1
|
Dragoni S, Moccia F, Bootman MD. The Roles of Transient Receptor Potential (TRP) Channels Underlying Aberrant Calcium Signaling in Blood-Retinal Barrier Dysfunction. Cold Spring Harb Perspect Biol 2025; 17:a041763. [PMID: 39586624 PMCID: PMC11864113 DOI: 10.1101/cshperspect.a041763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The inner blood-retinal barrier (iBRB) protects the retinal vasculature from the peripheral circulation. Endothelial cells (ECs) are the core component of the iBRB; their close apposition and linkage via tight junctions limit the passage of fluids, proteins, and cells from the bloodstream to the parenchyma. Dysfunction of the iBRB is a hallmark of many retinal disorders. Vascular endothelial growth factor (VEGF) has been identified as the primary driver leading to a dysfunctional iBRB, thereby becoming the main target for therapy. However, a complete understanding of the molecular mechanisms underlying iBRB dysfunction is elusive and alternative therapeutic targets remain unexplored. Calcium (Ca2+) is a universal intracellular messenger whose homeostasis and dynamics are dysregulated in many pathological disorders. Among the extensive components of the cellular Ca2+-signaling toolkit, cation-selective transient receptor potential (TRP) channels are broadly involved in cell physiology and disease and, therefore, are widely studied as possible targets for therapy. Albeit that TRP channels have been discovered in the photoreceptors of Drosophila and have been studied in the neuroretina, their presence and function in the iBRB have only recently emerged. Within this article, we discuss the structure and functions of the iBRB with a particular focus on Ca2+ signaling in retinal ECs and highlight the potential of TRP channels as new targets for retinal diseases.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
2
|
Hansen CE, Hollaus D, Kamermans A, de Vries HE. Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease. J Neuroinflammation 2024; 21:325. [PMID: 39696463 PMCID: PMC11657007 DOI: 10.1186/s12974-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive mediators, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have been described in detail, the importance of mechanical signalling throughout this process has only recently been recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathological conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. A better understanding of these processes will provide insights into the pathogenesis of several neurological disorders and new potential leads for treatment.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
4
|
Abuelrub A, Paker B, Kilic T, Avsar T. Claudin and transmembrane receptor protein gene expressions are reversely correlated in peritumoral brain edema. Cancer Med 2024; 13:e70111. [PMID: 39189437 PMCID: PMC11347986 DOI: 10.1002/cam4.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
INTRODUCTION Peritumoral brain edema (PTBE) has been widely reported with many brain tumors, especially with glioma. Since the blood-brain barrier (BBB) is essential for maintaining minimal permeability, any alteration in the interaction of BBB components, specifically in astrocytes and tight junctions (TJ), can result in disrupting the homeostasis of the BBB and making it severely leaky, which subsequently generates edema. OBJECTIVE This study aimed to evaluate the functional gliovascular unit of the BBB by examining changes in the expression of claudin (CLDN) genes and the expression of transient receptor potential (TRP) membrane channels, additionally to define the correlation between their expressions. The evaluation was conducted using in vitro spheroid swelling models and tumor samples from glioma patients with PTBE. RESULTS The results of the spheroid model showed that the genes TRPC3, TRPC4, TRPC5, and TRPV1 were upregulated in glioma cells either wild-type isocitrate dehydrogenase 1 (IDH1) or the IDH1 R132H mutant, with or without NaCl treatment. Furthermore, TRP genes appeared to adversely correlate with the up regulation of CLDN1, CLDN3, and CLDN5 genes. Besides, the upregulation of TRPC1 and TRPC4 in IDH1mt-R132H glioma cells. On the other hand, the correlation analysis revealed different correlations between different proteins in PTBE. CLDN1 exhibits a slight positive correlation with CLDN3. Similarly, TRPV1 displays a slight positive correlation with TRPC1. In contrast, TRPC4 shows a slight negative correlation with TRPC5. On the other hand, TRPC3 demonstrates a slight positive correlation with TRPC5, while the non-PTBE analysis highlights a moderate positive correlation between CLDN1 and TRPM4 while CLDN3 exhibits a moderate negative correlation with TRPC4. Additionally, CLDN5 demonstrates a slight negative correlation with TRPC4 but a moderate positive correlation with TRPC3. Furthermore, TRPC1 have a slight negative correlation with TRPV1, TRPC3 exhibiting a slight positive correlation with TRPC4, and TRPV1 showing a slight negative correlation with TRPC5. CONCLUSION As a conclusion, the current study provided evidence of a slight negative correlation between TRPs and CLDN gene expression in PTBE patients and confirmatory results with some of the genes in cell model of edema.
Collapse
Affiliation(s)
- Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences InstituteBahcesehir UniversityIstanbulTurkey
| | - Berkay Paker
- Neuroscience Laboratory, Health Sciences InstituteBahcesehir UniversityIstanbulTurkey
- Department of NeurosurgeryBahcesehir University School of MedicineIstanbulTurkey
| | - Turker Kilic
- Neuroscience Laboratory, Health Sciences InstituteBahcesehir UniversityIstanbulTurkey
- Department of NeurosurgeryBahcesehir University School of MedicineIstanbulTurkey
| | - Timucin Avsar
- Neuroscience Laboratory, Health Sciences InstituteBahcesehir UniversityIstanbulTurkey
- Department of Medical BiologyBahcesehir University School of MedicineIstanbulTurkey
| |
Collapse
|
5
|
Rezzani R, Favero G, Gianò M, Pinto D, Labanca M, van Noorden CJ, Rinaldi F. Transient Receptor Potential Channels in the Healthy and Diseased Blood-Brain Barrier. J Histochem Cytochem 2024; 72:199-231. [PMID: 38590114 PMCID: PMC11020746 DOI: 10.1369/00221554241246032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Mauro Labanca
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| |
Collapse
|
6
|
Hansen CE, Kamermans A, Mol K, Berve K, Rodriguez-Mogeda C, Fung WK, van Het Hof B, Fontijn RD, van der Pol SMA, Michalick L, Kuebler WM, Kenkhuis B, van Roon-Mom W, Liedtke W, Engelhardt B, Kooij G, Witte ME, de Vries HE. Inflammation-induced TRPV4 channels exacerbate blood-brain barrier dysfunction in multiple sclerosis. J Neuroinflammation 2024; 21:72. [PMID: 38521959 PMCID: PMC10960997 DOI: 10.1186/s12974-024-03069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.
Collapse
Grants
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 91719305 Dutch Research Council, NWO, Vidi grant
- 91719305 Dutch Research Council, NWO, Vidi grant
- 91719305 Dutch Research Council, NWO, Vidi grant
- 18-1023MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 18-1023MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 81X3100216 Deutsches Zentrum für Herz-Kreislaufforschung
- SFB-TR84 : subprojects A02 & C09, SFB-1449 subproject B01, SFB 1470 subproject A04, KU1218/9-1, KU1218/11-1, and KU1218/12-1 Deutsche Forschungsgemeinschaft
- PROVID (01KI20160A) and SYMPATH (01ZX1906A) Bundesministerium für Bildung und Forschung
- HA2016-02-02 Hersenstichting
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Kevin Mol
- Department of Biomedical Engineering and Physics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Wing Ka Fung
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura Michalick
- Institute of Physiology, Corporate member of the Freie Universität Berlin and Humboldt Universität to Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Corporate member of the Freie Universität Berlin and Humboldt Universität to Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center Leiden, Leiden, The Netherlands
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Willeke van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center Leiden, Leiden, The Netherlands
| | - Wolfgang Liedtke
- Department of Neurology, Duke University, Durham, NY, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | | | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Mack ML, Huang W, Chang SL. Involvement of TRPM7 in Alcohol-Induced Damage of the Blood-Brain Barrier in the Presence of HIV Viral Proteins. Int J Mol Sci 2023; 24:1910. [PMID: 36768230 PMCID: PMC9916124 DOI: 10.3390/ijms24031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.
