tetraphenylethene and Poly(ethylene glycol) Moieties for Efficient Doxorubicin Delivery and Tumor Therapy. Bioconjug Chem 2023; 34:248-256. [PMID: 36621834 DOI: 10.1021/acs.bioconjchem.2c00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzyme-responsive drug delivery systems have drawn much attention in the field of cancer theranostics due to their high sensitivity and substrate specificity under mild conditions. In this study, an amphiphilic polymer T1 is reported, which contains a tetraphenylethene unit and a poly(ethylene glycol) chain linked by an esterase-responsive phenolic ester bond. In aqueous solution, T1 formed stable micelles via self-assembly, which showed an aggregation-induced emission enhancement of 32-fold at 532 nm and a critical micelle concentration of 0.53 μM as well as esterase-responsive activity. The hydrophobic drug doxorubicin (DOX) was efficiently encapsulated into the micelles with a drug loading of 21%. In the presence of the esterase, the selective decomposition of drug-loaded T1 micelles was observed, and DOX was subsequently released with a half-life of 5 h. In vitro antitumor studies showed that T1@DOX micelles exhibited good therapeutic effects on HeLa cells, while normal cells remained mostly intact. In vivo anticancer experiments revealed that T1@DOX micelles indeed suppressed tumor growth and had reduced side effects compared to DOX·HCl. The present work showed the potential clinical application of esterase-responsive drug delivery in cancer therapy.
Collapse
Affiliation(s)
- De-Zhong Xu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China.,Institute of Chemical Drug Control, China National Institute for Food and Drug Control, TianTanXiLi 2, Beijing100050, China
| | - Xue-Yi Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Ya-Xuan Liang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Hai-Wei Huang
- Institute of Chemical Drug Control, China National Institute for Food and Drug Control, TianTanXiLi 2, Beijing100050, China
| | - Rui Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Lan He
- Institute of Chemical Drug Control, China National Institute for Food and Drug Control, TianTanXiLi 2, Beijing100050, China
| |
Collapse
|
42
|
Jiang X, Lee M, Xia J, Luo T, Liu J, Rodriguez M, Lin W. Two-Stage SN38 Release from a Core-Shell Nanoparticle Enhances Tumor Deposition and Antitumor Efficacy for Synergistic Combination with Immune Checkpoint Blockade. ACS NANO 2022; 16:21417-21430. [PMID: 36382721 PMCID: PMC9798857 DOI: 10.1021/acsnano.2c09788] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/10/2022] [Indexed: 05/26/2023]
Abstract
Long-circulating nanomedicines efficiently deliver chemotherapies to tumors to reduce general toxicity. However, extended blood circulation of nanomedicines can increase drug exposure to leukocytes and lead to hematological toxicity. Here, we report a two-stage release strategy to enhance the drug deposition and antitumor efficacy of OxPt/SN38 core-shell nanoparticles with a hydrophilic oxaliplatin (OxPt) prodrug coordination polymer core and a lipid shell containing a hydrophobic cholesterol-conjugated SN38 prodrug (Chol-SN38). By conjugating cholesterol to the phenol group of SN38 via an acetal linkage and protecting the 20-hydroxy position with a trimethylsilyl (TMS) group, Chol-SN38 releases SN38 in two stages via esterase-catalyzed cleavage of the acetal linkage in the liver followed by acid-mediated hydrolysis of the TMS group to preferentially release SN38 in tumors. Compared to irinotecan, OxPt/SN38 reduces SN38 blood exposure by 9.0 times and increases SN38 tumor exposure by 4.7 times. As a result, OxPt/SN38 inhibits tumor growth on subcutaneous, spontaneous, and metastatic tumor models by causing apoptotic and immunogenic cell death. OxPt/SN38 exhibits strong synergy with the immune checkpoint blockade to regress subcutaneous colorectal and pancreatic tumors with 33-50% cure rates and greatly inhibits tumor growth and invasion in a spontaneous prostate cancer model and a liver metastasis model of colorectal cancer without causing side effects. Mechanistic studies revealed important roles of enhanced immunogenic cell death and upregulated PD-L1 expression by OxPt/SN38 in activating the tumor immune microenvironment to elicit potent antitumor immunity. This work highlights the potential of combining innovative prodrug design and nanomedicine formulation to address unmet needs in cancer therapy.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Morten Lee
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Junjie Xia
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Taokun Luo
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Jianqiao Liu
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Megan Rodriguez
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department
of Radiation and Cellular Oncology and Ludwig Center for Metastasis
Research, The University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
43
|
Aljuaid N, Seitsonen J, Ruokolainen J, Greco F, Hamley IW. Micelle and Nanotape Formation of Benzene Tricarboxamide Analogues with Selective Cancer Cell Cytotoxicity. ACS OMEGA 2022; 7:46843-46848. [PMID: 36570178 PMCID: PMC9773333 DOI: 10.1021/acsomega.2c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Analogues of benzene-1,3,5-tricarboxamide bearing combinations of different alkyl chains (dodecyl to octadecyl) and ester-linked PEG (polyethylene glycol) chains are shown to self-assemble into either micelles or nanotapes in aqueous solution, depending on the architecture (number of alkyl vs PEG chains). The cytotoxicity to cells is selectively greater for breast cancer cells than fibroblast controls in a dose-dependent manner. The compounds show strong stability, retaining their self-assembled structures at low pH (relevant to acidic tumor conditions) and in buffer and cell culture media.