Collapse
Affiliation(s)
- Michelle L. Mack
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
8
|
Negri S, Sanford M, Shi H, Tarantini S. The role of endothelial TRP channels in age-related vascular cognitive impairment and dementia. Front Aging Neurosci 2023; 15:1149820. [PMID: 37020858 PMCID: PMC10067599 DOI: 10.3389/fnagi.2023.1149820] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Transient receptor potential (TRP) proteins are part of a superfamily of polymodal cation channels that can be activated by mechanical, physical, and chemical stimuli. In the vascular endothelium, TRP channels regulate two fundamental parameters: the membrane potential and the intracellular Ca2+ concentration [(Ca2+)i]. TRP channels are widely expressed in the cerebrovascular endothelium, and are emerging as important mediators of several brain microvascular functions (e.g., neurovascular coupling, endothelial function, and blood-brain barrier permeability), which become impaired with aging. Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the coming decades. Yet, there are currently no preventative or therapeutic treatments available against the development and progression of VCI. In this review, we discuss the involvement of endothelial TRP channels in diverse physiological processes in the brain as well as in the pathogenesis of age-related VCI to explore future potential neuroprotective strategies.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Madison Sanford
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Stefano Tarantini,
| |
Collapse
|
9
|
Transient Receptor Potential (TRP) Channels in Tumor Vascularization. Int J Mol Sci 2022; 23:ijms232214253. [PMID: 36430727 PMCID: PMC9692925 DOI: 10.3390/ijms232214253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tumor diseases are unfortunately quick spreading, even though numerous studies are under way to improve early diagnosis and targeted treatments that take into account both the different characteristics associated with the various tumor types and the conditions of individual patients. In recent years, studies have focused on the role of ion channels in tumor development, as these proteins are involved in several cellular processes relevant to neoplastic transformation. Among all ion channels, many studies have focused on the superfamily of Transient Receptor Potential (TRP) channels, which are non-selective cation channels mediating extracellular Ca2+ influx. In this review, we examined the role of different endothelial TRP channel isoforms in tumor vessel formation, a process that is essential in tumor growth and metastasis.
Collapse
|
10
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
11
|
Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics 2021; 13:pharmaceutics13030334. [PMID: 33806707 PMCID: PMC7999963 DOI: 10.3390/pharmaceutics13030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.
Collapse
|
12
|
Ca 2+ homeostasis in brain microvascular endothelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:55-110. [PMID: 34253298 DOI: 10.1016/bs.ircmb.2021.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood brain barrier (BBB) is formed by the brain microvascular endothelial cells (BMVECs) lining the wall of brain capillaries. Its integrity is regulated by multiple mechanisms, including up/downregulation of tight junction proteins or adhesion molecules, altered Ca2+ homeostasis, remodeling of cytoskeleton, that are confined at the level of BMVECs. Beside the contribution of BMVECs to BBB permeability changes, other cells, such as pericytes, astrocytes, microglia, leukocytes or neurons, etc. are also exerting direct or indirect modulatory effects on BBB. Alterations in BBB integrity play a key role in multiple brain pathologies, including neurological (e.g. epilepsy) and neurodegenerative disorders (e.g. Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis etc.). In this review, the principal Ca2+ signaling pathways in brain microvascular endothelial cells are discussed and their contribution to BBB integrity is emphasized. Improving the knowledge of Ca2+ homeostasis alterations in BMVECa is fundamental to identify new possible drug targets that diminish/prevent BBB permeabilization in neurological and neurodegenerative disorders.
Collapse
|
13
|
Shekhar S, Liu Y, Wang S, Zhang H, Fang X, Zhang J, Fan L, Zheng B, Roman RJ, Wang Z, Fan F, Booz GW. Novel Mechanistic Insights and Potential Therapeutic Impact of TRPC6 in Neurovascular Coupling and Ischemic Stroke. Int J Mol Sci 2021; 22:2074. [PMID: 33669830 PMCID: PMC7922996 DOI: 10.3390/ijms22042074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is one of the most disabling diseases and a leading cause of death globally. Despite advances in medical care, the global burden of stroke continues to grow, as no effective treatments to limit or reverse ischemic injury to the brain are available. However, recent preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) channels as endogenous protectors of neuronal tissue. Activating TRPC6 in various cerebral ischemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sensitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates the cAMP (adenosine 3',5'-cyclic monophosphate) response element-binding protein (CREB), an important transcription factor linked to neuronal survival. Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release by attenuating the activity of N-methyl-d-aspartate (NMDA) receptors of neurons by posttranslational means. Unresolved though, are the roles of TRPC6 channels in non-neuronal cells, such as astrocytes and endothelial cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although their exact role in neurovascular coupling requires further investigation. This review discusses evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for ischemic stroke management.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Jin Zhang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| |
Collapse
|
14
|
Luo H, Saubamea B, Chasseigneaux S, Cochois V, Smirnova M, Glacial F, Perrière N, Chaves C, Cisternino S, Declèves X. Molecular and Functional Study of Transient Receptor Potential Vanilloid 1-4 at the Rat and Human Blood-Brain Barrier Reveals Interspecies Differences. Front Cell Dev Biol 2020; 8:578514. [PMID: 33262985 PMCID: PMC7686441 DOI: 10.3389/fcell.2020.578514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
Transient receptor potential vanilloid 1-4 (TRPV1-4) expression and functionality were investigated in brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB) from rat and human origins. In rat, Trpv1-4 were detected by qRT-PCR in the brain cortex, brain microvessels, and in primary cultures of brain microvessel endothelial cells [rat brain microvessel endothelial cells (rPBMEC)]. A similar Trpv1-4 expression profile in isolated brain microvessels and rPBMEC was found with the following order: Trpv4 > Trpv2 > Trpv3 > Trpv1. In human, TRPV1-4 were detected in the BBB cell line human cerebral microvessel endothelial cells D3 cells (hCMEC/D3) and in primary cultures of BMEC isolated from human adult and children brain resections [human brain microvascular endothelial cells (hPBMEC)], showing a similar TRPV1-4 expression profile in both hCMEC/D3 cells and hPBMECs as follow: TRPV2 > > TRPV4 > TRPV1 > TRPV3. Western blotting and immunofluorescence experiments confirmed that TRPV2 and TRPV4 are the most expressed TRPV isoforms in hCMEC/D3 cells with a clear staining at the plasma membrane. A fluorescent dye Fluo-4 AM ester was applied to record intracellular Ca2+ levels. TRPV4 functional activity was demonstrated in mediating Ca2+ influx under stimulation with the specific agonist GSK1016790A (ranging from 3 to 1000 nM, EC50 of 16.2 ± 4.5 nM), which was inhibited by the specific TRPV4 antagonist, RN1734 (30 μM). In contrast, TRPV1 was slightly activated in hCMEC/D3 cells as shown by the weak Ca2+ influx induced by capsaicin at a high concentration (3 μM), a highly potent and specific TRPV1 agonist. Heat-induced Ca2+ influx was not altered by co-treatment with a selective potent TRPV1 antagonist capsazepine (20 μM), in agreement with the low expression of TRPV1 as assessed by qRT-PCR. Our present study reveals an interspecies difference between Rat and Human. Functional contributions of TRPV1-4 subtype expression were not identical in rat and human tissues reflective of BBB integrity. TRPV2 was predominant in the human whereas TRPV4 had a larger role in the rat. This interspecies difference from a gene expression point of view should be taken into consideration when modulators of TRPV2 or TRPV4 are investigated in rat models of brain disorders.
Collapse
Affiliation(s)
- Huilong Luo
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruno Saubamea
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Stéphanie Chasseigneaux
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Véronique Cochois
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Maria Smirnova
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | | | | | - Catarina Chaves
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Salvatore Cisternino
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Service Pharmacie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker – Enfants Malades, Paris, France
| | - Xavier Declèves
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Biologie du médicament et toxicologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Universitaire Cochin, Paris, France
| |
Collapse
|
15
|
Huang Q, Wang X, Lin X, Zhang J, You X, Shao A. The Role of Transient Receptor Potential Channels in Blood-Brain Barrier Dysfunction after Ischemic Stroke. Biomed Pharmacother 2020; 131:110647. [PMID: 32858500 DOI: 10.1016/j.biopha.2020.110647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Stroke is the leading cause of long-term disability, demanding an ever-increasing need to find treatment. Transient receptor potential (TRP) channels are nonselective Ca2+-permeable channels, among which TRPC, TRPM, and TRPV are widely expressed in the brain. Dysfunction of the blood brain barrier (BBB) is a core feature of stroke and is associated with severity of injury. As studies have shown, TRP channels influence various neuronal functions by regulating the BBB. Here, we briefly review the role of TRP channel in the BBB dysfunction after stroke, and explore the therapeutic potential of TRP-targeted therapy.
Collapse
Affiliation(s)
- Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianyi Lin
- Department of anesthesiology, Sir run run shaw hospital, school of medicine, zhejiang university, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Brain Research Institute, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Xiangdong You
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
17
|
TRPV4 promotes acoustic wave-mediated BBB opening via Ca 2+/PKC-δ pathway. J Adv Res 2020; 26:15-28. [PMID: 33133680 PMCID: PMC7584681 DOI: 10.1016/j.jare.2020.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Numerous studies have shown the ability of low-energy acoustic waves such as focused ultrasound or shockwave to transiently open blood-brain barrier (BBB) and facilitate drug delivery to the brain. Preclinical and clinical evidences have well demonstrated the efficacy and safety in treating various brain disorders. However, the molecular mechanisms of acoustic waves on the BBB are still not fully understood. Objectives The present study aimed at exploring the possible molecular mechanisms of acoustic wave stimulation on brains. Methods: Briefly describe the experimental design The left hemisphere of the rat‘s brain was treated with pulsed ultrasound from a commercial focused shockwave or a planar ultrasound device, and the right hemisphere served as a control. One hour after the mechanical wave stimulation or overnight, the rats were sacrificed and the brains were harvested for protein or histological analysis. Agonists and antagonists related to the signal transduction pathways of tight junction proteins were used to investigate the possible intracellular mechanisms. Results Intracellular signal transduction analysis shows calcium influx through transient receptor potential vanilloid 4 (TRPV4) channels, and the activation of PKC-δ pathway to mediate dissociation of ZO-1 and occludin after acoustic wave stimulation. The activation of TRPV4 or PKC-δ signaling further increased the expression level of TRPV4, suggesting a feedback loop to regulate BBB permeability. Moreover, the tight junction proteins dissociation can be reversed by administration of PKC-δ inhibitor and TRPV4 antagonist. Conclusion The present study shows the crucial role of TRPV4 in acoustic wave-mediated BBB permeability, specifically its effect on compromising tight junction proteins, ZO-1 and occludin. Our findings provide a new molecular perspective to explain acoustic wave-mediated BBB opening. Moreover, activation of TRPV4 by agonists may reduce the threshold intensity level of acoustic waves for BBB opening, which may prevent undesirable mechanical damages while maintaining efficient BBB opening.
Collapse
|
18
|
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca 2 + Entry for Angiogenesis, Arteriogenesis and Vasculogenesis. Front Physiol 2020; 10:1618. [PMID: 32038296 PMCID: PMC6985578 DOI: 10.3389/fphys.2019.01618] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis, angiogenesis and arteriogenesis represent three crucial mechanisms involved in the formation and maintenance of the vascular network in embryonal and post-natal life. It has long been known that endothelial Ca2+ signals are key players in vascular remodeling; indeed, multiple pro-angiogenic factors, including vascular endothelial growth factor, regulate endothelial cell fate through an increase in intracellular Ca2+ concentration. Transient Receptor Potential (TRP) channel consist in a superfamily of non-selective cation channels that are widely expressed within vascular endothelial cells. In addition, TRP channels are present in the two main endothelial progenitor cell (EPC) populations, i.e., myeloid angiogenic cells (MACs) and endothelial colony forming cells (ECFCs). TRP channels are polymodal channels that can assemble in homo- and heteromeric complexes and may be sensitive to both pro-angiogenic cues and subtle changes in local microenvironment. These features render TRP channels the most versatile Ca2+ entry pathway in vascular endothelial cells and in EPCs. Herein, we describe how endothelial TRP channels stimulate vascular remodeling by promoting angiogenesis, arteriogenesis and vasculogenesis through the integration of multiple environmental, e.g., extracellular growth factors and chemokines, and intracellular, e.g., reactive oxygen species, a decrease in Mg2+ levels, or hypercholesterolemia, stimuli. In addition, we illustrate how endothelial TRP channels induce neovascularization in response to synthetic agonists and small molecule drugs. We focus the attention on TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPV1, TRPV4, TRPM2, TRPM4, TRPM7, TRPA1, that were shown to be involved in angiogenesis, arteriogenesis and vasculogenesis. Finally, we discuss the role of endothelial TRP channels in aberrant tumor vascularization by focusing on TRPC1, TRPC3, TRPV2, TRPV4, TRPM8, and TRPA1. These observations suggest that endothelial TRP channels represent potential therapeutic targets in multiple disorders featured by abnormal vascularization, including cancer, ischemic disorders, retinal degeneration and neurodegeneration.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Luo H, Rossi E, Saubamea B, Chasseigneaux S, Cochois V, Choublier N, Smirnova M, Glacial F, Perrière N, Bourdoulous S, Smadja DM, Menet MC, Couraud PO, Cisternino S, Declèves X. Cannabidiol Increases Proliferation, Migration, Tubulogenesis, and Integrity of Human Brain Endothelial Cells through TRPV2 Activation. Mol Pharm 2019; 16:1312-1326. [PMID: 30721081 DOI: 10.1021/acs.molpharmaceut.8b01252] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca2+ cellular dynamics, trans-endothelial electrical resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies. Intracellular Ca2+ levels were increased by heat and CBD and blocked by the nonspecific TRP antagonist ruthenium red (RR) and the selective TRPV2 inhibitor tranilast (TNL) or by silencing cells with TRPV2 siRNA. CBD dose-dependently induced the hCMEC/D3 cell number (EC50 0.3 ± 0.1 μM), and this effect was fully abolished by TNL or TRPV2 siRNA. A wound healing assay showed that CBD induced cell migration, which was also inhibited by TNL or TRPV2 siRNA. Tubulogenesis of hCMEC/D3 cells in 3D matrigel cultures was significantly increased by 41 and 73% after a 7 or 24 h CBD treatment, respectively, and abolished by TNL. CBD also increased the TEER of hPBMEC monolayers cultured in transwell, and this was blocked by TNL. Our results show that CBD, at extracellular concentrations close to those observed in plasma of patients treated by CBD, induces proliferation, migration, tubulogenesis, and TEER increase in human brain endothelial cells, suggesting CBD might be a potent target for modulating the human BBB.