Collapse
Affiliation(s)
- Nada Aljuaid
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Janne Ruokolainen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Francesca Greco
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
44
|
Wen X, Li F. Fluorescent Determination of Esterase in Living Cells by A Low-Dosage, Ultra-Sensitive Probe Based on Aggregation Induced Emission (AIE). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2151613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoye Wen
- Department of Chemistry, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Fang Li
- Department of Chemistry, Shanxi Normal University, Taiyuan, Shanxi, China
| |
Collapse
|
45
|
van Geest EP, Götzfried SK, Klein DM, Salitra N, Popal S, Husiev Y, Van der Griend CJ, Zhou X, Siegler MA, Schneider GF, Bonnet S. A
Lock‐and‐Kill
Anticancer Photoactivated Chemotherapy Agent
†. Photochem Photobiol 2022; 99:777-786. [PMID: 36315051 DOI: 10.1111/php.13738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022]
Abstract
Photosubstitutionally active ruthenium complexes show high potential as prodrugs for the photoactivated chemotherapy (PACT) treatment of tumors. One of the problems in PACT is that the localization of the ruthenium compound is hard to trace. Here, a ruthenium PACT prodrug, [Ru(3)(biq)(STF-31)](PF6 )2 (where 3 = 3-(([2,2':6',2″-ter- pyridin]-4'-yloxy)propyl-4-(pyren-1-yl)butanoate) and biq = 2,2'-biquinoline), has been prepared, in which a pyrene tracker is attached via an ester bond. The proximity between the fluorophore and the ruthenium center leads to fluorescence quenching. Upon intracellular hydrolysis of the ester linkage, however, the fluorescence of the pyrene moiety is recovered, thus demonstrating prodrug cellular uptake. Further light irradiation of this molecule liberates by photosubstitution STF-31, a known cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, as well as singlet oxygen via excitation of the free pyrene chromophore. The dark and light cytotoxicity of the prodrug, embedded in liposomes, as well as the appearance of blue emission upon uptake, were evaluated in A375 human skin melanoma cells. The cytotoxicity of the liposome-embedded prodrug was indeed increased by light irradiation. This work realizes an in vitro proof-of-concept of the lock-and-kill principle, which may ultimately be used to design strategies aimed at knowing where and when light irradiation should be realized in vivo.
Collapse
Affiliation(s)
| | | | - David M. Klein
- Leiden Institute of Chemistry Leiden University Leiden The Netherlands
| | - Nadiya Salitra
- Leiden Institute of Chemistry Leiden University Leiden The Netherlands
| | - Sorraya Popal
- Leiden Institute of Chemistry Leiden University Leiden The Netherlands
| | - Yurii Husiev
- Leiden Institute of Chemistry Leiden University Leiden The Netherlands
| | | | - Xuequan Zhou
- Leiden Institute of Chemistry Leiden University Leiden The Netherlands
| | | | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry Leiden University Leiden The Netherlands
| |
Collapse
|
46
|
Hong T, Shen X, Syeda MZ, Zhang Y, Sheng H, Zhou Y, Xu J, Zhu C, Li H, Gu Z, Tang L. Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. NANO RESEARCH 2022; 16:2660-2671. [PMID: 36405982 PMCID: PMC9664041 DOI: 10.1007/s12274-022-5002-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.
Collapse
Affiliation(s)
- Tu Hong
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Madiha Zahra Syeda
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Yang Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Haonan Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yipeng Zhou
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - JinMing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 China
| | - Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Longguang Tang
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| |
Collapse
|
47
|
Hou L, Hou Y, Liang Y, Chen B, Zhang X, Wang Y, Zhou K, Zhong T, Long B, Pang W, Wang L, Han X, Li L, Xu C, Gross I, Gaiddon C, Fu W, Yao H, Meng X. Anti-tumor effects of P-LPK-CPT, a peptide-camptothecin conjugate, in colorectal cancer. Commun Biol 2022; 5:1248. [PMID: 36376440 PMCID: PMC9663589 DOI: 10.1038/s42003-022-04191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
To explore highly selective targeting molecules of colorectal cancer (CRC) is a challenge. We previously identified a twelve-amino acid peptide (LPKTVSSDMSLN, namely P-LPK) by phage display technique which may specifically binds to CRC cells. Here we show that P-LPK selectively bind to a panel of human CRC cell lines and CRC tissues. In vivo, Gallium-68 (68Ga) labeled P-LPK exhibits selective accumulation at tumor sites. Then, we designed a peptide-conjugated drug comprising P-LPK and camptothecin (CPT) (namely P-LPK-CPT), and found P-LPK-CPT significantly inhibits tumor growth with fewer side effects in vitro and in vivo. Furthermore, through co-immunoprecipitation and molecular docking experiment, the glutamine transporter solute carrier 1 family member 5 (SLC1A5) was identified as the possible target of P-LPK. The binding ability of P-LPK and SLC1A5 is verified by surface plasmon resonance and immunofluorescence. Taken together, P-LPK-CPT is highly effective for CRC and deserves further development as a promising anti-tumor therapeutic for CRC, especially SLC1A5-high expression type. A peptide that specifically targets amino acid transporter SLC1A5 in colorectal cancer cells is identified and conjugated with camptothecin to show selective cytotoxicity to colorectal cancer cells in preclinical models.
Collapse
|
48
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
49
|
De novo engineering of both an omega-3 fatty acid-derived nanocarrier host and a prodrug guest to potentiate drug efficacy against colorectal malignancies. Biomaterials 2022; 290:121814. [DOI: 10.1016/j.biomaterials.2022.121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/23/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022]
|
50
|
Cong VT, Houng JL, Kavallaris M, Chen X, Tilley RD, Gooding JJ. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells? Chem Soc Rev 2022; 51:7531-7559. [PMID: 35938511 DOI: 10.1039/d1cs00707f] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways.
Collapse
Affiliation(s)
- Vu Thanh Cong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacinta L Houng
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.,School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, China
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|