Collapse
Affiliation(s)
- Huilong Luo
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| | - Elisa Rossi
- Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1140 , Paris F-75006 , France
| | - Bruno Saubamea
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| | - Stéphanie Chasseigneaux
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| | - Véronique Cochois
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| | - Nina Choublier
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| | - Maria Smirnova
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| | | | | | - Sandrine Bourdoulous
- Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France.,Department of Infection, Institut Cochin , Inserm, U1016 , Paris F-75014 , France.,CNRS, UMR 8104 , Paris F-75014 , France
| | - David M Smadja
- Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1140 , Paris F-75006 , France.,Hematology Department , AP-HP, Hôpital Européen Georges Pompidou , INSERM UMR-S 1140 , Paris F-75015 , France
| | - Marie-Claude Menet
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| | - Pierre-Olivier Couraud
- Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France.,Department of Infection, Institut Cochin , Inserm, U1016 , Paris F-75014 , France.,CNRS, UMR 8104 , Paris F-75014 , France
| | - Salvatore Cisternino
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| | - Xavier Declèves
- Inserm , U1144 , Paris F-75006 , France.,Université Paris Descartes , UMR-S 1144 , Paris F-75006 , France.,Université Paris Descartes , Sorbonne Paris Cité , Paris F-75006 , France
| |
Collapse
|
20
|
Ethanol's Effects on Transient Receptor Potential Channel Expression in Brain Microvascular Endothelial Cells. J Neuroimmune Pharmacol 2018; 13:498-508. [PMID: 29987591 DOI: 10.1007/s11481-018-9796-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Ethanol (EtOH), the main ingredient in alcoholic beverages, is well known for its behavioral, physiological, and immunosuppressive effects. There is evidence that EtOH acts through protein targets to exert its physiological effects; however, the mechanisms underlying EtOH's effects on inflammatory processes, particularly at the blood-brain barrier (BBB), are still poorly understood. Transient receptor potential (TRP) channels, the vanguards of human sensory systems, are novel molecular receptors significantly affected by EtOH, and are heavily expressed in brain microvascular endothelial cells (BMVECs), one of the cellular constituents of the BBB. EtOH's actions on endothelial TRP channels could affect intracellular Ca2+ and Mg2+ dynamics, which mediate leukocyte adhesion to endothelial cells and endothelial permeability at the BBB, thus altering immune and inflammatory responses. We examined the basal expression profiles of all 29 known mammalian TRP channels in mouse BMVECs and determined both EtOH concentration- and time-dependent effects on TRP expression using a PCR array. We also generated an in vitro BBB model to examine the involvement of a chosen TRP channel, TRP melastatin 7 (TRPM7), in EtOH-mediated alteration of BBB permeability. With the exception of the akyrin subfamily, members of five TRP subfamilies were expressed in mouse BMVECs, and their expression levels were modulated by EtOH in a concentration-dependent manner. In the in vitro BBB model, TRPM7 antagonists further enhanced EtOH-mediated alteration of BBB permeability. Because of the diversity of TRP channels in BMVECs that regulate cellular processes, EtOH can affect Ca2+/Mg2+ signaling, immune responses, lysosomal functions as well as BBB integrity.
Collapse
|
21
|
Shimizu C, Mitani Y, Tsuchiya Y, Nabeshima T. Effects of Oral Calcium Dosage and Timing on Ethanol-Induced Sensitization of Locomotion in DBA/2 Mice. Biol Pharm Bull 2018; 41:1049-1061. [PMID: 29769465 DOI: 10.1248/bpb.b18-00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol (EtOH) dosage, frequency, and paired associative learning affect the risk of alcoholism. Recently, Spanagel et al. reported that acamprosate calcium (Acam Ca) prescribed for alcoholism exerts an anti-relapse effect via Ca. Ca is contained in foods, sometimes consumed with alcohol. Therefore, we investigated the association among oral Ca ingestion, EtOH-induced locomotor sensitization, and plasma Ca levels on how to consume Ca for moderate drinking. We used DBA/2 CrSlc mice, and CaCl2 as water-soluble Ca salts. For pre-administration, elemental Ca (50, 75, 100, or 150 mg/kg, per os (p.o.)) or water for control was administered 1 h before EtOH (2 g/kg, 20 v/v (%) EtOH in saline) administration intraperitoneal (i.p.) for locomotor sensitization or for plasma Ca level changes. For post-administration, elemental Ca (100 mg/kg) was administered 1 h after EtOH. Moreover, we employed bepridil and the dopamine D1 antagonist, SCH-23390 to further examine the mechanism of EtOH-induced sensitization. The locomotor sensitization segmentalized for 300 s had two peaks (0-90 s and 180-300 s). Pre-administration of Ca (50, 75, and 100 mg/kg) significantly reduced the 0-90-s peak, selectively blocked by SCH-23390, but "non-dose dependently" as Ca 150 mg/kg did not have this effect. Bepridil blocked the suppressive effect of pre-administration of Ca (100 mg/kg). The effective pre-doses of Ca (50-100 mg/kg) maintained plasma Ca basal levels against EtOH-induced decrease of Ca. On the contrary, post-administration of Ca inversely led to significant promotion of sensitization of both locomotor peaks. Oral Ca intake had diverse effects on EtOH-induced sensitization depending on Ca dosage and timing.
Collapse
Affiliation(s)
- Chikako Shimizu
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD
| | - Yutaka Mitani
- Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD
| | | | - Toshitaka Nabeshima
- Fujita Health University.,Aino University.,NPO Japanese Drug Organization of Appropriate Use and Research
| |
Collapse
|
22
|
The role of TRPM2 channels in neurons, glial cells and the blood-brain barrier in cerebral ischemia and hypoxia. Acta Pharmacol Sin 2018. [PMID: 29542681 PMCID: PMC5943904 DOI: 10.1038/aps.2017.194] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stroke is one of the major causes of mortality and morbidity worldwide, yet novel therapeutic treatments for this condition are lacking. This review focuses on the roles of the transient receptor potential melastatin 2 (TRPM2) ion channels in cellular damage following hypoxia-ischemia and their potential as a future therapeutic target for stroke. Here, we highlight the complex molecular signaling that takes place in neurons, glial cells and the blood-brain barrier following ischemic insult. We also describe the evidence of TRPM2 involvement in these processes, as shown from numerous in vitro and in vivo studies that utilize genetic and pharmacological approaches. This evidence implicates TRPM2 in a broad range of pathways that take place every stage of cerebral ischemic injury, thus making TRPM2 a promising target for drug development for stroke and other neurodegenerative conditions of the central nervous system.
Collapse
|
23
|
Xie H, Lu WC. Inhibition of transient receptor potential vanilloid 4 decreases the expressions of caveolin-1 and caveolin-2 after focal cerebral ischemia and reperfusion in rats. Neuropathology 2018; 38:337-346. [PMID: 29665111 DOI: 10.1111/neup.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/20/2018] [Accepted: 03/18/2018] [Indexed: 01/26/2023]
Abstract
This study aimed to investigate the effects of transient receptor potential vanilloid 4 (TRPV4) inhibition on blood-brain barrier (BBB) integrity and the expressions of caveolae structural proteins caveolin-1 and caveolin-2 in rats with focal cerebral ischemia and reperfusion. BBB permeability was assessed by Evans blue extravasation. The mRNA and protein expressions of caveolin-1 and caveolin-2 were determined by RT-PCR, Western blot and immunohistochemistry assays. We found that BBB permeability significantly increased and reaches its peak at 72 h of reperfusion in cerebral ischemia-reperfusion rats and is able to be ameliorated by administration of HC-067047, an antagonist of TRPV4. Additionally, it shows a significant upregulation of caveolin-1 and caveolin-2 expression in cerebral microvessels of ischemic tissue. However, treatment with HC-067047 was shown to downregulate caveolin-1 and caveolin-2 expression during cerebral ischemia-reperfusion. This study demonstrates that inhibition of TRPV4 ameliorates BBB leakage induced by ischemia-reperfusion injury through the downregulation of caveolin-1 and caveolin-2.
Collapse
Affiliation(s)
- Hui Xie
- Department of Histology and Embryology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Wei-Cheng Lu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One 2018; 13:e0195526. [PMID: 29617457 PMCID: PMC5884564 DOI: 10.1371/journal.pone.0195526] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/23/2018] [Indexed: 11/25/2022] Open
Abstract
Background Hemorrhagic transformation is a major complication of ischemic stroke, is linked to matrix metalloproteinase-9 (MMP-9), and is exacerbated by tissue plasminogen activator (tPA). Cerebral ischemia/reperfusion is characterized by SUR1-TRPM4 (sulfonylurea receptor 1—transient receptor potential melastatin 4) channel upregulation in microvascular endothelium. In humans and rodents with cerebral ischemia/reperfusion (I/R), the SUR1 antagonist, glibenclamide, reduces hemorrhagic transformation and plasma MMP-9, but the mechanism is unknown. We hypothesized that tPA induces protease activated receptor 1 (PAR1)-mediated, Ca2+-dependent phasic secretion of MMP-9 from activated brain endothelium, and that SUR1-TRPM4 is required for this process. Methods Cerebral I/R, of 2 and 4 hours duration, respectively, was obtained using conventional middle cerebral artery occlusion. Immunolabeling was used to quantify p65 nuclear translocation. Murine and human brain endothelial cells (BEC) were studied in vitro, without and with NF-κB activation, using immunoblot, zymography and ELISA, patch clamp electrophysiology, and calcium imaging. Genetic and pharmacological manipulations were used to identify signaling pathways. Results Cerebral I/R caused prominent nuclear translocation of p65 in microvascular endothelium. NF-κB-activation of BEC caused de novo expression of SUR1-TRPM4 channels. In NF-κB-activated BEC: (i) tPA caused opening of SUR1-TRPM4 channels in a plasmin-, PAR1-, TRPC3- and Ca2+-dependent manner; (ii) tPA caused PAR1-dependent secretion of MMP-9; (iii) tonic secretion of MMP-9 by activated BEC was not influenced by SUR1 inhibition; (iv) phasic secretion of MMP-9 induced by tPA or the PAR1-agonist, TFLLR, required functional SUR1-TRPM4 channels, with inhibition of SUR1 decreasing tPA-induced MMP-9 secretion. Conclusions tPA induces PAR1-mediated, SUR1-TRPM4-dependent, phasic secretion of MMP-9 from activated brain endothelium.
Collapse
Affiliation(s)
- Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Min Seong Kwon
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Seung Kyoon Woo
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alexander Ivanov
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhao H, Zhang K, Tang R, Meng H, Zou Y, Wu P, Hu R, Liu X, Feng H, Chen Y. TRPV4 Blockade Preserves the Blood-Brain Barrier by Inhibiting Stress Fiber Formation in a Rat Model of Intracerebral Hemorrhage. Front Mol Neurosci 2018; 11:97. [PMID: 29636662 PMCID: PMC5880899 DOI: 10.3389/fnmol.2018.00097] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Blood–brain barrier (BBB) disruption and subsequent brain edema play important roles in the secondary neuronal death and neurological dysfunction that are observed following intracerebral hemorrhage (ICH). In previous studies, transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable mechanosensitive channel, was shown to induce cytotoxicity in many types of cells and to play a role in orchestrating barrier functions. In the present study, we explored the role of TRPV4 in ICH-induced brain injury, specifically investigating its effect on BBB disruption. Autologous arterial blood was injected into the basal ganglia of rats to mimic ICH. Adult male Sprague Dawley rats were randomly assigned to sham and experimental groups for studies on the time course of TRPV4 expression after ICH. The selective TRPV4 antagonist HC-067047 and TRPV4 siRNA were administered to evaluate the effects of TRPV4 inhibition. GSK1016790A, a TRPV4 agonist, was administered to naive rats to verify the involvement of TRPV4-induced BBB disruption. A PKC inhibitor, dihydrochloride (H7), and a selective RhoA inhibitor, C3 transferase, were administered to clarify the involvement of the PKCα/RhoA/MLC2 pathway following ICH. Post-ICH assessments including functional tests, brain edema measurements, Evans blue extravasation, western blotting and immunohistochemical assays were performed. TRPV4 inhibition remarkably ameliorated neurological symptoms, brain edema, and neuronal death, as well as BBB disruption, 24–72 h following ICH. Meanwhile, TRPV4 blockade preserved the expression of adherens and tight junction proteins, as well as BBB integrity, by inhibiting stress fiber formation, which might be correlated with the regulation of components of the PKCα/RhoA/MLC2 pathway. Furthermore, adherens and tight junction protein degradation induced by GSK1016790A treatment in naive rats was also related to PKCα/RhoA/MLC2-pathway-mediated stress fiber formation. Based on these findings, therapeutic interventions targeting TRPV4 may represent a novel approach to ameliorate secondary brain injury following ICH.
Collapse
Affiliation(s)
- Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kaiyuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hui Meng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongjie Zou
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pengfei Wu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Weber EW, Muller WA. Roles of transient receptor potential channels in regulation of vascular and epithelial barriers. Tissue Barriers 2017; 5:e1331722. [PMID: 28581893 DOI: 10.1080/21688370.2017.1331722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential (TRP) channels are a ubiquitously expressed multi-family group of cation channels that are critical to signaling events in many tissues. Their roles have been documented in many physiologic and pathologic conditions. Nevertheless, direct studies of their roles in maintain barrier function in endothelial and epithelia are relatively infrequent. This seems somewhat surprising considering that calcium ion concentrations are known to regulate barrier function. This short review provides an introduction to TRP channels and reviews some of the work in which investigators directly studied the role of TRP channels in endothelial permeability to electric current, solute, or leukocytes during the inflammatory response.
Collapse
Affiliation(s)
- Evan W Weber
- a Stanford Cancer Institute, Stanford University School of Medicine, Lokey Stem Cell Research Building , Stanford , CA , USA
| | - William A Muller
- b Northwestern University , Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
27
|
Brailoiu E, Shipsky MM, Yan G, Abood ME, Brailoiu GC. Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Res 2016; 1657:167-175. [PMID: 27998795 DOI: 10.1016/j.brainres.2016.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/22/2016] [Accepted: 12/10/2016] [Indexed: 01/08/2023]
Abstract
Brain microvascular endothelial cells are a critical component of the blood-brain barrier. They form a tight monolayer which is essential for maintaining the brain homeostasis. Blood-derived proteases such as thrombin may enter the brain during pathological conditions like trauma, stroke, and inflammation and further disrupts the permeability of the blood-brain barrier, via incompletely characterized mechanisms. We examined the underlying mechanisms evoked by thrombin in rat brain microvascular endothelial cells (RBMVEC). Our results indicate that thrombin, acting on protease-activated receptor 1 (PAR1) increases cytosolic Ca2+ concentration in RBMVEC via Ca2+ release from endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and Ca2+ influx from extracellular space. Thrombin increases nitric oxide production; the effect is abolished by inhibition of the nitric oxide synthase or by antagonism of PAR1 receptors. In addition, thrombin increases mitochondrial and cytosolic reactive oxygen species production via PAR1-dependent mechanisms. Immunocytochemistry studies indicate that thrombin increases F-actin stress fibers, and disrupts the tight junctions. Thrombin increased the RBMVEC permeability assessed by a fluorescent flux assay. Taken together, our results indicate multiple mechanisms by which thrombin modulates the function of RBMVEC and may contribute to the blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Megan M Shipsky
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Guang Yan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States.
| |
Collapse
|
28
|
Lv JM, Guo XM, Chen B, Lei Q, Pan YJ, Yang Q. The Noncompetitive AMPAR Antagonist Perampanel Abrogates Brain Endothelial Cell Permeability in Response to Ischemia: Involvement of Claudin-5. Cell Mol Neurobiol 2016; 36:745-53. [PMID: 26306919 PMCID: PMC11482450 DOI: 10.1007/s10571-015-0257-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
The blood-brain barrier (BBB) is formed by brain endothelial cells, and decreased BBB integrity contributes to vasogenic cerebral edema and increased mortality after stroke. In the present study, we investigated the protective effect of perampanel, an orally active noncompetitive AMPA receptor antagonist, on BBB permeability in an in vitro ischemia model in murine brain endothelial cells (mBECs). The results showed that perampanel significantly attenuated oxygen glucose deprivation (OGD)-induced loss of cell viability, release of lactate dehydrogenase, and apoptotic cell death in a dose-dependent manner. Perampanel treatment did not alter the expression and surface distribution of various glutamate receptors. Furthermore, the results of calcium imaging showed that perampanel had no effect on OGD-induced increase in intracellular Ca(2+) concentrations. Treatment with perampanel markedly reduced the paracellular permeability of mBECs after OGD in different time points, as measured by transepithelial electrical resistance assay. In addition, the expression of claudin-5 at protein level, but not at mRNA level, was increased by perampanel treatment after OGD. Knockdown of claudin-5 partially prevented perampanel-induced protection in cell viability and BBB integrity in OGD-injured mBECs. These data show that the noncompetitive AMPA receptor antagonist perampanel affords protection against ischemic stroke through caludin-5 mediated regulation of BBB permeability.
Collapse
Affiliation(s)
- Jian-Meng Lv
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xiao-Min Guo
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Bo Chen
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qi Lei
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Ya-Juan Pan
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qian Yang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
29
|
The functions of TRPP2 in the vascular system. Acta Pharmacol Sin 2016; 37:13-8. [PMID: 26725733 DOI: 10.1038/aps.2015.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
Abstract
TRPP2 (polycystin-2, PC2 or PKD2), encoded by the PKD2 gene, is a non-selective cation channel with a large single channel conductance and high Ca(2+) permeability. In cell membrane, TRPP2, along with polycystin-1, TRPV4 and TRPC1, functions as a mechanotransduction channel. In the endoplasmic reticulum, TRPP2 modulates intracellular Ca(2+) release associated with IP3 receptors and the ryanodine receptors. Noteworthily, TRPP2 is widely expressed in vascular endothelial and smooth muscle cells of all major vascular beds, and contributes to the regulation of vessel function. The mutation of the PKD2 gene is a major cause of autosomal dominant polycystic kidney disease (ADPKD), which is not only a common genetic disease of the kidney but also a systemic disorder associated with abnormalities in the vasculature; cardiovascular complications are the leading cause of mortality and morbidity in ADPKD patients. This review provides an overview of the current knowledge regarding the TRPP2 protein and its possible role in cardiovascular function and related diseases.
Collapse
|
30
|
Hawkins BT, Gu YH, Izawa Y, del Zoppo GJ. Dabigatran abrogates brain endothelial cell permeability in response to thrombin. J Cereb Blood Flow Metab 2015; 35:985-92. [PMID: 25669912 PMCID: PMC4640263 DOI: 10.1038/jcbfm.2015.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge.
Collapse
Affiliation(s)
- Brian Thomas Hawkins
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Yu-Huan Gu
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Yoshikane Izawa
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Gregory John del Zoppo
- 1] Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA [2] Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
31
|
Jie P, Tian Y, Hong Z, Li L, Zhou L, Chen L, Chen L. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front Cell Neurosci 2015; 9:141. [PMID: 25914628 PMCID: PMC4392311 DOI: 10.3389/fncel.2015.00141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/24/2015] [Indexed: 01/26/2023] Open
Abstract
Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4) causes an up-regulation of matrix metalloproteinases (MMPs) in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO) mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein expression in hippocampi of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occludens-1 (ZO-1) and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein expression increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein expression was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.
Collapse
Affiliation(s)
- Pinghui Jie
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yujing Tian
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Zhiwen Hong
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Lin Li
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Libin Zhou
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| |
Collapse
|
32
|
Narita K, Sasamoto S, Koizumi S, Okazaki S, Nakamura H, Inoue T, Takeda S. TRPV4 regulates the integrity of the blood-cerebrospinal fluid barrier and modulates transepithelial protein transport. FASEB J 2015; 29:2247-59. [PMID: 25681460 DOI: 10.1096/fj.14-261396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023]
Abstract
The diffusion of materials from systemic circulation to the central nervous system (CNS) is restricted by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). Choroid plexus epithelial cells (CPECs) of the brain ventricles constitute the BCSFB and regulate the infiltration of plasma proteins as well as immune cells into the interstitium of the CNS. The barrier function is altered in pathologic conditions. However, the regulatory mechanism of BCSFB is not fully understood. Here, we investigated the function of transient receptor potential vanilloid 4 (TRPV4), a polymodally gated divalent cation channel that is highly expressed in CPECs. TRPV4 was localized broadly on the apical membrane in swine CPECs, in contrast with an intense ciliary localization found on other cell types. Treatment with the TRPV4-specific agonist, GSK1016790A (GSK; EC₅₀ 34 nM), induced a robust calcium influx and an immediate serine/threonine protein phosphorylation. The agonist treatment induced a marked decrease in the amount of filamentous actin and disintegrated the cell junctions in 10-20 minutes. In contrast, inhibition of the basal TRPV4 activity with the TRPV4-specific antagonist, HC067047 (HC; IC₅₀ 74 nM), reduced the basolateral-to-apical transport of α-2-macroglobulin (A2M). Overall, this study demonstrated a novel physiologic function of TRPV4 in the regulation of BCSFB permeability.
Collapse
Affiliation(s)
- Keishi Narita
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shohei Sasamoto
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Schuichi Koizumi
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shizuka Okazaki
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hideki Nakamura
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takafumi Inoue
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Sen Takeda
- *Department of Anatomy and Cell Biology and Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Chuo, Yamanashi, Japan; and Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
33
|
Song HB, Jun HO, Kim JH, Fruttiger M, Kim JH. Suppression of transient receptor potential canonical channel 4 inhibits vascular endothelial growth factor-induced retinal neovascularization. Cell Calcium 2015; 57:101-8. [DOI: 10.1016/j.ceca.2015.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/14/2014] [Accepted: 01/01/2015] [Indexed: 01/15/2023]
|
34
|
Villalta PC, Townsley MI. Transient receptor potential channels and regulation of lung endothelial permeability. Pulm Circ 2014; 3:802-15. [PMID: 25006396 DOI: 10.1086/674765] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
This review highlights our current knowledge regarding expression of transient receptor potential (TRP) cation channels in lung endothelium and evidence for their involvement in regulation of lung endothelial permeability. Six mammalian TRP families have been identified and organized on the basis of sequence homology: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin). To date, only TRPC1/4, TRPC6, TRPV4, and TRPM2 have been extensively studied in lung endothelium. Calcium influx through each of these channels has been documented to increase lung endothelial permeability, although their channel-gating mechanisms, downstream signaling mechanisms, and impact on endothelial structure and barrier integrity differ. While other members of the TRPC, TRPV, and TRPM families may be expressed in lung endothelium, we have little or no evidence linking these to regulation of lung endothelial permeability. Further, neither the expression nor functional role(s) of any TRPML, TRPP, and TRPA family members has been studied in lung endothelium. In addition to this assessment organized by TRP channel family, we also discuss TRP channels and lung endothelial permeability from the perspective of lung endothelial heterogeneity, using outcomes of studies focused on TRPC1/4 and TRPV4 channels. The diversity within the TRP channel family and the relative paucity of information regarding roles of a number of these channels in lung endothelium make this field ripe for continued investigation.
Collapse
Affiliation(s)
- Patricia C Villalta
- Departments of Physiology and Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mary I Townsley
- Departments of Physiology and Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
35
|
TREK-King the Blood–Brain-Barrier. J Neuroimmune Pharmacol 2014; 9:293-301. [DOI: 10.1007/s11481-014-9530-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
36
|
Zhou L, Yang B, Wang Y, Zhang HL, Chen RW, Wang YB. Bradykinin regulates the expression of claudin-5 in brain microvascular endothelial cells via calcium-induced calcium release. J Neurosci Res 2014; 92:597-606. [PMID: 24464430 DOI: 10.1002/jnr.23350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Zhou
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Bo Yang
- Department of Neurosurgery; General Hospital of Jixi Mining Conglomerate; Jixi People's Republic of China
| | - Yong Wang
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Hong-Liang Zhang
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Run-Wei Chen
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Yi-Bao Wang
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| |
Collapse
|
37
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hatano N, Suzuki H, Itoh Y, Muraki K. TRPV4 partially participates in proliferation of human brain capillary endothelial cells. Life Sci 2013; 92:317-24. [PMID: 23333822 DOI: 10.1016/j.lfs.2013.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 01/24/2023]
Abstract
AIMS The vanilloid type 4 transient receptor potential channel (TRPV4) is a potential environmental sensor to multiple stimuli in many types of cells. In this study, we show that TRPV4 activated by 4α-phorbol 12,13-didecanoate (4αPDD) and hypo-osmotic stimulation (HOS) is a regulator of intracellular calcium ([Ca(2+)](i)) in human brain capillary endothelial cells (HBCEs), and its activation can partially regulate cell proliferation of HBCEs. MAIN METHODS The expression of TRPV4 in HBCEs was analyzed at the mRNA and protein levels. The function of TRPV4 in HBCEs was evaluated using a TRPV4 agonist, 4αPDD, and HOS while measuring [Ca(2+)](i) and membrane currents. KEY FINDINGS Analysis of the mRNA transcripts of the TRPV subfamily revealed that TRPV2 and TRPV4 were expressed in HBCEs. Immunoreactivity to the TRPV4 protein was also detected in HBCEs, which were positively stained by von Willebrand factor and CD31. When 4αPDD was applied, [Ca(2+)](i) in HBCEs was elevated in a concentration-dependent manner. In addition, exposure of HBCEs to HOS at 228mOsm induced an elevation of [Ca(2+)](i). Application of 4αPDD also activated non-selective cation currents (NSCCs). Pretreatment of HBCEs with short interference RNA targeting TRPV4 (siRNA) significantly reduced the 4αPDD-induced elevation of [Ca(2+)](i). When HBCEs were treated for 24h with concentrations of 4αPDD between 0.3 and 3 μM, the cell proliferation was potentiated in a concentration-dependent manner. The potentiation was partially inhibited in HBCEs treated with siRNA. SIGNIFICANCE These data suggest that endogenous TRPV4, which functions as a regulator of [Ca(2+)](i) in HBCEs, partially controls cell proliferation.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | | | | | | |
Collapse
|
39
|
Sun L, Yau HY, Wong WY, Li RA, Huang Y, Yao X. Role of TRPM2 in H(2)O(2)-induced cell apoptosis in endothelial cells. PLoS One 2012; 7:e43186. [PMID: 22916222 PMCID: PMC3423428 DOI: 10.1371/journal.pone.0043186] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 07/18/2012] [Indexed: 01/21/2023] Open
Abstract
Melastatin-like transient receptor potential channel 2 (TRPM2) is an oxidant-sensitive and cationic non-selective channel that is expressed in mammalian vascular endothelium. Here we investigated the functional role of TRPM2 channels in hydrogen peroxide (H(2)O(2))-induced cytosolic Ca(2+) ([Ca(2+)](i)) elavation, whole-cell current increase, and apoptotic cell death in murine heart microvessel endothelial cell line H5V. A TRPM2 blocking antibody (TM2E3), which targets the E3 region near the ion permeation pore of TRPM2, was developed. Treatment of H5V cells with TM2E3 reduced the [Ca(2+)](i) rise and whole-cell current change in response to H(2)O(2). Suppressing TRPM2 expression using TRPM2-specific short hairpin RNA (shRNA) had similar inhibitory effect. H(2)O(2)-induced apoptotic cell death in H5V cells was examined using MTT assay, DNA ladder formation analysis, and DAPI-based nuclear DNA condensation assay. Based on these assays, TM2E3 and TRPM2-specific shRNA both showed protective effect against H(2)O(2)-induced apoptotic cell death. TM2E3 and TRPM2-specific shRNA also protect the cells from tumor necrosis factor (TNF)-α-induced cell death in MTT assay. In contrast, overexpression of TRPM2 in H5V cells resulted in an increased response in [Ca(2+)](i) and whole-cell currents to H(2)O(2). TRPM2 overexpression also aggravated the H(2)O(2)-induced apoptotic cell death. Downstream pathways following TRPM2 activation was examined. Results showed that TRPM2 activity stimulated caspase-8, caspase-9 and caspase-3. These findings strongly suggest that TRPM2 channel mediates cellular Ca(2+) overload in response to H(2)O(2) and contribute to oxidant-induced apoptotic cell death in vascular endothelial cells. Down-regulating endogenous TRPM2 could be a means to protect the vascular endothelial cells from apoptotic cell death.
Collapse
Affiliation(s)
- Lei Sun
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
40
|
Li W, Ehrich M. Transient alterations of the blood-brain barrier tight junction and receptor potential channel gene expression by chlorpyrifos. J Appl Toxicol 2012; 33:1187-91. [PMID: 22611033 DOI: 10.1002/jat.2762] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 11/08/2022]
Abstract
The blood-brain barrier (BBB) is formed by specialized endothelial cells lining capillaries in the central nervous system (CNS). We previously demonstrated that exposure to very low concentrations of the organophosphorus insecticide chlorpyrifos (CPF) decreased electrical resistance across the BBB in vitro, indicating a loss of BBB integrity. The present study examined the transient effects of CPF on expression of genes contributing to tight junctions of the BBB. Rat brain endothelial cells (RBE4) were co-cultured with rat astrocytes on membrane inserts to form an in vitro BBB. The RBE4 cells in the BBB were then exposed to CPF for 2, 4 and 12 h. Total RNA was extracted from RBE4 cells and quantitative real-time PCR (qRT-PCR) was used to quantify levels of gene expression of tight junction proteins claudin5, scaffold proteins zona occludens (ZO1) and transient receptor potential (canonical) channels (TRPC4). Gene expression decreased 2 h after exposure to CPF, especially TRPC4, but the effects were reversed 12 h later. CPF exposure for only 15 min caused less effect than longer exposures, with TRPC4 gene expression above the control at 4 h. These results suggest that altering gene expression for claudin5, TRPC4 and ZO1 by CPF may directly contribute to BBB disruption, and that the alteration is reversible upon removal of CPF.
Collapse
Affiliation(s)
- Wen Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0442, USA
| | | |
Collapse
|
41
|
Berrout J, Jin M, O'Neil RG. Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood-brain barrier endothelial cells. Brain Res 2011; 1436:1-12. [PMID: 22192412 DOI: 10.1016/j.brainres.2011.11.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/14/2011] [Accepted: 11/19/2011] [Indexed: 12/23/2022]
Abstract
The microvessels of the brain are very sensitive to mechanical stresses such as observed in traumatic brain injury (TBI). Such stresses can quickly lead to dysfunction of the microvessel endothelial cells, including disruption of blood-brain barrier (BBB). It is now evident that elevation of cytosolic calcium levels ([Ca2+]i) can compromise the BBB integrity, however the mechanism by which mechanical injury can produce a [Ca2+]i increase in brain endothelial cells is unclear. To assess the effects of mechanical/stretch injury on [Ca2+]i signaling, mouse brain microvessel endothelial cells (bEnd3) were grown to confluency on elasticized membranes and [Ca2+]i monitored using fura 2 fluorescence imaging. Application of an injury, using a pressure/stretch pulse of 50 ms, induced a rapid transient increase in [Ca2+]i. In the absence of extracellular Ca2+, the injury-induced [Ca2+]i transient was greatly reduced, but not fully eliminated, while unloading of Ca2+ stores by thapsigargin treatment in the absence of extracellular Ca2+ abolished the injury transient. Application of LOE-908 and amiloride, TRPC and TRPP2 channel blockers, respectively, both reduced the transient [Ca2+]i increase. Further, siRNA knockdown assays directed at TRPC1 and TRPP2 expression also resulted in a reduction of the injury-induced [Ca2+]i response. In addition, stretch injury induced increases of NO production and actin stress fiber formation, both of which were markedly reduced upon treatment with LOE908 and/or amiloride. We conclude that mechanical injury of brain endothelial cells induces a rapid influx of calcium, mediated by TRPC1 and TRPP2 channels, which leads to NO synthesis and actin cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Jonathan Berrout
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
42
|
Fraser PA. The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 2011; 51:967-77. [PMID: 21712087 DOI: 10.1016/j.freeradbiomed.2011.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 12/31/2022]
Abstract
The brain endothelium constitutes a barrier to the passive movement of substances from the blood into the cerebral microenvironment, and disruption of this barrier after a stroke or trauma has potentially fatal consequences. Reactive oxygen species (ROS), which are formed during these cerebrovascular accidents, have a key role in this disruption. ROS are formed constitutively by mitochondria and also by the activation of cell receptors that transduce signals from inflammatory mediators, e.g., activated phospholipase A₂ forms arachidonic acid that interacts with cyclooxygenase and lipoxygenase to generate ROS. Endothelial NADPH oxidase, activated by cytokines, also contributes to ROS. There is a surge in ROS following reperfusion after cerebral ischemia and the interaction of the signaling pathways plays a role in this. This review critically evaluates the literature and concludes that the ischemic penumbra is a consequence of the initial edema resulting from the ROS surge after reperfusion.
Collapse
Affiliation(s)
- Paul A Fraser
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London SE19NH, UK.
| |
Collapse
|
43
|
Wong CO, Yao X. TRP channels in vascular endothelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:759-80. [PMID: 21290326 DOI: 10.1007/978-94-007-0265-3_40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endothelial cells regulate multiple vascular functions, such as vascular tone, permeability, remodeling, and angiogenesis. It is known for long that cytosolic Ca(2+) level ([Ca(2+)](i)) and membrane potential of endothelial cells are crucial factors to initiate the signal transduction cascades, leading to diverse vascular functions. Among the various kinds of endothelial ion channels that regulate ion homeostasis, transient receptor potential (TRP) channels emerge as the prime mediators for a diverse range of vascular signaling. The characteristics of TRP channels, including subunit heteromultimerization, diverse ion selectivity, and multiple modes of activation, permit their versatile functional roles in vasculatures. Substantial amount of evidence demonstrates that many TRP channels in endothelial cells participate in physiological and pathophysiological processes of vascular system. In this article, we summarize the recent findings of TRP research in endothelial cells, aiming at providing up-to-date information to the researchers in this rapidly growing field.
Collapse
Affiliation(s)
- Ching-On Wong
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
44
|
Hicks K, O'Neil RG, Dubinsky WS, Brown RC. TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. Am J Physiol Cell Physiol 2010; 298:C1583-93. [PMID: 20164382 DOI: 10.1152/ajpcell.00458.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypoxia-induced disruption of the blood-brain barrier (BBB) is the result of many different mechanisms, including alterations to the cytoskeleton. In this study, we identified actin-binding proteins involved in cytoskeletal dynamics with quantitative proteomics and assessed changes in subcellular localization of two proteins involved in actin polymerization [vasodilator-stimulated phosphoprotein (VASP)] and cytoskeleton-plasma membrane cross-linking (moesin). We found significant redistribution of both VASP and moesin to the cytoskeletal and membrane fractions of BBB endothelial cells after 1-h hypoxic stress. We also investigated activation of actin-myosin contraction through assessment of phosphorylated myosin light chain (pMLC) with confocal microscopy. Hypoxia caused a rapid and transient increase in pMLC. Blocking MLC phosphorylation through inhibition of myosin light chain kinase (MLCK) with ML-7 prevented hypoxia-induced BBB disruption and relocalization of the tight junction protein ZO-1. Finally, we implicate the transient receptor potential (TRP)C family of channels in mediating these events since blockade of TRPC channels and the associated calcium influx with SKF-96365 prevents hypoxia-induced permeability changes and the phosphorylation of MLC needed for actin-myosin contraction. These data suggest that hypoxic stress triggers alterations to cytoskeletal structure that contribute to BBB disruption and that calcium influx through TRPC channels contributes to these events.
Collapse
Affiliation(s)
- Kali Hicks
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|